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n—1

Let 8}, 81,...8! | be x circles. A rotation in # circles is a map f:U"ZdS! —U 7ZJ8! which maps
each circle onto another by a rotation. This particular type of interval exchange map arises naturalty
in bifurcation theory. In this paper we give a full description of the symbolic dynamics associated

to such maps..

I. INTRODUCTION

In bifurcation theory, we often have to deal with a criti-
cal vecior field in R", m=2, which satisfies the following
properties: there exists a finite sequence of singularities, py ,
P s Pr—1 > Of saddle type with only one unstable direction,
and a sequence of 2x heteroclinic or homoclinic orbits, Iy ,
Lot selins Tig el nz1.05 =11 > joining one of the p;’s
to another. Such a configuration is called a keteroclinic cycle
(see Fig. 1). It turns out that, in many situations, the set ['=
UfZg(T;oUT ;) is an attractor. In such a case, we call it a
stable heteroclinic cycle.

Stable heteroclinic cycles are obviously not structurally
stable, and consequently the following question arises:

Question: Consider a %' vector field in R”, m=2, with a
stable heteroclinic cycle I'. What happens in a neighborhood
of T when we perturb the vector field in the % topology?

This question has been completely answered, in the par-
ticular case called “gluing bifurcation,” of a configuration
involving only one singularity.'=

However, so far, there is no answer in the general case,
which remains. very interesting for the following two rea-
sons:

First, it is not an academic generalization of the gluing
bifurcation: there exist some extra difficulties related to the
increasing richness of the possible dynamical behavior

Second, stable heteroclinic cycles (with more than one
singularity) occur in problems of bifurcation coming from
the PDEs world (for instance hydrodynamics®).

In this paper we focus our attention to a particular class
of (stable) heteroclinic cycle. These cycles will be called
rotating (stable) heteroclinic cycles (see Fig. 2) and corre-
spond to the case when the two heteroclinic or homoclinic
orbits I'; 5 and I'; ; , emanating from a singularity p, , end at
the same singularity p .

Consider now a & vector field X, in R with a rotating

- stable heteroclinic cycle I' and assume that the linearized
vector field DXy(p;), at each singularity p, , is such that its
dominating stable eigenvalue is real. Then, generically, there
exists a rigorous way to reduce the dynamics of any vector
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field X, %-close to X, in a neighborhood of I', to the dy-
namics of a map f{y) on the interval with a finite number of
discontinuities (see Fig. 3). Furthermore, this map is mono-
tone and is a contraction of each interval of continuity. This
reduction to a one-dimensional dynamics is the subject of
Sec. 1L

Some simple extra conditions on the vector field X
pields maps fiy; from the union of » intervals into itself,
mapping one interval into another with a single discontinuity.
in each interval.

For a vector field X, % '-close to X, there is a natural
way of coding the invariant curves of X which remain in a
neighborhood of I

Roughly speaking, we can code an invariant curve with a
periodic sequence of 2n symbols corresponding to the fact
that the curve has to follow successively some of the 2n
heteroclinic or homoclinic orbits of X, . In Sec. III, we show
how this coding corresponds, on the interval, to the classical
Milnor—Thurston coding for the periodic orbits of the map
fixy-

We show also that each code of a periodic orbit of fix; is
also the code of the periodic orbit of a map f[; which also
has one discontinuity in each interval, the same monotonicity
type of f|y) but which is an interval exchange. ‘

When this interval exchange preserves the orientation it
can be seen as a map from the union of » circles into itself,
which maps each circle onto another by a rotation. We call
this type of map a composition. of rotations in r circles (see
Fig. 4 for an example of these maps). Sections IV~VIII are
devoted to: the study of the symbolic dynamics of these
maps:

FIG. 1. Some heteroclinic cycles,
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FIG. 2. Some rotating heteroclinic cycles.

Il. ROTATING STABLE HETEROCLINIC CYCLES

We note that most of the techniques used in this section
are now quite standard. We refer to Refs. 1 and 2 for the
details of quite similar proofs.

Let X, be a 7! vector field in R™, m=2, such that:

Hypothesis H, . X, possesses # hyperbolic saddle sin-
gularities pg, pi,-o2 Pu—15

Hypothesis H, . The lincarized vector field DXy(p,) at
cach singularity p;, after a smooth change of coordinates,
reads

a 4

DXo(pi)=nr;i1x 7%, +Ri 2%, 5
j=m k=m P

+ MjiXe 2= »
j=2 k=2 ax»’

7\,-,2=max Re ?"i,k; Aj,ke SpeC DXO(P:‘)_{)\LI}-

Hypothesis H;. There exists a map 7:{0,1,...n~1}
~{0,1,...,n— 1} such that, for each ie{0,1,...,n—1}, the
two homoclinic or heteroclinic orbits I'; ; and U'; ; emanating
from p; end at p ;) . To fix the notations, we can assume that
T, (resp. T'; o) is the orbit starting at p; on the side x,>0
(resp. x;<<0).

Hypothesis Hy. We know that, with the above condi-
tions, both orbits I'; g and T'; | arrive to p;, tangent to the
line x;=x,="-+-=x,,=0. In addition to this generic condition
we assume that these two orbits arrive to p,y at the same
side: x,>>0.

It is very easy to check that, thanks to the conditions we
have given on the eigenvalues of the linearized vector field at

7
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FIG. 4. A composition of rotations in two circles.

each singularity, the rotating heteroclinic cycle I' we have
defined is stable (see Refs. 1 and 2). More precisely, let.
@l -,1) be the “time £ map of the flow induced by X, . Then,
there exists a neighborhood U/ of T such that

polU,)CU  for ¢=0
and

'=n (P()(U,f).
t=0

Furthermore, this neighborhood is also invariant by the
“time £’ (t=0) map of the flow of any vector field %*-close
to XU .

Thanks to the hyperbolicity of the singularities p; , and
up to a smooth change of coordinates, it is not restrictive to
assume that for any vector field %7-close to X, , the points
PosP1yrs Py remain hyperbolic singularities, the local
stable manifold is given by the equation x; =0 and the local
unstable manifold by the equations x,=x;="-=x,=0.

For h and r positive and small enough consider, near
each singularity p;, the rectangle R, defined by x,=#h and
lx; |<r for j=1,3,...,m (sec Fig. 5).

By following the flow induced by X, the rectangles
R;o=R;"{x,<0} and R;;=R;N{x;>0} are mapped in

Ty

FIG. 5. The rcctangle R; .
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FIG. 6. The standard situation for X, .

R ) on two singular triangles whose singular extremities lie
on x;=0 (see Fig. 6). These points correspond to the inter-
section of I'; o and T'; ; with R ;).

For a perturbed vector field X, #l-close to X o » we have
the same situation except that the two branches of the un-
stable manifold at p; do not need to cross Ry on the line
x;=0 (see Fig. 7). In other words, we may not have a het-
eroclinic or a homociinic connection.

The two maps we have constructed from R;, to R ;
and from R; | to R ;) can be extended by continuity to maps
from R;, to Rp; and from R;; to R,;, where
R;o=R;N{x;=0} and R;,;=R;N{x,=0}. This yields a
map Ty ; :R;— Ry which is bivalued on the line x,=0.

From Hypothesis H,, it is easy to check that the maps
T'(x),: restricted to R; ; and R; , are contractions.

We set

n—1 n—1

T[X] : U Rz'_) U R‘-
i=0 i=0

by Tixile, = Tixy,i -
Let us now assume the following generic condition.
Hypothesis Hg . The images by Ty; ; of the two arcs

7i,l(t)={(x1 9-“’x.~n)}|xl=t‘>’0:x2=h:xi=0= 123}
and
Yr',()(t)={(xl 7"'7xm)}|x1=t‘<:"0’x2=h’xi=0: ‘!?3}

are not tangent at =0 to the hyperplane x,=0.

