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L t Sl Sl Sl b . I A .. . I· f ,,-lSI ,,-lSI h· e 0, 1, ... , II-I enclfces. rotahonmnCtrCeSlsamap :Ui=o i----joU ;=0 i W lchmaps 
each circle onto another by a rotation. This particular type oE interval exchange map arises naturally 
in bifurcation theory. In this paper we give a full description of the symbolic dynamics associated 
to such maps .. 

I. INTRODUCTION 

In bifurcation theory, we often have to deal with a criti­
cal vector field in R"', m '" 2, which satisfies the following 
properties: there exists a finite sequence of singularities, Po , 
PI "",PIl-I , of saddle type with only one unstable direction, 
and a sequence of 2n heteroclinic or homoclinic orbits, r 0,0 , 

fO,l , ... ,fi,o, f i,l , ... ,fll - 1,0, f ll - 1,1 ,joining one of the p/s 
to another. Such a configuration is called a heteroclinic cycle 

(see Fig. 1). It turns out that, in many situations, the set r= 
U;'~d(ri.OU r i• l ) is an attractor. In such a case, we call it a 
stable heteroclinic cycle. 

Stable heteroclinic cycles are obviously not structurally 
stable, and consequently the following question arises: 

Question: Consider a $)"1 vector field in Rill, m ~ 2, with a 
stable heteroclinic cycle r. What happens in a neighborhood 
of r when we perturb the vector field in the fj' topology? 

This question has been completely answered, in the par­
ticular case called "gluing bifurcation," of a configuration 
involving only one singularity.1-3 

However, so far, there is no answer'in the general case, 
which remains, very interesting for the following two rea­
sons: 

First, it is not an academic generalization of the gluing 
bifurcation: there exist some extra difficulties related to the 
increasing richness of the possible dynamical behavior. 

Second, stable heteroclinic cycles (with more than one 
singularity) occur in problems of bifurcation coming from 
the PDEs world (for instance hydrodynamiCs4

). 

In this paper we focus our attention to a particular class 
of (stable) heteroclinic cycle. These cycles will be called 
rotating (stable) heteroclinic cycles (see Fig. 2) and corre­
spond to the case when the two heteroclinic or homoclinic 
orbits rj,o and ri,1 , emanating from a singularity Pi' end at 
the same singularity Pi. 

Consider now a Z"l vector field X 0 in RfII with a rotating 
stable heteroclinic cycle r and assume that the linearized 
vector field DXo(P,), at each singularity Pi' is such that its 
dominating stable eigenvalue is real. Then, generically, there 
exists a rigorous way to reduce the dynamics of any vector 
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field X, fjl-close to X 0 in a neighborhood of r, to the dy­
namics of a map fixi on the interval with a finite number of 
discontinuities (see Fig. 3). Furthermore, this map is mono­
tone and is a contraction of each interval of continuity. This 
reduction to a one-dimensional dynamics is the subject of 
Sec. II. 

Some simple extra conditions on the vector field Xo 
~i!lds maps fix) from the union of n intervals into itself, 
mapping one interval into another with a single discontinuity. 
in each interval. 

For a vector field X, fjl-close to Xo , there is a natural 
way of coding the invariant curves of X which remain in a 
neighborhood of r. 

Roughly speaking, we can code an invariant curve with a 
periodic sequence of 2n symbols corresponding to the fact 
that the curve has to follow successively some of the 2n 
heteroclinic or homoclinic orbits of Xo . In Sec. III, we show 
how this coding corresponds, on the interval, to the classical 
Milnor-Thurston coding for the periodic orbits of the map 

fix)· 
We show also that each code of a periodic orbit of fix) is 

also the code of the periodic orbit of a map fix) which also· 
has one discontinuity in each interval. the same monotonicity 
type of fix) but which is an interval exchange. 

When this interval exchange preserves the orientation it 
can be seen as a map from the union of n- circles into itself, 
which maps each circle onto another by a rotation. We call 
this type of map a composition of rotations in n circles (see 
Fig. 4 for an example of these maps). Sections IV-VIII are 
devoted to' the study of the symbolic dynamics of these 
maps. 

FIG. 1. Some heteroclinic cycles. 

© 1994 American Institute of PhYSics 407 

Downloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



408 Aiseda, Gambaudo, and Mumbru: Stable heteroclinic cycles 

FIG. 2. Some rotating hctcroc1inic cycles. 

II. ROTATING STABLE HETEROCLINIC CYCLES 

We note that most of the techniques used in this section 
are now quite standard. We refer to Refs. 1 and 2 for the 
details of quite similar proofs. 

