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Sinopsi (in Catalan) 

Introducció: les malalties cardiovascular són la primera causa de mort 

prematura a nivell mundial. L’aterosclerosis és la causa subjacent més 

comuna entre les malalties cardiovasculars, sent una patologia 

complexa que es desencadena després de l’acumulació de colesterol 

modificat en la paret del vas sanguini, induint processos inflamatoris i 

fibròtics. La via canònica WNT és una via de senyalització conservada 

evolutivament de la qual es coneix la seva importància durant el 

desenvolupament embrionari i en determinar el destí cel·lular. El “Low-

density Lipoprotein Receptor – related protein 5” (LRP5) és un receptor 

que inicia la senyalització de la via canònica WNT i participa en la 

internalització de les lipoproteïnes de baixa densitat (LDL). És la nostra 

hipòtesi que el LRP5 i la via canònica WNT juguen un paper clau en la 

resposta cel·lular a l’exposició a colesterol en diferents teixits. 

Objectiu: el focus de la tesis es centra en identificar el rol del LRP5 en 

diferents tipus cel·lulars i teixits que es veuen alterats per la 

hipercolesterolèmia incloent els macròfags circulats, així com línies 

cel·lulars del fetge o el teixit adipós. A més, en la tesis també s’ha 

estudiat el rol del LRP5 durant la resposta immunitària induïda per 

l’aterosclerosi i el seu rol en el cervell (un òrgan profundament afectat 

per la desregulació de l’homeòstasi del colesterol). 

Mètodes: s’han fet servir tan models in vitro com in vivo. En estudis in 

vitro diferents línies cel·lulars i cultius primaris s’han sotmès a 

experiments de disminució d’expressió gènica selectiva contra certs 

gens diana (principalment LRP5, però també d’altres com el PCSK9, el 

SREBP2, el LDLR o el LRP1). Les cèl·lules eren posteriorment 

tractades amb diferents inductors d’estres, principalment LDL naturals 

o agregades però també peròxid d’hidrogen o estaurosporina, per 

després ser recol·lectades amb diferents tampons per a realitzar 



 

8 
 

experiments per avaluar el contingut transcriptòmic, proteòmic i 

lipidòmic.  

Per experiments in vivo, es van fer servir ratolins C57Bl/6J amb 

deficiència sistèmica per LRP5 (Lrp5-/-). Tan ratolins de genotip normal 

(Wt) com Lrp5-/- es van dividir en dos grups a les 8 setmanes d’edat que 

es van alimentar amb dieta normocolesterolémica (NC) o 

hipercolesterolèmica (HC) durant 10 setmanes, quan van ser sacrificats 

i es van obtenir mostres de sang i d’òrgan per fer anàlisis transcriptòmic, 

proteòmic i lipidòmic. 

Resultats: l’expressió de LRP5 augmenta en macròfags després de 

l’estimulació amb lípids. Aquest augment d’expressió de LRP5 

s’associa a una major captació de lípids. En els macròfags carregats de 

lípid, el LRP5 interacciona amb el PCSK9 i promou el seu alliberament 

a l’espai extracel·lular, desencadenant una resposta pro-inflamatòria. 

L’expressió d’ambdues proteïnes regula la internalització de colesterol 

en els macròfags. 

El LRP5 i el PCSK9 demostren un comportament similar a l’anterior en 

cèl·lules hepàtiques estelades però no en els hepatòcits del fetge, 

revelant així que la interacció LRP5-PCSK9 és de tipus cèl·lula-

específic. Tot i que el LRP5 indueix un perfil pro-inflamatori en 

macròfags carregats de lípids, també hem demostrat un rol anti-

inflamatori pel LRP5 en les microvesícules derivades de macròfags 

(MVs). Els macròfags estimulats amb LRP5+MVs mostren un perfil anti-

inflamatori, mentre que el tractament de macròfags amb LRP5-MVs 

indueix el canvi a un perfil pro-inflamatori similar a la inducció causada 

per MVs provinents de macròfags carregats de lípid. 

La deficiència del LRP5 en ratolí bloqueja la proliferació del teixit adipós 

després de ser alimentats amb dieta HC. Aquest efecte és causat per 

una menor expressió de gens de resposta a insulina en ratolins HC 
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Lrp5-/- comparat amb ratolins HC Wt, però també per una reducció en 

l’infiltrat de cèl·lules del sistema immunitari en el teixit adipós. 

En el cervell, el LRP5 no està involucrat en l’acumulació de colesterol 

en neurones; tot i això, el LRP5 participa en la senyalització de 

supervivència perquè les neurones silenciades per LRP5 mostren 

apoptosi promoguda. A més, en l’estudi de RNA-Seq de cervell de ratolí 

Wt i Lrp5-/- ha revelat alteracions significatives en processos metabòlics 

cerebrals com són el processament de l’àcid retinoic o l’àcid linoleic 

provocant una diferenciació neuronal i una formació de sinapsis 

defectuosa. 

Conclusió: els resultats de la tesis mostren una important funció pel 

LRP5 en la resposta cel·lular i tissular al colesterol, però també en la 

preservació de l’homeòstasi de teixits. La reducció o la pèrdua 

d’expressió de LRP5 altera la fisiologia natural de cèl·lules i teixits fet 

que postula el LRP5 i la via canònica WNT com a reguladors clau en 

les malalties cardiovasculars. 
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Abstract 

Introduction: cardiovascular diseases are the first cause of premature 

mortality worldwide. Atherosclerosis is the most common underlying 

cause of cardiovascular disease. This is a complex condition triggered 

by the accumulation of modified cholesterol in the vascular wall, which 

induces inflammatory and fibrotic processes. Hypercholesterolemia is 

the elevation of circulating cholesterol levels in blood, which affects 

cholesterol homeostasis in different tissues and organs. Canonical WNT 

pathway is an evolutionary conserved signalling pathway with a role in 

embryonic development and cell fate. Low-density Lipoprotein Receptor 

– related protein 5 (LRP5) is a receptor that triggers the canonical WNT 

signalling and uptakes circulating low-density lipoproteins (LDL). It is our 

hypothesis that LRP5 and the canonical WNT signalling play a key role 

in the cellular response to cholesterol exposure in different tissues. 

Objectives: the aim of this thesis is to identify the role of LRP5 in 

different cell types and tissues modulated by hypercholesterolemia 

including circulating macrophages and cell lineages of the liver and the 

adipose tissue. Additionally, this thesis focuses on the study of LRP5 

roles during the inflammatory response induced by atherosclerosis and 

its role in the brain (an organ with a heavily regulated cholesterol 

homeostasis).  

Methods: both in vitro and in vivo models were used. In in vitro studies, 

different cell lineages and primary cultures were subjected to gene 

knockdown to silence the expression of selected genes (mainly LRP5, 

but also PCSK9, SREBP2, LDLR, or LRP1). Cells were then treated with 

different stressors, mainly native or aggregated LDLs but also H2O2 or 

staurosporine, and then harvested and collected with different buffers 

and further processed for transcriptomic, proteomic and lipidomic 

analyses.  
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C57Bl/6J mice with a systemic LRP5 deficiency (Lrp5-/-) were used. Mice 

with wildtype (Wt) and Lrp5-/- genotypes were divided into two groups at 

8 weeks old and fed a normocholesterolemic (NC) or 

hypercholesterolemic (HC) diet for further 10 weeks when they were 

sacrificed and blood and organ samples collected for transcriptomic, 

proteomic and lipidomic analyses. 

Results: LRP5 expression increases in macrophages after lipid 

stimulation. This upregulation is associated to enhanced lipid 

accumulation in the cell. In lipid-loaded macrophages, LRP5 interacts 

with PCSK9 and promotes its release into the extracellular milieu, 

triggering a pro-inflammatory response. The expression of both proteins 

regulates macrophage cholesterol internalization.  

LRP5 and PCSK9 display a similar behaviour in hepatic stellate cells but 

not in liver hepatocytes, revealing that LRP5-PCSK9 interaction is cell-

type specific. Despite LRP5 pro-inflammatory roles in lipid-loaded 

macrophages, we have also observed an anti-inflammatory role for 

LRP5 in macrophage-derived microvesicles (MV). Macrophages 

stimulated with LRP5+MVs show an anti-inflammatory profile; however, 

LRP5-MVs treatment induce a pro-inflammatory switch in macrophages 

similar to the induction caused by MVs from lipid-loaded macrophages.  

LRP5 deficiency in mice blocks adipose tissue proliferation after 

hypercholesterolemic feeding. This effect might be caused by a lower 

expression of insulin-responsive genes in HC Lrp5-/- mice compared to 

HC Wt mice but also by a reduced infiltration of immune inflammatory 

cells in the adipose tissue.  

In the brain, LRP5 is not involved in neuronal cholesterol accumulation 

but participates in neuronal survival signalling as LRP5-silenced 

neurons display enhanced apoptosis. Additionally, RNA-seq analysis of 

brains of Wt and Lrp5-/- mice revealed significant alterations in different 



 

12 
 

metabolic processes such as retinoic acid or linoleic acid processing 

leading to defective neuronal differentiation and synapse formation. 

Conclusion: the results of this thesis show an important function for 

LRP5 in cellular and tissular cholesterol response, but also in preserving 

tissue homeostasis. The reduction or deficiency of LRP5 expression 

alters the normal physiology of cells and tissues postulating LRP5 and 

the canonical WNT signalling key regulators of cardiovascular diseases. 
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miRNA – micro RNA 

MMP(x) – Matrix Metalloproteinases (x) 

MV – Microvesicle 

MyD88 – Myeloid Differentiation Primary Response Protein 88 

NET – Neutrophile Extracellular Traps 

NeuroD1 – Neurogenic Differentiation 1 

Nfe2r2 – Nuclear Factor Erythroid 2 Related Factor 2 

NFκB – Nuclear Factor kappa-light-chain-enhancer of activated B cells 

nLDL – Native Low-Density Lipoprotein 

NO – Nitric Oxide 

OXLAM – Oxidized Linoleic Acid Metabolites 

PAD – Peripheral Artery Disease 

PAR – Population Attributable Risk 

PCSK9 – Proprotein Convertase Subtilisin/Kexin type 9 

PECAM1 – Platelet Endothelial Cell Adhesion Molecule 1 
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PP2A – Protein Phosphatase 2a 

PPARα – Peroxisome Proliferator-Activated Receptor alpha 

PPARγ – Peroxisome Proliferator-Activated Receptor gamma 

Prox1 – Prospero Homeobox Protein 1 

Rab22a – Ras-related Protein Rab-22A 

RAGE – Receptor for Advanced Glycation End Products 

RAR – Retinoic Acid Receptor 

RBP4 – Retinol Binding Protein 4 

RoR – Receptor Tyrosine Kinase-like Orphan Receptor 

ROS – Reactive Oxygen Species 

RXR – Retinoic X Receptor 

Ryk – Related to Receptor Tyrosine Kinase 

SCAT – Subcutaneous Adipose Tissue 

SCF – Skp-Cullin-F-box-Containing Complex 

SNARE – Soluble NSF Attachment Protein 

SREBP – Sterol Regulatory Element-Binding Protein 

Src – Proto-oncogene Tyrosine-protein Kinase Src 

SRSF1 – Serine/Arginine-rich splicing Factor 1 

STRA6 – Stimulated by Retinoic Acid Gene 6 

Tau – Tubulin Associated Unit 

Tcf – T Cell Factor 

TGF-β – Transforming Growth Factor beta 

TIMP – Tissue Inhibitor of Matrix Metalloproteinases 

TLR – Toll-like Receptors 

TNFα – Tumour necrosis factor alpha 

TREM-1 – Triggering Receptor Expressed on Myeloid Cells 1 

UCP-1 – Uncoupling Protein 1 
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VAT – Visceral Adipose Tissue 

VCAM-1 – Vascular Cell Adhesion Molecule 1 

VEGF-A – Vascular Endothelial Growth Factor A 

VSMC – Vascular Smooth Muscle Cell 

VLDL – Very Low-Density Lipoprotein 

VLDLR – Very Low-Density Lipoprotein Receptor 

WAT – White Adipose Tissue 

WASp1 – Wiskott-Aldrich Syndrome Protein 1 
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1. Introduction 
“All we have to decide is what to do with the time that is given us.” 

Gandalf to Frodo. The Fellowship of the Ring. Chapter 2. J.R.R. 

Tolkien  

 

  



 INTRODUCTION 

21 
 

1.1 Introduction to Cardiovascular Biology  

1.1.1 Epidemiology of CVD  

According to the National Institutes of Health and the World Health 

Organization, cardiovascular diseases (CVD) encompass a group of 

disorders occurring in the heart and blood vessels. They are the leading 

cause of premature death and account for approximately 17.9 million 

deaths/year, being ischemic heart disease and stroke the world’s 

leading death causes. CVD treatments are the costliest pathology-

associated healthcare, with a calculated indirect cost of 237 billion 

dollars annually by 2015 and a projected increased cost of 368 billion 

dollars by 2035 (1). 

In the past, the incidence of CVD in the population was low. Back then, 

people worked on physically demanding jobs and the food intake was 

poor. However, the modern industrialized economy and consumerism 

produced a shift towards longer non-physically-demanding working 

periods, longer commutes, less leisure time, and higher food intake, 

which ultimately led to a progressive increase in CVD rates (2) (Figure 

1). CVD exist in our society since the first civilizations, signs of 

atherosclerosis were found in pharaohs mummies from ancient Egypt 

Figure 1. Ten most lethal diseases worldwide (number of total deaths caused in the 
years 2000 and 2020). Data obtained from the WHO website. 
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indicating that sedentary and high-caloric fed people always had 

enhanced CVD risk (3). In the mid-late 20th Century, there were few CVD 

cases/year in developing countries affecting ministers, political leaders, 

and other wealthy inhabitants with the “western” lifestyle (4). 

There has been a rapid transition for CVD from a condition of developed 

countries to a global pandemic with a concerning continuous increase 

in the health system burden in lower-income countries (Figure 2). The 

main causes for the increased prevalence of CVD are the manifestation 

of risk factors and a relative lack of access to interventions against the 

disease (5). 

 

 

1.1.2 CVD risk factors 

Two major case-control studies (INTERHEART and INTERSTROKE)  

resolved that nine modifiable risk factors explain more than 90% of the 

population attributable risk (PAR) of developing myocardial infarction 

Figure 2. Evolution of Ischaemic Heart Disease and Stroke casualties in the years 2000 
and 2020 classified by countries income. Country income classification was obtained by 
World Bank data from year 2020. 
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(MI) and stroke (6,7). The PAR value measures the incidence of a 

disease in the population caused by one risk factor by comparing the 

risk factor incidence in the exposed population fraction and in the non-

exposed fraction (8). These risk factors include hypertension, tobacco 

smoking, waist-to-hip ratio, poor consumption of fruits and vegetables, 

limited physical activity, diabetes, alcohol intake, psychological stress 

and depression, cardiac causes, and the ratio between circulating 

apoB/apoA1. Collectively, these risk factors are consistent across 

different global regions, gender and age for both myocardial infarction 

and stroke. 

Furthermore, non-modifiable risk factors include genetic background, 

previous cardiovascular events, ethnicity, gender, and age, which 

contribute to approximately 63-80% of CVD prognosis (9).  

All these risk factors can induce the development of CVD by altering 

other parameters including the lipid profile, the inflammatory state, the 

oxidative stress or the development of thrombi either locally or 

systemically (10).  

1.1.3 Clinical features of CVD 

CVD comprehend different clinical features that share their origin in 

blood vessels and the heart. The American Heart Association classifies 

CVD in 4 groups depending on the location affected by the disease (11): 

• Coronary Heart disease (CHD): encompassing coronary artery 

disease (CAD) and MI. Frequently, CHD initiates after the partial or 

complete reduction of blood supply to the heart. The appearance of 

these conditions usually triggers the development of heart failure 

(HF), characterized by a reduced cardiac output insufficient for the 

body needs. The causes for HF are diverse, from heart muscle 

hypertrophy to cardiomyocyte death after MI (12). 
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• Cerebrovascular disease (CBVD): includes ischemic stroke, 

transient ischemic attacks and carotid stenosis. CBVD initiates when 

the irrigation to the central nervous system is partially or completely 

blocked by vessel narrowing, clot formation, blockage or rupture of 

the blood vessel.  