With this supplementary condition, we can prove (see
Ref. 1} that in each R; there exists a2 & -codimension 1 fo-
liation invariant'by Tyy) (this foliation contains the leaves
x,;=0). '

The dynamics on the leaves is a contraction and, on the
quotient space (which is one dimensional) we are reduced to
a map fyx; on the union of # intervals /;=[—r,r] such that

FiIDCI 4y and
fx1ix)=fixy| 1(x)

#‘i,l + cf,lx“f+h.0.t.
- ,u,,-,o-i- c,-,ox“"+ h.o.t.

if x=0,

if x=0,

Ria P 4
</ LR

FIG. 7. The standard situation for X, %7 close to X .
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FIG. 8. A simple oriented closed curve with code (0,1) (1,0) (0,0) (1,0).

where a;=—X\; o/\; | (recall that the neighborhood U and
consequently » have to be chosen small enough so that

fxy.ilir=oy and fixy il-=0y are contractions).

lll. SYMBOLIC DYNAMICS

Consider a vector field X with a stable heteroclinic
cycie I, and let U be a small tubular neighborhood of I, Any
oriented simple closed curve in U yields, by retraction, an
oriented loop in I". This loop is homotopic to a loop consist-
ing on a succession of arcs I'; 4 or I'; ; followed in a positive
(time increasing) or negative direction. Consequently, to any
oriented simple closed curve in IJ we can associate a periodic
sequence (...XgXy...xXg...) of symbols in {—1,1}x{0,1,...,n
—1}x{0,1}. If this simple closed curve is an invariant curve
of a vector field %*-close to X, , then the coding is simpler
because there is a natural orientation of the orbits in U. It
follows that the corresponding sequence will be in {1}
x{0,1,...,n — 1}<{0,1}. Consequently, we can forget about
the symbo! {1} which means the time increasing direction
and associate, to each invariant curve Y in U of a vector field
Z-close to X, , a sequence of symbols J(Y)={y;} where
the y,’s belong to {0,1,...,n — 1}x{0,1} (see Fig. 8 for an ex-
ample).

Assume now that the vector field X satisfies the assump-
tions from H; to Hs. A simple oriented closed curve in U of
a vector field X, %*-close to X, , corresponds to a periodic
orbit of T[Xl and f[X] .

This curve is a stable periodic orbit of X if its corre-

sponding periodic orbit of Ty (resp. of f|)) avoids the line
x,=0 (resp. the point 0 in each I;). If not, it is a homoclinic
orbit (see Ref. 2).
" To a periodic point x of Ty (resp. of f[X]) we can as-’
sociate a periodic sequence (y;) in the symbols {0,1,...,n— 1}
x{0,1} by setting y,=(m,,&;) if and only if T'(x) &Ry, e,
{resp. fi(x) eI, and f'(x)e;=0).

It is straightforward to check that the code J(Y) of an
oriented closed invariant curve in U of a vector field X, &-
close to X, coincides with the code of the corresponding
periodic orbits of T and f(x) defined above.

In the sequel, we are going to describe the different
codes we can get for periodic orbits of the maps fiy. In
order to do it, let us consider a periodic orbit ¢ of a map fry,.

By changing the position of the points of # in the inter-
val without changing their mutual order nor their positions
with respect to zero, it is easy to see that there exists a map
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FIG. 9. The map ff) when the hypotheses from H; to Hy are fulfilled.

I_ w1
[i“") UI",
=0 =0

H—

fon:,

where I; are intervals which contain zero and satisfy the
following conditions: 3
(i) f{, possesses a discontinuity zero in each interval I;;
(i) maps Z; onto 1 ;) ;
(i1i) it is an isometry on each interval of continuity (with
the same monotonicity as fix);
(iv) it possesses a periodic orbit with the same code
(with respect to the new natural partition) as 6.

By construction, this map f[”}{] is an interval exchange trans-
formation.

To understand the symbolic dynamics of the invariant
closed curves in U of a vector field #'-close to X, , it is thus
necessary to understand the symbolic dynamics of some
classes of interval exchanges transformations. This is a sub-
ject too vast and too rich. In the next section we are going to
restrict our attention to the description of the symbolic dy-
namics associated to a special class of interval exchange
transformations:

Hypothesis Hq . Assume that on each interval of mono-
tonicity the functions fiy; and ffy; are increasing
and that fEkX],,-(OJ') <0 < fl(07). Assume also that
7 is a bijection and that the intervals J;
"—u[f[*X]’T_l(i)(O‘L),f[“":\,]'T_1(‘.)(0_)] have all the same length
and satisfy

n—1 n—1

(U J)C U J;.
i=0 i=0

Notice that Hypothesis Hy is nothing more than condi-
tions on the heteroclinic cycle I' (7 bijective) and on the type
of perturbed vector fields allowed. More precisely, one can
think on the perturbations on the vector field in the following
way. We can unfold the bifurcation diagram around the
stable heteroclinic cycle in a 2n-parameter space. Each pa-
rameter corresponds to the breaking of a heteroclinic connec-
tion. In this setting, Hypothesis H; restricts the allowed per-
turbations to a submanifold with dimension n in the
parameter space.

With all these restrictions, f}; maps each interval J,
onto J ., as follows (see Fig. 9):

(i) 1t possesses one discontinuity at 0;

HA Vol.
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(ii) it is increasing with slope 1 on each interval of con-

tinuity;

(ifi} it is surjective;

(iv) it is injective in the interior of J; but the two end

points of J; have the same image.

By identifying the end points of the intervals J; we get a
map Fx) from the union of a circles 8}, 81...,8}_, into
itself (each of these circles has an origin 0) with the follow-
ing properties. There exists a bijection ={0,1,..,n—1}
—{0,1,..,a—1} and a map @{0,1,...,n—1}—R such that
F [X](S})ﬁS},(,-) and pT(E)OF[Xﬂs,_wg){l is a rotation with an
angle a(i), where g, is an identification of the circle 8} to a
reference circle S'.

We call these maps compositions of rotation in n circles.
They will also be denoted by £, .

Remark 3.1. The composition of two compositions of
rotations in # circles is again a composition of rotations in »
circles. More precisely, we have

Fr,aoFr’,a’=F1°r',a'+a°7’ .

Remark 3.2, If in the definition of a composition of
rotations in » circles we replace the assumption that 7 is a
permutation by the weaker assumption that 7 is just a map,
then it is easy to reduce this problem to the case in which 7
is bijective. Moreover, since each permutation can be decom-
posed in a product of independent cyclic permutations, the
case in which 7 is a cyclic permutation is the one which is
going to keep our attention in the sequel. However, the study
of certain compositions of rotations in » circles with 7 not
being a cyclic permutation (mainly the case 7=id) is stili
important and will be done later. (]

In the rest of the paper we are going to study the sym-
bolic dynamics of this class of maps. In fact we shall look for
the characterization of the kneading sequences associated to
a natural coding and we shall describe some of their proper-
ties.

IV. SYMBOLIC DYNAMICS OF COMPOSITIONS OF
ROTATIONS IN n CIRCLES

We shall start by choosing a model to represent the com-
positions of rotations in # circles. In what follows we shall
denote by E{-) the integer part function. Let & be a map from
a subset of Z to R. We shall denote by a the decimal part of
a (ie., a=a—Eoq).

We shall model a composition of rotations in # circles
F, by amap f_,:[0,n)—[0,7) defined in the following
way. First, to a point x of [0,#), we shall associate its address
a(x) as follows:

0, if E(x)sx<E(x)+1-a(E(x)),

i, if F(x)+1~a(E(x))=x<E(x)+1.

Then we set (see Fig. 10)
fralx)=TE(x))+x = E(x)+ &(E(x))~a(x).