Let Xo be a 10' vector field in R''', m~2, such that: 
Hypothesis H, . Xo possesses n hyperbolic saddle sin­

gularities Po, PI ,···,Pn-l; 
Hypothesis H2 • The linearized vector field DXo(p,) at 

each singularity Pi' after a smooth change of coordinates, 
reads 

j=m k=m a 
+2: 2: fLj,xk ax. ' 

j=2 k=2 } 

where 

0<A.;,I<-"'i,2, 

and 

A'.2= max Re A,.,; Ai,k E Spec DXo(P,) - {A",}. 

Hypothesis H3 • There exists a map r:{O,l, ... ,n -I} 
--->{O,l, ... ,n-l) such that, for each iE{O,l, ... ,n-l}, the 
two homoclinic or heteroc1inic orbits r i, 1 and r i,O emanating 
from p, end at PT(') . To fix the notations, we can assume that 
r", (resp. r"o) is the orbit starting at p, on the side x,>O 
(resp. x, <0). 

Hypothesis H4 . We know that, with the above condi­
tions, both orbits [;,0 and f;,l arrive to P7(i) tangent to the 
line Xl =X3 = ... =Xm =0. In addition to this generic condition 
we assume that these two orbits arrive to P ,(i) at the same 
side: x,>O. 

It is very easy to check that, thanks to the conditions we 
have given on the eigenvalues of the linearized vector field at 

FIG. 3. A map fIx] . 

FIG. 4. A composition of rotations in two circles. 

each singularity, the rotating heteroclinic cycle r we have 
defined is stable (see Refs. 1 and 2). More precisely, let 
'PoCt) be the "time t" map of the flow induced by Xo . Then, 
there exists a neighborhood U of r such that 

'Po(U,t)CU for t~O 

and 

r= n 'Po(U,t). 
t;;'O 

Furthermore, this neighborhood is also invariant by the 
"time t" (t~O) map of the flow of any vector field /iI-close 
toXo · 

Thanks to the hyperbolicity of the singularities p, , and 
up to a smooth change of coordinates, it is not restrictive to 
assume that for any vector field IO'-close to X 0 , the points 
Po, PI,···, P 11-1 remain hyperbolic singularities, the local 
stable manifold is given by the equation x] =0 and the local 
unstable manifold by the equations X2=X3= ·"=x",=O. 

For hand r positive and small enough consider, near 
each singularity Pi' the rectangle R i defined by x2 = hand 
IXj I<r for j=1,3, ... ,m (seeFig. 5). 

By following the flow induced by X 0, the rectangles 
R"o=R,n{x, <O} and R,,] =R,n{x]>O} are mapped in 

Xt 

r 

FIG. 5. The rectangle R; . 
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I 

Ri,t 

R, f--R-,-,o----='+-_____ + 

FIG. 6. The standard situation for Xo , 

RT(j) on two singular triangles whose singular extremities lie 
on XI =0 (see Fig, 6), These points correspond to the inter­
section off"o and f,,1 withR~i)' 

For a perturbed vector field X, f?1-close to X o , we have 
the same situation except that the two branches of the un­
stable manifold at p, do not need to cross R~,) on the line 
x,=O (see Fig, 7), In other words, we may not have a het­
eroclinic or a homoclinic connection. 

The two maps we have constructed from R"o to R~i) 
and froI? R"I to R~,) can be extende~ by continuity to maps 
flam Rj,o to R7(j) an_d from Ri,l to RT(j) , where 
R"o=R,n{xI<>O} and R"I =R,n{xI~O}, This yields a 
map T lx]" :R,-'>R~,) which is bivalued on the line XI =0, 

From Hypothes}s H2, it}s easy to check that the maps 
T[X),i restricted to Ri,o and Ri,l are contractions. 

We set 

11-1 II-I 

Tlxl : U R,-'> U R, 
j=O i=O 

by TIXIIR, = Tlxl" ' 
Let us now assume the following generic condition. 
Hypothesis Hs ' The images by TIX)" of the two arcs 

')",1 (I) = {(XI'"'' xm)}lx I = t~O, x2 = h, x,= 0, i~3} 

and 

')'"o(t) ={ (XI, ... , Xm)}IXI = t<>O, X2= h, x,= 0, i~3} 

are not tangent at t=O to the hyperplane XI =0. 
With this supplementary condition, we can prove (see 

Ref, 1) that in each R, there exists a f?1-codimension 1 fo­
liation invariant· by T[xJ (this foliation contains the leaves 
XI=O). 