• Peripheral artery disease (PAD): occurs when blood flow to one or 

more limbs is restricted or blocked. 

• Aortic diseases: include disorders or conditions affecting the integrity 

of the aorta. The pathological condition usually leads to the 

formation of aneurysms.  

Therapeutical approaches targeting CVD can be differentiated into three 

major groups: primary, secondary and tertiary intervention, which focus 

into prevention, regression and slowing of CVD, respectively (13). 

Primary intervention is the most effective approach to reduce CVD-

related deaths. During 1980 to 2000 there were 70.000 fewer MI than 

predicted in the United Kingdom. The 41% of the decline was explained 

only by smoking cessation, as the percentage of smokers was reduced 

from 45% of the population to less than 28% because of consciousness-

raising campaigns against tobacco consumption (14). However, CVD 

prevention is complicated as the clinical outcome is not obvious during 

the first stages of the disease. It is not until CVD is stablished and the 

patient is already in a life-threatening situation that the first 

symptomatology is reported, limiting in many cases the impact of 

primary interventions and requiring the application of secondary/tertiary 

interventions (15,16).  

Secondary interventions also have a huge effect on reducing CVD-

associated deaths. The effectiveness of statins in reducing circulating 

cholesterol levels lowers CVD-related deaths by 25% in 

hypercholesterolemic patients (17–19). Also, statin administration to 
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individuals between 75-94 years old in the United States would save 

85.000 CHD cases, 269.000 disability-adjusted life years and a 

healthcare cost of 14.000.000.000 dollars (20). Statins act as 

competitive inhibitors of the enzyme 3-hidroxi-3-metilglutaril-coenzim A 

(HMG-CoA) reductase, the rate-limiting enzyme for cholesterol 

synthesis by the liver (21,22). This inhibition reduces very low-density 

lipoprotein (VLDL) production by hepatocytes and increases cholesterol 

uptake from blood mediated by the low-density lipoprotein receptor 

(LDLR) as a consequence of sterol receptor element-binding protein 

(SREBP) transcription factor activation (Figure 3).   

Figure 3. Statins effects on hepatocytes. 

Tertiary interventions refer to the use of coronary interventions like the 

installation of pacemakers or left ventricular assistance devices. 

Surgical procedures such as coronary artery angioplasty or bypass are 

also included as tertiary procedures. However, these therapeutical 

approaches are expensive and the implementation of these techniques 



 INTRODUCTION 

26 
 

on the global population at risk of CVD would suppose a huge cost for 

healthcare systems. 

In order to reduce future CVD-related deaths, primary interventions 

should be made available to a broader spectrum of the population at 

risk. In addition, it is important to improve current therapies by finding 

new therapeutic targets discovered by high-quality translational 

research (13).  

1.1.4 Obesity and adipose tissue in CVD 

Obesity is a multi-factorial disease with a complex pathogenesis related 

to biological, psychosocial, socioeconomic and environmental 

components with multiple pathways activation leading to adipose tissue 

formation and proliferation due to hypercaloric ingestion (23). The World 

Health Organization criteria determines that obesity on humans is set 

above 30 kg/m2 of body-mass index (BMI). Rather than the BMI 

indicator, clinicians prefer to use the waist circumference value or the 

waist-to-hip ratio as indicators of cardiovascular outcome due to obesity 

because they provide a better approach to the body fat distribution.  

There are two types of adipose tissues in mammals: the white adipose 

tissue (WAT) and the brown adipose tissue (BAT), with opposite 

functions: 

- WAT’s most important function is as a fat reservoir. After food 

ingestion, WAT reacts to high insulin concentration generated by the 

pancreas and absorbs glucose and free fatty acids (FFA) from 

bloodstream preventing hyperglycaemia and hypercholesterolemia. 

Upon entrance into white adipocytes, glucose and FFA are used for 

the synthesis of triglycerides. In fasting periods, WAT hydrolyses the 

previously stored triglycerides and gradually release FFA to the 

circulation to be used as energy source for other tissues. 
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- BAT’s most important function is to generate heat to maintain the 

body temperature. BAT absorbs glucose and FFA to be used in 

glycolysis and Krebs cycle, generating NADPH and FADH2 

metabolites, that finally donate their protons to the electron transport 

chain. BAT exclusively express the uncoupling protein 1 (UCP-1), 

which is located in the inner mitochondrial membrane of brown 

adipocytes and generate a secondary pathway for proton potential 

recovery, drastically impairing the oxidative phosphorylation process 

reducing ATP generation. Therefore, instead of producing ATP, 

brown adipocytes mitochondria dissipate the energy of the proton 

potential in the form of heat. 

BAT is evolutionary conserved in individuals that are predisposed to 

temperature loss due to their small volume-to-surface ratio like small 

mammals and newborns. In large mammals, WAT frequently create an 

isolating layer to protect internal organs from cold temperatures. 

However, recent findings in adult humans reveal that an extra beige 

adipocyte phenotype exists. Beige adipocytes are derived from white 

adipocytes exposed to certain catecholamines and growth factors and 

have BAT characteristics. The presence of beige adipocyte islets in 

WAT is a beneficial indicator of health, as beige adipocytes burn lipids 

preventing fat accumulation in the tissue. The formation of beige 

adipocytes is being aimed as therapeutic target by many approaches to 

treat obesity (24). 

The two major WAT depots in adulthood are subcutaneous adipose 

tissue (SCAT) and visceral adipose tissue (VAT). The importance of this 

classification is highlighted by studies revealing distinct transcriptomic 

and proteomic profiles between the different depots of adipose tissues, 

as well as studies that reveal a relationship between VAT and increased 

risk of CVD, while SCAT is considered to have a neutral or even 

cardioprotective profile (25). VAT is more innervated, irrigated and 
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vascularized than SCAT, which connects the fat depot closer to 

systemic regulation by nerves and hormones (26). In turn, the higher 

vascularization allows for a facilitated infiltration of inflammatory cells, 

which modulate adipocyte’s activity (27).  

SCAT acts as a metabolic sink for glucose and free-fatty acids in 

response to insulin and generates triglycerides that are stored in 

adipocytes, generating the energy reservoir (28). When the storage 

capacity of SCAT is exceeded, fat starts to accumulate in different 

regions of the abdominal cavity generating VAT (29). In normal 

conditions, SCAT is approximately 80% of the total WAT in human 

adults, while VAT accounts for 10-20% of total WAT in men and 5-8% 

in women (30). The distribution of adipose tissues in human and mouse 

is depicted in Figure 4.  

Increased VAT, but not SCAT, enhances the risk of type I diabetes, 

elevates circulating cholesterol and triglycerides levels, hypertension, 

increases metabolic syndrome, increases the risk of stroke and 

peripheral artery disease, and reduces the thickness of the vascular wall 

Figure 4. Fat depot location in the human and mouse organism. Yellow figures 
represent WAT and brown figures represent BAT. Adapted from Torres Irizarry, VC. et 
al. Front Endocrinol. 2022 Jun 9;13:898139. 
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(31–34). Accordingly, the waist-to-hip ratio is a better indicator of 

cardiovascular outcome related to obesity than the BMI. The main 

differences between SCAT and VAT are found in Table 1. 

 SCAT VAT 

Insulin sensitivity High Low 

Lipogenesis capacity High Low 

More sensitive to Oestrogens 

Catecholamines 

Glucocorticoids 

Androgens 

Presence of beige 

adipocytes 
Frequent Almost inexistent 

Immune response 
Anti-atherogenic 

Anti-fibrotic 

Pro-atherogenic 

Pro-fibrotic 

Neoangiogenic 

Proportion in lean 

adults 

80% men 

95% women 

20% men 

5% women 

Enhanced production  
Leptin, adiponectin, 

resistin 

TNFα, IL-6, IL-8, IL-

13, MCP-1, 

eicosanoids, 

chemokines 

Location 
Beneath skin dermal 

layer 

Associated with 

abdominal organs 

 

Table 1. Differences between visceral and subcutaneous adipose tissue. 

Metabolically, lean adipose tissue has more M2 macrophages with an 

anti-inflammatory phenotype while in obese adipose tissue the pro-

inflammatory M1 macrophage phenotype prevails. The inflammatory 

state of the adipose tissue regulates the secretion of pro- and anti-

inflammatory cytokines which affect the cardiovascular system. A pro-
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inflammatory adipose tissue develops insulin resistance increasing 

cholesterol, triglyceride and FFA concentration in blood. Also, a 

proliferating adipose tissue switches its adipokine secreting profile as it 

releases less adiponectin, omentin-1, and nitric oxide (NO) while it 

increases the secretion of leptin, tumour necrosis factor alpha (TNFα), 

IL-6, interferon-γ (IFNγ), and reactive oxygen species (ROS). 

The epicardial adipose tissue (EAT) is another WAT tissue located in 

the upper heart intimately related to the left auricula where it exerts 

protective functions in the myocardium. EAT protects the coronary 

arteries mechanically and metabolically, as it buffers the torsion 

generated by the arterial pulse and cardiac contraction and protects the 

myocardium from high concentrations of circulating inflammatory and 

pathogenic substances (35). Also, EAT serves as a source of fatty acids 

for the myocardium during high-demand moments as the heart is 

nurtured exclusively by fatty acids through β-oxidation (36). In obesity, 

EAT activity focuses on the release of pro-inflammatory adipokines and 

activates pro-fibrotic pathways. Subsequently, increased EAT thickness 

in patients is associated with increased insulin resistance, 

dyslipidaemia, hypertension, CAD, and enhanced risk of major 

cardiovascular events (37). 

1.1.5 Lipoproteins 

Lipoproteins are blood circulating large macromolecules that transport 

hydrophobic lipids across the organism (38). Lipoproteins have two 

main components: lipids and apolipoproteins. Different lipids can 

conform lipoproteins, which are distributed according to their 

hydrophobicity: the core is composed by hydrophobic lipids (cholesteryl 

esters and triglycerides) surrounded by a membrane of amphipathic 

lipids (phospholipids and free cholesterol) with their hydrophobic end 

facing towards the lipoprotein’s core. Apolipoproteins are proteins 

embedded in the surface of the lipoproteins. Their functions include the 
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stabilisation of lipoproteins and conferring each lipoprotein type with 

unique biological properties (39). Lipoproteins, are classified according 

to their density (38) (Table 2): 

• Chylomicrons (CMs): synthesized by the intestines, CMs transport 

dietary lipids from the intestines to the rest of the organism. Their 

lipid composition is high in triglycerides and low in cholesterol esters. 

The metabolization of CMs results in the formation of chylomicron 

remnants (CMr), which are smaller lipoproteins with higher 

cholesterol ester/triglyceride ratio than CMs. 

• VLDLs: synthesized by the liver, VLDLs transport endogenously 

synthesized lipids from the liver to the rest of the organism. Their 

lipid content is enriched in triglycerides and poor in cholesterol, 

similar to CMs. 

• Intermediate-density lipoproteins (IDLs): these lipoproteins are 

generated after triglycerides in VLDLs are metabolized in tissue 

capillaries. 

• Low-density lipoproteins (LDLs): these lipoproteins are generated as 

a consequence of complete VLDL and IDL metabolization in the 

capillaries (which capture the majority of triglycerides), leaving a 

small cholesterol-enriched lipoprotein.  

• Lipoprotein(a) (Lp(a)): this type of lipoprotein is generated as the 

consequence of an apolipoprotein (a) (apo(a)) protein binding to the 

canonical apoB-100 apolipoprotein of LDLs. Apo(a) confers extreme 

atherosclerotic properties to Lp(a) changing the lipoprotein density, 

its electrophoretic mobility, and molecular weight, which results in 

difficulties in Lp(a) removal from the vessel wall enhancing 

inflammatory, oxidative, and fibrotic processes (40). 



 INTRODUCTION 

32 
 

• High-density lipoproteins (HDL): mainly generated in the liver and 

the intestines, HDL are responsible for the reverse cholesterol 

transport from the peripheral organs to the liver. 

 

Table 2. Main features of the most common circulating lipoproteins. 

1.1.6 Cholesterol circulation and liver function 

Cholesterol delivery is a well-regulated process where intestines, liver 

and cholesterol-demanding tissues communicate to keep balanced 

circulating cholesterol levels (41). Cholesterol has two main sources: de 

novo synthesis and diet. The liver is the main cholesterol-producing 

organ. Between 70-80% of the daily cholesterol need of an adult human 

(about 1 g/day) is synthesized by the liver, and is enough to completely 

sustain the organism (42,43). Cholesterol intake through diet is by 

 

CM 

 

VLDL 

 

IDL 

 

LDL 

 

Lp(a) 

 

HDL 

 

Size > 100 μm 30-80 μm 25-35 μm 20-25 μM 20-25 μM < 20 μM 

Apolipoproteins 

apoB48, 
ApoA-1, 
ApoA-II, 
apoC-Ihi, 
apoC-IIhi, 

apoE 

apoB-100, 
ApoC-Ihi, 
apoC-IIhi 

apoB-100, 
apoC-Ilow, 
apoElow 

apoB-100 
apoB-100, 

apo(a) 

ApoA-I, 
ApoA-II, 
ApoC, 
ApoE 

Source Intestines Liver 
VLDL 

metabo-
lization 

VLDL and 
IDL 

metabo-
lization 

LDL 
modifi-
cation 

Intestines 
Liver 

Cholesterol 
ester / 

triglyceride 
proportion 

1:10 1:1 9:1 12:1 12:1 9:1 

Lipid / protein 
proportion 

99:1 9:1 4:1 4:1 4:1 3:2 
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ingestion of animal-derived products as plants only produce cholesterol 

as a by-product to produce further metabolites like phytosterols (44). 

After food intake, CM and VLDL are delivered to the systemic circulation 

where they reach their targeted tissues that are muscle and adipose 

tissue and, in minor proportion, other organs (45). In the capillaries 

surrounding the muscular and adipose tissues, CMs and VLDLs are 

recognised by the enzyme lipoprotein lipase (LPL). LPL recognizes 

ApoC-II of the surface of CMs and VLDL and promotes the hydrolyzation 

of triglycerides, resulting in the release of FFAs (46). Adjacent muscular 

and adipose cells absorb FFAs for energy production and storage, a 

process facilitated by membrane fatty-acid transport proteins: CD36 and 

fatty acid transport protein (FATP)-family members (47–49) . The 

metabolization of CMs and VLDLs-derived triglycerides empties the 

lipoprotein core and reduces the lipoprotein size which is followed by a 

change in apolipoprotein composition (45,50). ApoE incorporation in 

CMs and VLDLs, as well as loss of ApoC-II and ApoA-I in CMs leads to 

the formation of CMr and IDL/LDLs. Both CMr and IDL are rich in 

cholesterol esters and poor in triglycerides compared to their 

progenitors (51,52). The elimination of CMr from the systemic circulation 

by the liver is fast and mediated through specific recognition of ApoE by 

the LDLR present in the hepatocyte surface (53). However, LDLs are 

not cleared as efficiently as CMr, as ApoE is released from the 

lipoprotein surface during the IDL metabolization process. ApoB-100 is 

present in LDL surface and has a lower affinity for LDLR than for ApoE 

(39). The half-life of LDL in circulation is the longest amongst 

lipoproteins (approximately 3 days) as they lack active apolipoproteins 

and cholesteryl esters are very stable in LDL’s core (54).  

The main function of LDL is to transport cholesterol to extrahepatic 

tissues (55). Cholesterol is needed for many functions; thus, cells 

require limited but continuous supply of cholesterol to survive. 
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Approximately 70% of circulating LDL are cleared by liver’s LDLR in 

normal conditions, and 30% is taken up by extrahepatic tissues (38). 

Hence, the liver, through the LDLR, is the main regulator of LDL 

circulating levels. LDLR is transcriptionally regulated by sterol regulatory 

element-binding protein (SREBPs) (56,57). This family of transcription 

factors sense the intracellular concentration of cholesterol and, upon 

activation, promote the transcription of cholesterol and fatty acid 

metabolism genes (58). Concretely, SREBPs induce the expression of 

LDLR and 3-hidroxi-3-metilglutaril-coenzim A (HMG-CoA) reductase, 

the rate-limiting enzyme in cholesterol de novo synthesis (59,60). 