Remark 4.1 We note that if xe[k,k+1) with
ke{0,1,...n—1}, then f, (x)e[7(k),7(k+1)) and, if we

a(x)=

4Alligq'lczénTs!%eggr copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 10. Some compositions of rotations in two circles.

identify the circle 8! with the interval [i,i+1) for each
i=0,1,...,n—1, then g ;y°f . °x ! is a rotation by an angle
a(k).

‘The itinerary of a point is then defined by the sequence

L) =E(x)a(x)a( fra(x)al flx) "

The n-tuple of itineraries [£(0),1(1),...,{(n~1)] will be

called the ineading invariant associated to f, .. We note
that all itineraries of the form f(k) with ke{0,1,...,n—1}
start with &£0.... That js, they can be written in the form
I(k)=k0d d,... for each k=0,1,...n—1.

We endow the space of itineraries with the following
total ordering relation:

sdgdyree e <s'dhd}- -

if either

s<s’

or

s=s' and dy<d,

where k=0 is such that d,=d/ for i=0,1,...,k—1 and < is
the usual ordering of real numbers. Clearly, x<y implies
I(x}<1(y).

Finally we define the shift operation o in the space of
itineraries by

o(sdod,...)=1(s)dd>... .

‘We note that the shift operation depends on 7 and, therefore,
on the map under consideration. In what follows we shall
denote the composition gege--og (n times) by ¢”. As it is
usual, for each x € [0,r) we have :

oU(x))=I(fr,a(x)).

The following proposition gives us an algorithm to com-
pute the kneading invariant associated to f_ .

Proposition 4.2. Let f_ . be a composition of ro-
tations in n circles. Let ke{0l,.n—1} and
I(ky=kdyd,...". Then,

d;=E

! -1
> &(ﬂr"(k))) —E(E a(f‘(k))) for I

i=0 i=0

=0,1,....

Proof. From Remarks 4.1 and 3.1 we obtain by induction
that

i
ff,a_'f'r’,a+ao1'+a°1'2+~-+ae'r"1

for /=0. Thus,

-1 I-1
£ =7+ &(r"(k»—E(E &(H(k))).

=1 i=0

Hence, d,=1 if and only if

-1 11
> &(#(k))—E( > &(f(k))) =1-a(7(k).

i=0 i=0

Therefore,

=9 i=0

! -1
d1=E(2 &(qi(/c))) -E[ 2 &(H(k))).

A first characterization of the kneading invariant of a
composition of rotations in » circles is given by the follow-
ing proposition,

Propasition 4.3. Let {1(0),....I1(n—1)] be a knead-
ing invariant of a composition of rotations in n
circles f.,. Let ke{0,1,2,....n—1} and j=0. Then
we have

H(ri(k)=7/(k)0d dy - < o I (k))<7i(k)1d,d,... .

Proof. Since for each xe[0,n) we have o(I(x))
=I(f,.{x)) it follows that o /Q(K)=I(F] (k)
=£( f'rf,a+a_°'r+ a°1'2+---+a°'rf‘1(k))' Therefore, v;',a:(k)
e[7/(k),7/(k)+1). On the other hand, if xe[LI+1) we
have that I{])=10dd,...<[(x)=<i1d,d,... . This ends the
proof of the proposition. |
‘We are interested in giving a full characterization of the
kneading invariants of the compositions of rotations in »
circles. To do this, in addition to the above two properties, a
third condition is necessary. It turns out that this last condi-
tion 1s strongly related to the characterization of the kneading
sequences of rotations. Therefore, we shall study first this
particular case. This is the subject of the next section.

V. ROTATIONS

The main results in this section are closely related to the
ones developed by Morse and Hedlund in Ref. 5 when study-
ing Sturmian series and follow the ones from Gambaudo (see
Ref. 1) with few improvements. We are going to characterize
the kneading invariants of rotations by means of some struc-
tural properties among which the lexicographical ordering of

CHAOS, Vol. 4, No. 2, 1994
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sequences plays a fundamental role. However, in Ref. 5, dif-
ferent motivation can be found. In fact, they study the rela-
tion between rotations and all associated symbolic sequences
(not only kneading sequences) through the rotation number.
Therefore, because of these differences in motivation and
approach with Ref. 5, and alse for completeness we shall
develop our own study in full detail. '

A rotation can be modeled as a composition of rotations
in 1 circles in the trivial case in which »=1. Then, of course,
7=id."We note that in the case n>1 and r=id we have n
noncoupled rotations and, hence, the characterization of the
kneading invariant in this case follows directly from the cor-
responding characterization for rotations.

When we consider a rotation as a composition of rota-
tions in one citcle the use of 7 is superfluous and, hence, it
will be omitted. Also, a{0) will be denoted simply by a.
Moreover, the use of the first symbol in the itinerary of a
peint is also superfluous and so it will be removed. Thus,
when talking about rotations, the itinerary [{x) of a point
will be defined to be the sequence

a(x)a( foix)al 2N .

We extend the notions of kneading invariant, ordering of
itineraries, and shift operation to this new framework in the
natural way,

From all that was mentioned in the previous section it
follows that if [=d,d, ... is the kneading invariant of a rota-
tion, then it satisfies the following two conditions:

(A) d,=0;

(B) I=co/(i)<1d,d,... for all j=0.

We want to see that each kneading invariant of a rotation
satisfies one more condition. This third condition, together
with conditions (A) and (B), characterizes the kneading in-
variants of rotations. This will be shown at the end of this
section. To state the property of rotations we are looking for,
we need some definitions and technical lemmas.

An infinite sequence of 0’s and 1’s will be called admis-
sible. £, in addition, it satisfies properties (A) and (B) then it
will be called extremal.

Lemma 5.1. Let [=dyd\d,... be extremal and let
I=j<k be such that dy..d;_\=d; ;+...ds | and
d;Fdy. Then dy_;=4d;.

Proof. Since I is extremal we have

!=0dl___dj_ldj,.,sﬂ'k_j(!)

=dk-jdk4j+l"'dk—ldf('"“{‘_ldl'-"df—ldj"' .
If d;=1 and d,=0 then, from the first inequality it follows
that d;_;=1=d; . If ;=0 and d,=1 then, from the second
inequality we obtain d;_;=0=4d; . [

Proposition 5.2. Let [ be an extremal sequence different
from 0° and O17. Then there exists b=1 such that I is
either  01°01%:01%20... or 0"*'10%110%21...  with
bie{b,b+1} for all i=1.

Proof. Let {=0d d, ... . By using Lemma 5.1 with j=1
we get d,_ =d, for all k>1 such that d,#d, . That is, if
d, =0 then in the sequence [ there always is a 0 before any 1
and if d, =1 then there is a 1 before any 0. Then, { is either

PAA AN L]
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01"017101%20... or 0M10"110"2... where b;=1 for all
i=0. Assume that [ is of the form 0%10%110%2... . The
proof in the other case follows similarly.

Since [ is extremal, for i=0 we get 0%10°1...
< g™i(l) = 0%10%+11,., = 100 10%1... with m,=i
+by+by+---b;_, . Hence, b;<h,. Similarly, 0"10"1.,,
s o™l = 10%10%1. = 1077110%1.., and
hence, b;=by—1. Uf by>1 we set b=by—1 and -]
with b,e{b,b+1} for all i=0. If

b=1 and we get [=010101...
=01"01"101"2.,, with b,=b for all i=1. This ends the
proof of the proposition. -

The above proposition motivates the next definition. Let
! be an admissible sequence. We shall say that [ is O-nice
(respectively, 1-nice) if there exists b=1 such that
[=010"10%21... (respectively, [=0170017101%20.,.)
with b;e{b,b+ 1} for all =0 and b;=5b+1 for some i. The
number b will be called the order of [, A nice sequence will
be a sequence either O-nice or 1-nice or equals to (01)” or 07
or 017,

Remark 5.3. Notice that each sequence of the form
(015 with k> 1 is 1-nice of order k — 1. Therefore, in view
of Proposition 5.2, each extremal sequence is nice. However,
as we shall see later, there exist nice sequences which are not
extremal. : (!