The dynamics on the leaves is a contraction and, on the 
quotient space (which is one dimensional) we are reduced to 
a map fiX) on the union of n intervals 1,=[ -r,r] such that 
fIX)(I,)CI T(i) and 

f(xI,'(x) = f(XIII/X) 

{
I", I+c, Ix"'+h.o.t. 

/-hi,O + C i,OX
aj + h.o.t. 

I 

Ri.1 

R,I--R-"o----_1 _____ +_ 

if x~O, 

if x:=;:;O, 

FIG. 7. The standard situation for X, r.:;1 close to Xo. 

FIG. 8. A simple oriented closed curve with code (0,1) (1,0) (0,0) (1,0). 

where Oi,= - 11.,,2/11.,,1 (recall that the neighborhood U and 
consequently r have to be chosen small enough so that 
flx),il{,,,o} and flx)"I{,",o} are contractions). 

III. SYMBOLIC DYNAMICS 

Consider a vector field X 0 with a stable heteroclinic 
cycle f, and let U be a small tubular neighborhood of f. Any 
oriented simple closed curve in U yields, by retraction, an 
oriented loop in f. This loop is homotopic to a loop consist­
ing on a succession of arcs fi,o or fi,I followed in a positive 
(time increasing) or negative direction. Consequently, to any 
oriented simple closed curve in U we can associate a periodic 
sequence ( .. .xOXI ... XIXO"') of symbols in {-I,l}X{O,I, ... ,n 
-I }X{O,I}. If this simple closed curve is an invariant curve 
of a vector field f?1-close to Xo , then the coding is simpler 
because there is a natural orientation of the orbits in U. It 
follows that the corresponding sequence will be in {I} 
X{O,I, ... ,n -l}X{O,I}. Consequently, we can forget about 
the symbol {I} which means the time increasing direction 
and associate, to each invariant curve Y in U of a vector field 
f?1-close to Xo , a sequence of symbols I(Y)={YI} where 
the y/s belong to {O,I, ... ,n-I}X{O,I} (see Fig. 8 for an ex­
ample), 

Assume now that the vector field X satisfies the assump­
tions from HI to Hs. A simple oriented closed curve in U of 
a vector field X, f?1-close to Xo , corresponds to a periodic 
orbit of TIX ) and i[X) . 

This curve is a stable periodic orbit of X if its corre­
sponding periodic orbit of TIX) (resp. of fiX) avoids the line 
XI =0 (resp, the point ° in each I;). If not, it is a homoclinic 
orbit (see Ref. 2). 

To a periodic point x of TIX) (resp, of fiX) we can as­
sociate a periodic sequence (Y,) in the symbols {O,I, ... ,n-l} 
X{O,I} by setting yl=(m[o8,) if and only if T'(x) ERm"" 

(resp. i'(x) El, and i'(X)81~0). 
It is straightforward to check that the code I(Y) of an 

oriented closed invariant curve in U of a vector field X, f?1-
close to X ° , coincides with the code of the corresponding 
periodic orbits of TIX) and fiX) defined above, 

In the sequel, we are going to describe the different 
codes we can get for periodic orbits of the maps fiX)' In 
order to do it, let us consider a periodic orbit e of a map fiX) . 

By changing the position of the points of e in the inter­
val without changing their mutual order nor their positions 
with respect to zero, it is easy to see that there exists a map 
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o Ji 

FIG. 9. The map fix] when the hypotheses from HI to H6 are fulfilled. 

11-1 II-I . - -
fiX]: U Ii-'> U Ii' 

;=0 ;=0 

where Ii are intervals which contain zero and satisfy the 
following conditions: 

(i) fix) po~sesses ~ discontinuity zero in each interval Ii; 
(ii) maps Ii onto I ~') ; 
(iii) it is an isometry on each interval of continuity (with 

the same monotonicity as fix); 
(iv) it possesses a periodic orbit with the same code 

(with respect to the new natural partition) as O. 

By construction, this map fix) is an interval exchange trans­
formation. 