HDL particles are responsible for the reverse-cholesterol transport from 

extrahepatic tissues to the liver preventing cholesterol accumulation in 

cholesterol-overloaded cells and tissues (61). The generation of HDL 

starts with the liver production of Apo-AI that acquires cholesterol and 

phospholipids effluxed by cells, forming the mature HDL lipoprotein 

aided by the ATP-binding cassette sub-family A member 1 (ABCA1) 

transporter protein (61,62). In circulation, HDLs collect excess 

cholesterol from extrahepatic tissues but also FFA provided by LPL 

activity on circulating CM and VLDL. The lecithin cholesterol acyl-

transferase (LCAT) enzyme mediates the transference of FFAs to 

unesterified cholesterol, forming cholesterol esters that move towards 

the HDL core (63). The ATP-binding cassette sub-family G member 1 

(ABCG1) transporter is responsible for loading mature HDL with 

cholesteryl esters, regulating cholesterol efflux from cells to circulation 

(64). Another important enzyme in HDL metabolism is cholesteryl-ester 

transfer protein (CETP), a protein that promotes the exchange of 

cholesterol esters from HDL to apoB-containing lipoproteins and 

triglycerides from LDLs to HDLs (65,66). When fully loaded, HDL might 
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be cleared from the blood through the liver as scavenger receptor B-1 

has a strong selective affinity for HDL (67) (Figure 5). 

1.1.7 Role of HSC in liver function 

Besides its role as the main regulator of systemic blood cholesterol 

levels, the liver is a very complex organ which performs several 

functions that affect systemic circulation. It produces albumin, clears the 

blood from toxic substances, produces urea to eliminate the excess of 

nitrogen, supports digestion, and serves as energy and vitamin storage 

(68).  

The liver receives a double blood supply from the portal vein and the 

hepatic artery, both located in the outer region of liver lobules which flow 

inwards fusing in the middle region and flowing into liver central veins 

(69). This creates concentration gradients for macromolecules and other 

blood components as they flow across the liver lobule. There are 

different resident cell subtypes in the liver and each has a unique role: 

Figure 5. Lipoprotein circulation in humans. 
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- Hepatocytes: they metabolize blood components and secrete most 

of the liver-derived proteins found in blood. Single-cell RNA-seq 

studies show that hepatocytes from the inner and outer liver lobule 

have distinct roles (70). Indeed, distal lobule hepatocytes are 

specialized in the production of blood proteins, gluconeogenesis, 

and urea synthesis while inner lobule hepatocytes are involved in 

cholesterol and lipid biosynthesis (71).  

- Hepatic Stellate cells (HSCs):  these cells are liver pericytes that 

surround liver sinusoids in the space of Disse, a liver-specific region 

between hepatocytes and sinusoids with a matrix resemblant 

function (72). HSC are quiescent cells that are the primary reservoir 

of fat and vitamin A in the liver (73). Their function during 

homeostasis remains unknown even though they constitute about 

5% of the liver cell population (74). 

- Kupffer cells: they are tissue-resident macrophages found in liver 

sinusoids. They contribute to the tissue homeostasis by providing 

innate immune surveillance (75).   

- Liver sinusoidal ECs: these cells compose the endothelial layer of 

liver sinusoids. They form a highly specialised fenestrated 

endothelium, the most permeable in the organism. The liver 

endothelial layer is unique as it is the only endothelium without a 

base membrane. They contribute to the hepatic tone by maintaining 

a low portal vein pressure (76). 

After liver damage, HSCs are activated, proliferate, and suffer a 

phenotype switch into fibber-producing myofibroblast-like cells (77). 

Collagen is the main extracellular protein produced by activated-HSC, 

contributing to liver fibrosis, a pathological state in which liver 

hepatocytes are replaced by extracellular matrix, reducing liver effective 

function and causing metabolic dysregulations (78) (Figure 6). 
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Advanced stages of fibrosis can lead to liver cirrhosis and 

hepatocarcinoma if the symptomatology is not reverted. 

  

Figure 6. Schematic comparing the quiescent role of HSC in a healthy liver vs the HSC 
proliferative matrix-producing myofibroblast-like phenotype in injured liver. 

Little is known about the mechanisms by which HSC accumulate lipids, 

nor the function that these lipids have. Retinoic acid (vitamin A) is 

accumulated in HSC’s lipid droplets in the form of retinyl esters 

conjugated with either cholesterol or phospholipids. The HSC serve as 

a reservoir for retinoic acid that hepatocytes use as ligand for the 

activation of the transcription factors retinoic acid receptor (RAR) and 

retinoic X receptor (RXR) that control cellular differentiation, growth, and 

development (79). Retinoic acid is also used in the liver detoxification 

process, where it regulates the expression of detoxification enzymes, 

contributing to the organism’s ability to eliminate toxins (80). HSC 

express peroxisome proliferator-activated receptor gamma (PPARγ) 



 INTRODUCTION 

38 
 

and SREBP transcription factors which are involved in cholesterol and 

fatty acid storage metabolism. Constitutive activation of these regulators 

prevent HSC conversion into myofibroblasts (81), indicating that 

adipogenic-resemblant phenotypes for HSC might be beneficial to 

prevent liver diseases.  
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1.2 Atherosclerosis 

The most common underlying cause for CVD is atherosclerosis (82), an 

almost asymptomatic condition. Atherosclerosis is the accumulation of 

lipids and fibrous elements inside the vessel walls of the arteries (83). 

Atherosclerosis develops as cholesterol, triglycerides, inflammatory 

cells and other substances slowly accumulate forming the 

atherosclerotic plaque. Progressive growth of the plaque produces a 

continuous narrowing of the vessel wall which leads to a reduced supply 

of oxygen and nutrients to the tissues downstream the blood vessel 

(84,85). Atherosclerosis pathophysiology is highly complex, with 

multiple biological processes modulating the progression of the disease 

(86).  

1.2.1 Atherosclerosis initiation 

The atherosclerotic process starts when the endothelial membrane from 

the inner part of the vascular wall is damaged (87). Blood vessels suffer 

different shear stress generated by circulating blood flow. Laminar 

unidirectional shear stress induces the expression of the transcription 

factor krüppel-like factor 2 (KLF2) in ECs, which activates genes to 

maintain the vascular barrier integrity and tissue-homeostasis by anti-

inflammatory, anti-thrombotic and anti-atherogenic pathways (88,89). 

Regions with turbulent blood flow and low shear stress generate 

atherogenic haemodynamic signalling to ECs that activate the nuclear 

factor kappa-light-chain-enhancer of activated B cells (NFκB) 

transcription factor, which activates the transcription of hypoxia-

inducible factor 1-alpha (HIF1α) (90). In turn, HIF1α activation induces 

the transcription of enzymes participating in glycolysis leading to local 

EC proliferation (91,92). These changes in the EC state lead to the 

release of inflammatory mediators, promoting a switch to a pro-

inflammatory and pro-atherogenic phenotype (93–95).  
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The shear stress theory allows explaining why atherosclerosis develops 

in very specific regions of the cardiovascular system despite all ECs are 

subjected to the same biological conditions. Shear stress modulates the 

composition and thickness of the glycocalyx (96). The glycocalyx is the 

first regulator of the LDL trans endothelial passage. This extracellular 

layer consists of a thick negatively-charged matrix composed of 

glycoproteins, proteoglycans and hyaluronan (mainly membrane-bound 

components) which traps plasma- and endothelial-derived proteins (97). 

Inflammation increases the capacity of the glycocalyx to trap circulating 

LDLs which allows ECs to start the LDL-transcytosis process (98) 

(Figure 7.1). 

Transcytosis is defined as the transport of LDL molecules from the 

lumen to the intima of the blood vessels (99). This process is performed 

mainly across the EC layer, but also between ECs (100).  Transcytosis 

is performed by EC through several receptors that recognise circulating 

native LDL (nLDLs) and modified LDLs promoting their internalization 

via clathrin- and caveolin-endosomes (101–104). Exocytosis of LDL to 

the vessel intima occurs in a different process mediated by soluble NSF 

attachment protein (SNARE) receptors, which modulate the docking and 

fusion of vesicles with the cell membrane (99,105). 

LDLs can also cross the endothelial barrier through junctions between 

the ECs (106). In normal conditions, tight-, adherent- and gap-junctions 

maintain the permeability of the endothelial layer blocking the crossing 

of macromolecules (107). However, in pathological conditions, junctions 

between ECs are weakened, generating structural changes in the 

endothelial layer and allowing LDLs to cross to the endothelial subintima 

(108–110). 

Once in the arterial intima, LDL might suffer chemical enzymatic-driven 

modifications of its components including oxidation (111,112), 

acetylation (113,114), ethylation (115), methylation (115), glycation 
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(116) and others. These modifications modify lipids and aminoacids on 

the LDL surface, changing the affinity of LDLs for the cellular receptors 

that uptake nLDL in non-pathological conditions (117,118). 

In the arterial intima, nLDL are modified by proteases, lipases and pro-

oxidative agents, which are produced by ECs under stressful conditions 

(119,120). These modifications and the high concentration of modified 

LDL in the intima promote the formation of aggregated low-density 

lipoprotein (agLDL) (121,122), which can be a hundred times bigger 

than a circulating nLDLs (123). 

1.2.2 Atherosclerosis progression 

The inflammatory state of ECs leads to vascular wall dysfunction. ECs 

produce chemokines and inflammatory cytokines that activate and 

recruit inflammatory cells towards the injury site (124). Stressed ECs 

express adhesion molecules that allow leukocyte retention at the injury 

site and promote their transmigration across the EC layer (124–127). 

Macrophages play a major role during atherosclerosis while other 

leukocytes including dendritic cells, T lymphocytes and B lymphocytes 

also participate in enhancing atherosclerosis progression (128). When 

circulating monocytes are recruited to the vascular intima, a 

differentiation process is triggered to transform monocytes into tissue-

resident macrophages (129).  

At the same time, resident vascular smooth muscle cells (VSMCs) 

migrate from the outer arterial intima towards the lipid-accumulating 

zone (130). VSMC are not fully differentiated and can change their 

phenotype when stimulated with environmental factors such as growth 

factors, cell-cell or cell-matrix interactions, lipids, lipoproteins, and/or 

inflammatory mediators within the vessel wall intima (131). During the 

migratory process, VSMCs lose their low-proliferative contractile stable 

phenotype and dedifferentiate into high-rate proliferating cells, with 
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increased proteoglycan production and high lipid-engulfing capacity 

(132–134) (Figure 7.2).  

Both macrophages and dedifferentiated VSMC express the receptors 

needed to endocytose both nLDL and modified LDL. These include the 

LDLR (135), the low-density lipoprotein receptor-related protein 1 

(LRP1) (136), scavenger receptor A (SRA), CD36, and lectin-type 

oxidized LDL receptor 1 (LOX-1) (137–139). Hence, both cell types start 

to endocytose lipoproteins present in the arterial intima which activate 

the production of inflammatory cytokines/chemokines for continuous 

recruiting of VSMCs and macrophages. The persistent accumulation of 

lipids by macrophages and VSMC leads to the formation of foam cells, 

which are metabolically inactive as their function is to store lipids (140–

142) (Figure 7.3).  
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1.2.3 Atherosclerosis final stage 

As LDL accumulation persists in the arterial intima there is a sustained 

generation of foam cells, increasing the atherosclerotic lesion size, 

which progressively narrows the vessel reducing its nutrient-

transporting capacity (84). Eventually, if the plaque core is big enough, 

nutrient supply does not reach cells in the lesion core and foam cells 

undergo a necrotic process (143). Necrosis occurs in plaques larger 

than 1 mm2 and induces the initiation of the destabilization of the 

Figure 7. Cellular and tissue events during atherosclerosis progression. 
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atherosclerotic plaque (144). Almost 65% of plaque ruptures in humans 

have a necrotic area bigger than 25% of the atherosclerotic plaque 

(144). Cells undergoing necrosis lose cellular integrity and leak 

intracellular components into the media (145). Among these 

components, the release of damage-associated molecular patterns 

(DAMP) including high mobility group box 1 (HMGB1), receptor for 

advanced glycation end products (RAGE) or alarmins are recognised by 

toll-like receptors (TLR) or triggering receptor expressed on myeloid 

cells 1 (TREM-1) in macrophage’s membrane triggering the production 

and release of pro-inflammatory cytokines and matrix 

metalloproteinases (MMPs) (146) (Figure 7.4). Vascular wall rupture 

due to necrosis causes the spilling of the plaque content into the blood, 

which generates thrombus that can trigger ischemic events (147,148) 

(Figure 7.5).  

If LDL accumulation is blocked, foam cell formation is stopped and 

plaque is stabilized as VSMCs create a thick layer of collagen and 

elastin to protect vessel integrity and isolate the atherosclerotic plaque. 

In contrast, inflammatory cells produce collagen-degrading matrix 

metalloproteinases (MMPs) with plaque rupture potential. The balance 

between collagen production and degradation is key in plaque 

stabilisation/rupture fate (149). Slowly through time, HDL particles will 

remove the endocytosed cholesterol from foam cells (150,151). 

However, blood vessel narrowing prevails as tissue scar after 

atherosclerotic lesion stabilization. Tissue scar leads to reduced 

elasticity of the vasculature which can produce increased blood 

pressure (152). High blood pressure due to arterial stiffness is the most 

impactful risk factor to develop CVD, but can also damage other organs 

including kidney, brain or liver because high blood pressure leads to 

capillary breakdown (153,154). 
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1.2.4 Monocytes and macrophages involvement in 

atherosclerosis progression  

Monocytes are continuously synthesized in the bone marrow from 

hematopoietic stem cells that enter the myeloid differentiation pathway 

(155). Myeloid precursors need further stimulus by growth factors and/or 

chemical signals to finally differentiate into neutrophiles, 

megakaryocytes, basophiles, eosinophiles, dendritic cells or monocytes 

(156). 

Monocytes can be classified based on the expression levels of the 

surface markers CD14 and CD16. Human CD14highCD16low monocytes 

are classical monocytes that migrate from blood to tissue and 

differentiate into macrophages. Upon differentiation, these 

macrophages can control infections by phagocytosis and trigger 

inflammatory and tissue-remodelling processes. The non-classical 

CD14lowCD16high monocytes, patrol the resting vasculature removing 

cellular debris and repairing the endothelium (157–159). In mice, this 

differentiation is based on the surface expression of Ly6C protein: 

Ly6Chigh monocytes are homologous to human CD14highCD16low 

monocytes while Ly6Clow monocytes are mirroring human 

CD14lowCD16high. An important consideration is that human classical 

monocytes account for 85% of the monocyte population while only 15% 

are non-classical; instead, mice classical monocytes account for less 

than 40% of the total monocyte population while the remaining 60% are 

considered non-classical monocytes (160).  

Macrophages are classified into M1 pro-inflammatory macrophages or 

M2 anti-inflammatory macrophages. There is ongoing controversy 

whether both populations are generated from the different monocyte 

populations or macrophages can shift from one phenotype to the other 

in response to microenvironmental signals (161–163). Several 

hypotheses attempt to explain this issue: 
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1. Macrophages derive from monocytes with a similar phenotype. 

According to this hypothesis, CD14highCD16low/Ly6C+ monocytes 

would differentiate into M1 macrophages while 

CD14lowCD16high/Ly6C- monocytes would differentiate into M2 

macrophages. However, it has been reported that classical 

monocytes can differentiate into M2 macrophages, while non-

classical monocytes can generate M1 macrophages (162). 

2. Sequential waves of monocyte recruitment into the tissue lead 

to different macrophage phenotype fate. This hypothesis 

supports that the first waves of infiltrating monocytes are 

differentiated into M1 macrophages as a consequence of 

microenvironmental conditions triggered by pro-inflammatory 

cytokines like the granulocyte macrophage – colony stimulating 

factor (GM-CSF). In contrast, late waves of infiltrating monocytes 

find a different microenvironment enriched in other cytokines like 

colony stimulating factor 1 (CSF-1) that promote their 

differentiation into M2 macrophages specialised in tissue-

repairing functions (162,164). 