Now we define the deflation operation & from the space
of nice sequences to the space of admissible ones. First we
set S(ONT)=H0")=0" and 017)}=01". Next we define &
on the rest of nice sequences. Let [ be a snice sequence of
order b. If =1 and I=A A A,... with A; = 01" for i=0,
then we set 8(I)=ByB,B,..., where

if A;=01",

B':I it A;=01"",

for i=0, If 1=0 and [=A¢A A,... with A,=0" and A;
= 10" fori=1, then &)=B B B,... where By=1—h,+b
and

o

fori=1.

We shall study now the action of &on the set of extremal
sequences. We want to show that & preserves the extremality
and, therefore, it can be iterated infinitely many times on the
set of extremal sequences. This will be done in Proposition
5.6.- Prior to the proof of this fact we shall see that the de-
flation operation preserves ordering and, in some sense, com-
mutes with . In the rest of the section we shall use freely the
notation from the definitions of a nice sequence and &

Lemma 5.4. Let [<J be t-nice sequences of the
same order with te{0,1}. Then (1 <8(]).

Progf. We shall prove the lemma in the case r=0.
The proof for the case t=1 follows similarly. Let
[=0%010"110%21.,, and J=0%10%10%21..., and assume
that / and J have order b. Since [<J there exists /=0
such that b;#k; and b;=k; for i=0,1,...,/—1. Clearly,
B>k, . Therefore, b;=b+1 and k=b. If /=0 then

by=1 then we set

0,
01,

I, if A,=107,
10, if A;=10%"",

r copyright; see http://chaos.aip.org/chaos/copyright.jsp
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the lemma follows directly from the definition of &. If
>0 we get 8([)=(1—by+b)BB,..B;_\BiByy... and
H=(1—-by+b)BB,...B,_ |BB;,... with B;=10 and
B,=1. Therefore, 8(I)< &(J) because B,,, is either 1 or
10. ]

Lemma 5.5, Let [ be an extremal t-nice sequence
of order b with te{0,1} such that 8(I)#01”. Let
m=0 and | be such thar o"(8{))=aB;, B;,a... where
ae{0,1}. If r=I+bytb+-+b;_y, then o'(I) is
also t-nice of order b and 8(a"(I))=c"(5(1)).

Proof. f m=0 then since [ is extremal and f-nice it
follows that By=0=a and /=0. So, »=0 and there is noth-
ing to prove. Now assume that m>0. We also assume t=0
and a=1. In the other three cases the proot follows simi-
larly. Clearly, o"([)=0"10%+11... with b,e{b,b+1} for
all i=[. Since a=1 and r=0, in view of the definition of §,
it follows that B;=1 and b,=&. We claim that b;=b+1 for
some i >/ [and hence, ¢'(I) is 0-nice]. Otherwise, ;=5 for
i=1l. Since [ is O-nice, in view of Proposition 5.2 we have

I=0%*110%110%1... . Moreover, since §(I)#01” there ex-

ists b; with j=1 such that b;=b+1 and b;=b for
i=1,2,...,j— 1. Therefore,

10°107110%2..10%1...
=10%10%10%...10°" 1. <(10%) =0 (1),

which contradicts the extremality of . This ends the proof of
the claim.

S(a"(1))= 8010 110%*2  Y=1B;, \Bjsy...

=0"(8(1)).
|

Proposition 5.6. I'f [ is extremal, then &(I) is de-
fined and extremal.

Proof. If 1{(G1)”,0%,01"} then there is nothing to
prove. Thus, we assume that 7 &{(01)*,0°,01%}. By Proposi-
tion 5.2 and Remark 5.3, [ is ¢-nice with t<{0,1}. Assume
that J is O-nice. If [ is 1-nice the proof follows analogously.

If 8(1)=01" the proposition holds trivially. So, we also
assume that S(/)#017. In view of Proposition 5.2, [
=0P*110%110%21... with b,e{b,b+1} for all i=1 and
bz=1. From the definition of § we get 8({)=08,B,... with
B;e{1,10} for all i=1. Hence, condition (A) of extremality
is satisfied. Now we prove condition (B}.

Let m>0. If ¢"(8())=8B;B,... for some /=1 then

S(Hy< o™ (8(I)). We have to see that ¢”(8(1))<=1B.B,... .
If B,=10 this holds because B starts with 1. So, assume
B,=1. In view of Lemma 5.5, ¢'({) is O-nice of order & and
o"(S()=&o"(I)) where r=I+by+b,+...+b,_,. We

note that o"([)=0"10%+11... = 0°10%+11... because '

B,;=1. Let us denote by J the sequence 0°10°110%2... . Since
S(N#01” we get that [#0°*1(10%* and, hence,
J#(0%1)”. Therefore, J is O-nice of order b and, thus,
8(J)=1B,B,.... Since I=1 and bye{b,b+1} we get
r=b+1. So, by the extremality of I, we have o ~'(I)
=1010%+11... = 10°10°110%2... . Hence, o' ({)=J and,
by Lemma 5.4, S (D=, In short,
" (8(IY)=1BB;....

Now assume that ¢™(8(1))=08,, ,B;,,... for some
I=1 (that is, B;=10). Clearly, e"(5(I))<1BB;... . On the
other hand, again by Lemmas 5.4 and 5.5 and by the extre-
mality of [, we get that

a(1)=8(o”([)= o™ (&),

where r is as in Lemma 5.5, |
Now we start looking at the properties of the kneading
invariants of rotations. We shall use the following notation,

E(x),
x—1,

if x&Z,

E(x)= if xeZ.

From Sec. I1.2.2 of Ref. 1 with the appropriate changes of
notation we have the following result which gives a geomet-
ric interpretation of the deflation operation on the kneading
invariants.

Proposition 5.7. Let [ be the kneading invariant
of the rotation by angle a. Set y=a/(1—«). Then
the following statements hold.

(1) If a<<1/2 then I is G-nice and &) is the
kneading invariant of the rotation by angle

1
Sy By

(2) If a>1/2 then [ is l-nice and &(I) is the
kneading invariant of the rotation by angle

_ vy E
Cy—E(pH+1
(3) If a=1/2 then [=(01)” and 8(I)=0% is the
kneading invariant of the rotation by angle =0.
Conversely, if I=aga,...#0" is the kneading in-

variant of the rotation by angle 3 and kN then the
new sequence obtained by applying to [ the rule

0F*Y, if i=0,
10%, if i>0 and a;=1,
0, if i»0 and a,=0,

a;—

or, respectively,

01%, if a;=0,
1, if a;=1,

a;—

is the kneading invariant of the rotation by angle o
where « satisfies the relation give in (1) and
k=E[(1—-a)/a)] (respectively, the relation given in
(2) and k=E[ea/(1—a)]).

The following lemma shows that the kneading invariants
of rotations cannot be any extremal sequence.

Lemma 5.8, Let [ be the kneading invariant of a
rotation. Then, [#01%.

Proof. Assume that [ is the kneading invariant of the
rotation with angle «. Without loss of generality we may
assume that @e[0,1). The statement =01 is equivalent to
a(ka)=1for all k=1 and, by the definition of address, this
is equivalent to the condition ka—E(ka)=1—a for all
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k=1. If « is rational, say p/q, then taking k=g we get
ka—E(ka}=0<1—a If a is irrational then the sequence
{ka—E(ka)}icn is dense in [0,1). Thus, again there exists
k=1 such that kae— E(ka)<1—a. hence, [ #017”. m

By Proposition 5.7 and Lemma 5.8 we see that if [ is the
kneading invariant of a rotation, then §"(I)#01” for all
m=0. Therefore, it is interesting to characterize the set of
extremal sequences having some iterate by & equal to 017,
This is our next step.

