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Chromosomal instability in aneuploid acute
lymphoblastic leukemia associates with disease
progression
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Abstract

Chromosomal instability (CIN) lies at the core of cancer develop-
ment leading to aneuploidy, chromosomal copy-number hetero-
geneity (chr-CNH) and ultimately, unfavorable clinical outcomes.
Despite its ubiquity in cancer, the presence of CIN in childhood
B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent
pediatric cancer showing high frequencies of aneuploidy, remains
unknown. Here, we elucidate the presence of CIN in aneuploid cB-
ALL subtypes using single-cell whole-genome sequencing of pri-
mary cB-ALL samples and by generating and functionally char-
acterizing patient-derived xenograft models (cB-ALL-PDX). We
report higher rates of CIN across aneuploid than in euploid cB-ALL
that strongly correlate with intraclonal chr-CNH and overall sur-
vival in mice. This association was further supported by in silico
mathematical modeling. Moreover, mass-spectrometry analyses of
cB-ALL-PDX revealed a “CIN signature” enriched in mitotic-spindle
regulatory pathways, which was confirmed by RNA-sequencing of a
large cohort of cB-ALL samples. The link between the presence of
CIN in aneuploid cB-ALL and disease progression opens new pos-
sibilities for patient stratification and offers a promising new ave-
nue as a therapeutic target in cB-ALL treatment.
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Introduction

Chromosomal instability (CIN), defined as an increased rate of
chromosome segregation errors during cell division, is a prominent
form of genomic instability (Bakhoum and Landau, 2017) and a
major cause of aneuploidy, the most prevalent genetic alteration in
human cancers (Ben-David and Amon, 2020; Vasudevan et al,
2021). Aneuploidy is commonly associated with ongoing CIN
through consecutive cell divisions (Garribba et al, 2023; Santaguida
and Amon, 2015), resulting in intratumor genetic heterogeneity,
a central driver of cancer evolution and therapeutic resistance
(Ben-David and Amon, 2020; Sansregret et al, 2018). The ability to
cope with the ongoing genetic imbalances caused by CIN is a
fundamental difference between malignant and non-malignant
cells. These imbalances result in several aneuploidy-associated
stressors that impair overall cellular fitness such as metabolic
changes affecting the protein turnover machinery, replication stress
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affecting genome integrity, and alterations in the mitotic regulatory
machinery which fuel chromosome mis-segregation (Cohen-Sharir
et al, 2021; Crasta et al, 2012, Donnelly et al, 2014; Garribba et al,
2023; Ohashi et al, 2015; Oromendia and Amon, 2014; Stingele
et al, 2012; Torres et al, 2007). This suggests that CIN must be
maintained under a tolerable threshold to preserve cancer cell
homeostasis, which may represent a key vulnerability of aneuploid
tumors. Indeed, strategies to modulate CIN levels in cancer cells
have been therapeutically explored (McClelland, 2017). For
instance, increasing CIN levels in tumors with ongoing CIN has
been explored as a strategy to drive them over the threshold of
tolerance, and an increased efficacy of some cancer treatments
(such as paclitaxel and radiation therapy) that enhance CIN in cells
with high basal levels of CIN has been reported (Bakhoum et al,
2015; Janssen et al, 2009). Inversely, decreasing CIN levels by
manipulating key mitotic pathways such as the spindle-assembly
checkpoint (SAC) and microtubule dynamics resulted in a
significant improvement in overall survival (OS) in preclinical
mouse models (Bakhoum et al, 2009; Cohen-Sharir et al, 2021;
Ertych et al, 2014; Orr et al, 2016; Sansregret et al, 2017). In fact,
phase I clinical studies assessing the efficiency of inhibitors of
MPS1, a master regulator of the SAC, and of KIF18A, a kinesin-like
motor protein that regulates chromosome positioning during cell
division, are currently being conducted to treat a variety of cancer
types (NCT02366949, NCT04293094).

Despite the ubiquitous presence of CIN in several aneuploid
cancer types and its clinical relevance, its presence in B-cell acute
lymphoblastic leukemia (B-ALL) remains largely unexplored.
B-ALL is the most frequent childhood cancer and it is
characterized by the accumulation of highly proliferative immature
B-cell precursors in the bone marrow (BM) (Hunger and
Mullighan, 2015). B-ALL is a genetically heterogeneous disease
with distinct biological and prognostic subgroups classified
according to cytogenetic and molecular features (Brady et al,
2022; Moorman, 2012). Among them, aneuploidy is the most
common genetic abnormality in B-ALL, particularly in childhood
B-ALL (cB-ALL), with ∼35–40% of cases showing abnormal
chromosome numbers in leukemic cells, which is considered as an
important prognostic factor (Molina et al, 2021a). Clinically
relevant aneuploid subtypes include high hyperdiploidy (HeH),
the most frequent cB-ALL subtype, defined by the presence of 51 to
67 chromosomes in leukemic cells and associated with a favorable
outcome (5-year overall OS > 85%) (Haas and Borkhardt, 2022).
Low hypodiploidy (HoL), with 30 to 39 chromosomes, and near-
haploidy (NH), with 24 to 29 chromosomes, account for ~2% of
cB-ALL cases and have an extremely poor prognosis, with a 5-year
OS of <20% (Molina et al, 2021b). Despite being very uncommon
in cB-ALL, most HoL patients harbor inherited TP53 mutations,
suggesting an evolution of a Li-Fraumeni syndrome (Holmfeldt
et al, 2013). Noteworthy, half of all the HoL and NH cases
ultimately show a chromosomal doubling of the initial hypodiploid
clone, resulting in hyperdiploid clones with 50 to 78 chromosomes
that frequently represent the major leukemic clone at diagnosis
(Harrison et al, 2004; Holmfeldt et al, 2013). This poses an
important clinical challenge, as these patients could be erroneously
classified and treated as HeH-B-ALL despite being at higher risk of
treatment failure (Nachman et al, 2007). Chromosomal gains and
losses in aneuploid cB-ALL are not random, with specific
chromosomes preferentially gained in HeH or retained as disomies

in HoL and NH-B-ALL (Molina et al, 2021a), suggesting a
potential leukemogenic impact of these chromosomes.

The presence of CIN and its contribution to aneuploid cB-ALL
progression is largely unknown due to the lack of preclinical
models to study actively dividing cells. Accordingly, studies of CIN
in cB-ALL are limited to the characterization of chromosomal
copy-number heterogeneity (chr-CNH) in primary cB-ALL sam-
ples and remain controversial due to the different techniques used
to assess karyotype variability (Alpar et al, 2014; Heerema et al,
2007; Paulsson et al, 2010; Ramos-Muntada et al, 2022; Talamo
et al, 2010). Importantly, although increased rates of chromosome
mis-segregation have been shown in actively dividing HeH-B-ALL
cells in patient-derived xenograft (PDX) models (Molina et al,
2020), they are vastly unexplored in other clinically relevant
aneuploid subtypes, such as HoL- and NH-B-ALL. These methods
provide insight into the genomic complexity of cancer genomes but
do not allow for an assessment of whether CIN is ongoing, or
whether errors are tolerated and/or efficiently propagated. Thus, it
remains unresolved whether aneuploid cB-ALL subtypes experi-
ence ongoing CIN, whether the extent of CIN correlates with
karyotype heterogeneity, and whether CIN influences leukemia
progression.

Here, we explored the presence and the levels of CIN in different
clinically relevant aneuploid subtypes of cB-ALL using single-cell
whole-genome sequencing (WGS) of primary samples to reliably
assess chr-CNH, and by systematically generating PDX models
from primary cB-ALL samples (cB-ALL-PDX). These models
allowed us to integrate chromosomal segregation data of actively
dividing cells in the BM with karyotype heterogeneity and disease
progression. Overall, our results reveal variable levels of CIN in
aneuploid cB-ALL subtypes, which significantly correlate with
intraclonal karyotype heterogeneity and with disease progression.
In addition, mass-spectrometry analyses of cB-ALL-PDX samples
revealed a “CIN signature” enriched in mitosis and chromosome
segregation regulatory pathways. We speculate that this signature
identifies adaptive mechanisms to ongoing CIN in aneuploid cB-
ALL cells, which displayed a transcriptional signature characterized
by an impaired mitotic spindle as observed by RNA-sequencing
(RNA-Seq) analyses of a large cohort of primary cB-ALL patient
samples. Our work contributes to improve stratification of patients
with cB-ALL with different levels of CIN who could benefit from
new therapeutic approaches aiming to target ongoing CIN.

Results

Chr-CNH is consistently higher in aneuploid subtypes of
childhood B-ALL

Chr-CNH, defined as cell-to-cell variability in whole chromosomes
and chromosome arms, is a major readout of CIN (Bakhoum and
Landau, 2017). Although chr-CNH is usually associated with
aneuploidy, its presence in the different aneuploid subtypes of cB-
ALL is debated due to technical limitations commonly used to
assess karyotype variability (Alpar et al, 2014; Elghezal et al, 2001;
Heerema et al, 2007; Paulsson et al, 2010; Ramos-Muntada et al,
2022; Talamo et al, 2010). To comprehensively assess chr-CNH in
aneuploid cB-ALL patients, we first applied a recently described
computational approach to infer chr-CNH from bulk WGS data
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which relies on the deviation from strictly integer chromosomal
numbers in WGS samples to calculate chr-CNH (van Dijk et al,
2021) (Fig. 1A). We collected WGS data from the Pediatric Cancer
Genome Project (SJC-DS-1001; https://platform.stjude.cloud/data/
cohorts) and applied this approach on the patient data. Patients
were classified as euploid or aneuploid (HeH, HoL, and NH)
subtypes based on available cytogenetic data and/or copy-number
alterations identified by RNA-Seq (Dataset EV1). Results showed
that chr-CNH was moderately but significantly higher in aneuploid
cB-ALL patient samples than in equivalent samples with euploid
karyotypes (P < 0.01) (Fig. 1B).