To understand the symbolic dynamics of the invariant 
closed curves in U of a vector field VI-close to Xo, it is thus 
necessary to understand the symbolic dynamics of some 
classes of interval exchanges transformations. This is a sub­
ject too vast and too rich. In the next section we are going to 
restrict our attention to the description of the symbolic dy­
namics associated to a special class of interval exchange 
transformations: 

Hypothesis H6 . Assume that on each interval of mono­
tonicity the functions fix) and fix) are increasing 

and that f['.,.).i(O+) < 0 < fix).,(O-). Assume also that 
T is a bijection and that the intervals J, 

=[f(:r1.r -1(i)(O+),fi~-I,r -1(i)(O-)] have all the same length 
and satisfy 

11-1 11-1 

f[x]( U J,) C U J,. 
i=O i=O 

Notice that Hypothesis H6 is nothing more than condi­
tions on the heteroclinic cycle r (T bijective) and on the type 
of perturbed vector fields allowed. More precisely, one can 
think on the perturbations on the vector field in the following 
way. We can unfold the bifurcation diagram around the 
stable heteroclinic cycle in a 2n-parameter space. Each pa­
rameter corresponds to the breaking of a heteroclinic connec­
tion. In this setting, Hypothesis H6 restricts the allowed per­
turbations to a submanifold with dimension n in the 
parameter space. 

With all these restrictions, fix) maps each interval J, 
onto J ~i) as follows (see Fig. 9): 

(i) It possesses one discontinuity at 0; 

(ii) it is increasing with slope 1 on each interval of con­
tinuity; 

(iii) it is surjective; 
(iv) it is injective in the interior of J, but the two end 

points of J i have the same image. 
By identifying the end points of the intervals J, we get a 

map F[xJ from the union of n circles sA, sL""S}'_l into 
itself (each of these circles has an origin 0) with the follow_ 
ing properties. There exists a bijection r.{O,I, ... ,n-l} 
-,,{O,l, ... ,n -l} and a map a:{O,I, ... ,n -l}-'>R such that 
FIX)(S!)=S~(i) and p~,)oFIXllsloPil is a rotation with an 

angle a(i), where Pi is an identification of the circle sf to a 
reference circle SI, 

We call these maps compositions of rotation in n circles. 
They will also be denoted by F r, •. 

Remark 3.1. The composition of two compositions of 
rotations in n circles is again a composition of rotations in n 
circles. More precisely, we have 

F r,aoF r',a' =F 'fOT' ,a' +aOT' . 

o 
Remark 3.2. If in the definition of a composition of 

rotations in n circles we replace the assumption that 'T is a 
permutation by the weaker assumption that 'T is just a map, 
then it is easy to reduce this problem to the case in which T 

is bijective. Moreover, since each permutation can be decom­
posed in a product of independent cyclic permutations, the 
case in which T is a cyclic permutation is the one which is 
going to keep our attention in the sequeL However, the study 
of certain compositions of rotations in n circles with T not 
being a cyclic permutation (mainly the case r=id) is still 
important and will be done later. 0 

In the rest of the paper we are going to study the sym­
bolic dynamics of this class of maps. In fact we shall look for 
the characterization of the kneading sequences associated to 
a natural coding and we shall describe some of their proper­
ties. 

IV. SYMBOLIC DYNAMICS OF COMPOSITIONS OF 
ROTATIONS IN n CIRCLES 

We shall start by choosing a model to represent the com­
pOSitions of rotations in n circles. In what follows we shall 
denote by E (.) the integer part function. Let a be a map from 
a subset of Z to R. We shall denote by a the decimal part of 
a (Le., a = a-Eoa). 

We shall model a composition of rotations in n circles 
Fr,. by a map fr,.:[O,n)-'>[O,n) defined in the following 
way. First, to a point x of [O,n), we shall associate its address 
a(x) as follows: 

[
0, 

a(x)= 1, 
if E(x).;;x<E(x)+ 1- a(E(x», 

if E(x)+ l-a(E(x».;;x<E(x)+ 1. 

Then we set (see Fig. 10) 

fr,a(x) = T(E(x»+ x - E(x) + a(E(x»- a(x). 

Remark 4.1 We note that if xe[k,k+l) with 
ke{O,I, ... ,n-l}, then fr,.(x) e [T(k),T(k+ 1» and, if we 
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FIG. 10. Some compositions of rotations in two circles. 

identify the circle sf with the interval [i, i+ 1) for each 
i= O,I, ... ,n -1, then p 7(ktf7,.oP;; J is a rotation by an angle 
a(k), 

The itinerary of a point is then defined by the sequence 

[(x) =E(x)a(x)a( f 7,.(x»a( f ;'.(x»·'· . 

The n-tuple of itineraries [[(O),[(1), ... ,[(n -1)] will be 
called the kneading invariant associated to f 7 a' We note 
that all itineraries of the form [(k) with k EjO,I, ... ,n -I} 
start with kO ... , That is, they can be written in the form 
[(k)=kOd j d2 ... for each k=O,I, ... ,n-l. 