Let ] be an admissible sequence. We shall say that [ is ‘

periodic if it exists p>0 such that ¢”(f)=1I. The smallest
such p will be called the period of I (in this case [ will also
be called p-periodic). The sequence { is p-eventually periodic
if there exists m=0 such that o™(I) is periodic of period p.
The p-eventually periodic sequences which are not periodic
will be called p-preperiodic (or simply preperiadic). If 4 is a
finite sequence then |A| will denote the cardinality of 4.

Lemma 5.9. The only extremal 1-preperiodic se-
quence is 017

Proof. Let [ be extremal I-preperiodic. Then
I1=0d,d;5...dy_ (d,)" with m>0. If d,,=0, by the extre-
mality /== ¢ (I)=0". Hence, I =07 which is periodic, a con-
tradiction. If d,=1 then o"({)=1"<1dd,...d,_|17.
Hence, d | =d,="-"=d,_,=1 and then, I=017. u

Lemma 5.10. Let [ be extremal and p-preperiodic
(respectively, p-periodic) with p>1. Then &(I) is
g-preperiodic (respectively, g-periodic) with g<p.
Moreover, if [ is not eventually periodic then 8(I)
is not eventually periodic.

FProof. In view of Proposition 5.6, 8(1) is well defined
because  is extremal. Assume that [ is p-preperiodic with
p=>1, We have that [ £{0%,(01)*,017}. In view of Proposition
5.2, I is t-nice with 1 €{0,1} because [ is extremal. Assume
that  is 1-nice of order b with 6= 1. The case in which [ is
0-nice follows similarty.

Since [ is p-preperiodic it can be written as
ApA LA (Agy A na-)” with A;e{017,017"1
for i=0, |Ay,...A+1y,— 1| =p and k=1 is the smallest in-
teger such that Ag_y,...Ap 1Ak, - Ag+1ya-1 - Then
L)=B(B,...Biy—(Bry---Bryu—1)"  With By,
By 1#Byy--Br1yn—1 - Therefore, (I} is g-preperiodic
for some g=1. In view of the definition of & we have
|Bi|<|A,| for all i=0. Hence, ¢g<<p.

If [ is p-periodic with p>1 then [&{0%,017}. If
I=(01)" then 8({)=07 and the proposition follows. Hence,
we assume that [ €40™,(01)*,017}. Then the lemma follows
as in the preperiodic case.

Finally, in order that &(I) be eventually periodic, from
the definition of &, it follows that [ has to be eventually
periodic too. This ends the proof of the lemma. n

Lemma 5.11. Let [ be extremal such that
S(I)=0(B,B,...By)" with k=1, B;e{0,01,1,10} for
i=1,2,....k~1 and B,e{01,1}. Then [=0(B,8,...B))"
with I=1, B;{0,01,1,10} for i=1,2,..,I1-1 and
B;{01,1}. In particular, I is p-preperiodic for
some p=1.

Proof. Since 8(I)#0™ we have that {&{0%,(01)7}. If
1=01% then the lemma follows. Hence, we may assume { is
t-nice of order b1 with t<{0,1} because it is extremal.

. CHAOS, Vol. 4, No. 2, 1994 . . ; ;
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We shall prove the lemma in the casc ¢=1. The case =0
follows similarly. By the definition of & J can be written as
O1°(A,...A,—101""Y” with 4, = 01% and b,e{b,b+1}
for i=1,2,...,k—1. Thus,

I=0{1°A,..A;, 01)"=0(1"017101%2,,.01%-101)

=0(1°7'10 1M17110...1%17710 1)*,
n

The next proposition characterizes the extremal se-
quences which have some iterate by & equal to 017

Proposition 3.12. An extremal sequence | satisfies
S(DN=01" for some m=0 if and only if I is
p-preperiodic for some p=1.

Proof. Assume first that [ is p-preperiodic with p=1. If
p=1 then, by Lemma 5.9, [=01%, Assume that p>1. By
Lemma 5.10 and Proposition 5.6, &([) is extremal and
g-preperiodic with ¢ <<p. By iterating this process we obtain
that 8™(J)=01" for some m>0.

Now suppose that §”(1)=01 for some m=0. Then the
proposition follows directly from the inductive use of
Lemma 5.11. u

‘We note that, from Proposition 5.12 and the iterative use
of Lemma 5.11 we get that each extremal p-preperiodic se-
quence is of the form O(4 1)™ with A a finite sequence of 0’s
and 1’s,

From Proposition 4.3 we see that each kneading invari-
ant of a rotation { is extremal. By Proposition 5.7 we get that
8"(I) is a kneading invariant of a totation for each m=0.
Therefore, by Lemma 5.8, &7(1)#01% for each m=0. So, [
is not preperiodic by Proposition 5.12. Next we show that
indeed the extremality and the non-preperiodicity of a se-
quence characterize the kneading invariants of rotations.

Theorem 5.13. An admissible sequence I is the
kneading invariant of a rotation if and only if is
extremal and not preperiodic.

Progf. The “only if” part follows from Propositions 5.7
and 5.12 and Lemma 35.8.

Now we prove that if [ is extremal and not preperiodic
then it is the kneading invariant of a rotation. Let us split the
study into two cases.

Case {. [ is periodic. In view of Lemma 5.10, by iterat-
ing the deflation process we eventually get

81‘(!): 5}106."*10' v '062°6|(!)=0w

for some n#=0 (where &; is the deflation transforma-
tion used at the step (i) for i=1,2,...,n). Obviously, 0"
is the kneading invariant of the rotation with angle 0.
Using Proposition 5.7 we can reverse the above defla-
tion process to get successively that & '(07),
8,108, M0™),..., 87 Yo 087 1(0™Y =] are kneading invari-
ants of rotations. .

Case 2. { is not eventually periodic. In view of Proposi-
tion 5.6 and Lemma 5.10 we can apply the deflation process
infinitely many times without reaching a periodic sequence.
Let &,,...,8,.... be this sequence of deflations. Set
I,= 67108y tor w08, 1((01)™) for 1. Then [, is the knead-
ing invariant of a rotation with rational angle a,=p,/q,
with (p, .q,)=1. By using Proposition 5.7 one can check

2,1
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(see the proof of Theorem II 2.2.1 of Ref. 1) that the se-
quence {q,},<n is increasing and going to infinity with n.
Furthermore,

|an'_an+ll"<‘1/q:21

for each n. Therefore, the sequence {a,} converges to some
value o*. The map which associates the angie of a rotation to
the kneading invariant of the rotation is continuous when
equipping the set of admissible sequences with the usual
metric

o el
d({xu}nENﬂ{yu}neN)=E T"

n=0

Consequently, the sequence {[,}, -n of knecading invariants
of rotations by angle «, converges to the sequence [ which is
the kneading invariant of the rotation by angle o*. ||

VI. EXTREMAL BLOCKS

From the results obtained in Section 1V (see Propositions
4.2 and 4.3) we know that if [{(0),...,f(n—1}] is a kneading
invariant of a composition of rotations in r-circles, then

a) I(k)=k0dd,..., and

(b) (7 /(k))=7/(k)0d \d;... <o (I(k))
=7/(k)1d,d,... for each k=0,...n—1 and j=0.

Let [04g,...,(n~1)4,_,] be a set of symbolic se-
quences, where A; are admissible sequences (in the sense of
Sec. V), and let 7 be a cyclic permutation of {0,....n —1}. We
say that [0A,,....(n— DA, _ ] is an r-extremal block if

(An) kA, =40d d,..., and

(Bn) rJ(k)AT,(k)hr (k)0d ds... =T /(kA})
<7/(k)1d d,... for each k=0,...,n—1 and j=0.

Notice that these conditions correspond to conditions (a)
and (b}, and are the analogous to conditions (A) and (B)
from Sec. V for rotations.