To unambiguously identify and characterize karyotype hetero-
geneity in aneuploid cB-ALL, we next performed low-pass single-
cell WGS (scWGS) in 8 primary cB-ALL samples, including two
samples for each ploidy group (Eup-, HeH-, HoL-, and NH-B-ALL)
(Fig. 1C and Table 1). We also included a pool of healthy human
hematopoietic stem/progenitor cells (HSPCs) as a chromosomally
stable control (Fig. 1D). Results of scWGS showed remarkably
consistent data with the karyotypes obtained in primary B-ALL
samples (Fig. 1C and Appendix Table S1). Diploid cells were
observed in 1 of 15 cells from patient HeH1 and 5 of 16 cells from
patient HoL2, most likely representing healthy hematopoietic cells.
Remarkably, both hypodiploid and doubled-up hyperdiploid clones
could be observed in patient NH1, and masked hypodiploidy with
an exact duplication of the original hypodiploid clone detected by
FISH could be observed in patient NH3 (Fig. 1C and Table 1). Chr-
CNH, as detected by a genome-wide heterogeneity score (HS), was
similarly low in both Eup-B-ALL samples and HSPCs (HS = 0.081)
(Fig. 1C,D), indicating that euploid cB-ALL samples are chromo-
somally stable. Contrastingly, whole-chromosome gains and losses
deviating from the modal karyotypes could be observed in all
aneuploid cB-ALL samples, with higher genome-wide HS (ranging
from 0.141 to 0.266) when compared with Eup-B-ALL and HSPCs.
Of note, hypodiploid subtypes (HoL- and NH-B-ALL) showed
higher levels of chr-CNH than HeH-B-ALL samples (Fig. 1C). The
HS observed across aneuploid cB-ALL samples are well within the
range of those observed in previous studies using scWGS of cB-ALL
samples (Bakker et al, 2016; Woodward et al, 2023), demonstrating
the reliability of our data. Overall, the results consistently showed
moderately higher levels of chr-CNH in all aneuploid cB-ALL
samples than in Eup-B-ALL and HSPCs. The different levels of CIN
across the different aneuploid cB-ALL subtypes might underlie
their different clinical outcomes.

Patient-derived xenograft (PDX) models recapitulate the
clinical outcome of cB-ALL in patients with
variable ploidy levels

CIN is caused by an increased frequency of chromosome
segregation errors, leading to cell-to-cell variability in chromoso-
mal content and in adaptation to diverse cellular stresses
(Vasudevan et al, 2021). Given the inherent complexity in studying
the actual rate of chromosome mis-segregation in actively dividing
cB-ALL primary cells, CIN is typically assessed by quantifying chr-
CNH within a given population (Alpar et al, 2014; Ramos-Muntada
et al, 2022; Woodward et al, 2023). To comprehensively study the
presence of CIN and its relationship with both chr-CNH and
disease outcome, we generated PDX models using a discovery
cohort consisting of 12 primary diagnostic cB-ALL samples, three

samples per ploidy group (Table 1 and Fig. 2A). A total of 56 cB-
ALL-PDX models were generated, with a minimum of three PDX
for each primary cB-ALL sample. The follow-up of human
engraftment in the peripheral blood (PB) of mice revealed
differences in the leukemia kinetics across cB-ALL subgroups, as
observed by the rates of early- and late-engrafting PDX, defined as
mice with >15% or <15% human leukemic cells in PB at week 12,
respectively (Fig. 2B). The frequency of early-engrafting PDX was
higher in the HoL- and NH-B-ALL groups (84.6% and 64.3%,
respectively) than in the HeH-B-ALL and Eup-B-ALL groups
(43.8% and 15.4%, respectively). Remarkably, the HeH-B-ALL
group was the most heterogeneous in terms of leukemia kinetics
(Fig. 2B). We next correlated leukemia kinetics with clinical
outcomes. Results revealed significant differences between HoL-
and NH-B-ALL as compared with HeH- and Eup-B-ALL groups
for both event-free survival (EFS) and OS rates (Fig. 2C,D),
recapitulating the less favorable clinical outcomes of these subtypes
of cB-ALL (Haas and Borkhardt, 2022; Molina et al, 2021b). Of
note, no differences were observed in the ratios of proliferating and
apoptotic B-ALL blasts between PDX groups (Appendix Fig. S1),
indicating that other factors (such as CIN) might be involved in the
different leukemia kinetics and clinical outcomes observed. Overall,
cB-ALL-PDX mirror the clinical outcomes of patients with cB-ALL.

Aneuploid cB-ALL subtypes are characterized
by higher rates of mitotic defects and
chromosome mis-segregation

To examine chromosome segregation fidelity in primary cB-ALL
cells, we made use of 36 PDX-B-ALL models generated from 12 cB-
ALL patients (three individual PDXs per primary cB-ALL sample)
(Table 1). Xenografted cB-ALL blasts were isolated and processed
for immunofluorescence staining for DNA, kinetochores, and
mitotic spindles (Molina et al, 2020). Analyses revealed an
increased mitotic index in all aneuploid cB-ALL subtypes when
compared with Eup-B-ALL, as observed by the rates of mitotic cells
in a minimum of 1500 blasts per sample (mean mitotic index±SEM:
>1.5% ± 0.2 vs 0.8% ± 0.06, respectively; P < 0.01) (Fig. 3A). Despite
higher mitotic indices, only marginal differences were observed in
the mitotic progression among cB-ALL groups, as observed by
the rates of cells in specific mitotic phases (Fig. 3B), suggesting
higher proliferation rates in aneuploid cB-ALL blasts than in Eup-
B-ALL blasts.

To assess the levels of CIN, we next analyzed the rates of mitotic
and chromosome segregation defects. Different mitotic defects
were observed, including chromosome bridges, lagging chromo-
somes, mitotic spindle defects, misaligned chromosomes at the
metaphase plate, and other defects mainly involving unequal
cytokinesis (Fig. 3C). Mean rates of mitotic defects in Eup-B-ALL
PDX were low (1.4% ± 0.25) while higher and variable rates were
observed across aneuploid cB-ALL subtypes, ranging from 3.5% to
17% (Figs. 3D and EV1A,B). Of note, although variable rates of
specific mitotic defects were observed throughout cB-ALL
subgroups, chromosome alignment defects in the metaphase plates
and multipolar spindles (detected as more than two pericentrin
foci) were the most frequent abnormalities in aneuploid cB-
ALL cells (Figs. 3D and EV1B), in line with our previous
observations in an independent cohort of HeH-B-ALL PDX
samples (Molina et al, 2020). Unequal cytokineses were more
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common in NH-B-ALL PDX samples (Fig. EV1B), suggesting that
different causes predominantly underlie CIN in different aneuploid
cB-ALL subtypes.

As the rates of specific mitotic defects are highly influenced by
the rates of specific mitotic phases (i.e., misaligned chromosomes
are observed in early mitosis), we next analyzed the rates of
chromosome mis-segregation, observed as lagging chromosomes
or bulky anaphase bridges in late mitosis, to define the actual CIN
levels in the PDX samples. As expected, chromosome mis-
segregation levels were significantly higher across aneuploid than
in euploid B-ALL-PDX samples (P < 0.001; Figs. 3E and EV1C),
indicating higher CIN levels in the former. We noted a low
variability in the rates of mitotic errors in independent PDXs
derived from the same primary cB-ALL sample, confirming
the validity of the CIN levels observed (Fig. EV1A, C). Collectively,
our data confirm variable levels of ongoing CIN in aneuploid
cB-ALL-PDX samples. The different types of mitotic defects
observed across aneuploid cB-ALL samples suggest defects in
different components of the mitotic machinery as underlying
causes of CIN.

CIN is associated with moderate levels of intraclonal
chr-CNH in aneuploid cB-ALL

PDX models provide a unique opportunity to directly test how
ongoing CIN contributes to cell-to-cell genomic heterogeneity.
Having established that CIN is widespread in aneuploid cB-ALL-
PDX models, we next determined the rates of chr-CNH present in
these samples using Multicolor FISH (M-FISH) on freshly-isolated
blasts (Fig. 4A). As expected, normal karyotypes with very low chr-
CNH were detected in all Eup-B-ALL PDX samples, as observed by
a homogeneous karyotype heterogeneity score (kHS) of 0.99
(Figs. 4B and EV1D). Contrastingly, modal chromosome numbers
were highly variable across the aneuploid cB-ALL-PDX samples,
ranging from 27 to 58 chromosomes (Fig. EV1D). Notably, modal
chromosome numbers in the hyperdiploid range were detected in
all HoL- and NH-B-ALL samples, suggesting that endoreduplicated
hypodiploid clones become dominant after PDX expansion, by drift
or by specific selective pressure (Fig. EV1D). Ploidy shifts in HoL-
and NH-B-ALL samples were clearly observed when comparing the
modal chromosome numbers between the primary cB-ALL samples

Figure 1. Aneuploid cB-ALL subtypes consistently show high chr-CNH.

(A) Strategy to calculate the chr-CNH described by van Dijk et al (2021). (B) Box-plot showing the chr-CNH calculated as in (A) in the indicated samples (n= 118 samples;
n= 94 euploid and 24 aneuploid). The box begins in the first quartile (percentile 25%) and ends in the third quartile (percentile 75%), central horizontal line represents
the median value. Lines represent segments of furthest data without accounting for outliers. Unpaired Student’st-test was used. **P < 0.01. (C, D) scWGSeq (bin size 1 MB)
of cB-ALL primary BM samples (C) and healthy CD34+ HSPCs (D). Single cells are represented in rows and chromosomes are plotted as columns. Copy-number states are
plotted using the Aneufinder algorithm. Aneuploidy and heterogeneity scores (AS and HS, respectively) in each cB-ALL group are shown on the right. Source data are
available online for this figure.

Table 1. Cytogenetic-molecular and biological data of cB-ALL patients used to generate patient-derived xenograft (PDX) models.