3. A third hypothesis stipulates that macrophages can switch from 

one phenotype to the other in response to the signals they 

receive independently of the original monocyte subtype. In vitro 

studies using human monocytes have proven that these acquire 

a M1 macrophage phenotype which further matures into M2 

repairing macrophages if stimulated by different cytokines (165). 

Other studies have also proven a phenotype switch from M2 

macrophages to M1 macrophages if cells are stimulated by TLR-

ligands or IFN-γ (166,167). 

Importantly, these results were obtained using only in vitro models, 

which do not fully resemble real case scenarios. Several features 

differentiate M1 from M2 macrophages, being the most relevant their 



 INTRODUCTION 

48 
 

cytokine releasing profile. M1 macrophages release pro-inflammatory 

cytokines TNFα, IL-1β, IL-6, IL-8, type-1 interferons, and IFN-γ, while 

M2 macrophages release anti-inflammatory cytokines IL-10, TGF-β, and 

IL-1Ra (168). Also, M1 macrophages express high levels of iNOS which 

allows for NO production and ROS secretion with high potent killing 

activity against pathogens, while M2 macrophages fail to produce NO 

(169). Instead, M2 macrophages express the mannose receptor CD206, 

which allows them to bind and eliminate residual cellular debris and 

promote healing in the tissue (170) (Table 3).  

 

During atherosclerosis progression, the inflammatory context in the 

vascular intima stimulates the production of GM-CSF, and the recruited 

monocytes proliferate and differentiate into M1 macrophages with 

enhanced capacity to accumulate cholesterol, become foam cells and 

further extent the inflammatory process (171). If the athero-inflammatory 

process is paused or reverted, macrophages can undergo a 

transdifferentiation process from M1 to M2 macrophages (172). M2 

Table 3. Main features differentiating M1 and M2 macrophage phenotypes. 
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macrophages induce plaque stabilisation by expressing higher levels of 

ABCG1, promoting cholesterol-efflux towards HDL molecules, and 

producing anti-inflammatory proteins collagen, soluble IL-1R, and IL-10 

(173,174).  

Macrophages play a key role in the stabilisation of the fibrous cap and 

vascular wall thickness by modulating the degradation of collagen, fibrin, 

and elastin. M1 macrophages produce vast amounts of active MMP-1, -

3, -10, -12, -14, and -25 in response to IL-1β, GM-CSF, and TNF-α, 

which cleave collagen and reduce the thickness of the vasculature, 

increasing plaque instability (175). However, M2 macrophages 

stimulated by IL-4 and IL-10 produce MMP-11 or MMP-12 while 

secreting tissue inhibitor of matrix metalloproteinase -1 and -3 (TIMP-1 

and TIMP-3), inhibiting collagen degradation, and isolating the 

atherosclerotic lesion form general circulation (176,177). The balance 

between MMP and TIMP activity in the vascular wall is key to determine 

the fate of the atherosclerotic lesion (178). In conclusion, the M1/M2 

macrophage ratio in the atherosclerotic lesion is an important factor that 

regulates atherosclerosis outcome. Hence, proteins regulating the 

phenotypic fate of macrophages are important to preserve lesion 

homeostasis and block atherosclerosis progression. 

M(Hb) or Mox are other macrophage subtypes with anti-atherosclerotic 

properties in humans. M(Hb) macrophages engulf erythrocyte remnants 

and haemoglobin (179) activating the expression of the transcription 

factor liver X receptor alpha (LXRα), which promotes ABCA1 

cholesterol-efflux regulating protein, reducing the possibilities for this 

macrophage subtype to become foam cells (180). Mox macrophages 

are induced by oxidized phospholipids and activate the nuclear factor 

erythroid 2 related factor 2 (Nfe2r2) transcription factor, which activates 

the secretion of antioxidant enzymes to the extracellular matrix including 

lipooxigenase-1, thioredoxin reductase-1, and sulfiredoxin-1 (181,182).  
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1.2.5 Microvesicles and their roles in atherosclerosis 

Microvesicles (MVs) are extracellular vesicles composed of lipid bilayer-

delimited particles released from cells. Extracellular vesicles include 

MVs, exosomes, apoptotic bodies, and exospheres (183). In the 

organism, MVs are found in the interstitial fluid between the cells and 

the systemic circulation. Their size oscillates between 30 to 100 nm in 

diameter. The role of MVs is to allow intercellular communication by 

transporting messenger RNA, microRNA (miRNA), proteins and/or lipids 

between cells in a selective process regulated by the expression of 

receptors at their membrane (184). 

To generate MVs, an out-budding process in specific cell membrane 

locations enriched in lipids and proteins occurs. The cell, through 

different cellular pathways, selectively transports specific messenger 

RNAs, proteins, and other metabolites to the specialised cell-membrane 

regions. Tetraspanin proteins and the endosomal complex required for 

transport (ESCRT) complexes coordinate the formation of MV 

biogenesis, recruiting the MV-forming machinery to located regions of 

the cell membrane (185–187). The biogenesis of MVs is a highly 

complex process in which several proteins dictate which 

macromolecules need to be transported to the MV-generating cell 

membrane region (Figure 8). 

 Important mediators in this process are: 

1. ADP-ribosylation factors 1 and 6 (ARF1 and ARF6): Ras 

GTPases that coordinate the selective recruitment of proteins 

into MVs, endosome trafficking, and membrane contractility, 

facilitating membrane fission and MV secretion (184,188). ARF6 

activates phospholipase D, promoting the recruitment of 

extracellular signal-recruit kinase (ERK) to the out-budding 

membrane. ERK phosphorylates and activates the myosin light-
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chain kinases that disrupts the union between actin chains from 

the MV and the cell, allowing the MV release (188). 

2. Ras-related Protein Rab-22A (Rab22a): a GTPase which 

actively regulates the selection of MV cargo. The protein activity 

seems to be specially induced during hypoxic conditions (189). 

3. Calcium signalling: an increase in cytoplasmic calcium 

concentration has been postulated as the initiating step in 

plasma membrane blebbing for MV generation (190,191).  

Many stimuli can trigger MV generation; however, it seems that each 

cell subtype reacts to a particular stimulus. Once released into the 

extracellular fluids, MVs interact with other cells by their surface 

receptors. The interaction and specific recognition between MVs and 

receptor cells produces the fusion of both membranes and the release 

Figure 8. Microvesicles biosynthesis and the mediators involved in cargo sorting. 
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of MVs content (active metabolites and macromolecules) into the 

cytoplasm of the receptor cells (192).  

The release of MVs is a paracrine and endocrine method of cell-cell 

communication (193). Protein receptors pattern expression at the MVs 

surface allows for the distinction of their cellular origin. Signalling 

through MVs is indispensable for the organism as it regulates multiple 

mechanisms including angiogenesis, immunity, cell-cell communication, 

transfer of proteins and miRNA, coagulation, inflammation, neuronal 

function, tissue-repair, and regeneration (194).  

MVs play crucial roles in atherosclerosis and ischemic events (195). 

Human patients with increased circulating levels of platelet endothelial 

cell adhesion molecule 1 positive (PECAM1+) and AnnexinV+ MVs are 

more prone to die from major adverse cardiovascular events, revealing 

a potential role for MVs as CVD biomarker (196). 

Macrophage-derived MVs trigger inflammation as their content includes 

cytokines, adhesion molecules, miRNAs, and receptor-specific ligands 

that modulate atherosclerosis progression (197–199). However, MVs 

produced by M2-macrophages contribute to maintaining the 

homeostasis in atherosclerosis and cardiac myocardium, stabilising the 

pathogenesis of the disease (200–202). In human atherosclerotic 

plaques, high Ca2+ concentration due to plaque calcification triggers 

macrophage release of MVs enriched in iNOS and IL-6 mRNAs, which 

enhance inflammation in receptor cells (203). Also, MVs produced by 

human plaque macrophages are enriched in CD40L and potentiate 

angiogenesis by stimulating EC proliferation both in vitro and in mice 

models (204).   

Dysfunction of ECs caused by atherosclerosis increases leukocyte-

derived extracellular vesicles in circulation (205). MVs produced by 

stressed ECs contain elevated levels of the proto-oncogene tyrosine-
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protein kinase Src (Src) kinase; the recognition of Src-enriched MVs by 

receiving ECs reduced tight junctions and aggravates the EC barrier 

integrity (206). Also, EC-derived MVs display high concentrations of 

BMP-2 after incubation with TNFα. These BMP-2-enriched MVs act on 

VSMC triggering calcification, associated to atherosclerosis progression 

late-stages (207). Oxidized phospholipids also modify the cargo loaded 

into MVs by ECs increasing pro-inflammatory cytokine loading, and 

ICAM-1/VCAM-1 expression (208). Interestingly, KLF2-expressing ECs 

generated MVs enriched in miR-143 and miR-145, which reduce 

atherosclerotic lesions in ApoE-/- mice (209). However, incubation of 

ECs with oxLDL leads to MV enrichment in miR-155, which upon 

reception by macrophages induces its differentiation into M1 

macrophages (210).  

Finally, MVs secreted by activated platelets can also modulate 

macrophage pro-inflammatory phenotype. Thrombin-stimulated 

platelets, simulating thrombosis in vitro, produce MVs that trigger the 

oxLDL internalization by macrophages leading to foam cell formation 

and  induce pro-inflammatory cytokine release by receptor 

macrophages (211). 

The investigation on MVs ability to control key mechanisms regulating 

pathogenesis of diverse diseases is of high interest to create novel 

therapeutic approaches. In the recent years, the scientific community 

has postulated MVs as potential therapeutic vectors for their high 

biocompatibility, low immunogenic profile, and elevated malleability for 

delivery therapy. The objective is to modify MVs cytosol cargo in 

proteins and nucleic acids (but also synthetic components like 

nanoparticles) in order to transfer these bioactive molecules into 

receptor cells through highly-specific interactions modulated by MVs 

membrane receptors.  
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1.3 The WNT signalling pathway involvement in CVD 

The WNT signalling pathways group three different pathways that are 

activated by WNT ligands: the canonical WNT pathway, the non-

canonical WNT/Ca2+ pathway, and the non-canonical planar cell polarity 

(WNT/PCP) pathway (212). The determination of the signalling pathway 

being activated depends on the combination of WNT ligands that 

surround the cells and the expression of the receptors participating in 

the intracellular signal transduction (Figure 9). 

 

Figure 9. The three WNT ligand-dependent signalling pathways. Adapted from Ben-

Ghedalia-Peled N. et al. Cells. 2022 Dec 5;11(23):3934. 

The canonical WNT signalling pathway was first identified in Drosophila, 

where the signalling induced by Wingless (the WNT ligand Drosophila 

homologue) was found to be crucial for embryonic development as it 

controls body axis patterning, cell proliferation, migration and 

phenotypic fate (213,214). This thesis is focused on the regulation of the 

canonical WNT pathway. 
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The canonical WNT pathway triggers the expression of specific target 

genes regulated by β-catenin (215). In the absence of WNT ligand, 

frizzled (Fzd) and low-density lipoprotein receptor-related proteins 5 and 

6 (LRP5 / LRP6) co-receptors remain inactive in the surface of the cell. 

In the cytoplasm, a multiproteic complex formed by Axin, adenomatous 

polyposis coli (APC), protein phosphatase 2a (PP2A), glycogen 

synthase kinase-3 beta (GSK3β), and casein kinase I isoform alpha 

(CK1α) continuously promotes the phosphorylation of β-catenin at 

specific aminoacids (216). These phosphorylations target β-catenin for 

ubiquitination and continuous proteasomal degradation. Upon WNT 

ligand’s presence, Fzd and LRP5/6 create ternary complexes WNT 

ligand-Fzd-LRP5/6 (217). This activation leads to the phosphorylation of 

several serine and threonine residues in the LRP5/6 cytoplasmatic tail 

which recruit Axin towards the inner plasma membrane. This produces 

the disruption of the β-catenin destruction complex. As β-catenin is 

constitutively synthesized, the cytoplasmic levels rapidly increase 

allowing its translocation into the nucleus where it induces a cellular 

response via transcriptional activation of target genes by binding to T 

cell factor (TCF)/LEF1 transcription factors (218).  

1.3.1 LRP5 and CVD 

LRP5 is a member of the LDLR superfamily of receptors, which also 

include LDLR, very low-density lipoprotein receptor (VLDLR), LRP1, 

LRP2, LRP6, apolipoprotein E receptor 2 (apoER2) among others, most 

of them with cholesterol-regulating functions (219) (Figure 10). LRP5 

was first discovered in Drosophila, as mutations in the fly homologous 

protein Arrow generated flies with similar phenotype as Wingless-null 

flies (220). LRP5 and LRP6 are both Arrow homologues in humans and 

mice (221). 
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Figure 10. LDLR family of receptors showing the shared domains of the different 
members and their distribution. This figure is borrowed from the book section “Low-

Density Lipoprotein Receptor Gene Family” by Thomas E. Willnow (222). 

LRP5 is a single-pass transmembrane receptor ubiquitously expressed 

in cells and tissues of the organism. It is composed of 1615 aminoacids 

with a molecular weight of 179 kDa. The protein is divided in three 

regions: the extracellular domain (amino acids 32-1384), the 

transmembrane domain (amino acids 1385-1407), and the 

cytoplasmatic tail (amino acids 1408-1615). The extracellular domain is 

formed by 4 β-propeller domains 260 amino acids long separated by 4 

EGF-A like domains about 40 amino acids long each (217,223). The 

intracellular domain contains five PPPSP motifs, that get 

phosphorylated upon ligand binding and trigger signal transduction 

(Figure 11).  

Gain-of-function mutations in LRP5 produce increased bone density in 

humans and mice (224,225). Contrarily, LRP5 loss-of-function 
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mutations cause osteoporosis-pseudoglioma syndrome (226), a rare 

autosomal recessive disorder in which patients suffer impaired bone 

accrual (osteoporosis) and defective regression of the foetal ocular 

fibrovascular system (pseudoglioma) (227). Mutations in LRP5 can also 

cause familial exudative vitreoretinopathy or polycystic liver disease 

(226,228).  

In a cardiovascular context, LRP5-deficient mice (Lrp5-/- mice) show 

increased plasma cholesterol levels induced by reduced clearance of 

CMr by the liver after high-fat diet feeding generated by LRP5 ability to 

bind ApoE (229,230). In the same study, Lrp5-/- mice also showed 

reduced glucose sensitivity in pancreatic β-islets which, in turn, reduce 

insulin secretion (229). Furthermore, Lrp5-/- mice fed with a 

hypercholesterolemic diet develop larger atherosclerotic lesions 

revealing a protective role for LRP5 in atherosclerosis progression 

(231). Lrp5-/- mice with downregulated canonical WNT signalling have 

greater lipid infiltration in their aortas because of higher macrophage 

infiltrate in the aortic intima (232).  

LRP5 also activates the canonical WNT pathway in isolated 

cardiomyocytes. Hypoxia and lipid-loading induce the expression of 

canonical WNT signalling proteins whereas this effect is blocked after 

LRP5 silencing in cardiomyocytes (233). An upregulation of LRP5 and 

proteins of the canonical WNT pathway was also observed in the 

Figure 11. Linear representation of LRP5’s amino acid sequence showing the 
distribution of the different domains.   
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ischemic myocardium of hypercholesterolemic pigs and in human hearts 

of dyslipidemic patients with a previous episode of ischaemia (233). 

Finally, a protective role of LRP5 in the injured myocardium was also 

demonstrated as Lrp5-/- mice have larger infarcts than Wt mice (233). 

The role of LRP5 in inflammation has also been studied. LRP5 is 

necessary for monocyte-to-macrophage differentiation, a process that 

involves the activation of the canonical WNT signalling pathway (234). 

Furthermore, upon macrophage lipid-loading, the canonical WNT 

signalling pathway is activated whereas the pathway remains inactive 

when macrophages’ LRP5 expression is blocked (235). LRP5-

expressing macrophages develop a protective anti-inflammatory 

phenotype in vivo with enhanced motility and phagocytic capacities 

(236). 