Given an admissible sequence A =dyd | ... we say that A
is weightable of o:der m it |didiq ol
e{|od,...d, |y, |1d,...d,_4|;}, for all i=0, where
|d; ... er,|] denotes the number of elements d; equal to 1,
with i< j<i+r. That is, |d;...d; 1}, =2} {,d,ﬂ

If A is weightable of order m, we define the weight of
order m of A, denoted by w,,(4), as |0d;...d,,_,|;.

Next we will be interested in proving that all the se-
quences A; from an n-extremal block are weightable of order
#. To do it, we need some auxiliary lemmas.

Lemma 6.1. Let [04,.....(n—1)A,_] be an
n-extremal block with cyclic permutation T, and let
m k,j and j' be integers such that m Je{0,...,n—1},

bii=0, Tiky=rl(m)=1, o/(kAy= ldodl Cmd
oi'(ma,)= ldodi . Then the following hold:

(1) If du 0 then dU;&I OF d #1

(2) If d(] d() and O'J(kA )<0"’I (mAm) then
oI kA <o i (m4,).
(3) If dy#dy, and al(kA)<c''(mA,), then

o/t (k4= " (mA ).
Proof. (1) H dy=d,=0, then from the definition of an
n-extremal  block it follows that [4,=10d)..
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=g /(kA,)=100d,... and so d|=0. Analogously, we have
100...<ldydy...<I10... . Therefore it is not possible that
dy=d=1.

(2) 1t follows directly from the definition of the order
relation between two sequences.

(3) We have
IA=10d) .. =0/ (kAy)
=ldyd,...<o ! (mA, ) =Idyd) .. <l1d]... .

Since dy#dj it follows dy=0<1=4d{. Then by (2) we

obtain

ol N mA,) = 1(Dd] <Dy <o (kA
='r(l)d]...
as claimed. |
Lenmtna 6.2. Let [04g,....(n—DA,_;] be an

n-extremal block with cyclic permutation 7. Let k

and j be integers such that ke{0,....n—1}, j=0,
rik)=1, o/(kAy=ldyd,... and 1A= ld(,d‘ For
each m=1, set r,=|dy...d},_||,. Then we haue.

(0 If rp=|dg...d,_\|, for some m=1, then

" (IADp=<o" T (kA,).

(2) If r,+1=ld,y...d, |, for some m=1, then
o I(kA SO (14).

3) For all m=1 we have
Jd(l m—ll]e{’m’rm-'_l}

Proof. Since [0Ay,....(n~1)4,_;] is an n-extremal
block, IA,=10d] ...S.crf(kék)=ld(,d, Lsld) L

We stat by proving (1), The equality
|dg...d |, =rm=|di...di,_y|; tells us that for each
istm—1 such that d;#d; there exists j=m—1, j¥i with
the property that d;=d; and d{ =d; . Then, by Lemma 6.1(2)
and (3}, statement (1} holds. Statement {2} follows in a simi-

lar way. _
Now we prove (3). W I[A,=c/(kA;), then
|dy...d, | =10d]...d,,_;|, for all m=1, and we are done.

Suppose 14,<o’(kA,). Let ¢ be the smallest integer =0
such that d;=0#1=d, . Then |d,... j—lll |0d; .. iy
for all;<q, and {d,.. " Ji=11d]..dgl i =r,+1. Now we
apply ¢7* to the meqm]:ty A <o-f(kAk) and from (2),
we obtain /"1t (k4, )<U"+'(IA -

H ‘THGH(kék):O'qH([@f)s then |dy...d, 1],
=|1d;...d},_ |, for all m=g+1 and (3) follows. If
a T RA <o I(IA)), let p be the smallest integer
larger than or equal to 1 such that 4, ,=0#1= =dg, . Then
|dg...d;_ i, =|1dy...dj_(|, for all j=qg+p and
|dg...dgipl =10d]...dgypl . Now, in a similar way as
ab()ve from (1), it fo]lows TP IANs TP I RA ).

In this way we can obtain (3) inductively.

Corollary 6.3. Ler kA,=kdyd,... be a sequence
from an n-extremal block. Then Ay is weightable of
order n. Moreover, if for some non-negative inte-
gers r and s we have that o' (kA )y<o’"(kA}), then

ldrra "'d(r+l)u—llléld sn "'d(s+|)n—l|l -
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Proof. Let r=|d,...d,_\[,. We have to sec that
|diy-- s 1yu—i|y €{r,r+ 1} for all i=0. We use Lemma
6.2(3) with j=in and m=n. Then we obtain /=% because
7'=id and, hence, r,=r.

Since o"(kAy)=kdydiys ..., then |dy,..d; -l
e{r,r+1} and A, is weightable of order .

Now suppose (kA= o™ (kA and
|d g diya1yu—tl1<|dpy . d(r jyu=1]) and we shall obtain a
contradiction. Indeed, then |[d,,...dq 1) il1=0,(A4s),

|drn - 'd(r+ m— 1| 1= wn(‘ék) +1 and a-m(ké k)< U.m(kﬂ k)'

Since kA,=kOd,... S (kA )< (kA)=k1d, ...,
from w,(A,)=|0d,...d,_|, and from Lemma 6.1 it follows
a"(kA)= o RAD s T (kA D= 0" (kA,). Therefore
UM RA Y=g RA) = o (kAL).  Then  ¢"(kA,)
=k(B,...By)", where B;=d;, ...d; -, for 1sisM
and M=gcd(r,s). In this sitvation, the first n elements of
o""(kA ) and of ¢™'(kA,) must be equal to By, , in contra-
diction with our hypothesis. |

The above corollary allows us to define a deflation op-
eration A on the space of sequences from n-extremal blocks,
in the following way:

A(kék)=A(dU---du—I)A(du ---d2n—])---,

where A(dr'n'“d(rd-l)n—l):ldr-n'“d(r-H)M—l‘l_wn(’q_‘k) for
every r=0.
This deflation operation gives us a new admissible se-

quence A(kA,) for every k. We want to show that these |

sequences correspond to kneading invariants of rotations.
First of all, as for the deflation operation of rotations, we
shall prove that, in some sense, A commutes with o

Lemma 64. Let kA, be a sequence from an
n-extremal block and let r and s be non-negative
integers such that o (kA)sc™(kd,). Then
o (A(KA D)= (A(KAL)).

Proof. Set o""(kAY=kd,,...d,yp-1-. and ¢*(kA})
=kd,...dgspyo--- - Assume that |d,,...d,oqy.-]
#|d,, ...d (4 1yu-1l) - Then, from Corollary 6.3, we get that

Idrn"°d(r+l)n*I|l=wn(dk)<|dsn"'d(5+l)u—l|l
= wn(A.k)+ 1.

Therefore o' (A(kA,))=0..<1..=0"(A(k4,)) as it was
claimed.

I |d,,...di i yn1l1=1dsq .. d (54130 1]1 then it follows
that " (A(kA ) =d\d] ... and o*(A(kA))=dyd] ..., i.e., both
sequences coincide at the first symbol. Furthermore, from
Lemma 6.2(1), it follows that o+ D1(kA )=oCH (kA )
and we are in a situation which is similar to the initial one.
Repeating the same argument in an iterative way, the lemma
follows. |

Proposition 6.5. Ler {044,....,(n—1)A,_(] be an
n-extremal block. Then A(kA)) is extremal for each
k=0,....,n—1.

Proof. Since kA,=kdyd,...=k0d,..., from Corolary
6.3 it follows that A(kA,.}=0A for some admissible se-
quence A.