We endow the space of itineraries with the following 
total ordering relation: 

sdod J •••••• <s' d~d;··· 

if either 

s<s' 

or 

s=s' and dk<d", 

where k",O is such that d;= d; for i= 0, I, ... ,k-I and < is 
the usual ordering of real numbers. Clearly, x"'y implies 
[(x)g(y), 

Finally we define the shift operation (Y in the space of 
itineraries by 

dsdod J ••• ) = r(s )d j d2 .... 

We note that the shift operation depends on r and, therefore, 
on the map under consideration. In what follows we shall 
denote the composition uouo"'O(y (n times) by <7". As it is 
usual, for each x E [0, n) we have 

(Y([(x»=[( f7,.(x». 

The fOllowing proposition gives us an algorithm to com­
pute the kneading invariant associated to f T,a • 

Proposition 4.2. Let f7,. be a composition of ro­
tations in n circles. Let k E {O,I, ... ,n -I} and 
[(k)=kdod j ... '. Then, 

=0,1, .... 

Proof. From Remarks 4.1 and 3.1 we obtain by induction 
that 

for 1"'0. Thus, 

Hence, d{=1 if and only if 

Therefore, 

• 
A first characterization of the kneading invariant of a 

composition of rotations in n circles is given by the follow­
ing proposition. 

Proposition 4.3. Let [[(O), ... ,[(n -1)] be a knead­
ing invariant of a composition of rotations in n 
circles f7,.' Let kE{0,I,2, ... ,n-I} and j"'O. Then 
we have 

[( r j (k» = r j (k )Od j d2 ' •• '" (Y j ([(k»", r j (k) Id j d 2 .... 

Proof. Since for each x E [O,n) we have d[(x» 
=[(f T •• (X» it follows that a j([(k»=[( f~,.(k» 
=[( fTi,.+.?T+.'T'+"'+.'Ti-1(k». Therefore, f~,.(k) 
E [rl(k),rl(k)+ 1). On the other hand, if xE[l,l+I) we 
have that [(l)=lOd j d2 ... "'[(x)"'IId j d2 ... • This ends the 
proof of the proposition. • 

We are interested in giving a full characterization of the 
kneading invariants of the compositions of rotations in n 
circles. To do this, in addition to the above two properties, a 
third condition is necessary. It turns out that this last condi­
tion is strongly related to the characterization of the kneading 
sequences of rotations. Therefore, we shall study first this 
particular case. This is the subject of the next section. 

V. ROTATIONS 

The main results in this section are closely related to the 
ones developed by Morse and Hedlund in Ref. 5 when study­
ing Sturmian series and follow the ones from Gambaudo (see 
Ref. 1) with few improvements. We are going to characterize 
the kneading invariants of rotations by means of some struc­
tural properties among which the lexicographical ordering of 
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sequences plays a fundamental role. However. in Ref. 5, dif­
ferent motivation can be found. [n fact, they study the rela­
tion between rotations and all associated symbolic sequences 
(not only kneading sequences) through the rotation number. 
Therefore, because of these differences in motivation and 
approach with Ref. 5, and also for completeness we shall 
develop Our own study in full detail. 

A rotation can be modeled as a composition of rotations 
in 11 circles in the trivial case in which 11 = 1. Then, of course, 
r-::id. 'We note that in the case 11> 1 and 7'=-id we have n 
noncoupled rotations and, hence, the characterization of the 
kneading invariant in this case follows directly from the cor­
responding characterization for rotations. 

When we consider a rotation as a composition of rota­
tions in One circle the use of T is superfluous and, hence, it 
will be omitted. Also, a(O) will be denoted simply by a. 
Moreover, the usc of the first symbol in the itinerary of a 
point is also superfluous and So it will be removed. Thus, 
when talking about rotations, the itinerary [(x) of a point 
will be defined to be the sequence 

a(x)a(f,,(x) )a(f;,(x))'" . 

We extend the notions of kneading invariant, ordering of 
itineraries, and shift operation to this new framework in the 
natural way. 

From all that was mentioned in the previous section it 
follows that if [= dod I'" is the kneading invariant of a rota­
tion, then it satisfies the following two conditions: 

(A) do=O; 
(B) [';(J"j(l)';ldld, ... for all j'30. 
We want to see that each kneading invariant of a rotation 

satisfies one more condition. This third condition, together 
with conditions (A) and (B), characterizes the kneading in­
variants of rotations. This will be shown at the end of this 
section. To state the property of rotations we are looking for, 
we need some definitions and technical lemmas. 