In summary, LRP5 has protective roles in CVD development as it is 

expressed in M2 macrophages (with an anti-inflammatory and tissue-

homeostatic function), it reduces the atherosclerosis progression, and it 

induces pro-survival signalling after myocardial infarction.  
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1.4 PCSK9 and CVD 

The proprotein convertase subtilisin/kexin type 9 protein (PCSK9) was 

discovered in 2003 as a member of the mammalian proprotein 

convertases family, a group of proteins responsible for tissue-specific 

processing of secretory precursors (237). The hypothesis that another 

system to regulate cholesterol levels existed, besides that mediated by 

LDLR and apoB100, was raised after a study on two large French 

families. This study showed that heterozygous familial 

hypercholesterolemia (HeFH) patients had symptoms unrelated to 

mutations on LDLR and apoB100 genes, and pointed to variations in the 

p34.2-p32 region in human chromosome 1 (238). The exploration of the 

genetic region in detail determined the PCSK9 gene as a direct cause 

of HeFH (239–241). 

PCSK9 modulates LDL clearance from the liver by downregulating 

LDLR on the hepatocyte’s membrane. LDL particles are bound and 

internalized by LDLR via clathrin-mediated endocytosis. In cytoplasmic 

early-endosomes, the interaction between LDLR and LDL particles 

weakens; LDLR is sorted into recycling endosomes and recycled back 

to the cell surface while LDLs are guided towards late endosomes and 

degraded by lysosomes (242–245).  

During hypercholesterolemia, PCSK9 is released into the circulation by 

the liver. Rapidly after, LDLR levels in the surface of hepatocytes 

drastically diminish, reducing the LDL clearing capacity from blood by 

the liver (246,247). PCSK9 has high affinity for LDLR binding by specific 

recognition of the receptor’s EGF-A-like domains. When LDLRs bind 

LDLs, a ternary complex LDL-LDLR-PCSK9 is formed and internalized. 

After LDL-LDLR dissociation in early endosomes, PCSK9 prevents 

LDLR recycling to the cell membrane. This blocking guides LDLR 

towards the lysosome where it is degraded by the activity of acidic pH, 

proteases and lipases. 
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PCSK9 isoforms with gain-of-function mutations reduce the liver’s ability 

to clear LDL-cholesterol from the blood, inducing hypercholesterolemia 

in patients (248). Patients carrying a PCSK9 loss-of-function mutation 

show a 40% decrease in LDL circulating levels (249). Statins are drugs 

used in clinical settings to treat hypercholesterolemia. Mechanistically, 

statins block the rate-limiting reaction for cholesterol biosynthesis, 

lowering the hepatocyte’s intracellular cholesterol concentration and 

triggering the expression of SREBP-targeted genes, which include the 

LDLR (21,22,250). Surprisingly, statins induce PCSK9 expression 

because of the SREBP binding site in the promoter region of PCSK9 

gene. However, as a consequence of statin treatment, SREBP 

activation also activates PCSK9 expression and release conferring 

statin-resistance specially to patients carrying PCSK9 gain-of-function 

mutations (251).  

New therapies for statin-resistant hypercholesterolemic patients have 

been developed against PCSK9 with very positive outcomes in clinical 

trials. The most used approach to target PCSK9 activity is based on 

monoclonal antibodies (evolocumab and alirocumab) that target PCSK9 

and neutralize its activity. Both antibodies produce ~60% reduction in 

circulating LDL cholesterol in patients under maximum tolerated statin 

dosage (252,253). Additionally, in long-term follow-up studies, 

alirocumab and evolocumab reduce major CVD events incidence by 

15% (254,255). Other therapeutic approaches to target PCSK9 that 

have been launched to date are described in Table 4. 
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Inclisiran 

Inclisiran is a small-interfering RNA that selectively binds PCSK9 

mRNA and suppresses the translation of the protein in the liver. 

Inclisiran therapy reduced non-HDL cholesterol and circulating 

apoB levels in patients with elevated LDL-cholesterol (256). Long-

term studies proved that inclisiran reduces circulating LDL-

cholesterol levels by 44%, with a reduction in PCSK9 levels 

ranging from 62-77% (257). 

Adnectin-based 

recombinant 

protein 

 

 

Adnectins are proteins derived from human fibronectin with 

modifiable regions to selectively bind different targets. PCSK9-

binding adnectin administration to mice led to a drastic reduction 

in circulating PCSK9 levels followed by a reduction in blood 

cholesterol levels (258). In a phase I clinical trial in humans, 

single-dose administration of PCSK9-binding adnectin reduced 

LDL-cholesterol by 48% between days 4 and 14 post-dose (259). 

However, this approach is no longer under investigation because 

better strategies have been developed. 

Lerodalcibep 

 

Lerodalcibep (LIB003) is a PCSK9-binding adnectin conjugated 

to human serum albumin. It has been tested in phase II and III 

clinical studies in patients with HeFH, reducing LDL-cholesterol 

levels by more than 50% with single monthly injections without 

producing considerable adverse events  (260,261). 
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Antisense 

miRNA 

 

Orally administered antisense oligonucleotide against PCSK9 

mRNA (AZD8233) have also shown promising results in early 

studies in mice, monkeys and humans. A single subcutaneous 

injection of the compound led to a 90% reduction of circulating 

PCSK9 in hypercholesterolemic patients for a month and to a 

68% reduction in circulating LDL levels (262).  

 

Other PCSK9-based therapy strategies are 

under investigation, including gene-editing 

using CRISPR (263), vaccines (264) and 

peptide-based small inhibitors (265). 

 

Table 4. New generation therapies targeting PCSK9 activity. 

Anti-PCSK9 based therapies induce a reduction in LDL-circulating 

levels by more than 50% in HeFH patients. More importantly, the use of 

anti-PCSK9 approaches diminishes the number of major cardiovascular 

events in 5 year of follow-up studies in HeFH patients and in 

hypercholesterolemic patients due to high-fat diets, sedentary life, and 

obesity (266,267). All these results indicate that PCSK9 is a major 

regulator in cholesterol levels regulation and atherosclerosis 

progression. 

1.4.1 PCSK9 involvement in other processes 

PCSK9 is an important player in other processes besides its LDL 

lowering capacity: 

- Regulation of the lipid receptor expression: 

During atherosclerosis progression, PCSK9 regulates cholesterol 

uptake of infiltrating macrophages by upregulating the expression of 

scavenger receptors and the LDLR-superfamily of receptors members 

(268). 
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- Pro-inflammatory mediator: 

PCSK9 is produced in hypercholesterolemic rabbit aortas as a 

consequence of the activation of the TLR4-MyD88-NFκB pro-

inflammatory pathway in ECs (269). Also, PCSK9-stimulated 

macrophages enhance the transcription of the pro-inflammatory 

cytokines tumour necrosis factor alpha (TNFα) and IL-1β while 

suppressing the expression of the anti-inflammatory markers IL-10 and 

arginase-1 (270). 

PCSK9 inhibition leads to decreased expression of vascular adhesion 

molecules intercellular adhesion molecule-1 (ICAM-1) and vascular cell 

adhesion molecule 1 (VCAM-1) in the endothelium of atherosclerotic 

mice (271,272). Also, PCSK9 loss of expression produces a 

downregulation of inflammatory cell chemoattractant proteins monocyte 

chemoattractant protein-1 (MCP-1), macrophage inflammatory protein 1 

beta (MIP-1β), macrophage-derived chemokine (MDC), skp-cullin-F-

box-containing complex (SCF), and vascular endothelial growth factor 

A (VEGF-A) in the endothelium reducing the inflammatory infiltrate in 

the atherosclerotic lesions (272). 

Antigen presentation is modulated by PCSK9 in cultured ox-LDL treated 

dendritic cells (273) inducing upregulation of pro-inflammatory CD80, 

CD83, CD86, human leukocyte antigen – DR isotype (HLA-DR), TNFα, 

IL-1β, and IL-6 in dendritic cells, which enhances T cell activation and 

differentiation towards Th1 or Th17 CD4+ T lymphocyte (273,274). 

Silencing of PCSK9 reverts ox-LDL effects on dendritic cells, limiting 

their maturation process, guiding T cells to differentiate into anti-

inflammatory IL-10, and transforming growth factor beta (TGF-β) 

secreting T regulatory cells (273). 

- Thrombus formation 
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Platelet aggregation and thrombus formation is also enhanced by 

PCSK9. Human platelets from healthy donors incubated with PCSK9 

increase the platelet marker GPIIb/IIIa expression, which reduces the 

platelet’s steady-state and facilitates their activation upon epinephrine 

or FeCl3 stimulation (275). Also, PCSK9 facilitates NETosis as inferior 

vena cava ligation in Pcsk9-/- mice show reduced neutrophil extracellular 

trap (NET) formation than in Wt mice (276). Furthermore, PCSK9 

increases the number of circulating platelets in patients with stable 

coronary artery disease (277) and promotes LDL oxidation by increasing 

platelet surface levels of LOX-1 and CD36 in hypercholesterolemic mice 

(278,279). 

Detailed information on PCSK9 activities beyond the regulation of LDL 

cholesterol circulating levels is provided in our Review Manuscript 

published in Frontiers in Cardiovascular Medicine in 2021 (Annex 1). 
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1.5 Cholesterol homeostasis in the CNS  

The central nervous system (CNS) is composed by the brain, the 

cerebellum, and the spinal cord. It is responsible for the processing, 

integration, and coordination of the information received from the 

organs; and the creation of physiological responses in the form of 

hormone secretion or muscle motor movement (280). 

The CNS is composed of two different cell types: 

• Neurons: cells that create electrical signals to transduce responses. 

Neuron stimulation consists in the creation of action potentials in 

their cell membranes, transmitted from their dendrites (receptor 

regions) towards their axons (emitting regions). Neurons can 

integrate the signals received from multiple sources and create a 

single output signal in the form of specific neurotransmitters 

released in synapses (the neuron-to-neuron communication 

regions), where the receptor neuron will be stimulated accordingly 

depending on the amount and type of neurotransmitter (281). 

• Glial cells: their most important function is to preserve nervous tissue 

homeostasis and provide support, protection, and nutrients for 

neurons to maintain the CNS activity. Different cells are included in 

this group (282): 

o Astrocytes: produce extracellular matrix proteins that provide 

proper conditions for neuronal communication. Also, they 

provide nutrients for neurons, and can modulate neuronal 

stimulation by producing specific ligands. 

o Microglia: patrolling cells with phagocytic capacity that 

provide immune surveillance to the tissue. 

o Oligodendrocytes: cells that produce myelin, a fatty 

substance that forms sheaths around neuronal axons, 

providing insulation and facilitating the transport of the 

electrical signal along the neuronal body. 
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The CNS is isolated from the systemic circulation by the blood-brain 

barrier (BBB) (283). The BBB is a highly specialized endothelium in 

which tight-junctions are enriched in claudins and occludins that block 

any kind of paracellular transport (284). The limited transport through 

the intercellular space is counterbalanced by enhanced intracellular 

transcytosis. Transcytosis occurs in two directions, from blood to brain 

interstitial fluid and vice versa. ECs of the BBB express glucose, protein, 

and lipid transporters in their apical and basolateral membranes to 

transport substances across the BBB (285,286). The capillaries of the 

CNS are surrounded by pericytes that regulate the permeability and the 

receptor-mediated transport across the ECs (287). To avoid direct 

interaction of nutrients with neurons, astrocytes rapidly endocytose 

nutrients upon entrance into the CSF. They will then release nutrients in 

a highly-complex communication mechanism to cover the demand for 

specific metabolites needed for neuronal functions (288). 

The brain accounts for only 2% of the total weight of the body, although 

it concentrates 20% of the organism’s cholesterol (289) because 

oligodendrocyte’s myelin sheaths are enriched in cholesterol, 

accounting for more than 80% of the brain’s total cholesterol (290). 

However, neurons need cholesterol to maintain their cellular structure 

and to allow synapse. Although cholesterol can be synthesized by 

neurons, it is mainly synthesized and delivered by astrocytes in the adult 

brain (291). Of note, more than 95% of the cholesterol pool in the brain 

is synthesized in situ by astrocytes (292). 

Neurons rely on cholesterol to generate structures to sustain neuron-to-

neuron communication as cholesterol represents 40% of the lipids that 

constitute synaptic vesicles (293). Cholesterol facilitates vesicle fusion, 

formation of lipid rafts, and generation of ion currents, amongst other 

processes (294,295). Therefore, neurons need astrocytes to provide a 

constant supply of cholesterol in the adult brain.  
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In the cerebrospinal fluid (CSF), astrocytes release apoE-containing 

lipoproteins similar in size to HDL (296), which supply neuronal 

cholesterol demands. Cholesterol surplus is converted to 24S-

hydroxycholesterol by the neuronal enzyme cholesterol 24-hydroxylase 

(CYP46A1), which can be eliminated from the CSF easily because of its 

increased solubility in water (297). 24S-hydroxycholesterol serves as a 

potent activator of astrocyte’s LXR transcription factor, which regulates 

the expression of apoE, ABCA1, and ABCG1, responsible for the 

generation of brain-specific HDL-like lipoproteins, generating a 

feedback loop ensuring continuous cholesterol delivery by astrocytes to 

neurons (298). The recognition, binding, and endocytosis of HDL-like 

lipoproteins by neurons is performed by LDLR and LRP1; however, the 

involvement of other members of the LDLR superfamily is plausible as 

they are also expressed in neurons (299) (Figure 12). 

 

Figure 12. Cholesterol circulation in the CNS. 
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1.5.1 Cholesterol transport across the BBB 

Although cholesterol de novo synthesis by astrocytes is the main source 

of cholesterol in the brain, there is an influx of cholesterol/oxysterols 

from systemic circulation to the CNS highly regulated by the BBB. Small 

soluble lipids can cross the BBB without much impediments, however 

lipoproteins and hydrophobic lipids need protein transporters to undergo 

transcytosis across BBB-ECs (300). Brain cholesterol metabolism in the 

CNS is strict and efficient. Because the half-life of a cholesterol pool in 

the adult brain is around 5 years, the BBB has an inefficient and not-

specialised cholesterol transcytosis mechanism (301). 

In normal conditions, lipoprotein transport in the BBB is inexistent. 

Systemic hypercholesterolemia damages brain ECs and disrupts BBB 

integrity, which induces a loss in CNS homeostasis affecting different 

brain functions. Several studies performed in mice have proven that 

alterations in the BBB permeability affect brain function (302,303).  

1.5.2 Disrupted cholesterol homeostasis and brain diseases 

In normal conditions, circulating LDL-cholesterol cannot interact with 

neurons. However, there is a significant correlation between systemic 

LDL-cholesterol levels, neurofibrillary tangles, β-amyloid protein and 

cerebral angiopathy (304,305). Also, systemic low LDL-cholesterol 

levels are associated with Parkinson’s disease (306,307). Multiple in 

vivo studies have investigated the role of cholesterol in brain diseases.  

• Rats fed a hypercholesterolemic diet significantly increased both 

systemic and cerebral cholesterol, triglyceride and LDL-cholesterol 

levels, which produced morphological changes in neurons, 

imbalanced neurotransmitter release and increased LDLR 

expression (308).  

• High systemic LDL-cholesterol levels were associated with 

depression-like symptoms and psychomotor impairment, and 



 INTRODUCTION 

69 
 

reduced dopamine and serotonin synthesis in the CNS of 

hypercholesterolemic mice (309).  

• Ldlr-/- mice fed a high-fat diet exhibited memory loss in working, 

spatial and procedural domains (310). 

• High fat diet induced the disruption of the BBB integrity by reducing 

the expression of the tight-junction proteins occluding-1 and claudin-

5, increasing membrane permeability in wildtype and Ldlr-/- mice  

(302).  

• High systemic LDL-cholesterol levels in Ldlr-/- mice have been 

associated with spatial memory defects, wider synaptic clefts, 

reduced synaptic markers in the hippocampus and neuron apoptosis 

and oedema (311).  

In humans, patients with HeFH have a higher incidence of cognitive 

dysfunction, caused either by LDLR deficits or systemic high LDL levels 

(312). A study on healthy elderly population showed that those 

individuals with higher circulating levels of triglycerides and LDL are 

more susceptible to developing global cognitive decline in the future 

(313).  