ID CYTOGENETICS FISH/Molecular biology Gender Age
%
blasts MRD Relapse DFS Death

Eupl1 46,XX[20] – F 5 100 Neg No 10 No

Eupl2 46,XY[21] nuc ish(ABL1,BCR,MLL,ETV6,AML1,E2A,IGH)
x2[200]

M 5 97 Neg No 5 No

Eupl3 46,XY[20] nuc ish(BCR-ABL,MLL,ETV6/RUNX1)
x2[200]/DNi EUPLOID

M 11 98.2 Neg No 6 No

HeH1 56–59,XX,+X,+4,+5,+6,+7,+8,+10,+14,+14,+14,
+15,+17,+18,+21,+21,+22[cp6]

– F 4 93 Neg No 7 No

HeH2 57–58,XX,+X+X,+3,+6,+8,+8,+10,+10,
+13,+14,+14,+17,+18,+18,+21,+21[cp13]/46,XX[6]

– F 5 90 Neg No 5 No

HeH3 54, XX,+X,+6,+8,+14,+17,+18,+21,
+21[15]/54,idem,−13,+mar[11]/46,XX[19]

– F 4 100a Pos No 5.8 No

HoL1 46,XX[18]/32–38,XX,−3,−5,−6,−7,−10,−13,−18,
−20[6]/50–54,XX,+17,+18,inc[4]

nuc ish(RP11-705O1x3),(RARAx3)[18/100] F 3 90 Neg No 7 No

HoL2 na nuc ish(MLLx1-3,BCR-ABLx1-3,ETV6/
RUNX1 × 1–4)[200]/DNi=0.76(HoL)

F 11 30 Neg No 6 No

HoL3 37,XX,−2,−3,−4,−7,−12,−13,−15,−16,−17[6]/
73,XXX,+X,+1,−2,−3,−4,+5,+6,−7,+8,+9,
+11,−12,−13,+14,−15,−16,−17,+18,+19,+20,+21,+22[8]

– F 13 98 Pos Yes 0.43 Yes

NH1 27<1n>,XX,+14,+18,+21[20] – F 14 97 Pos Yes 0.27 Yes

NH2 52,XY,+X,+Y,+14,+14,+21,+21[8]/46,XY[2] Masked near haploidy (Promega Powerplex 16) M 4 97.5 Neg No 9.84 No

NH3 46,XY[20] nuc ish(2,3,5,7,8,9,11,12,13,14,15,16,17,22)
x1–2[200]

M 16 78.9 Neg No 8.99 No

Eup (Euploid): 46 chr.; HeH (High hyperdiploid): 51–67 chr.; HoL (Low hypodiploid): 30–39 chr.; NH (Near haploid): 24–29 chr.
DFS disease-free survival (years), DNi DNA index, F female, M male, MRD minimal residual disease status post-induction, na not assessed, nuc ish interphase
nuclei FISH, (-) no data available.
aFACS-sorted sample.
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and their resulting PDXs (Fig. EV1E). The extent of karyotype
heterogeneity was moderately higher across aneuploid cB-ALL than
in Eup-B-ALL PDX samples, with the kHS ranging from 1.10 to
1.32 (P < 0.001; Fig. 4B,C). Of note, modal karyotypes in the PDX
cells matched those of the primary cB-ALL cells or showed exact
doubled-up karyotypes in the case of HoL- and NH-B-ALL
(Fig. EV1F and Appendix Table S1), indicating that rates of CIN
in cB-ALL cells are reflected as intraclonal genomic variability
within an already adapted karyotype, which may favor the survival
and proliferation.

Chr-CNH was not equally distributed across the karyotype, but
specific chromosomes showed higher rates of variability, as
observed by chromosome copy-numbers with standard deviation
(SD) ≥ 1, such as chromosomes 6, 14, 17, 18, 21, and X in HeH-B-
ALL; chromosomes 1, 6, 11, 8, 10, 18, 20, 21, and X in HoL-B-ALL;
and chromosomes 14, 18, 21, and X in NH-B-ALL (Fig. EV1G).
Notably, the most variable chromosomes were coincident with
those gained or retained as disomies in the corresponding primary
samples, suggesting that chromosomal gains at leukemia initiation
buffer the negative consequences of CIN on cellular fitness,
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Figure 2. PDXs models recapitulate the clinical outcome of cB-ALL patients.

(A) Experimental design to generate and follow-up PDX models derived from primary cB-ALL samples (n= 56 PDX from 12 B-ALL samples, 3 samples per cB-ALL ploidy
group). Representative images of leukemia monitoring in PB by flow-cytometry (bottom). (B) cB-ALL follow-up in PB of individual PDXs with the indicated cB-ALL samples.
Each graph represents mice from the indicated ploidy groups (n= 13 Eup-, 16 HeH-, 13 HoL- and 14 NH-B-ALL). (C, D) Kaplan–Meier survival curves of EFS (C) and OS (D)
of the indicated groups of PDX-derived cB-ALL samples. Statistical significance was determined by Log-rank Mantel-Cox tests. *P < 0.05, **P < 0.01, ***P < 0.001. Data
information: The experiments represent a minimum of three PDX samples (technical replicates) per cB-ALL sample (biological replicates) in each ploidy group. Source
data are available online for this figure.
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allowing certain karyotype variation that may ultimately be
involved in clonal adaptation.

A direct relationship has been established between CIN and
Chr-CNH in different organisms and tumor samples (Bolhaqueiro
et al, 2019; Bollen et al, 2021; Foijer et al, 2014). To test the
association of CIN rates with chr-CNH in cB-ALL, we correlated
the different parameters analyzed in cB-ALL mitotic blasts,
including mitotic index, mitotic defects, and chromosome mis-
segregation rates, with the reported kHS by M-FISH. Strongly

significant positive correlations were observed for all these
parameters with kHS in cB-ALL-PDX samples (Fig. 4D), providing
a direct link between CIN and chr-CNH in cB-ALL-PDX models.
The observed non-clonal variability supports a punctuated
evolution model in cB-ALL, where one or a few dominant clones
stably expand during leukemogenesis (Davis et al, 2017), with
intraclonal karyotype variations shaping the chr-CNH spectrum, as
was previously observed in a mouse model for T-ALL (Shoshani
et al, 2021).
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Figure 3. Aneuploid cB-ALL show higher rates of mitotic defects in PDX models.

(A) Analysis of the mitotic index in cB-ALL PDX models by immunofluorescence (IF) analysis. Left, representative DNA-tubulin-pericentrin IF staining of cB-ALL-PDX cells.
Yellow arrowheads point to mitotic cells in the selected field. Right, percentage of mitotic cells in the indicated cB-ALL ploidy group (n= 36, 3 cB-ALL-PDX samples per group;
Eup = 20,750, HeH = 19,480, HoL= 22,274, NH= 22,183 cells). Scale bar: 10 μm. (B) Mitosis progression of cB-ALL-PDX cells from (A). Graph shows the frequency of mitotic
cells at the indicated mitotic phases. (C) Representative DNA-Centromere (ACA)-tubulin-pericentrin IF staining of cB-ALL-PDX cells identifying the indicated mitotic defects.
Yellow arrows point to the indicated mitotic defects. Scale bar: 10 μm. (D) Frequency of mitotic cB-ALL-PDX-expanded primary blasts with the indicated mitotic defects (36
PDX samples, 3 PDX per primary sample; n= 200 mitotic cells per PDX sample, Total=7200 mitotic cells). (E) Frequency of cB-ALL-PDX-expanded primary blasts at late
mitosis with the indicated chromosome segregation defects (36 PDX samples, 3 PDX per primary sample; n= 123 Eup, 116 HeH, 163 HoL, and 186 NH late mitoses). Data
information: Data are presented as mean ± SEM. Statistical significance in (A), (B), and (D) was determined by two-way ANOVA test, and by Wilcoxon rank-sum test in (E).
**P < 0.01, ***P < 0.001. The experiments represent a minimum of three PDX samples (technical replicates) per cB-ALL sample (biological replicates) in each ploidy group.
Source data are available online for this figure.
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Figure 4. High rates of mitotic defects underlie large chr-CNH in PDX models of aneuploid cB-ALL.

(A) Representative M-FISH karyotypes from cB-ALL-PDX-expanded primary blasts of different cB-ALL subgroups. Chromosome-specific fluorophore combinations are
indicated at each chromosome pair in the karyogram at the left. (B) Heatmaps showing the M-FISH results obtained for the indicated samples (n= 247 metaphases;
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three PDX samples (technical replicates) per cB-ALL sample (biological replicates) in each ploidy group. Source data are available online for this figure.

Oscar Molina et al EMBO Molecular Medicine

© The Author(s) EMBO Molecular Medicine Volume 16 | January 2024 | 64 –92 71



CIN influences cB-ALL progression in PDX models

CIN has been associated with tumor progression across different
cancer types (Bakhoum et al, 2018; Foijer et al, 2014; Godek et al,
2016; Hoevenaar et al, 2020; van Dijk et al, 2021). To test whether
this association holds true in cB-ALL, we next assessed the
relationship between the levels of different CIN parameters,
including mitotic index, rates of mitotic defects, rates of chromo-
some mis-segregation and chr-CNH, with the leukemia kinetics
observed by PB graft monitoring in the cB-ALL-PDX models. Two
stages were differentiated to assess in vivo cB-ALL kinetics
(Fig. 5A): first, the time-to-engraft was determined as the time
from transplant to the time when cB-ALL engraftment was first
detectable (>0.1%) in PB; second, time-of-disease progression was
determined as the time elapsed from first detectable cB-ALL
engraftment until overt leukemia (defined as >15% blasts in PB,
which represents >80% blasts in BM) (Molina et al, 2020). Results
showed no correlation between any CIN parameter with the time-
to-engraft in mice (Fig. 5B). However, significant correlations were
observed between the rates of mitotic defects and chromosome mis-
segregation with disease progression (Fig. 5C). A trend for
significance between kHS and disease progression was also
observed, suggesting that other factors beyond CIN are involved
in chr-CNH and disease progression in cB-ALL (van den Bosch
et al, 2022).

To further examine the relationship between CIN and cB-ALL
disease progression, we classified cB-ALL-PDX samples according
to their rates of mitotic defects into three CIN groups: (i) CINlow,
within the percentile 0 and 25, with mitotic defects ranging from
0.5% to 2.75%; (ii) CINmid, within the percentile 25 and 75, with
mitotic defects ranging from 2.75% to 7.3%; and (iii) CINhigh, within
the percentile 75 and 100, with mitotic defects ≥7.3% (Fig. 5D,E).
Results revealed reduced OS rates with increasing levels of CIN
within our cohort of cB-ALL PDX samples (Fig. 5F), further
demonstrating the relationship between CIN and disease progres-
sion in cB-ALL.

Mathematical modeling confirms a relationship between
CIN and disease progression

We further explored the role of CIN in the progression of cB-ALL
by using an in silico approach to predict the dynamics and
karyotype evolution of a leukemic population in the presence of
different levels of CIN. Building this discrete model at a single-cell
resolution required tracking each resulting karyotype resulting
from cell division to study whether specific karyotypes are
preferentially selected. To do this, we determined the cell fitness
(Φ) and its interaction with variable selection patterns (σ), which
are key factors in shaping the resulting karyotypes selected over
time (Fig. 6A). We assigned a Φ value based on features that
influence leukemogenesis and tumor development (α, β, γ; ω1),
taking into account structural properties affecting chromosome
segregation (ω2), such as the centromeric size (SCen) and total gene
density (SGD) (Fig. 6B; Appendix Tables S2 and S3) (Lynch et al,
2022). Since the relative contribution to Φ, or weight (ω), of each of
these processes is largely unknown and to prevent potential
conceptual biases, we assumed an equal contribution from both
types of features (ω1 = ω2 = 1), and in turn the same contribution of
the sub-features.