An infinite sequence of O's and I's will be called admis­
sible. If, in addition, it satisfies properties (A) and (B) then it 
will be called extremal. 

Lemma 5.1. Let [=dodld, ... be extremal and let 
l~j<k be such that d] ... dj_l=dk_j+l ... dk_l and 
dj'F dk . Then dk- j= d j . 

Proof. Since [ is extremal we have 

[=Od I ... dj_Idj ... .; (J"k-jW 

=dk_ jd,_ j+ I .. . d,_ Id, ... .; [d I" .dj_ ,dj ... 

If dj=1 and d,=O then, from the first inequality it follows 
that d,_j=l=dj . If dj=O and d,=1 then, from the second 
inequality we obtain dk_j=O==dj . • 

Proposition 5.2. Let [ be an extremal sequence different 
from OX and 01x

. Then there exists b'31 such that [ is 
either OlbOl b IOl b 20 ... or Ob+'10 iJ qOb21... with 

b,E{b,b+l} for all i'3l. 
Proof. Let [=Odld, ... . By using Lemma 5.1 with j= I 

we get d'_I=d l for all k>1 such that d,*d l . That is, if 
dl =0 then in the sequence [ there always is a 0 before any I 
and if d I = I then there is a 1 before any O. Then, [ is either 

Ol" II01 iJ IOl b20 ... or Oh ll lO"QOIJ2 ... where bi~l for all 

i'30. Assume that [ is of the form 0"01 O"iJ 0"' .... The 
proof in the other case follows similarly. 

Since l is extremal, for i'30 we get 0"010"'1. .. 
~ (J'lIli(l) = 0"i10I>i+I1. .. :::; lObo- 110b]1. .. with m;=i 
+bo+bl+···b i - 1 • Hence, bi:S;.b(). Similarly,Obu1 0"1l ... 
:::;; (J"lIIi-l(l) = lOhilObi+ll ... ~ lOhn- l l0b ]I ... and 
hence, b,'3bo-1. [f bo>1 we set b=bo-I and [ 
= 0"+110"'10"21... with b,E{b,b+l} for all i'30. [f 
1>0=1 then we set b=1 and we get [=010101... 
=011>01"'0["2 ... with b,=b for all i'31. This ends the 
proof of the proposition. • 

The above proposition motivates the next definition. Let 
[ be an admissible sequence. We shall say that l is a-nice 
(respectively, I-nice) if there exists b;;31 such that 
I=O"HIOh]10 iJ2 1 ... (respectively, I=Ol hoOl/JIOl iJ20 ... ) 
with b, E {b,b+ I} for all i'30 and b,=b+ 1 for some i. The 
number b will be called the order of l. A nice sequence will 
be a sequence either a-nice or I-nice or equals to (Olr or 0" 
or 01"'"', 

Remark 5.3. Notice that each sequence of the form 
(O[kr with k>1 is I-nice of order k-1. Therefore, in view 
of Proposition 5.2, each extremal sequence is nice. However, 
as we shall see later, there exist nice sequences which are not 
extremal. 0 

Now we define the deflation operation 8 from the space 
of nice sequences to the space of admissible ones. First we 
set 8((0I)")=8(0")=0~ and 8(01")=01". Next we define {; 
on the rcst of nice sequences. Let I be a I-nice sequence of 
order b. If t = I and [= A 1,4 lA, ... with A, = 0 I"; for i '3 0, 
then we set 8(l)=BoBIB, ... , where 

(
0, if A,=OI", 

B,= (ll if A.=OII>+I , , , 

for i'30. If t=O and [=AI,4IA, ... with Ao=O"o and A, 
= la'" fori'3l, then 8(1l=B oB,B, ... whereBo=I-l>o+b 
and 

(
I, 

Bi= 10, 
ifA;=10", 

if A i =10b + 1, 

for i~1. 
We shall study now the action of 8 on the set of extremal 

sequences. We want to show that {; preserves the extremality 
and, therefore, it can be iterated infinitely many times on the 
set of extremal sequences. This will be done in Proposition 
5.6.· Prior to the proof of this fact we shall see that the de­
flation operation preserves ordering and, in some sense, com­
mutes with (J". [n the rest of the section we shall use freely the 
notation from the definitions of a nice sequence and 8. 

Lemma 5.4. Let [<.f. be t-nice sequences of the 
same order with tE{O,I}. Then 8(l)<8(.f.). 