1.5.3 Canonical WNT signalling in the CNS 

The canonical WNT signalling is involved in the differentiation and 

maturation process of progenitor cells during embryogenesis, guiding 

cell fate. In the brain, canonical WNT signalling regulates spatial 

patterning of the brain and neurogenesis (314). The signalling pathway 

is involved in the preservation of neurogenesis in the adult brain and in 

the maturation process of neuronal progenitors (315–317). Moreover, β-

catenin activation in neuronal progenitor cells guides the transcription of 

the mitotic regulator survivin and neuron-specific neurogenic 

differentiation 1 (NeuroD1) and prospero homeobox protein 1 (Prox1) 

transcription factors, essential for the correct formation of hippocampal 
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neuronal cells (318,319). β-catenin is also involved in the formation of 

neuronal dendrites (320).  

However, WNT signalling findings in the brain support a greater impact 

for β-catenin independent mechanisms. WNT ligands regulate synapse 

formation by controlling pre- and post-synaptic mechanisms in cellular 

regions that are distant from the nucleus, where β-catenin exerts its 

transcriptional function. Mice deficient for WNT7a or Dvl1 (a scaffold 

protein needed for WNT signal transduction) expression have defects in 

the pre-synaptic region of the cerebellar mossy-fibbers synapse (321). 

Likewise, WNT7a signalling through Fzd5 in the hippocampal region is 

necessary for the formation of pre-synaptic sites (322). WNT5a acts 

through receptor tyrosine kinase-like orphan receptor (RoR) receptors 

to increase pre-synaptic sites in the hippocampus (323), while WNT3a 

binds to Fzd1 to regulate protein clustering in pre-synaptic sites and 

neurotransmitter vesicle recycling (324). Also, the WNT7a-Dvl1 

signalling promotes the formation of excitatory synapses and spine 

growth through calcium signalling, WNT7a-Dvl1 knockout mice display 

amplitude and frequency deficits in postsynaptic currents (325). In 

contrast to WNT7a, WNT5a promotes the formation of inhibitory 

synapses by increasing clustering of GABAR receptors and enhancing 

the inhibitory currents’ amplitude (326). 

Besides regulating pre- and post-synaptic formation, WNT ligands also 

modulate synaptic plasticity. Synaptic plasticity is defined as the 

dynamic changes in the structure of synapses in response to the 

environment and is considered the cellular basis of learning and 

memory, both processes associated with the hypothalamic region (327). 

Several studies have demonstrated that neuronal activity induces 

neuronal and astrocytic release of WNT ligands (328–330). Neuronal 

stimulation, both in vitro and in vivo, leads to WNT7a/b release and Fzd5 

expression in dendrites (322). Synaptic plasticity is measured by the 
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long-term potentiation (LTP) parameter, which quantifies long-lasting 

increase in synapse strength (331). Blockade of WNT expression 

impairs the activity-mediated synapse formation (322). Moreover, 

inhibition of WNT7a/b by overexpression of soluble frizzled receptors 

severely impairs LTP while addition of WNT proteins significantly 

upregulates LTP, a mechanism in which the increase of AMPAR 

receptors localized in the post-synaptic dendrite is important (332). 

Similarly, WNT5a has also been involved in synaptic plasticity by 

promoting NMDA-receptor currents, adjusting the threshold of synaptic 

potentiation (333). Contrarily, mice with inducible expression of 

Dickkopf-related protein 1 (Dkk1), a WNT signalling inhibitor, show loss 

of excitatory synapses in the hippocampus, defects in LTP, and impaired 

long-term memory (334) (Figure 13). 

Figure 13. WNT ligands and Frizzled receptors regulate synapse formation and 
plasticity. 
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The role of LRP5 in the brain still remains to be elucidated. LRP5 

expression pattern in the CNS is region- and cell-selective. There is high 

LRP5 expression in the cerebral cortex, the hippocampus, and the 

hypothalamus. Moreover, neurons constitutively express LRP5 (335). A 

hypothetical role for LRP5 in the brain can be inferred from the findings 

on Dkk1 protein. This protein selectively binds to LRP5 and LRP6 

coreceptors preventing the binding of WNT ligands, inhibiting the 

canonical WNT signalling but enhancing other WNT-related pathways 

like the WNT/PCP or the WNT/Ca2+ (triggered by RoR and related to 

receptor tyrosine kinase (Ryk) coreceptors) (336). Loss of Dkk1 

expression in mice shows impaired development of neural structures 

(337). Double knockout mice for LRP5 and LRP6 results in defective 

cerebellar foliation and lamination during postnatal development (338). 

Also, in vivo experiments show LRP5 expression to be protective in front 

of oxidative stress in a neuronal cell line (339). Additionally, variations 

in the LRP5 gene loci in human chromosome 11 have been associated 

with major depressive disorder, bipolar disorder, and schizophrenia in a 

meta-analysis including several genome-wide association studies 

(GWAS) (340). Also, allelic variants in LRP5 gene have been linked to 

attention-deficit/hyperactivity disorder only in females (341). Taken 

together, these results show that LRP5 contributes to brain maturation 

and development, and that defects on LRP5 signalling can be 

associated with brain dysfunction. 

Dysregulation of the canonical WNT signalling has been involved in 

different CNS diseases. Nevertheless, its importance in Alzheimer’s 

disease needs to be emphasized as β-catenin inactivity correlates 

directly with Alzheimer’s progression. Canonical WNT signalling 

regulates the two main molecular alterations observed in Alzheimer’s 

disease (Figure 14): 
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• The production of amyloid beta (Aβ) plaques. β-catenin activation 

leads to its binding with the transcription factor Tcf4, repressing the 

beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) 

transcription, the protease responsible for Aβ-precursor protein 

(APP) cleavage and activation (342), leading to reduced Aβ 

deposition and aggregation (343). Defects in members of the 

canonical WNT signalling lead to accelerated Aβ formation and 

aggregation in different experimental models (344,345). 

• The phosphorylation of tubulin associated unit (Tau). Besides 

inducing the phosphorylation of β-catenin for proteasomal 

degradation, GSK3β can also phosphorylate Tau in targeted 

residues associated with Alzheimer’s disease (346). Tau 

phosphorylation leads to synaptic impairment and neuronal 

degeneration as it is responsible for the stabilization of microtubules 

in dendrites and axons (347). While canonical WNT pathway 

activators like Wiskott-Aldrich syndrome protein 1 (WASp1) reduce 

Tau phosphorylation (348), infusion of Dkk1 in rats leads to Tau 

phosphorylation and neuronal death in the hippocampus (349). 
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Figure 14. Canonical WNT signalling roles in the prevention of Alzheimer’s Disease 
progression. 
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2. Hypothesis and 

Objectives 
“I have found it is the small things, everyday deeds of ordinary folk, 

that keeps the darkness at bay. Simple acts of kindness and love.” 

Gandalf to Galadriel, from the film adaptation “The hobbit: an 

unexpected journey” from Peter Jackson. Based on The Hobbit by 

J.R.R. Tolkien. 
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LRP5 is a receptor of the canonical WNT signalling pathway, involved 

in many fundamental processes including organ and tissue 

development. LRP5 plays a key role in lipid metabolism and 

inflammation. Furthermore, LRP5 seems to play an important role in the 

brain. 

It is our hypothesis that WNT, LRP5 and its cofactors have an important 

role in atherosclerosis progression, adipose tissue growth and brain 

cholesterol metabolism by mechanisms yet unknown. 

The specific objectives designed to prove our hypothesis are: 

Objective 1. To study if PCSK9 can interact with members of the LRP 

family of receptors to modulate cholesterol internalization. 

Objective 2. To study the role of LRP5 in liver cholesterol metabolism. 

Objective 3. To study the role of LRP5 in the expansion and distribution 

of the adipose tissue. 

Objective 4. To study the role of LRP5 in inflammation, innate immunity 

cells and atherosclerotic plaques. 

Objective 5 To study LRP5 in brain cholesterol homeostasis. 

Objective 6. To study LRP5 transcriptomics in wildtype and Lrp5 

knockout mice.
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3. Results 
“The world is not in your books and maps, it's out there.” 

Gandalf to Bilbo, from the film adaptation “The Hobbit: An Unexpected 

Journey” by Peter Jackson. Based on the books by J.R.R. Tolkien. 
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3.1 Directors Report 
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3.2 Article 1 

PCSK9 and LRP5 in macrophage lipid internalization and 

inflammation 

By Lina Badimon, Aureli Luquero, Javier Crespo, Esther Peña and Maria 

Borrell-Pagès 

Published in Cardiovascular Research. 2021 Jul 27;117(9):2054-2068. 

doi: 10.1093/cvr/cvaa254. 

Summary: Atherosclerosis is a condition driven by high cholesterol 

levels and chronic inflammation. During atherosclerosis progression, 

increased concentrations of modified LDLs downregulate LDLR 

expression.  Whether PCSK9 binds to other members of the LDLR 

family of receptors and disrupts lipid uptake remains poorly studied. The 

aim of this study was to analyze whether PCSK9 interacts with LRP5 in 

human cultured macrophages challenged with lipids (agLDL). Results 

show that LRP5 binds and mediates the internalization of agLDL in 

human macrophages. More importantly, upon agLDL stimulation LRP5 

translocalizes from the cytoplasm to the cell membrane and triggers the 

activation of the canonical WNT pathway. Both control monocytes and 

macrophages express PCSK9; however, upon agLDL-stimulation, 

intracellular PCSK9 levels are reduced because PCSK9 is released to 

the extracellular milieu. PCSK9 is regulated by SREBP2, which is 

downregulated upon lipid-loading in macrophages. PCSK9 and LRP5 

colocalize in the perinuclear area of resting macrophages and 

coimmunoprecipitation analysis show an interaction between the two 

proteins that is stronger after lipid stimulation indicating a role for LRP5 

in PCSK9 transport to the extracellular milieu. Both LRP5 and PCSK9 

gene knockdown reduce macrophage’s ability to internalize cholesterol, 

revealing a role for both proteins in lipid uptake. Additionally, LRP5-

silencing in macrophages also reduce PCSK9 release after agLDL 
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stimulation. Finally, a role for PCSK9 in inflammation is also shown. The 

release of PCSK9 to the extracellular milieu induces the expression of 

the pro-inflammatory cytokines IL-1β and TNFα. Furthermore, its 

release also increases NFκB translocation into the nucleus revealing a 

pro-inflammatory role for PCSK9 in macrophages after lipid-loading. 
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3.3 Article 2 

Differential cholesterol uptake in liver cells: a role for PCSK9 

By Aureli Luquero, Gemma Vilahur, Laura Casani, Lina Badimon and 

Maria Borrell-Pagès. 

Published in The FASEB Journal. 2022 March 22;36:e22291. 

DOI: 10.1096/fj.202101660RR 

Summary: The liver regulates blood cholesterol levels by the clearance 

of LDL particles from the blood by hepatocyte’s LDLR. PCSK9 regulates 

LDLR expression at the hepatocyte’s plasma membrane and reduces 

lipid clearance from blood increasing systemic cholesterol levels. The 

interaction between LDLR and PCSK9 occurs by PCSK9’s ability to bind 

the EGF-A like domain of LDLR. This domain is conserved in other 

receptors of the LDLR superfamily, raising the hypothesis that PCSK9 

could be interacting with them too. Wt and Lrp5-/- mice were fed a 

normocholesterolemic (NC) or hypercholesterolemic (HC) diet to induce 

hypercholesterolemia. Results showed similar cholesteryl ester content 

in livers from HC Wt and HC Lrp5-/- mice. However, their lipid receptor 

profile was different. While HC Wt mice displayed high expression levels 

of VLDLR, LRP6 and LRP2, HC Lrp5-/- mice livers showed upregulation 

of the scavenger receptors SR-BI and CD36. Coimmunoprecipitation 

analysis indicated a lack of interaction between VLDLR, LRP2, LRP5, 

and LRP6 with PCSK9. Contrarily to the results observed in 

macrophages, lipid treatment in structural hepatocytes (HepG2 cells) 

did not induce PCSK9 release to the medium. Furthermore, PCSK9 and 

LRP5 did not interact in hepatocytes challenged with agLDL. We then 

analysed HSC (the liver’s fat storing cells) response to lipid treatment 

and observed increased LRP5 expression and reduced PCSK9 

expression levels. Coimmunoprecipitation studies in HSCs showed that 

LRP5 and PCSK9 bind intracellularly after lipid-loading. Additionally, 



 RESULTS 

101 
 

HSC lipid-loading triggered the release of PCSK9 into the extracellular 

medium. Gene silencing of LRP5 or PCSK9 led to reduced cholesteryl 

ester accumulation in HSCs, indicating that both proteins are needed for 

lipid uptake in HSC. This study shows that the interaction of LRP5 and 

PCSK9 is cell-specific and that both proteins contribute to HSC lipid 

uptake. 
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3.4 Article 3 

Canonical WNT pathway involvement in high fat diet-induced 

adipose tissue distribution 

 

By Aureli Luquero, Noelia Pimentel, Lina Badimon and Maria Borrell-

Pages 

Submitted in June 2024. 

Summary: Obesity is a real-threat epidemic in the world and a major 

comorbidity in many diseases including metabolic syndrome or 

cardiovascular diseases. Understanding the mechanisms that promote 

the generation of fat tissue is of interest for human health. In this study 

we investigated the mechanisms by which the canonical WNT receptor 

LRP5 participates in adipose tissue differentiation induced by 

hypercholesterolemia in mice. 

We performed extensive gene expression analysis on adiposity and 

inflammation markers in WAT and BAT tissues of Wt and Lrp5-/- mice 

fed a chow or hypercholesterolemic diet and found that LRP5 

expression is promoted by hypercholesterolemia in visceral and 

subcutaneous adipose tissue. LRP5 expression is also increased in 

human adipose tissues of obese patients. Moreover, the absence of 

LRP5 expression resulted in impaired adipose tissue growth, reduced 

adipocyte differentiation and altered inflammatory profile; particularly a 

decrease in pro-inflammatory macrophage markers. 

This study sheds light on the significance of LRP5 in regulating adipose 

tissue dynamics, offering valuable insights into the molecular 

mechanisms governing obesity development. Although deeper 

investigation is required to clarify the modulation of the molecular 

pathways triggered after LRP5 activation, potential therapies can arise 
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from the investigation of canonical WNT signalling pathway in adipose 

tissue to prevent obesity-related diseases. 
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3.5 Article 4 

Microvesicles carrying LRP5 induce macrophage polarization to an 

anti-inflammatory phenotype 

 

By Aureli Luquero, Gemma Vilahur, Javier Crespo, Lina 

Badimon and Maria Borrell-Pages 

Published in Journal of Cell and Molecular Medicine. 2021 May 

29;25:7935-7947. 

doi: 10.1093/cvr/cvaa254. 

Summary: Microvesicles (MVs) have been associated with 

atherosclerosis initiation and progression and participate in the 

inflammatory process. Macrophages have a role in atherosclerosis 

progression and are responsible for the release of cytokines, 

chemokines and MVs that mediate the communication of macrophages 

with other cells. MVs contain miRNAs, long-non-coding RNAs, soluble 

proteins, and receptors expressed in the surface. We aimed to 

investigate whether LRP5 is expressed in macrophage-derived MVs 

and whether it plays a role in cell communication. Monocytes and 

macrophages were isolated from human buffy coats and results show 

that they both constitutively release LRP5+MVs. Lipid treatments 

increased MV release on monocytes and macrophages; however, 

LRP5+MVs release was only increased in macrophages. Treatment with 

agLDL induced a pro-inflammatory phenotype in macrophages with 

increased expression of CD80, CD83 and decreased expression of the 

anti-inflammatory markers CD163, CD206 and CD16. MVs from lipid 

treated macrophages also displayed increased expression of CD80 and 

CD86, but not of CD163, CD206, or CD16. LRP5 gene expression levels 

were increased in both pro-inflammatory and anti-inflammatory 

macrophages after lipid-loading, but the percentage of LRP5+ 

https://pubmed.ncbi.nlm.nih.gov/?term=Borrell-Pages+M&cauthor_id=32991689
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macrophage was bigger in anti-inflammatory macrophages. LRP5-

silenced macrophages produced LRP5-depleted MVs. The incubation 

of control macrophages with LRP5-depleted MVs triggered the 

expression of the pro-inflammatory markers iNOS and CD83 in naïve 

macrophages while LRP5+MVs did not induce them, revealing a role for 

LRP5 in maintaining macrophage’s anti-inflammatory state. Loss of 

LRP5 expression in macrophages induce the generation of pro-

inflammatory proteins in their MVs that will induce the generation of 

further pro-inflammatory macrophages indicating an anti-inflammatory 

role for LRP5 in macrophage-derived MVs. 
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3.6 Article 5 

Canonical Wnt pathway and the LDL receptor superfamily in 

neuronal cholesterol homeostasis and function 

 

By Aureli Luquero, Maria Borrell-Pages, Gemma Vilahur, Teresa Padró 

and Lina Badimon. 