We aimed to test the contribution of ongoing CIN in aneuploid
cB-ALL, focusing on the impact of CIN in aneuploid conditions
rather that the mechanisms leading to the aneuploid karyotypes.
For this purpose, we set aneuploid leukemic cells as the starting
point for our simulations (Fig. 6A). Even in the absence of CIN
(PCIN = 0), we simulated an actively proliferating leukemic
population (Fig. 6C). At higher levels of CIN, the cell growth
slowed down, as evidenced by the delay in the time taken to reach
the carrying capacity threshold set at 1 × 106 cells (47 days at
PCIN = 0, delayed to 107 days at PCIN = 0.3) (Figs. 6C and EV2A).
In the absence of selective pressures (σ) associated with CIN
(PCIN = 0), the cell division rate (PDIV) and average Φ remained
almost constant throughout time (Fig. 6D,E). However, even
though initial growth was compromised, we observed an increase
in proliferation capacity and Φ values with variable levels of CIN
(Fig. 6C–E), suggesting a positive correlation between CIN and cell
proliferation rates upon adaptation to the negative impact on
cellular fitness. Interestingly, the consolidation time required to
reach the maximum PDIV was shorter for low-to-mid CIN than for
high levels of CIN (Fig. EV2B). Therefore, our simulation
identified a range of optimal values for low-to-mid CIN,
corroborating the paradox of CIN in cancer progression (Vasude-
van et al, 2021). Importantly, the optimal CIN levels identified in
these simulations align with experimentally observed rates of
mitotic defects (ranging from 0% to 17%, Figs. 3C–E and
EV2A–C).

To evaluate the effect of CIN on chr-CNH, we tracked the
genomic heterogeneity by registering individual cell karyotypes
over time. Our results showed that karyotype heterogeneity was
initially greater at low-to-mid CIN levels but decreased by the end
of the simulation (Fig. 6F). This suggests that CIN allows cells to
modify their proliferative potential (PCIN) and to explore the space
of viable karyotypes without significantly compromising their
viability. Consequently, it results in more stable cell populations
comprising a subset of adapted karyotypes. Notably, our modeling
approach predicts that exceeding high CIN levels drive cells
towards a decreased karyotype heterogeneity compared to low-to-
mid CIN levels (max karyotype diversity of 4.7 in PCIN = 0.05 and
3.1 in PCIN = 0.4; Fig. 6F). Furthermore, maximum karyotype
diversity is delayed as CIN levels increase (Fig. EV2B). Altogether,
high CIN levels give rise to karyotypes that more frequently
compromise cell viability more frequently, thereby decreasing cell
fitness (Fig. 6E) and subsequently reducing karyotype heterogeneity
rates (Fig. 6F).

Having established a robust simulation approach to assess the
role of CIN in cB-ALL progression, we next performed simulations
using karyotypes observed in two primary aneuploid cB-ALL
samples from our cohort (HeH1 and NH1). Consistent with
previous data, the results showed increased Φ and PDIV at low-to-
mid CIN levels (Fig. EV2C,D). Despite the predicted increase in
karyotype heterogeneity at later simulation times, the modal
karyotypes were preserved for intermediate CIN values for both
samples (Fig. 6G), suggesting intraclonal karyotype heterogeneity,
as observed experimentally (Figs. 4B and EV2F). Remarkably,
hyperdiploid karyotypes were positively selected from the NH
karyotype in NH1 (Fig. EV2F), mirroring our experimental
findings in both primary and PDX samples. In the NH1 sample,
an increased tolerance to CIN was observed in silico, as extra
generations were required for these cells to reach viability-
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threatening karyotypes. Slightly increased average cell fitness in the
absence of CIN (PCIN = 0) was observed in NH1 simulations due to
whole-genome duplication. It is important to note that our focus
should not be solely on increased fitness or average proliferation
rate, but also on whether the karyotypes obtained at the end of the
simulation align with those observed in real samples. As we
increase the CIN level, aberrant chromosomal gains and losses

accumulate, including unobserved monosomies in real cases, which
further underscores that intermediate-low CIN levels appear to be
optimal. Collectively, the mathematical and experimental data are
consistent and suggest that low-to-mid CIN levels allow aneuploid
B-ALL cells to explore a broad spectrum of phenotypic-karyotypic
states, thus increasing their adaptive potential and proliferation
rate. This acts as a mechanism to reach a certain level of karyotypic
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heterogeneity (Fig. 6H) without compromising cell viability.
Intrinsic and extrinsic cellular selective pressures, such as those
imposed by cell-to-cell competition and the harsh environment
during leukemia progression, are key factors in determining their
advantageous potential. While these factors have not been
explicitly included in our computational framework, they would
confer a selective advantage to the more heterogeneous and
adaptable population while penalizing those with excessively high
genome instability. In summary, CIN operates as a source of
karyotypic and cellular diversity.

Adaption of the mitotic spindle machinery
to regulate chromosome segregation is associated
with CIN in cB-ALL

Chromosome mis-segregation leads to a myriad of cellular and
metabolic stresses which result in a strong negative selection when
occurring in diploid cell types, but which are tolerated in aneuploid
cancer cells (Chunduri and Storchova, 2019; Crasta et al, 2012;
Donnelly et al, 2014; Stingele et al, 2012; Torres et al, 2007). Cancer
cells undergo adaptive resistance rooted from variable cellular
signaling networks that involve feedback-dependent homeostatic
control. This includes changes to the signaling networks that
regulate chromosome segregation fidelity during mitosis to
maintain CIN levels under a viable threshold (Bakhoum et al,
2018; Orr et al, 2016; Sansregret et al, 2017). To examine the
cellular signaling networks involved in the adaptive resistance to
CIN in aneuploid cB-ALL cells, we performed mass-spectrometry
(MS) analyses using whole-cell lysates from all our cB-ALL PDX
samples and correlated absolute protein abundances with the rates
of mitotic defects in these samples (Fig. 7A). Our results showed a
total of 213 and 226 proteins positively and negatively correlated
with CIN (P < 0.05), respectively (Figs. 7B and EV3). Gene ontology
(GO) analyses with the positively-correlated proteins revealed a
strong association with mitosis regulatory pathways, including
establishment and maintenance of cytoskeleton polarity and
regulation of chromosome segregation, and with ncRNA processing
(Fig. 7C). Contrastingly, negatively-correlated proteins were mainly
associated with chromatin regulation, metabolic function, and
integrin-mediated cell signaling (Fig. 7C). The relevance of these
pathways was confirmed by protein–protein interaction network
analysis. Two discrete protein-interaction clusters were observed
with the positively-correlated proteins, consisting of proteins
associated with mitosis regulation and ncRNA processing
(Fig. EV4A). Protein interaction network analyses with negatively-
regulated proteins identified clusters associated with the

mitochondrial electron transport chain, chromatin organization,
and integrin-mediated cell signaling (Fig. EV4B).

The positive correlation between mitosis regulatory factors and
CIN suggests adaptation mechanisms to the mitotic stresses
imposed by CIN in aneuploid cB-ALL cells. To test the possibility
that defects in the mitotic machinery in aneuploid cB-ALL underlie
the positive correlation between mitotic spindle and chromosome
segregation pathways, we analyzed St Jude’s hospital RNAseq data
from 765 patients with cB-ALL to investigate the differential
transcriptomic signatures between aneuploid and euploid cB-ALL
samples (Fig. EV5) (Gu et al, 2019). Of note, patients with
aneuploid cB-ALL, except for patients with HoL-B-ALL mostly
diagnosed with Li-Fraumeni syndrome harboring TP53 mutations
(Molina et al, 2021b), clustered together in Uniform Manifold
Approximation and Projection (UMAP) analyses (Fig. 7D),
suggesting that, irrespective of their clinical outcome, aneuploidy
makes a significant contribution to the transcriptomic signature of
aneuploid subtypes of cB-ALL. Importantly, GO analyses with the
differentially-expressed genes between aneuploid and euploid cB-
ALL revealed a down-regulation of genes associated with the
mitotic spindle (Fig. 7E,F and Dataset EV2). Hence, the positive
correlation of mitotic spindle maintenance factors with CIN may
play a key role in buffering the mitotic spindle defects observed in
cB-ALL. Furthermore, the top upregulated pathway in aneuploid
cB-ALL samples was IL6 JAK-STAT3 signaling (Fig. 7E,F and
Dataset EV2), which has been recently involved in adaptation of
breast cancer cells to CIN (Hong et al, 2022). Together, CIN in cB-
ALL is associated with a specific phenotype, involving mitosis and
chromosome segregation regulatory factors, which may act as an
adaptation mechanism to limit the extend of mitotic stress under a
viable and advantageous rate for aneuploid cB-ALL cells.

Discussion

Ongoing CIN is a hallmark of cancer and has been observed in
many solid tumors using a variety of complementary methodolo-
gies (Bakker et al, 2016; Bolhaqueiro et al, 2019; Bollen et al, 2021;
Carter et al, 2006; Duijf et al, 2013; Hoevenaar et al, 2020; van Dijk
et al, 2021; Vasudevan et al, 2020; Xu et al, 2021). However, the
presence and active role of CIN in cB-ALL is under debate and has
been limited to studies of karyotype heterogeneity because primary
leukemic cells fail to grow ex vivo (Alpar et al, 2014; Elghezal et al,
2001; Heerema et al, 2007; Paulsson et al, 2010; Ramos-Muntada
et al, 2022; Talamo et al, 2010). A recent study applied scWGSeq to
directly visualize the cell-to-cell variability of the entire karyotype

Figure 5. CIN is associated with disease progression in PDX models of cB-ALL.