Proof We shall prove the lemma in the case t = O. 
The proof for the case t = I follows similarly. Let 
l =0/)010"11 Ob21... and .[ =Okol0k1 l Ok 21. .. , and assume 
that land .f. have order b. Since [<.f. there exists 1'30 
such that bl'Fk, and bi=k, for i=O,I, ... ,I-1. Clearly, 
b,>k,. Therefore, b,=b+ I and k,=b. If 1=0 then 
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the lemma follows directly from the definition of O. If 
1>0 we get o([)=(I-bo+b)B,B, ... B,_IB,B,+I", and 
0(.[)=(I-b"+b)B ,B 2 ... B,_,i3/3,+I,,, with B,=1O and 
8,=1. Therefore, o(l)<o(D because 8'+1 is either 1 or 
JQ • 

Lemma 5.5. Let I be an extremal t-nice sequence 
of order b with tE{O,I} such that o([)*OI~. Let 
m?;oO and I be such that u mUKD)=aB'+IB'+2'" where 
aE{O,I}. If r=l+bo+b,+"'+b,_" then u'·W is 
also t-nice of order band o(u'·(l) = um(o(l). 

Proof. If m = 0 then since [ is extremal and t-nice it 
follows that B,,=O=a and 1=0. So, 1'=0 and there is noth­
ing to prove. Now assume that m>O. We also assume t=O 
and a = 1. In the other three cases the proof follows simi­
larly. Clearly, U'·(D=O"'IO"'·" 1... with b,E{b,b+l} for 
all i?;o I. Since a = 1 and t = 0, in view of the definition of 0, 
it follows that B,=1 and b,=b. We claim that b,=b+ 1 for 
some i>l [and hence, u'·(D is O-nice]. Otherwise, b,=b for 
i";3l. Since I is O-nice, in view of Proposition 5.2 we have 
I = 01>0+ 11 01>11 Ob2 1 ... . Moreover, since o(l) ::foOl or. there ex­
ists bj with j?;ol such that bj=b+1 and b,=b for 
i=1,2,,,.,j-1. Therefore, 

1 0"1 0"110"2 ... 1 o"n ... 
= 10"10"10" ... 1010+ '1 ... < (1 O")~= u'+/o(D, 

which contradicts the extremality of [. This ends the proof of 
the claim. 

Since (J"r(l) is O-nice we obtain 

=um(oW)· 

• 
Proposition 5.6. If I is extremal, then oW is de­

fined and extremal. 
Proof. If [E {(Olr,O~,OI~) then there is nothing to 

prove. Thus, we assume that [",{(Olr,OOO,OC}. By Proposi­
tion 5.2 and Remark 5.3, I is t-nice with tE{0,1}. Assume 
that [ is O-nice. If [ is 1-nice the proof follows analogously. 

If o(1)=01x the proposition holds trivially. So, we also 
assume that oW *01 x. In view of Proposition 5.2, [ 
=01>+110"110"21... with b,E{b,b+l} for all i?;o1 and 
b?;o 1. From the definition of 0 we get oeD = OB I B 2'" with 
B, E {1, 1 O} for all i?;o 1. Hence, condition (A) of extremality 
is satisfied. Now we prove condition (B). 

Let m>O. If um(o(D)=B,B'+I'" for some l?;ol then 
o(l)<um(o(l). We have to see that u"'(o([»,;;IB,B, .... 
If B, = 10 this holds because B, starts with 1. So, assume 
B,= 1. In view of Lemma 5.5, u'(D is O-nice of order band 
u"'(o(l)}=O{u'·(l)} where r=l+bo+b,+ ... +bJ-l. We 
note that (Tr(l)=obIIOb,+ll, .. = OhIOb,+11. .. because 
B (= 1. Let us denote by.[ the sequence ObI Obli Ob 2 ... • Since 
o(l)*OI°O we get that I*Ob+'(lObf and, hence, 
.[*(O"I)~. Therefore, .[ is O-nice of order b and, thus, 
o(.[)=IB,B, .... Since 1?;o1 and b Il E{b,b+l} we get 
r?;ob + 1. So, by the extremality of l. we have u'- '(D 
=10"10"1+11... ,;; 10"10"110"2 .... Hence, u'(D';;.[ and, 
by Lemma 5.4, O{u'(l)';;ii(.[). In short, 
u m (o(l)}';;IB ,B, .... 

Now assume that u"'(o(l)=OB,+ IBI+'''' for some 
1?;o1 (that is, B,=1O). Clearly, u"'(oW)<IB ,B, ... . On the 
other hand, again by Lemmas 5.4 and 5.5 and by the extre­
mality of l. we get that 

oW ,;; o( u' (l)) = u'" (o( [)}, 

where r is as in Lemma 5.5. • 
Now we start looking at the properties of the kneading 

invariants of rotations. We shall use the following notation, 

_ (E(X), ifxtZ, 
E(x)= 

x-I, if XEZ. 