Now we shall prove that A(kd,)=dd|... satisfies con-
diton (B), that is, A(kAp.)=did;...<c (A(kA,))
=d;d,,...=1d|... for all r=0, Since kA;<o™(kA,),

~
L
(o}

S
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from Lemma 6.4, it follows that A(kA ) =<o'(A(k4),)). If
d,; =0 then, obviously o"(A(kA,)}=1d].... If d;=1 then,
by the definition  of  A(kAp), we have
[y iriye-1l 1 =@, (d)+ 1. Now we claim that this
equality is equivalent to the hypothesis of Lemma 6.2(2).
Indeed, if in Lemma 6.2 we take j=rn then, clearly, k=/.
So, if in Lemma 6.2 we set m=n we get that r,,=w,(Ay)
and the claim is proved. Then, since kA, <o""(kA,), by
Lemma 6.2(2) we have o'"*""(kA,)<s0"(kA,). From
Lemma 6.4 we obtain o " D{A(kA N=<0o(A(k4,)). There-
fore o (A(kAD))=10" " A(KA))10(A (KAL) =14, ... . &

We say that an n-extremal block is nonpreperiodic if
A(kA ) is not preperiodic for each £4=0,1,...,n—1. Then,
from the characterization of the kneading invariants of rota-
tions {see Theorem 5.13) and from the above statements, we
obtain as a corollary the following theorem.

Theorem 6.6. Given a nonpreperiodic n-extremal
block [0Ay,....(n—1)A, ], all the extremal se-
quences A(kAY), for k=0,1,...,n—1, are kneading
inpariants of rotations.

The next result shows that all the sequences A(kA,), for
k=0,1,...,n—1 are in fact equal.

Theorem 6.7. [04y,....(n—=1)A,_|] be a nonprep-
eriodic  n-extremal  block. Then, for all
k=0,1,...,0—=1 we fhave AOA)N=A(kA) and
wn(@(]) = wn(ék)'

Proof. Thanks to Theorem 6.6, we know that all the ex-
tremal sequences A(kA,) for k=0.1,...,n—1 are kneading

“invariants of rotations. It is well known that for a given

kneading invariant of a rotation Od;d5..., the angle e of the
rotation satisfics

o |0dydy.d, )
a=lim —— .

et n

To see it we note that d;=E(la) - E{(I—1)}a) foreach I=1.
So,

0d,dy...d,—|i _E{\d; E{n—1)a)
= = e
n n n

Now, let 7y, denote the angle of the rotation correspond-
ing to the sequence A(kA,), where A4,=04,d5... and
A(kA)=0d,d,... . By Corollary 6.3 we know that the sc-
quences A, are weightable of order 1 with weight w,(A,).
By cutting the sequence A, in blocks of length #, and by the
definition of A, we obtain

-1 1-1
|0d;"'d:11*1|1=2 Id;”...d;”+”,l|1=2 (wn(‘ﬂ‘k)
j=0 j=0
-1
+d)=lo,(A)+2 d;.
j=0

Consequently,  lim;_..(1/0)|0d]...d;;_ |, =w, (A )+ v, .
For any integer j, there exists an integer p such that pr=j
<(p+ 1)n. Then we have

r copyright; see http://chaos.aip.org/chaos/copyright.jsp
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}0‘11 ,rm+m' lll ‘-M"---d"+m—1|1

<'0dl p+l]n+rrf 1}
and. thus llm,_‘x(l/’!)‘d; j+m’~1| 1= wn(f_lk)-i- Vi - On the

other hand, since 7 is 2 cyclic permutation we may assume
that 7' ~*(k)=0. Then, thanks to Lemma 6.2(3),

|d:z—;fc du k+unl- llle{ld n.’ Il’ld m’ Il+l}’
where Ay=d{jd]... . This yields

lim (1/0]d, g .ody il 1= w,(Ap)+ 7y

n—x
and, consequently, @, (A)+ ¥, =w, A+ 7y, for all &
Since the w,(A,) are integers and the 9, are numbers in
[O,l) we have wli'(A_k)= wn(é(!) and y.é= Yo for all
k=0,1,...,n— L. This ends the proof of the theoremnt. [ |

In the sequel we shall denote y,=y,=--=1v,_, simply
by Y and wu(/ﬂ ())= wn(’ﬂ l) = =wn(4k) by w.

VIi. KNEADING INVARIANTS

From Sec. IV we already know that the kneading invari-

ants of a composition of rotations in # circles satisfy condi-
tu\nc {An ned (nn\ ]F we Hﬁlnlr the case

Y. nf tha rontatinne
HH R \u; anc \LFIXy L in ulv peroy

the nonpreperiodicity of an extremal block is the straightfor-
ward candidate to the property we need to complete the char-
acterization of the kneading invariants of a composition of
rotations. However, as the following example shows, a stron-
ger condition is needed. ‘
Example 7.1, Let ./=(04,,14,) be with
Ap=01(111110Y" and A | =(0G11111)". It is not difficult to see
that, if we take 7(i)=i+1 (mod2) for i=0,1, this is a
2-extremal block and that A(A,)=A(A)={011)". Since
A(A,) and A(A ) are not preperiodic then the block . /4 is
nonpreperiodic. Let us see that, indeed, . # is not the knead-
ing invariant of any composition of rotations in 2-circles.
Otherwise, there exists f, having # as the kneading in-
variant. Then, the address of f7. % ,(0) is 1. Hence, f,. LA0=0.
On the other hand, since (011)” is the kneading invariant of
the rotation by angle 2/3, the map fr (,|m 1y i8 just this rota-
tion. So, (f2,)°(0)=f2 .(0)=0; a contradiction. ]
Next we state the stronger condition we need. Let
[04,,....(n—~ 1A, _,] be an n-extremal block. We say that it
is strongly nonpreperiodic if each of the sequences A, for
k=0,1,...,n—1 is not preperiodic. Then we have the fol-
lowing theorem which is the main result of this paper.
Theorem 7.2. A kneading invariant of a composition of
rotations in n circles is an n-extremal block which is nonpre-
periodic and strongly nonpreperiodic.
To prove this theorem we need to show first which is the
geometrical meaning of the deflation operation on the knead-

varianfe nf tha sramnncitinn nf rakatinng in mrelag Wa
IIIB J.llVCllJ.CIllI.a Ui bUllll)UDlllUll UL LULALLVILY 11l u AL ILD. VYL

do this in the following proposition. We shall use the follow-
ing notation. Let [(x)=kdud, ... be the itinerary of a point by
a composition of rotations in # circles. Then the admissible
sequence dyd, ... will be denoted by 1 1(x).

Proposition 7.3. Let [1(0),....l{n—1)] be the kneading in-
variant of a composition of rotations in n circles f, .. Then
the following holds:
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(@) w=w,l0)==w,dn-1))=E (/2 a()).

{b) For k=0,1,..
angle y=3"2)a({) and kneading invariant
:A(1(1))““'—A(I(n—1))

Den o
i J'UUJ‘ 1 irst we pluvv Wy,

W—1 the map f, alﬁ, k1) 15 a rolation witl

AU()

{
ffn_ff".(v+nﬂ1'+"'+cr°'r""l (*)

Since 7is a cyclic permutation, 7'=id and hence f7 .|z c41)
is a rotation of angle (a+aor+---+ae? ')(k) for all
k=0,...,n—1. Now we prove that the kneading invariant of
such rotation is A{J(0)).

Denote by dgd]... the kneading invariant of f7 |i x4 1y
Then, in view of the definition of address, d,, is 0 if £ 7{k)

is smaller_than k+1-—a and | otherwise, where «
=310 a(r () -E[2i-d a(r' (k).
By (*), we have
mn—1 'f =1 \‘

=0 i=0

f"m(f() kY + E &(#(k))—E( E &(T’(k)))

Therefore,

n-1 n—1
k) =k+m Y, a(f‘(k))—E(mZ Gt DIR

f=A} i={)

because 7'=id.
For shortness denote S"Z) @(7'(k)) by B. Hence d/, is 0
it (m+1)B-FE(mp)<1 +E(B) and 1 otherwise, Set

AUk =dod] ..., then

d;;:= A(dnm . "d[rn+ -1 ) = |dnm -- 'dtm+ IBITES ll 1
w:r(ék) = IdﬂHl "'d(m+ I )n—-ll 17 |d(ldl "'du— l| 1.
Hence, by Proposition 4.2 and the fact that

—n=1 .
|dnm "'d(m+ 1yn— ll!_2f=() dnm+i » WC obtain

dy=E((m+1)8)=E(mp)—E(B).