(A) Experimental design to assess variables of clinical outcome in PDX models of cB-ALL (time-to-engraft and time-to-disease progression). (B, C) Correlations between
time-to-engraft (B) and time-to-disease progression (C) and mitotic index, rates of mitotic defects, rates of chromosome mis-segregation, and heterogeneity score (kHS)
in the indicated B-ALL ploidy groups. Graphs represent the average time-to-engraft and time-to-disease progression from the PDX samples in each primary cB-ALL,
represented by colored symbols (circles, triangles and squares identify independent primary cB-ALL). Peason’s correlation tests were used. *P < 0.05. (D) Box-plot showing
the rates of mitotic defects in cB-ALL-PDX from Fig. 3. Each dot represents a cB-ALL-PDX sample from the indicated ploidy group. Box represents the quartiles 25–75 and
horizontal line represents the mean value, error bars represent the SD (n= 36). The box begins in the first quartile (percentile 25%) and ends in the third quartile
(percentile 75%), central horizontal line represents the median value. Vertical line represents segment of furthest data from minimum (bottom) to maximum (top) values.
(E) Rates of mitotic defects in the indicated cB-ALL-PDX groups. Horizontal lines show the median and error bars represent the SEM. (F) Kaplan–Meier plot showing the
OS of cB-ALL-PDX from the indicated groups. Statistical significance was determined by Log-rank Mantel-Cox tests. *P < 0.05. Data information: The experiments
represent a minimum of three PDX samples (technical replicates) per cB-ALL sample (biological replicates) in each ploidy group. >Source data are available online for
this figure.
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from nondividing cells in nine HeH-B-ALL samples, and found
variable levels of genome-wide HS in the HeH-B-ALL samples,
ranging from low-to-mid chr-CNH (Woodward et al, 2023). Here,
we applied a novel method to infer chr-CNH from bulk WGS data
using a large panel of cB-ALL samples (van Dijk et al, 2021) and
scWGSeq to eight cB-ALL samples with different ploidies (Bakker
et al, 2016). In line with previous studies (Woodward et al, 2023),
both methods consistently showed higher levels of chr-CNH in
aneuploid cB-ALL samples than in non-aneuploid cB-ALL samples.
Our data also suggest the presence of ongoing CIN as an underlying
cause of the variable chr-CNH observed across aneuploid cB-ALL
samples.

CIN is defined by a persistent chromosome mis-segregation
coupled to survival and propagation of aneuploid cells that
acquired specific advantageous karyotypes (Godek and Compton,
2018). Accordingly, the assessment of chromosome segregation
fidelity in actively dividing cancer cells is crucial to identify the
presence of ongoing CIN. We have previously demonstrated the
strong potential of PDX models to expand primary aneuploid and
euploid leukemic cells in vivo and to characterize mitotic and
chromosome segregation defects in dividing cells (Molina et al,
2020). Here, we expanded the use of these models by integrating
complex cellular phenotypes with in vivo physiological data, which
enabled a better comprehension of the levels of CIN and its effects
on karyotype variability and leukemia progression in mice. Our
results unequivocally show significantly higher rates of mitotic
defects and chromosome mis-segregation in all aneuploid cB-ALL
subtypes than in euploid cB-ALL. Although the CIN events
detected in our assays may have various underlying causes, the
most frequent mitotic errors were chromosome misalignments in
the metaphase plate and multipolar spindles. Both defects are
associated with the occurrence of erroneous kinetochore-
microtubule attachments, more likely of the merotelic type, which
are not detected by the SAC and ultimately lead to chromosome
mis-segregation (Bakhoum et al, 2009; Thompson and Compton,
2011). The proliferative nature of the cB-ALL-PDX cells facilitated
M-FISH karyotyping to assess chr-CNH. Consistently, a strong
correlation between the rates of mitotic defects and chr-CNH was
observed in our cB-ALL-PDX samples, indicating that ongoing CIN
underlies, at least in part, karyotype heterogeneity in cB-ALL.
Remarkably, as it was previously observed by scWGS, the levels of
chr-CNH in cB-ALL-PDX were moderate and mainly characterized
by intraclonal variability. Indeed, previous studies using single-cell
sequencing and/or M-FISH identified surprisingly low-to-mid
karyotypic variance in human tumors and cancer organoid models
despite the presence of widespread CIN (Bolhaqueiro et al, 2019;

Nelson et al, 2020), supporting a relevant role of cell intrinsic and
extrinsic factors in the selection of specific advantageous karyotypes
generated by the ongoing CIN.

Noteworthy, hyperdiploid doubled-up clones were observed for
most of the hypodiploid samples. This situation is observed in
60–65% of the HoL and NH-B-ALL patients with “masked
hypodiploidy” (Carroll et al, 2019), and in cell lines generated
from NH-B-ALL samples (NALM16 and MHH-CALL2) which
show only a hyperdiploid clone consistent with an exact
duplication of the original hypodiploid karyotype (Aburawi et al,
2011; Kohno et al, 1980). This indicates that doubled-up
hypodiploid clones are positively selected in HoL- and NH-B-
ALL samples. It is tempting to speculate that the endoreduplication
of hypodiploid clones may buffer the effects of CIN events,
increasing cell fitness by increasing the likelihood of acquiring
adapted karyotypes under selective pressures. This hypothesis is
supported by the fact that the only sample in our cohort with
detectable near-haploid and doubled-up hyperdiploid clones (NH1)
showed chr-CNH only in the hyperdiploid subpopulation.

CIN has been associated with tumorigenesis, therapeutic
resistance, and poor survival outcomes in different human cancers
(Bach et al, 2019; Duijf et al, 2013; Ippolito et al, 2021; Lukow et al,
2021; McClelland, 2017). We found that, indeed, this holds true in
our cB-ALL PDX models, where the variable levels of ongoing CIN
significantly associate with leukemia progression in mice. Of note,
despite the cB-ALL cells were expanded in immune-deficient mice,
which might impact their proliferation behavior, decreased OS
rates were observed in samples with increasing CIN levels,
suggesting that ongoing CIN may serve as a biomarker to improve
risk stratification in patients with aneuploid cB-ALL. Recent
evidence highlights the importance of CIN and related aneuploidies
on tumor evolution. Higher levels of CIN suppress tumor growth
when they surpass a critical threshold, likely due to aberrant gene
and protein dosage stoichiometry (Donnelly et al, 2014; Oromendia
et al, 2012). Furthermore, clinical outcomes have been shown to
depend on the specific aneusomies produced by CIN, as the relative
cell fitness is influenced by the expression of the chromosome-
containing genes (Davoli et al, 2013; Ramos-Muntada et al, 2022;
Sheltzer et al, 2017; Vasudevan et al, 2020). To account for these
factors, we developed an in silico platform to determine the cell
fitness after each virtual cell division and to infer the cell population
growth and the karyotype evolution under different levels of CIN.
Consistent with previous in silico simulations (Lynch et al, 2022),
our results indicate increased cell proliferation rates and improved
cell fitness when the levels of CIN remain below a critical threshold.
Importantly, these levels correspond to the range of mitotic defects

Figure 6. Mathematical modeling suggests low-to-mid levels of CIN as drivers of clonal heterogeneity and disease progression in cB-ALL.

(A) Schematic depicting the model parameters and cell processes considered in the algorithm used for in silico simulation of CIN. (B) Estimation of the contribution of
each chromosome copy to global cell fitness, obtained by integrating functional and structural data for each single chromosome. Normalized density of genes associated
with hematopoietic differentiation and cB-ALL (α), recurrent mutations in cB-ALL (β), tumor suppressor genes, essential genes and oncogenes (γ), centromere size (SCENT)
and chromosomal gene density (SGD). (C–E) Simulations of cell number dynamics (C), cell division probability (D), and cell fitness (E) at the indicated CIN levels. Average
fitness is plotted relative to that of euploid cells, with the latter set as 1. (F) Simulation of chromosomal clonal heterogeneity as depicted by the average net karyotype (left)
and the variability of the net karyotype (right) at the indicated CIN levels. We conducted 50 independent simulations for each CIN level, and plotted the average curves.
The SEM is represented through ribbons, except for karyotype standard deviation, which is depicted as a separate plot due to curve overlapping. (G) Simulations of the
karyotype variability of samples HeH1 (top) and NH1 (bottom) at the indicated CIN levels. Copy-number states are shown as illustrated to the right. (H) Diagram
summarizing the observations derived from in silico modeling portraying the relation between B-ALL cell adaptability and different levels of CIN. Source data are available
online for this figure.
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observed microscopically in our cB-ALL-PDX models. In addition,
the possibility of tracking karyotypes after each virtual cell division
allowed us to delineate the dynamic karyotype evolution in the
leukemic cell population over time. Although high levels of CIN
can also slightly increase fitness and proliferation rates, it is
important to underscore that high levels of CIN eventually lead to
exacerbated chromosomal gains or losses, including a high
frequency of monosomies that is not observed in reality, remarking
again that low-intermediate CIN levels are optimal. Our results
revealed a transient increase in karyotype heterogeneity, which is
dramatically reduced over time, yielding more stable karyotypes
that mainly exhibit intraclonal variability. This is consistent with
the moderate levels of karyotype variability observed by scWGS
(Bolhaqueiro et al, 2019; Nelson et al, 2020; Woodward et al, 2023).