 

Published in Cardiovascular Research. 2024;120:140-151. 

doi.org/10.1093/cvr/cvad159 

 

*An erratum is pendent of being published regarding this manuscript. 

The erratum corrects author affiliation data for Aureli Luquero, adding 

the affiliation: Biomedicine Doctorate Program, Universitat de 

Barcelona, 08007 Barcelona, Spain. 

 

Summary: The canonical WNT signalling pathway is associated with 

multiple brain processes and enhanced or repressed activity of the 

pathway can induce brain diseases. Cholesterol is necessary for 

neuronal homeostasis as it contributes to synaptic vesicle trafficking and 

formation of lipid rafts. LDL do not typically interact with neurons directly 

but pathological conditions like hypercholesterolemia can disrupt the 

blood-brain barrier integrity and allow for LDL leaks into the 

cerebrospinal fluid which breaks neuronal homeostasis. To analyze the 

role of LRP5 and the canonical WNT signalling pathway in brain 

cholesterol homeostasis we first studied the expression of LRP5 and 

other canonical WNT proteins in brains of Wt and Lrp5-/- mice. Results 

show that in Lrp5-/- mice, Lrp5 expression is absent from all extracranial 

tissues but is conserved in the brain. Transcriptional activity of canonical 

WNT signalling pathway target genes including VEGF-A or OPN is also 

present in Lrp5-/- mice brains, indicating the viability of the signalling 

pathway. The neuronal cell line SH-SY5y was exposed to lipids and 

https://doi.org/10.1093/cvr/cvad159
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LRP5 expression levels were increased. Lipid exposure also increased 

cholesteryl ester accumulation in the cells. However, LRP5-silencing did 

not reduce cholesterol accumulation, suggesting that LRP5 does not 

participate in lipid uptake in SH-SY5y cells. Further analyses show that 

LDLR, but not LRP5, LRP1, or CD36, induce cholesterol internalization 

in differentiated neurons. LDL stimulation triggered the expression of 

canonical WNT signalling members’ and targets. We hypothesized that 

LRP5 and the canonical WNT signalling might exert a pro-survival 

protective function in neuronal cells because we have previously shown 

a protective role for LRP5 in atherosclerosis progression and MI. We 

incubated LRP5-silenced differentiated neurons with H2O2 (oxidative-

stress inducer) or staurosporine (kinase inhibitor) to induce apoptosis. 

After exposure to H2O2, high Bax/Bcl2 ratio was observed in LRP5-

silenced cells, indicating enhanced apoptosis, a result further confirmed 

by flow cytometry experiments with staining of AnnexinV and propidium 

iodide. The apoptotic protein profile of SH-SY5y cells after H2O2 

treatments show higher active caspase 3 expression in LRP5-silenced 

cells than in control cells. In staurosporine treated cells, we observed 

enhanced apoptosis in LRP5-silenced cells which was further confirmed 

by higher active caspase 3 expression. Finally, we also evaluated the 

involvement of LRP5 in autophagy of neuronal cells, a physiological 

process that is involved in cell survival. Neurons stimulated with H2O2 or 

staurosporine had reduced autophagy as demonstrated by the reduced 

expression of autophagy markers LC3b and p62. However, no 

differences were observed between control and LRP5-silenced cells 

indicating that LRP5 does not participate in the neuronal autophagic 

process. In conclusion, we demonstrate that LRP5 and the canonical 

WNT pathway are important regulators of neuron survival. 
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3.7 Article 6 

Unique splicing of Lrp5 in the brain: A new player in 

neurodevelopment and brain maturation. 

 

By Aureli Luquero, Noelia Pimentel, Gemma Vilahur, Lina Badimon and 

Maria Borrell-Pagès.  

 

Accepted for publication in International Journal of Molecular Sciences 

in June 2024. 

 

Summary: The expression of LRP5 is undetectable in extracranial 

tissues of Lrp5-/- mice; however, Lrp5-/- mice brains show reduced but 

detectable LRP5 expression. We analysed the breeding of the Lrp5-/- 

mice colony and observed that mice with a Lrp5-/- genotype are born 

less frequently than expected. We hypothesized that LRP5 might be 

needed for mice embryonic development and performed a RNA-Seq 

based analysis where we studied the transcriptomic expression of 

brains and livers of Wt and Lrp5-/- mice brains and livers. Two different 

LRP5 transcripts are generated by alternative splicing: Lrp5-201 and 

Lrp5-202. The Lrp5-201 transcript contains all LRP5 exons and codes 

for the full-length LRP5 protein while the Lrp5-202 transcript only 

contains exons 1 to 8 and codes for a truncated LRP5 protein. Wt mice 

expressed the Lrp5-201 transcript in both livers and brains and did not 

express Lrp5-202 transcript. Contrarily, Lrp5-/- mice only express the 

Lrp5-202 transcript in the liver. In Lrp5-/- mice brains, there is high 

expression of the Lrp5-202 transcript but there is also expression of the 

Lrp5-201 transcript. Functional analysis on RNA-seq data showed that 

Lrp5-/- mice brains have impaired synapse formation and neuronal 

differentiation compared to Wt mice. Additionally, gene-set enrichment 

analysis showed a downregulation of genes associated with specific 

metabolic pathways including retinoic acid and linoleic acid pathways, 
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known to participate in brain development. In conclusion, we show that 

LRP5 expression in mice brains is necessary for proper organ 

development. Lrp5-/- mice show a low LRP5 expression that is enough 

to ensure mice embryonic development but not sufficient to maintain 

retinoic and linoleic acid signalling pathways which affect neuronal 

differentiation and synapse formation. Of note, we have not observed a 

downregulated expression of canonical WNT signalling pathway 

transcripts in Lrp5-/- mice brains indicating that LRP5 function in the brain 

might act through other metabolic pathways. 
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4. Discussion 
“Even the smallest person can change the course of the future” 

Galadriel to Frodo, from the film adaptation “The Lord of the Rings: 

The Fellowship of the Ring” by Peter Jackson. Based on the books by 

J.R.R.Tolkien. 
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The canonical WNT signalling is an ancient evolutionary pathway 

conserved in multicellular organisms (350). The role of the different 

members of the canonical WNT pathway is under constant investigation 

as new roles for the molecular pathway are continuously described.  

Both LRP5 and LRP6 trigger the canonical WNT signalling pathway and 

share 71% sequence homology. Deficit of LRP5 might be partially 

covered by LRP6 and vice versa (351). However, the expression of both 

receptors is needed for canonical WNT signalling activation in 

osteoblasts for normal skeletal homeostasis in mice (352). Moreover, in 

mammary epithelial cells both receptors need to form an heterodimer to 

transduce WNT ligand signalling (353). Nonetheless, our results in cell 

models lacking LRP5 expression and in the Lrp5-/- mice model show that 

LRP5 has unique roles in anti-inflammatory, anti-apoptotic and pro-

survival processes. 

Atherosclerosis remains a life-threatening disease with a complicated 

diagnosis and a complicated therapeutical approach. The total annual 

costs of treating people with atherosclerosis-derived CVD only in the US 

is of 431.8 billion dollars with a projected cost of 1.1 trillion dollars by 

2035 (11). Subsequently, the investment on CVD research is also 

gigantic. The Global Cardiovascular Research Funders Forum 

(GCRFF), which includes the American Heart Association and its 

homologues in Britain, Canada, Australia and others support more than 

600 million dollars in CVD annually. The investment from public funds 

and pharmaceutical companies surpasses that quantity by far. This 

allows the development of precise biologically-based therapies including 

Sanofi’s alirocumab or Amgen’s evolocumab, both PCSK9 inhibitors 

(254,255). 
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4.1 LRP5 has different roles in macrophages during 

atherosclerosis progression 

One of the PCSK9’s main functions is the regulation of circulating LDL 

cholesterol through LDLR processing in liver cells; however, it has 

additional CVD-related roles. PCSK9 induces foam cell formation as 

loss of PCSK9 in human macrophages reduces modified lipid 

internalization and atherosclerosis progression (354). Hence, besides 

lowering LDL cholesterol levels, it is likely that PCSK9 inhibitors are 

preventing atherosclerotic plaque build-up. LRP5 and PCSK9 are 

needed for lipid uptake in macrophages. When the expression of either 

of the two proteins is blocked, there is less intracellular cholesterol 

accumulation. Furthermore, LRP5 participates in the secretion of 

PCSK9 pathway. However, silencing LRP5 expression does not 

completely abolish PCSK9 release to the extracellular milieu indicating 

that other pathways are involved in PCSK9’s endosome trafficking to the 

cell membrane. 

We have described a dual role for LRP5 in macrophages. After lipid 

exposure, LRP5 participates in PCSK9 release which then facilitates 

lipid accumulation triggering a pro-inflammatory signal that induces IL-

1β and TNFα release. As well, LRP5 promotes an anti-inflammatory 

phenotype in macrophages treated with LRP5-containing MVs, while 

LRP5-depleted MVs promote a pro-inflammatory phenotype. However, 

these two mechanisms do not necessarily exclude each other. 

Furthermore, LRP5 expression increases in human macrophages after 

lipid-loading (Article 1 and Article 4). LRP5 participates in PCSK9 

release as an early-response to lipid exposure. After lipid-loading, LRP5 

exerts a secondary anti-inflammatory role by regulating cell-cell 

communication through MVs. Our findings reveal that in control 

conditions, LRP5 is located in the vesicular bodies of the cytoplasm of 

the macrophage and after lipid exposure LRP5 is transported to the 
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plasma membrane together with PCSK9. PCSK9 is then released to the 

extracellular media while LRP5 remains in the macrophage cell 

membrane. This process occurs in pro-inflammatory macrophages, 

generating an early response to lipid rich milieu that leads to lipid uptake.  

LRP5 expression increases in macrophages and macrophage derived-

MVs of both M1 and M2 macrophage subtypes, revealing a role for the 

receptor in both pro- and anti-inflammatory responses. M2 

macrophages can differentiate to M1 macrophages after exposure to 

pro-inflammatory stimuli (355), for example high lipid concentrations. 

Therefore, a phenotype switch can occur between resting macrophages 

with cytoplasm-located-LRP5 and activated membrane-located-LRP5 

macrophages. Reasonably, LRP5 has to be located at the cell 

membrane in order to be included in macrophage-derived MVs; which, 

once released, will regulate the anti-inflammatory response in receiving 

macrophages. Lack of LRP5 in MV-derived from donor macrophages 

triggers an inflammatory response in the receiving cells indicating an 

anti-inflammatory role for LRP5 in lipid loaded macrophages. Although 

we do not know the mechanism, it is plausible that MVs from LRP5-

depleted macrophage when fusing with the membranes of naïve 

macrophage reduce the concentration of LRP5 that could lead to a 

reduction in canonical WNT signalling in the host macrophage and 

hence reduced pro-survival signalling. This would guide naïve 

macrophage to a higher pro-inflammatory state. Our group has 

previously shown that M2 macrophages express LRP5 in advanced 

human atherosclerotic plaques indicating that LRP5 participates in the 

remodelling process of the vascular wall (236). This indicates that LRP5 

is playing a role in the early-inflammatory response by promoting 

macrophage lipid internalization together with PCSK9, while, during the 

tissue-remodelling phase MVs released by macrophages containing 
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LRP5 can display a homeostatic function regulating the motility and 

phagocytic process of macrophages (Figure 15). 

A similar anti-inflammatory role is described for LRP5 in adipose tissue. 

Indeed, the anti-inflammatory macrophage markers CD163 and CD206 

increase their gene expression in VAT and SCAT of HC Wt and HC 

Lrp5-/- mice compared to their NC littermates. Interestingly, Lrp5-/- mice 

consistently show lower expression of macrophage anti-inflammatory 

markers than Wt mice suggesting an anti-inflammatory role for LRP5 in 

VAT and SCAT and in line with our previous results where LRP5 

expression is associated to the anti-inflammatory macrophage 

phenotype (Article 4). 

Figure 15. LRP5-related mechanisms in macrophages during atherosclerosis.  

(1) Monocyte express LRP5 and PCSK9 in internal vesicles. 

(2) Lipid exposure induces a rapid release of PCSK9 aided by LRP5. 

(3) PCSK9 release triggers an inflammatory response and induces LRP5 

translocation to the cell membrane leading to lipid internalization. 

(4) Lipid-loading reduces PCSK9 gene expression and LRP5 is highly expressed 

in the cell membrane. 

(5) LRP5+MVs released by lipid-loaded macrophages prevent inflammatory 

responses in macrophages. 
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SREBP2 transcription factor, the main regulator of PCSK9 gene 

transcription, has a different role in monocytes and macrophages (251). 

Monocytes are non-adherent cells that do not express cholesterol ester 

internalization receptors; therefore, intracellular cholesterol levels in 

monocytes are low, SREBP2 transcription factor is active and PCSK9 

levels are high (356,357). However, when monocytes differentiate into 

tissue-resident macrophages and are treated with lipids they release 

PCSK9. In lipid-loaded macrophages, SREBP2 is inactive, preventing 

PCSK9 protein expression (358). Therefore, monocyte-derived 

macrophages release PCSK9 after lipid exposure and intracellular 

concentrations of PCSK9 remain low. 

Macrophages infiltrating capacity into the adipose tissue is induced by 

LRP5. We show that LRP5 activation by hypercholesterolemia can 

trigger adipose tissue growth by inducing tissue proliferation and insulin 

sensitivity and it can simultaneously enhance the infiltration of 

macrophages into adipose tissues that will start the inflammatory 

process associated to a proliferating adipose tissue (Article 3). 

4.2 LRP5 roles in liver cholesterol metabolism 

PCSK9 expression and release pattern by HSC is very similar to that 

observed in human macrophages. Cultured HSC have a phenotype that 

resembles the myofibroblast pathogenic phenotype associated to liver 

fibrosis, with high expression of desmin and alpha-smooth muscle actin 

(α-SMA) and without retinyl ester lipid droplets (359). However, agLDL 

exposure to HSCs induces intracellular cholesterol accumulation that is 

reduced by LRP5 and/or PCSK9 downregulated expression. Hence, 

high cholesterol levels can repress HSC proliferation and induce their 

dedifferentiation into cholesterol accumulating cells, with a lower fibrotic 

phenotype. Previous results showed reduced cholesteryl ester 

internalization by PCSK9 in hepatocytes (246,247). However, PCSK9-

silencing in HepG2 cells did not affect cholesterol ester accumulation 
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(Article 2). This might happen because HepG2 cells are fully loaded with 

lipids and their capacity to keep uptaking lipids is blocked. Therefore, 

whether PCSK9 is or not released does not affect hepatocyte’s lipid 

internalization. The in vitro model does not fully resemble the in vivo 

situation where excessive hepatocyte’s cholesterol can be secreted 

through bile salts. Cholesterol secretion through bile salts allows a 

continuous lipid uptake and PCSK9 actually exerts its blocking function. 

Hence, PCSK9 function is cell specific; while it blocks lipid accumulation 

in hepatocytes, it triggers the accumulation of cholesteryl esters in HSCs 

or macrophages, cell subtypes that typically accumulate fat. In structural 

hepatocytes (HepG2), cholesterol accumulates by LDLR, which without 

PCSK9 regulation, would induce exacerbated lipid-loading and a liver-

steatosis phenotype as a result of increased oxidative stress and 

endoplasmic reticulum stress (360–362). Therefore, we show that cells 

that accumulate lipids share a common pathway to uptake cholesterol.  