Therefore, d, is 0 if E((m+ 1)B)—E{(mp) is E(B) and 1 if
E({(m+1)B)—E(mp) is E(B)+ 1. Since

E{(m+1}B)—E(mB)ys(m+1)B—E(mp)

then d,, and d}, must coincide. Thus, the kneading invariant
of f1aliks+1y 18 AU(k)) for each k=0,1,...,n— 1. Since
fr.aliks+1) are the same rotation for all &, it follows that -
their neading invariante are all A{F{DN)

HUAEL RLVAlig RV AL LAl kv all g A)r

Now we prove (a). In view of (b) and Theorem 5.13,
(0),....0(n—1}]is nonpreperiodic. Then, thanks to Theorem
6.7 it is enough to compute w(I(O)) We proceed by induc-
tion. Set I(O) = 0d,d,... . Then |0|,=0=E(&(0)). Assume
now that [0d,...d,|,=E[Z!. (,5/(;)] for some I=0. We shall
prove that |0d,...d,, |, =E[Z!1}&(i)]. This will end the
proof of the lemma. As in the proof of Proposition 4.2 we
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have that d,.,=1 if and only if S, &(i)
—E[=! Uc'1r(i)]>l— afl+1). That is, d;, =1 if and only if
EHla(r)}E[Z _ea(D]+1. Consequently, if diy,=1 we

have E[(z!t “c'r(z) =E[3!_,a()]+1 and then
|0d,....d, .| = z“},a(z)] If  d;.,=0,  then
E[Z“‘c’r(:)] E[Zi_o&(i)] and hence [0d)..dy |,
HE[E; ua’(f)] ' |

Proof of Theorem 7.2. The extremality and the nonprep-
eriodicity follow from Propositions 4.3 and 7.3, and Theo-
rem 5.13. Let us prove the strongly nonpreperiodicity. As-
sume that [[((}),...,I(n—1)] is the kneading invariant of a
composition of rotatlons in n circles f_, . We suppose that it
is not strongly nonpreperiodic and we shall obtain a contra-
diction. :

Suppose that there is some ke {0,1,..
!(k)=kd(]"'d.ur(dm+l m-%p)‘y with dm%dm+p for some
m=0 and p=1, Let /=7"(k). From the extremality of the
kneading invariant it follows that

AY—= T4 £
}

=14 { Bt J1 AT
LG A =i1dy

A 1 AR
Hmtpt \er7
for i equals to m and m+np. Since d,,#d,,, ,=d, ;,,, ¢i-
ther d,, or d,,; ,p, is 0 and the other symbol is 1. Thus, by

applying o to the above inequalities, from Lemma 6.1 we

- "
obtain that {""er] “’an) S"’V(’”)}E{d e "!m+p) .

Then I(/)=10(d,+,...d,, ;)" and so, A([({)) is eventually
periodic. On the other hand, from Proposition 7.3 it follows
that A(I({)) is the kneading invariant of the rotation
fr.alj41)- Then, from Theorem 5.13, A{{({)) is a periodic
sequence (0b .. f_|) for some g=1 and f (,|“,+|) isa
rotation by a Td[l()ihl] angle. Therefore, in view of Ref. 1, all
the points in [/,/+1) have one of the sequences
g {(0b,...b,,)") for j=0,1,...,g—1 as itinerary under
f’;z:rI!LH- -
From the fact that either d,=0 or d,,,+,,p

or  conversely and since I{fL () =a" (k)
=ld(dy 41 dysp)” with ie{m,m+np}, there exists a
point x in [£,/+ 1) having itinerary /1(d,,+|...d,,4,)" under

F Thine froam the dsafinitinn nf At ‘Fn"nuzc that ﬂ"hﬁ )(‘H -
J oo+ 2045 ITCM NG GCNRINON O O 1 I0a0WS a8t U -
ltmerdry of x is (lby..b,_)”". But, smce
|]b| ({ 1[ :/:lob[ ,l—lll’ wg get that
(lbl q I) q&UJ((Obl q—l) ) for all J’ 0,1,. g
—-1;a contradlcnon [ |

VIIl. ON THE CONVERSE OF THEOREM 7.2

 In the previous sections we have shown that each knead-
ing invariant of a composition of rotations in # circles is an
n-extremal block which is strongly nonpreperiodic and non-
- preperiodic. To show that these conditions characterize in-
deed the kneading invarianis of the compositions of rotations
in # circles we have to show the converse. To do this we
propose the following procedure.

We shall start by defining a deflation operation p on the
space of sequences of n-extremal blocks which can be
though of as a “local” version of A,

Let . #=[04,,....(n—1)A,_] be an n-extremal block
with a cyclic permutation 7. Set kA,=kdid%... for all

-2 -2 -2
k=0,1,...,n—1 and ==|d] W,a7 ", = q7 O,

Then, for k= 7(0) with j=0,1,...,n—2, we define

plkA ) =p(k)didy ...dY

n—j—3
(dn i— 2’ H i l)dﬁ -j dgn—j—ﬁ*
(dgn ]*’Udgn j*l)dZH Jj
where p(d?, _;_ydb._;_)=d f"_ﬁz,d‘f’.,_l_ ||~ for all
rz1 and
(k, if k<77'(0),
PUY=i =1, it k>7""1(0).

Let /=7""1(0). From Lemma 6.2(3) it follows that
plkA) elp(R)}x{0,1}  for each k#I. We denote
[p(04g),.. ,P((l 1)Ar P+ DA LD, ,P(( DA4,-)]

Tas: ~f /Y oS | R SO PPN BV .
Uy P\ s l llCll lllb LULIUW ll[g Cdll SLLAIEILUI-
wardly

Proposition 8.1. Let . #=[04,...,(n—1)4,_,] be an
n-extremal block with a cyclic permutation v Then

L smerne

o€ prov Vel

(1) p(. #) is an (n—1)-extremal block with cyclic
permutation v such that 7' (p(k))=p(7(k)) for
all k#7'7%0) and 7 [p(r"~(0))]=0.

(2) p" ' A)=AkA) for all k=0,1,...n—1.

Moreover, we conjecture the following

Conjecture 8.2, If . < is an n-extremal strongly
nonpreperiodic block, then p(. %) is also strongly non-
preperiodic.

We note that in the case of rotations the notion of
strongly nonpreperiodicity coincides with the notion of non-
preperiodicity. Therefore, as an immediate consequence of
the above conjecture and proposition we obtain

Corollary 8.3. Any n-extremal strongly nonpreperiodic
block is nonprcperiodic

nnnnnnnn Q

Moreover, L,Ullju.,lulu 8.2 ‘"; us
prove the converse of Theorem Thi
the following new conjecture.

Conjecture 8.4. Let . 7 be an n-extremal nonpreperiodic
block. If pl. ) is the kneading invariant of a composition of
rotations, then sois. 7.

Finally, if the above two conjectures hold, we obtain the
following characterization

Theorem 8.5. A block . # is the kneading invariant of a
composition of rotations in n circles If and only if it is
n-extremal and strongly nonpreperiodic.

Concluding Remark. As it has been said in Secs. I and
11} the coding at the level of the composition of rotations in
n circles is easily translated to the natural coding of curves in
a tubular neighborhood U of the heteroclinic cycle.
Theorem 7.2 and the results and conjectures in this section
characterize the coding of the unstable branches of the sin-
gularities py, py,..., pu— for the perturbed vector field sat-
isfying H, to Hg in U. The big open question is to describe
these codings in the general case, that is, if we do not restrict
the allowed perturbations to the n-dimensional subvariety of
the parameter space described by H; through H,.
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