A crucial determinant for CIN propagation is the capacity of
cancer cells to tolerate a given level of genetic instability. In this
sense, defects in different cellular pathways have been described to
allow cancer cells to adapt to CIN. These defects include those that
directly impinge on the chromosome segregation machinery, such
as altered microtubule spindle dynamics, mechanisms required to
correct erroneous kinetochore-microtubule attachments, centro-
some clustering, and defects affecting the mitotic checkpoint
(Bakhoum et al, 2009; Cohen-Sharir et al, 2021; Guo et al, 2022; Orr
et al, 2016; Sansregret et al, 2017). The correlation of protein
abundance with the rates of mitotic defects in our cB-ALL-PDX
samples enabled us to interrogate the cellular mechanisms
associated with CIN in cB-ALL. We found a proteomic signature
characterized by the upregulation of several mitosis regulatory
pathways, including those involved in regulation of microtubule
cytoskeleton and chromosome segregation. Notably, we identified
different proteins that were previously associated with the
adaptation to CIN in cancer, including the kinesin-like protein
KIF2C/MCAK and the master SAC regulator MPS1/TTK. Upre-
gulation of KIF2C in CIN-positive cancer cells was found to
increase microtubule turnover to counteract the hyperstable
kinetochore-microtubule attachments that lead to lagging chromo-
somes (Bakhoum et al, 2009; Ertych et al, 2014; Orr et al, 2016). In
addition, increasing mitosis duration by disrupting the SAC was
also proposed as a cellular adaptation to CIN in cancer cells, most
likely by allowing more time to correct improper kinetochore-
microtubule attachments (Sansregret et al, 2017). Indeed, mitotic
analyses identified mainly chromosome alignment and mitotic
spindle defects in aneuploid cB-ALL-PDX samples, and both
phenotypes are directly associated with kinetochore-microtubule
attachment defects. Although it is possible that the upregulation of
these genes reflects the higher mitotic activity observed in CIN-high
samples and not CIN per se, we hypothesized that the upregulation
of mitotic spindle regulators may reflect a cellular adaptation to

CIN in aneuploid cB-ALL cells and, hence, we would expect that
aneuploid cB-ALL show a dysfunctional mitotic spindle. Accord-
ingly, GO analyses of RNA-Seq data from patient cB-ALL samples
revealed a significant down-regulation of the mitosis spindle
signature in aneuploid samples. In addition, we found IL6-JAK-
STAT3 signaling as the top upregulated pathway in aneuploid
c-ALL. Notably, a recent study demonstrated that CIN relies on the
IL6-STAT3 axis to prevent cell death, and that chemical blockade of
IL-6 signaling impairs the survival of CIN+ breast cancer cells
(Hong et al, 2022). The identification of drugs interfering with cell
adaptation to CIN may open new avenues to explore CIN-targeted
therapy in aneuploid cB-ALL, particularly in those subtypes with
poor outcome. Potential drugs to be tested may include inhibitors
of mitotic spindle factors, such as KIF2C/MCAK (GTSE1) or
CENP-E (GSK-923295) (Serrano-Del Valle et al, 2021), inhibitors
of centrosome clustering (AZ) (Guo et al, 2022), as well as
inhibitors of the IL6-JAK-STAT signaling pathway (Tocilizumab,
Tofacitinib and C188-9) (Johnson et al, 2018).

Altogether, our results reveal variable levels of ongoing CIN across
aneuploid subtypes of cB-ALL, including HeH, HoL and NH, which
are directly associated with karyotype heterogeneity and leukemia
progression in preclinical PDX models. Our work highlights the risk
of relying solely on the genome variability or on the expression of a
small number of tumor markers to assess ongoing CIN in clinically
relevant samples. Therefore, efforts should be made to identify
reliable markers to assess ongoing CIN in routine clinical settings for
risk-stratification and follow-up. In addition, our results identify a
specific cellular signature associated with CIN in cB-ALL that may
underlie an adaptation to overcome various cellular stresses imposed
by it. This signature represents key vulnerabilities of leukemic cells
with CIN. Modulating these stress pathways may provide new
opportunities to target aneuploid cB-ALL with CIN.

Methods

Pediatric B-ALL leukemic samples

Diagnostic BM samples from pediatric patients with B-ALL
(n = 12) were obtained from collaborating hospitals and from the
VIVO biobank (UK). B-ALL diagnosis was based on French-
American-British (FAB) and World Health Organization (WHO)
classifications (Pui et al, 2004). Main cytogenetic/molecular
diagnostics and other clinic-biological features of the patients are
summarized in Table 1. All cB-ALL patiens included in this
study did not contain classical subtype-defining fusions, including
ETV6-RUNX1, TCF3-PBX1, KMT2A rearrangement, and BCL-
ABL1. Samples were also negative for other oncogenic fusion

Figure 7. CIN in cB-ALL is characterized by down-regulation of mitotic spindle factors and upregulation of IL6-STAT3 signaling pathways.

(A) Representative images of positive and negative correlations between protein abundances and rates of CIN of cB-ALL-PDX samples. (B) Histogram showing Spearman’s
rank correlations of protein abundances with CIN in cB-ALL-PDX samples. Dark-gray bars in the histogram depict the number of proteins significant correlating with CIN.
(C) Significant GO terms for the positively (left) and negatively correlated (right) proteins. (D) UMAP of the different cB-ALL samples analyzed by RNAseq
(EGAS00001003266). (E) Volcano plot representing the significantly enriched biological pathways up- (green) and downregulated (red) in aneuploid versus euploid cB-
ALL samples. (F) Box-plots representing the gene set variation analysis (GSVA) of the indicated biological pathways downregulated (left) and upregulated (right) in the
indicated cB-ALL subtypes. The box begins in the first quartile (percentile 25%) and ends in the third quartile (percentile 75%), central horizontal line represents the
median value. Lines represent segments of furthest data without accounting for outliers. Two-way ANOVA tests were used. *P < 0.05, **P < 0.01; ***P < 0.001. Source data
are available online for this figure.
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genes including ABL-class functions, JAK-class fusions, and
CRLF2 rearrangements. Experiments conformed to the
principles set out by the World Medical Association (WMA)
Declaration of Helsinki and the Department of Health and Human
Services Belmont Report. The study was approved by the
Barcelona Clínic Hospital Institutional Review Ethics Board
(HCB/2020/1347), and patient samples were accessed upon
informed consent.

Low-pass single-cell WGSeq

Single cells from primary cB-ALL samples were isolated using an
inverted microscope coupled to a micromanipulator equipped with
glass capillary for cell collection (Olympus IX71). A minimum of
20 cells were isolated per sample in microdrops of 2.5 μl of
phosphate-buffered saline (PBS) with 0.5% polyvinyl alcohol
(PVA). Cell lysis and DNA amplification were performed using
the SurePlex DNA Amplification System (Illumina). Genomic
DNA was subsequently fragmented and tagged with the VeriSeq
PGS and Nextera XT index adapters by PCR for library
preparation (VeriSeq PGS Library Prep Kit, Illumina). Equal
volumes of normalized libraries were pooled and sequenced on an
Illumina MiSeq platform with 1 × 75-bp single-end sequencing
(target sequencing). Reads were subsequently aligned to the
human reference genome (GRCh38/hg38) using Bowtie2 (version
2.2.4). The bam files, containing the aligned read data, were
analyzed with the copy number calling algorithm AneuFinder
(https://github.com/ataudt/aneufinder) (Bakker et al, 2016). Fol-
lowing GC correction and blacklisting of artefact-prone regions,
libraries were analyzed using the dncopy copy number calling
algorithm with variable width bind (average bin size = 1 Mb; step
size = 500 kb). Libraries with on average less than 10 reads per
bin were discarded. Whole-chromosome aneusomies were identi-
fied when >95% of the bins showed a deviation from the
disomic state.

PDX generation and follow-up

Seven- to 12-week-old nonobese diabetic/NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ (NSG) mice (The Jackson Laboratory; RRID:
IMSR_JAX:005557) (n = 56 with equal distribution of males and
females), housed under pathogen-free conditions, were used in this
study. All experimental procedures were approved by the Animal
Care Committee of the Barcelona Biomedical Research Park
(DAAM11883). A total of 5 × 105 primary blasts were used for
intra-BM transplantation into sublethally irradiated (2 Gy) mice, as
described (Molina et al, 2020). Leukemic engraftment was
monitored in PB every other week from week 4 onwards by flow-
cytometry using the monoclonal antibodies (mAbs) HLA-ABC
fluorescein isothiocyanate (FITC; Clone G46-2.6; 1:100 dilution),
CD19-phycoerythrin (PE; Clone HIB19; 1:100 dilution) and CD45-
allophycocyanin (APC; Clone HI30; 1:100 dilution) (BD Bios-
ciences). Mice were euthanized when leukemic engraftment
reached 10 to 15%, typically representing >80% engraftment in
BM (Molina et al, 2020), when disease symptoms were evident or at
week 24. Blasts were isolated from BM and spleen by density-
gradient centrifugation for downstream analyses. A minimum of
three PDX (biological replicates) were generated for each primary

B-ALL sample. For EFS curves, an event was called when the
human graft in PB was ≥0.1%. For OS curves, an event was
considered when the leukemic graft was incompatible with animal
welfare (>15% blasts in PB) in the absence of disease symptoms, or
when disease symptoms were evident. The rates of proliferating and
apoptotic cB-ALL blasts were analyzed at the end-point for each
PDX by flow-cytometry using the mAb CD19-APC (Clone HIB19;
1:100 dilution) together with Ki67-FITC (clone B56; 2:100 dilution)
or annexin V-PE (#556421; 5:100 dilution) (BD Biosciences),
respectively.

Immunofluorescence and microscopy analyses

Inmunofluorescence was performed as described on freshly-
isolated cB-ALL cells from PDXs (Molina et al, 2020). In brief,
2 × 106 B-ALL cells were spun on poly-L-lysine-coated coverslips,
fixed with 4% formaldehyde in PEM buffer (500 mM EGTA, 1 M
MgSO4, 500 mM PIPES pH 6.9, 2 M Sucrose) for 10 min at 37 °C
and permeabilized with 0.2% Triton X-100-containing PEM buffer
for 10 min at room temperature (RT). Cells were blocked with
permeabilization buffer containing 1% bovine serum albumin
(BSA) for 1 h at RT and incubated overnight at 4 °C with mouse
anti-αtubulin (Sigma DM1A; 1:1000 dilution), rabbit anti-
pericentrin (Abcam ab4448; 1:1000 dilution) and human anti-
centromere (ACA; Antibodies Incorporated 15-234; 1:50 dilution)
primary antibodies. Cells were washed with permeabilization buffer
and incubated with fluorophore-conjugated anti-mouse Alexa555,
anti-rabbit Alexa498 (ThermoFisher Scientific) and anti-human
Cy5 (The Jackson Laboratory) secondary antibodies for 45 minutes
at RT. Coverslips were mounted on slides with Vectashield 4’,6-
diamidino-2-phenylindol (DAPI; Vector Laboratories). Immuno-
fluorescence analyses were performed using a Leica AF6000
motorized microscopy system (Leica Microsystems, Manheim,
Germany) equipped with a Leica DMI6000 inverted microscope, a
Leica PL APO 63× numerical aperture 1.4 oil immersion, a high-
resolution monochroma Hamamatsu Orca ER C4742-80 Digital
Camera and a mercury metal halide bulb Leica EL6000 as light
source. Image acquisition was performed using the software LasX
Navigator. DAPI was acquired with a band pass excitation filter
340/380 nm, dichromatic mirror (400 nm) and a long-pass
emission filter (425 nm), Alexa488 was acquired with a band pass
excitation filter 480/40 nm, dichromatic mirror 505 nm and a band
pass emission filter (527/30 nm), Alexa555 was acquired with a
band pass excitation filter 531/40 nm, dichromatic mirror reflec-
tion 499–555 and transmission 659–730 nm and a band pass
emission filter (593/40 nm). Cy5 was acquired with excitation
band pass filter 628/40 nm, dichromatic mirror reflection
594–651 nm and transmission 699–726 nm and a band pass
emission filter (692/40 nm).