Interestingly, the interaction observed between LRP5 and PCSK9 in 

human macrophages does not seem to be taking place in mice adipose 

tissue.  PCSK9 intracellular levels of lipid-loaded macrophages are low 

because it is transported to the plasma membrane and released to the 

extracellular milieu in a process that involves LRP5. However, because 

PCSK9 levels do not decrease after HC diets in mice adipose tissue we 

believe this mechanism takes place in macrophages but not in 

adipocytes. Indeed, our results show that PCSK9 is highly expressed in 

mice VAT and EAT. In a similar way, human PCSK9 gene expression in 

VAT is associated with an elevated body mass index and a pro-

inflammatory profile, which is consistent with the elevated PCSK9 gene 

levels observed in mice (363). 

Hepatocytes and HSC are not exposed to agLDL in vivo, as this form of 

LDL is only generated in the intima vasculature. Nevertheless, both 

cellular types uptake cholesterol from agLDLs revealing that both cell 
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types express the receptors needed for agLDL internalization. 

Scavenger receptors SR-BI/SR-BII and CD36 are known to participate 

in this process (364,365). Additionally, we show that PCSK9 and LRP5 

also participate in HSC cholesterol uptake.  

High VLDLR, LRP2, and LRP6 expression are found in livers of 

hypercholesterolemic Wt mice but not in livers of hypercholesterolemic 

Lrp5-/- mice. VLDLR and LRP2 expression are regulated in the liver by 

peroxisome proliferator-activated receptor alpha (PPARα), a 

transcription factor that responds to polyunsaturated free-fatty acids 

(366,367). Upon liver pathogenic stimuli, β-catenin-/- mice show 

disrupted PPARα signalling leading to fatty acid accumulation, steatosis, 

and redox imbalance, ultimately leading to steatohepatitis development 

(368,369). Hence, it is likely that Lrp5-/- mice have similar liver 

complications, which would result in the downregulation of VLDLR and 

LRP2 expression levels. Reduction of LRP6 expression levels in 

hypercholesterolemic Lrp5-/- mice might be caused by the negative 

feedback loop that the triggering of the canonical WNT signalling 

induces in the expression of its own members (370). In fact, RNA-seq 

analysis show that the logFC value for VLDLR, LRP2 and LRP6 protein-

coding transcripts between Lrp5-/- mice liver samples and Wt mice liver 

samples were -1.95, -1.14, and -0.44, respectively, indicating that the 

average gene expression for these receptors is downregulated in Lrp5-

/- mice. Additionally, functional gene enrichment analysis on RNA-seq 

data of Lrp5-/- mice liver samples unmasked dysregulations in several 

signalling pathways that can affect liver integrity. 

4.3 LRP5 role in the brain  

The canonical WNT signalling pathway regulates synapse formation 

and neuronal function (315–317). However, the specific role of LRP5 in 

the brain has been poorly studied. We first analysed the role of LRP5 in 

neuronal cholesterol homeostasis in the SH-SY5y neuroblastoma cell 
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line that has been extensively used as an in vitro model to assess 

neurotoxicity, ischemia and other processes (371,372). SH-SY5y cells 

were differentiated to mature neurons by retinoic acid (373–375). 

Hypercholesterolemic diets increase the BBB permeability to blood 

metabolites allowing for the leaking of nLDL into the brain interstitial fluid 

(302). Furthermore, the BBB leakage of cholesterol has been 

associated with morphological changes in mice brain, reduced synaptic 

formation, and cell death in Ldlr-/- mice (311). Cholesterol overload in 

neurons increases endoplasmic reticulum stress and induces neuronal 

apoptosis, resulting in brain atrophy and reduced cognitive function in 

mice (376). Rats fed a hypercholesterolemic diet display brain reduced 

LDLR expression levels to compensate for cholesterol overload in 

neurons (308). Our results support these reports as only LDLR-silenced 

SH-SY5y showed reduced cholesterol internalization after LDL 

incubation. LRP1, LRP5, or CD36 are not involved in neuronal 

cholesterol accumulation (Article 5).  

The canonical WNT signalling is involved in pro-survival mechanisms in 

neurons (377–379). Activation of the canonical WNT signalling in SH-

SY5y cells results in doxorubicin resistance inducing cell survival 

(380,381). Doxorubicin is a potent chemotherapeutic drug that induces 

DNA cross-linking, oxidative stress, and cell death (382). Also, LRP5 

gene expression is upregulated in neuroblastoma patients samples with 

high Myc (a canonical WNT target gene) expression, suggesting that 

LRP5 is involved in neuronal cell proliferation and survival (383). Our 

results support a role for LRP5 in neuronal survival too. LRP5-silenced 

differentiated SH-SY5y exposed to H2O2 or staurosporine showed 

increased levels of active caspase-3 levels and more Annexin V in the 

outer plasma membrane.  
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Incubation of SH-SY5y with nLDL led to enhanced expression of 

canonical WNT signalling proteins. Lipid-loading induces lipotoxicity as 

neurons start to use fatty acids as their energy source; however, 

neurons lack the appropriate antioxidative mechanisms to compensate 

for ROS generation associated to lipid β-oxidation and require of glial 

cells to counteract ROS generation (384). It is our hypothesis that 

differentiated SH-SY5y cells overexpress canonical WNT signalling to 

compensate for the toxic effects of lipid loading by the triggering of pro-

survival signals.  

Retinoic acid is essential for a correct brain development both in 

embryonic and postnatal stages as it regulates brain development, 

neurogenesis, neuronal plasticity and synapses formation (385–387). 

Retinoic acid signals through RAR and RXR, transcription factors with a 

wide expression in rodent and human brains (388,389). Retinol/ Vitamin 

A, the retinoic acid precursor, is transported through the bloodstream 

bound to retinol binding protein 4 (RBP4) (390). Once inside the cell, 

retinol is oxidized to retinaldehyde by retinol dehydrogenases or alcohol 

dehydrogenases in the rate-limiting reaction of the retinoic acid 

metabolic pathway (391). Gene expression levels of both 

dehydrogenases are downregulated in brains of Lrp5-/- mice. As a 

consequence, retinoic acid levels in brains of Lrp5-/- mice are much 

lower than in Wt mice, limiting the activation of RAR and RXR 

transcription factors and reducing the transcription of retinoic acid target 

genes including members of the P450 cytochrome or the UDP 

glucuronosyltransferases. These proteins are involved in retinoic acid 

release by increasing the conversion rate of retinoic acid into polar 

metabolites with increased capacity to cross the cell plasma membrane 

(392,393). It is conceivable that the lower intracellular concentration of 

retinoic acid downregulates the expression of the enzymes required for 

its cellular release to prevent excessive retinoic acid loss.  
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A significant downregulation of genes associated with linoleic acid 

metabolism was observed in Lrp5-/- mice brains compared to Wt mice 

brains. When linoleic acid enters the brain, it is rapidly oxidized into 

acetyl-CoA and derivatives, which are used for de novo cholesterol 

synthesis (394). However, linoleic acid also participates in the synthesis 

of oxidized linoleic acid metabolites (OXLAMs), which are lipid 

mediators regulating inflammatory and pain responses in the central 

nervous system (395). The cytochrome P450 is involved in the 

generation of a particular type of OXLAM, the epoxy-polyunsaturated 

fatty acids (epoxy-PUFAs), known to have neuroprotective and 

analgesic effects in the brain (396,397). Phospholipase A2 expression 

is also downregulated in Lrp5-/- mice brains. This enzyme catalyses the 

hydrolyzation of glycerophospholipids into FFAs and glycerol (398), 

suggesting a reduced FFA availability in brains of Lrp5-/-. 

The combined signalling by retinoic and linoleic acid seems to be crucial 

to preserve the functional integrity of mice brains. Functional Gene 

Enrichment analysis showed reduced synapses formation and plasticity 

and less neuronal differentiation in brains of Lrp5-/- mice. However, the 

link between LRP5 deficiency and the alterations observed in their 

brains is difficult to establish. In hepatocytes, β-catenin induces the 

expression of cytochrome P450 isoform 1a1 (399). In mice mammary 

cells, the stimulated by retinoic acid gene 6 (STRA6) retinol transporter 

expression is induced by Wnt3a and Wnt1 synergistically with retinoic 

acid (400,401). Also, β-catenin has been shown to interact directly with 

RARs in a retinoic acid-dependent manner inducing RAR activity in 

cancerous cells (402,403). We did not observe reduced expression of 

transcripts coding for protein members of the canonical WNT pathway 

in Lrp5-/- mice brains, suggesting that the pathway is open and may be 

active. To explore this possibility, proteomic analysis to assess which 
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proteins are activated by canonical WNT ligand incubation in neurons 

with or without LRP5 expression could be performed. 

The persistent expression of a full-length LRP5 transcript in Lrp5-/- mice 

brains was an unexpected result. The Lrp5-/- mice colony was generated 

by an insertion of an IRES-βGal-PGKNeo cassette in exon 6, impairing 

the natural splicing of the transcript and generating an aberrant LRP5 

isoform (404). This should have led to the complete abolishment of 

LRP5 expression in Lrp5-/- mice. Indeed, the expression of the full-length 

LRP5 transcript is absent from all mice tissues and organs except for 

the brain. Hence, we hypothesize that LRP5 brain expression is required 

to ensure mice survival. The reduced expression of the full-length LRP5 

transcript in Lrp5-/- mice brains reduce synapse formation and neuronal 

differentiation involving a downregulation of retinoic and linoleic acid 

signalling. 

During development and neuronal cell differentiation splicing regulators 

determine transcripts formation (405). For example, serine/arginine-rich 

splicing factor 1 (SRSF1) blocks the insertion of exon 19 in the apoER2 

final transcript in neurons in a mice transgenic model for Alzheimer’s 

disease. Inhibition of SRSF1 binding to apoER2 mRNA with antisense 

oligonucleotides generates a functional apoER2 transcript (406). 

Although the expression of a full-length LRP5 protein is observed in 

brains of Lrp5-/- mice (Article 5), non-functional proteins can be 

generated in Lrp5-/- mice brains according to the following possibilities: 

• The insertion of an IRES-βGal-PGKNeo cassette generates a 

premature STOP codon in exon 6. When the full-length LRP5 

transcript is produced, it should only contain the first 6 exons of 

LRP5. This protein would contain aminoacids that form the 

extracellular domain of LRP5; therefore, when synthesized, it would 

be transported through the Golgi apparatus and, upon reaching the 
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cell membrane, would be released into the extracellular medium as 

it would lack any transmembrane domain. In this scenario, soluble 

LRP5-like protein would act as a repressor of canonical WNT 

signalling (as soluble Frizzled receptors) by competing with 

canonical receptors for the binding of WNT ligands, reducing signal 

transduction (407). Soluble LRP5 can also participate in modulating 

the activity of other signalling pathways. 

• The alternative splicing of the LRP5 transcript undergoes alternative 

splicing in Lrp5-/- mice brains that manage to skip exon 6 during the 

transcript maturation process. Although unlikely, the generation of 

this alternative transcript would generate a shorter protein. Exon 6 

contains aminoacids 338 to 470 of mice LRP5 which are part of the 

second β-propeller and the LDL-receptor class B domains 6 and 7, 

necessary for the correct folding of the receptor and WNT ligand 

recognition (218).  

We observed a faint, yet non-negligible, ~180 kDa protein in brains of 

Lrp5-/- mice (Article 5). The existence of this protein could be explained 

by the alternative splicing of Lrp5 transcript that manages to skip exon 

6 during transcript maturation. Future studies will attempt to determine 

if this isoform is functional by studying its interactome and its ability to 

transduce canonical WNT signalling. 

Our results support that LRP5-dependent signalling is crucial to ensure 

proper brain development and mice survival. To further analyze LRP5 

transcript composition in Lrp5-/- mice exon sequencing would need to be 

performed. Behavioural and memory tests in Wt and Lrp5-/- mice would 

help define the functional consequences of LRP5 deficiency in mice 

brains. 
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4.4 Summary of LRP5 function 

In summary, the novel findings of this thesis include the definition of 

properties and functions of the canonical WNT signalling receptor LRP5 

in multiple tissues: (1) we have identified LRP5 as a major regulator of 

the immune response to cholesterol accumulation in the vessel wall 

during early and late stages of atherosclerosis; (2) we have identified a 

function for LRP5 in liver hepatic stellate cells during 

hypercholesterolemia; (3) we have described a role for LRP5 in neuronal 

survival and brain development; and, (4) we have shown that LRP5 is 

involved in adipose tissue growth in mice fed a hypercholesterolemic 

diet by regulating adipose tissue insulin-sensitivity and inflammatory cell 

infiltration (Figure 16). 

Figure 16. Summary of functions related to LRP5 in the different organs studied in this 

thesis. 
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The findings on adipose tissue and brain revealed interactions of LRP5 

and canonical WNT signalling with other important cellular pathways 

including retinoic acid metabolism and insulin response. Hence, it is 

conceivable that to understand the complete dysregulation triggered by 

LRP5 deficiency, the focus needs not only be centred on modulations of 

canonical WNT signalling but also on other important regulators of 

cellular response. 

Long-term studies might lead to the generation of therapies targeting 

LRP5 function in disease progression. These therapies will need to be 

cell-specific because systemic therapies targeting LRP5 activity may 

yield unwanted effects since they could affect several molecular and 

cellular mechanisms affecting the homeostasis of multiple tissues. In 

2018, a LRP5/6 antagonist product developed by Boehringer Ingelheim, 

BI 905677, was tested in patients with advanced, unresectable, and/or 

metastatic tumours but the results of the study have yet to be published. 

BI 905677 is a humanized biparatopic nanobody that blocks WNT ligand 

binding to LRP5/6 and reduces canonical WNT signalling activation in 

cancerous cells, which stops cell proliferation and survival signalling 

(408). 
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5. Conclusions 
 

“Faithless is he that says farewell when the road darkens.” 

Gimli to the Fellowship of the Ring members. The Fellowship of the 

Ring, Chapter 3. J.R.R. Tolkien  
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LRP5 regulates biological processes that take place in different tissues 

and organs. Specifically, the novel main findings of this thesis are as 

follows: 

1. LRP5 and PCSK9 participate in lipid uptake in fat-storing cells 

including macrophages and HSC. 

2. LRP5 expressed in human macrophages binds PCSK9 in the 

early cellular endosomes and regulates PCSK9 release into the 

extracellular media. 

3. PCSK9 blocks lipid internalization in HepG2, while it triggers the 

accumulation of cholesteryl esters in HSC indicating that 

structural hepatocytes and HSCs uptake lipids in a different 

manner. 

4. LRP5 is involved in adipose tissue growth by inducing tissue 

proliferation and insulin sensitivity and, simultaneously, by 

enhancing macrophages infiltrating capacity into the adipose 

tissue triggering the inflammatory response. 

5. In resting macrophages, LRP5 overexpression triggers a pro-

inflammatory response by inducing PCSK9 release. However, in 

lipid-loaded macrophages, LRP5 exerts an anti-inflammatory 

response mediated by MVs as LRP5+MVs induce macrophage 

differentiation to an anti-inflammatory phenotype. 

6. LRP5 and the canonical WNT signalling do not participate in 

cholesterol uptake in neurons. LRP5 expression induces survival 

in stress-exposed neurons by preserving cell viability and 

reducing apoptosis. 

7. LRP5-deficiency in mice brains induces a downregulation in the 

expression of genes associated with synapse formation and 

neuronal differentiation. The alteration in these functions is a 

consequence of reduced signalling of the retinoic and linoleic 

acid pathways. 
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“The burned hand teaches best. After that, advice about fire goes to 

the heart”. 

Gandalf to Aragorn, Legolas and Gimli. The Two Towers, Chapter 5. 
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7. Annex 
“It’s the job that’s never started that takes the longest to finish.” 

Gandalf to Frodo. The Fellowship of the Ring, Chapter 3. J.R.R. 

Tolkien 
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7.1 Article 7. Review: PCSK9 roles beyond lipid-

lowering  

Title: PCSK9 functions in atherosclerosis are not limited to 

plasmatic LDL-cholesterol Regulation 

By Aureli Luquero, Lina Badimon and Maria Borrell-Pagès. 

Published in Frontiers in Cardiovascular Medicine. 2021 March 

23;8:639727. 
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