For mitotic index quantification, ten random fields were
captured, and quantification of interphase and mitotic cells were
performed in Z-stack projections using the Cell Counter plugin in
Fiji-ImageJ (NIH). Between 1295 and 3694 cells were scored, and
the percentage of mitotic cells was registered in every single
experiment. For mitosis progression analyses, a minimum of 200
mitotic cells were analyzed per experiment to assess the frequency
of mitotic cells in each mitotic phase and the frequency of mitotic
defects.
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Multicolor fluorescence in situ hybridization on
metaphase chromosomes

Freshly-isolated B-ALL cells were cultured for 16 h in Stemspan
medium (Stem Cell Technologies, Vancouver, Canada) supple-
mented with 20% fetal calf serum, the hematopoietic cytokines SCF
(100 ng/mL), FLT3 ligand (100 ng/mL), IL3 (10 ng/mL), and IL7
(10 ng/mL) (all from PeproTech), insulin-transferrin selenium and
antibiotics (Gibco). Cells were subsequently treated with 0.2 μg/mL
of the tubulin polymerization inhibitor Colcemid (Gibco) for 3 h
before harvesting. Metaphase chromosome spreads were obtained
following standard cytogenetic procedures (Molina et al, 2012). In
brief, colcemid-treated cells were collected and resuspended in pre-
warmed 75 mM KCl hypotonic solution for 10 min at 37 °C and
subsequently fixed in freshly prepared methanol:acetic acid (3:1)
solution. Preparations were processed for M-FISH using the
24XCyte Human Multicolor FISH Probe kit (MetaSystems Probes).
M-FISH capturing was performed in a Metafer Slide Scanning
System (MetaSystems) with a AX10 ZEISS epifluorescence micro-
scope equipped with a motorized stage, 10× and 63× oil plan
APOCHROMAT objectives and specific filters for DAPI, Spectrum
Green, Spectrum Orange, Spectrum Aqua, Spectrum Red, Spectrum
Far Red and Spectrum Gold (Nikon). M-FISH analyses were
performed on the Isis FISH imaging system (MetaSystems).
Karyotype Heterogeneity score (kHS) was calculated for each

sample using the formula kHS ¼
PN

i¼1

iObserved copies
iExpected copies

N , where N is the total
number of homologous chromosomes (N = 23).

In silico modeling of chromosome instability

Fitness per chromosome determination
To build an unbiased fitness value for every given karyotype, we
considered different features related to B-cell hematopoietic
differentiation, B-ALL, tumor development and genome structural
features that may influence the rates of specific chromosome mis-
segregation. First, we included a total of 239 genes extracted from
different GO pathways, including hematopoietic progenitor cell
differentiation (GO:0002244), B-cell activation (GO:0042113),
B-cell differentiation (GO:0030183), and lymphocyte activation
(GO:0046649). To calculate the fitness value per chromosome
associated with these genes, defined as B-ALL related fitness (α), the
chromosomal localization of the genes was identified and normal-
ized by the maximum gene density value per chromosome. Second,
to include genes with a demonstrated contribution to ALL
pathogenesis, we also considered the density of ALL-associated
somatic gene mutations per chromosome. A total of 117 genes from
the COSMIC database records for “lymphoblastic leukemia” were
used. We discarded 13 genes that were already present for the B-
ALL-related fitness cost determination. These genes were annotated
based on their chromosomal location to define the B-ALL somatic
mutations fitness (β). Finally, we also considered the PANcancer
approximation proposed by Davoli et al (2013) (Davoli et al, 2013)
regarding the density of oncogenes (oGs), tumor suppressor genes
(TSGs) and essential genes (eGs). Thus, we defined the total driver
density fitness (γ) by computing the sum of these three density
values, as previously done by others (Lynch et al, 2022).

In addition, evidence is mounting that the probability of specific
chromosomes undergoing a segregation error is non-random

(Klaasen and Kops, 2022). Some structural chromosome features
are known to affect chromosome mis-segregation, including
chromosome size, centromere size and density of CENPB-box
sequences, gene density or chromosome location in the interphase
nucleus (Drpic et al, 2018; Fachinetti et al, 2015; Klaasen et al, 2022;
Worrall et al, 2018). To take the non-random probability of
chromosome mis-segregation, we included available data on the
centromeric size (SCen) and total gene density (SGD) per chromo-
some in our model (Jabalameli et al, 2019; Mayer et al, 2005)
(Fig. 6B and Appendix Table S2). Taking this information into
consideration, we built the following expression to calculate global

cell fitness (Φ, Fig. 6B): Φ ¼ P23
i¼1 ω1

αiþβiþγi
3

� �
þ ω2

SGDi
SCeni

. Preferen-

tially gained or retained chromosomes in aneuploid B-ALL were
not included in our simulations to avoid overfitting and biases in
our B-ALL CIN agent-based.

Agent-based model for in silico analyses of chromosomal instability
The agent-based model was implemented in MATLAB (R2022a,
MathWorks, Inc., Natick, MA, USA). Data analysis was performed
in R (R 4.2.2, R Foundation for Statistical Computing, Vienna,
Austria) and MATLAB. Due to the computational cost of tracking
complete karyotypes at those time steps for each individual cell, the
carrying capacity of the system was set to 106 cells. Total simulation
time was adjusted to 100 days. Results were stored every 6 iterations
(12 h) and 50 independent simulations were conducted for each
PCIN value. An initial standard population of 500 aneuploid cells
was generated following a normal distribution N 47; 1ð Þ. For
patient-based simulations, we took the modal karyotypes obtained
by single-cell next-generation sequencing in primary samples as a
seed to generate the initial population. Cell division was modeled
stochastically based on a PDIV, which was randomly picked in the
interval [0.2, 0.4] day−1 (Clarkson et al, 1967; Lynch et al, 2022)
following a normal distribution. During cell division, chromosome
mis-segregation could occur with a fixed probability PCIN in the
interval PDIV [0, 0.4] day−1. Preferentially gained or retained
chromosomes in aneuploid B-ALL were not included in our
simulations at this point to avoid overfitting and biases in our
B-ALL CIN agent-based. Please note that since chromosome
instability is linked to cell proliferation, we are considering the
product Pdiv·PCIN. Cells having less than 1 copy or more than 6
would immediately undergo mitotic catastrophe and would be
removed from the system. Dividing cells showing a chromosome
count below 40 chromosomes may undergo whole-genome
duplication (WGD). Although WGD has been extensively reported
in advanced cancer patients, affecting around 30% of them (Bielski
et al, 2018), the experimental evidence reporting the WGD rate at a
single-cell resolution is scarce. We decided to set the probability of
successfully undergoing WGD to PWGD = 0.011 day−1. PDIV is
updated at each time step based on the average fitness value of the
previous time step according to PDIV tð Þ ¼ PDIV t � 1ð Þ 1þ ΔΦ

� �
. In

addition, every cell may undergo cell death naturally with a fixed
probability PDEATH (Appendix Table S3). All these probabilities
were multiplied by a factor of 1

Δt and turned into rates at each time
step, which was set to 2 h due to computational cost. Cell fitness
(Φ) was calculated for each individual cell in each simulation time
step, by multiplying its karyotype by the contribution of each
chromosome copy to cell fitness (Appendix Table S3). We worked
under the assumption that unbalanced chromosome stoichiometry
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positively contributes to cell adaptability (Chen et al, 2015). To
prevent a selection bias in favor of high-hyperdiploid cells, we
internally normalized cell fitness by the total number of chromo-
somes in each time step. Parameter values and the conceptual
frame for our model are summarized in Fig. 6A and Appendix
Table S3.

Mass spectrometry and proteomic analyses

Whole-cell lysates (WCL) of 2 × 106 freshly-isolated cB-ALL cells
from PDX samples were obtained using a lysis buffer containing
9 M Urea, 20 mM HEPES pH 8.0, 1 mM sodium orthovanadate,
2.5 mM sodium pyrophosphate and 1 mM β-glycerophosphate.
Protein samples (10 μg) were reduced with dithiothreitol (30 nmol,
37 °C, 60 min) and alkylated in the dark with iodoacetamide
(60 nmol, 25 °C, 30 min). The resulting protein extract was first
diluted to 2 M urea with 200 mM ammonium bicarbonate for
digestion with endoproteinase LysC (1:10 w-w, 37 °C, 6 hours;
Wako), and then diluted 2-fold with 200 mM ammonium
bicarbonate for trypsin digestion (1:10 w-w, 37 °C, overnight;
Promega). After digestion, the peptide mix was acidified with
formic acid and desalted with a MicroSpin C18 column (The Nest
Group, Inc.) prior to LC-MS/MS analysis.

Samples were analyzed using a Orbitrap Eclipse mass spectro-
meter (Thermo Fisher Scientific, San Jose, CA, USA) coupled to an
EASY-nLC 1200 (Thermo Fisher Scientific (Proxeon), Odense,
Denmark). Peptides were loaded directly onto the analytical
column and were separated by reversed-phase chromatography
using a 50-cm column with an inner diameter of 75 μm, packed
with 2 μm C18 particles. Chromatographic gradients started at 95%
buffer A and 5% buffer B with a flow rate of 300 nl/min and
gradually increased to 25% buffer B and 75% A in 79 min and then
to 40% buffer B and 60% A in 11 minutes. After each analysis, the
column was washed for 10 minutes with 100% buffer B. Buffer A:
0.1% formic acid in water. Buffer B: 0.1% formic acid in 80%
acetonitrile.

The mass spectrometer was operated in positive ionization
mode with nanospray voltage set at 2.4 kV and source temperature
at 305 °C. The acquisition was performed in data-dependent
acquisition mode and full MS scans with 1 micro scans at
resolution of 120,000 were used over a mass range of m/z
350–1400 with detection in the Orbitrap mass analyzer. Auto gain
control (AGC) was set to ‘standard’ and injection time to ‘auto’. In
each cycle of data-dependent acquisition analysis, following each
survey scan, the most intense ions above a threshold ion count of
10,000 were selected for fragmentation. The number of selected
precursor ions for fragmentation was determined by the “Top
Speed” acquisition algorithm and a dynamic exclusion of
60 seconds. Fragment ion spectra were produced via high-energy
collision dissociation at normalized collision energy of 28%, and
they were acquired in the ion trap mass analyzer. AGC was set to
2 × 104 and an isolation window of 0.7m/z and a maximum
injection time of 12 ms were used.

Digested BSA (New England Biolabs) was analyzed between
each sample to avoid sample carryover and to assure stability of the
instrument, and qCloud was used to control instrument long-
itudinal performance during the project (Chiva et al, 2018).
Acquired spectra were analyzed using Proteome Discoverer soft-
ware suite (v2.0, ThermoFisher Scientific) and the Mascot search

engine v2.6 (Matrix Science) (Perkins et al, 1999). The data were
searched against a Swiss-Prot human database (https://
www.uniprot.org, April 2022, 20,401 entries) plus a list of common
contaminants and all the corresponding decoy entries (Beer et al,
2017). For peptide identification, a precursor ion mass tolerance of
7 ppm was used for MS1 level, trypsin was chosen as enzyme, and
up to three missed cleavages were allowed. The fragment ion mass
tolerance was set to 0.5 Da for MS2 spectra. Oxidation of
methionine and N-terminal protein acetylation were used as
variable modifications, whereas carbamidomethylation on cysteines
was set as a fixed modification. False discovery rate (FDR) in
peptide identification was set to a maximum of 1%. Peptide
quantification data were retrieved from the “Precursor ion area
detector” node from Proteome Discoverer (v2.5) using 2 ppm mass
tolerance for the peptide extracted ion current. Protein abundances
were calculated as the average of the three most abundant distinct
peptide groups and normalized based on total peptide amount. For
the group comparison analysis, protein normalized abundances
from Proteome Discoverer were Log2-transformed prior to
calculation of fold change, P-value, and adjusted P-value (q-value).

The normalized values of protein abundance were compared
against the heterogeneity score of each sample and a correlation
coefficient was calculated using Pearson correlation test, using the
cor.test function in R. Proteins with a Pearson’s correlation
coefficient >0.5 or <−0.5 and with a P-value < 0.01 were grouped
as positively or negatively correlated, respectively. Within each
group (that is positively and negatively correlated proteins), a
dendrogram was calculated using the heatmap.2 function in R. An
Euclidean distance was computed both between proteins and
samples and clustered using default hierarchical clustering. Finally,
the enrichment of GO terms within each group was carried out
using the TOPGO method implemented in R (Alexa et al, 2006)
using the “weight01” algorithm. GO terms with an adjusted P-
value < 0.05 were considered as significant and plotted using ggplot.

RNA-sequencing

To analyze the gene expression profiling from patients, we selected
the dataset of St. Judes Hospital from the European Genome-
phenome Archive (EGA) under accession number
EGAS00001003266. This dataset contains data from 1988 patients
with B-ALL. Prior to the analysis, we re-classified each patient
based on the number of chromosomes and the copy-number
alterations by RNAseq. Aneuploids (high-hyperdiploid, low-
hyperdiploid, low-hypodiploid, and near-haploid) and euploid
(n = 46 chromosomes with variable genomic reorganizations)
B-ALL patients were selected for comparison. Data from adult
patients were also filtered out. A total of 765 patients were analyzed
after re-classification. The log2 (FPKM) expression data of these
patients were downloaded.

Data pre-processing, exploration, and differential gene expres-
sion (DGE) analyses were performed with DESeq2 (v1.38.1) R
package. We used principal component analysis and UMAP
dimensionality reduction to perform an explorative data analysis.
Using the sva package, we could remove batch effects caused by the
library preparation and sequencing lengths. DGE analysis was
performed with the Wald test (p.adj Benjamini–Hochberg correc-
tion <0.05). A total of 699 significant DEGs were found in the
comparison between aneuploid and euploid samples; of these, 115
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had log2 FC > 0 (overexpressed in the aneuploid samples) the
remaining 584 genes with log2 FC < 0. DGE results were further
explored by Over Representation Analysis and Gene Set Enrich-
ment Analysis (GSEA). We queried different databases including
GO and Molecular Signatures Database (mSigDB). Both analyses
were performed using the clusterProfiler (v 4.4.4) package.

Statistical analyses

Statistical comparisons were performed using R-statistics v4.0.0 (R
Foundation for Statistical Computing, Vienna, Austria) or Graph-
Pad Prism version 6.0 (GraphPad Software). All data were analyzed
according to the test indicated in the appropriate figure legends on
the indicated number of experiments. Kolmogorov–Smirnov’s test
was used to assume normal distributions prior to statistical
comparisons by either parametric or non-parametric tests. The
levels of significance were as follows: *P < 0.05, **P < 0.01, and
***P < 0.001.

Mice were randomized on the day of irradiation to establish
identical or similar group sizes with a minimum of 3 mice
transplanted with each primary cB-ALL sample. No statistical
methods were used to predetermine sample sizes, but they were
based on our previous publications (Lopez-Millan et al, 2019;
Molina et al, 2020; Prieto et al, 2018). Animal technicians were
blinded to sample identity. No further blinding was performed.

Mice were censored from analyses in rare instances when sacrificed
for non-leukemia reasons.

Data availability

Single-cell Whole-Genome Sequencing data of cB-ALL patients:
EGAD50000000029 (https://ega-archive.org/). Modeling computer
scripts: GitHub (https://github.com/molabEvoDynamics/
OscarMolinaEtAl_CINandB-ALL). Mass spectrometry proteomic
data: PRIDE PXD042785.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44321-023-00006-w.
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Problem
Chromosomal instability (CIN) is a prominent form of genomic
instability and a major cause of aneuploidy, a hallmark of cancer.
Aneuploidy is commonly associated with ongoing CIN through con-
secutive cell divisions, resulting in intratumoral chromosome copy-
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Results
We elucidated the presence of CIN in aneuploid cB-ALL subtypes using
single-cell whole-genome sequencing of primary cB-ALL samples and
by generating and functionally characterizing patient-derived xenograft
models (cB-ALL-PDX). Our results show higher rates of CIN across
aneuploid cB-ALL than in euploid cB-ALL that strongly correlate with
intraclonal chr-CNH and overall survival in mice. This association was
further supported by in silico mathematical modeling. In addition,
proteomic analyses of cB-ALL-PDX revealed a CIN “signature” enriched
in mitotic-spindle regulatory pathways, which was confirmed by RNA-
sequencing of a large cohort of cB-ALL samples.

Impact
The link between the presence of CIN in aneuploid cB-ALL and disease
progression opens new possibilities for patient stratification and offers
a promising new avenue as a therapeutic target in cB-ALL treatment
with aneuploidies. Thus, CIN levels could serve as a potent biomarker
for patient classification, empowering clinicians to make informed
decisions for more personalized and effective treatment strategies.
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Expanded View Figures

Figure EV1. Aneuploid cB-ALL show higher rates of mitotic defects and chromosomal clonal heterogeneity in PDX models.

(A) Box-plots representing the percentage of mitotic defects in the indicated B-ALL PDX samples (n= 36 PDX, n= 3 PDX per primary sample; n= 200 mitotic cells per
PDX sample, total = 7200 mitotic cells). The box begins in the first quartile (percentile 25%) and ends in the third quartile (percentile 75%), central horizontal line
represents the median value. Vertical line represents segment of furthest data from minimum (bottom) to maximum (top) values. (B) Frequency of mitotic PDX-expanded
primary blasts from (A) with the indicated mitotic defects (n= 36, 3 cB-ALL-PDX samples per leukemia; n= 200 mitotic cells per PDX sample, Total=7200 mitotic cells).
(C) Box-plots representing the percentage of late mitosis defects in the indicated cB-ALL PDX samples (n= 36 PDX samples; n= 123 Eup, 116 HeH, 163 HoL and 186 NH
late mitoses). The box begins in the first quartile (percentile 25%) and ends in the third quartile (percentile 75%), central horizontal line represents the median value.
Vertical line represents segment of furthest data from minimum (bottom) to maximum (top) values. (D) Chromosome number distributions of cells in the indicated B-ALL
PDX samples as determined by M-FISH on metaphase spreads. Center values indicate the median and error bars indicate the SEM. Number of cells analyzed and
chromosome modal numbers (MN) are indicated at the top. Dashed line shows the normal euploid chromosome number. (E) Chromosome number distributions of cells in
matching primary and PDX samples, as determined by scWGS (blue) and M-FISH (red). Center values indicate the median and error bars indicate the SEM. (F)
Chromosome MN in the indicated B-ALL PDX samples as determined by M-FISH analyses from (D). Red dashed lines show the disomic (2n) copy-number. (G) Box-plots
representing the variability of chromosome copy-numbers observed by M-FISH analyses from (D), as determined by the standard deviation (SD) in the indicated ploidy
group. The box begins in the first quartile (percentile 25%) and ends in the third quartile (percentile 75%), central horizontal line represents the median value. Vertical line
represents segment of furthest data from minimum (bottom) to maximum (top) values.
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Figure EV2. Mathematical modeling associates low-to-mid levels of CIN as drivers of clonal heterogeneity and disease progression in cB-ALL.

(A) Average time to reach carrying capacity (tK) at the indicated CIN levels (N= 50 simulations). (B) Time to consolidate a stable karyotype at the indicated CIN levels
(N= 50 simulations). (C) Simulated dynamics of average fitness at the indicated CIN levels (N= 50 simulations). (D) Simulated dynamics of cell division rates at the
indicated CIN levels (N= 50 simulations). (E) Simulated cell numbers for virtual sample HeH1 (left) and NH1 (right) at the indicated CIN levels (N= 20 simulations).
Average fitness is plotted relative to that expected for a euploid cell, the latter being equal to 1. (F) Karyotype variability as observed by chromosome counts at the
indicated time points from in silico simulations with the virtual HeH1 (left) and NH1 (right) samples at moderate CIN levels (PCIN= 0.05).
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Figure EV4. Protein cluster analyses associated with CIN in cB-ALL.

(A, B) Protein–protein interaction network analysis with proteins positively (A) and negatively (B) correlated with CIN using the STRING database (version 11.5). Protein
clusters are colored according with the indicated GO pathways. Protein–protein interaction (PPI) enrichment P-value= 1 × 10−16 (A) and 1.67 × 10−15 (B).
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Figure EV5. Genetic subtypes of patients analyzed by RNA sequencing.

Pie chart depicting the frequency of individual cB-ALL molecular subgroups
identified in the RNA-Seq St Judes hospital cohort of cB-ALL samples.
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