From Sec. [[.2.2 of Ref. 1 with the appropriate changes of 
notation we have the following result which gives a geomet­
ric interpretation of the deflation operation on' the kneading 
invariants. 

Proposition 5.7. Let [ be the kneading invariant 
of the rotation by angle a. Set 1'= a/(1- a). Then 
the following statements hold. 

(1) If a< 1/2 then I is O-nice and oeD is the 
kneading invariant of the rotation by angle 

f3 1'-1-£(1'-1)+1' 

(2) If a> 1/2 then [ is I-nice and oW is the 
kneading invariant of the rotatiol/ by angle 

y-E( 1') 
f3= -

y-E( 1')+ 1 

(3) If a=1/2 then 1=(01)~ and oW=O~ is the 
kneading invariant of the rotation by angle f3=0. 

Conversely, if [=aoa,,,,*OOO is the kneading in­
variant of the rotation by angle f3 and kEN then the 
new sequence obtained by applying to [ the rule 

{

OHI, if i=O, 

aj---'1 10k, if i>O and ai= 1, 
0, if i>O and a;=O, 

or, respectively, 

is the kneading invariant of the rotation by angle a 
where a satisfies the relation give in (1) and 
k=£[(l- a)/a] (respectively, the relation given in 
(2) and k=£[a!(I-a)J). 

The foHowing lemma shows that the kneading invariants 
of rotations cannot be any extremal sequence. 

Lemma 5,8. Let I be the kneading invariant of a 
rotation. Then, I::foOl~. 

Proof. Assume that [ is the kneading invariant of the 
rotation with angle a. Without loss of generality we may 
assume that aE[O,I). The statement [=Ol~ is equivalent to 
a(ka)=1 for all k?;ol and, by the definition of address, this 
is equivalent to the condition ka-E(ka)?;oI-a for all 

CHAOS, Vor. 4, No.2, 1994 Downloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



414 Aiseda, Gambaudo, and Mumbru: Stable heteroclinic cycles 

k;;,1. If a is rational, say p/q, then taking k=q we get 
ka-E(ka)=O<I-a:. If a: is irrational then the sequence 
{ka-E(ka)hEN is dense in [0,1). Thus, again there exists 
k;;,1 such that ka-E(ka)<I-a. hence, l*Olx. • 

By Proposition 5.7 and Lemma 5.8 we see that if l is the 
kneading invariant of a rotation, then 8"(l)*01% for all 
In ~ O. Therefore, it is interesting to characterize the set of 
extremal sequences having some iterate by 0 equal to 01 x. 

This is our next step. 
Let l be an admissible sequence. We shall say that I is 

periodic if it exists 1'>0 such that ui>(l)=[. The smallest 
such I' will be called the period of I (in this case [ will also 
be called p-periodic). The sequence [ is p-eventually periodic 
if there exists m;;'O such that u"'([) is periodic of period p. 
The p-eventually periodic sequences which are not periodic 
will be called p-preperiodic (or simply preperiodic). If 1 is a 
finite sequence then 111 will denote the cardinality of 1. 

Lemma 5.9. The oilly extremal I-preperiodic se­
quence is 01"". 

Proof Let [ be extremal I-preperiodic. Then 
[=Od ,d2 ... d",_I(d",j" with m>O. If d",=O, by the extre­
mality l~(TII1(J)=O-;r;. Hence, [=0"" which is periodic, a con­
tradiction. If d m =l then (Tm(l)=lx~ldld2 ... dlll_llr.. 
Hence, d l =d2 =.·. =dm - 1 = 1 and then, I=Or"'. _ 

Lemma 5.10. Let [ be extremal alld p-preperiodic 
(respectively, p-periodic) with 1'> 1. Theil oW is 
q-preperiodic (respectively, q-periodic) with q<p. 
Moreover, if I is not eventually periodic then o([) 
is not eventually periodic. 

Proof In view of Proposition 5.6, oW is well defined 
because l is extremal. Assume that [ is p-preperiodic with 
p> 1. We have that ["'{O\(Olt,OIX}.ln view of Proposition 
5.2, I is t-nice with t E{O,I} becausc I is extremal. Assume 
that [ is I-nice of order b with b;;' I. The case in which [ is 
O-nice follows similarly. 

Since [ is p-preperiodic it can be written as 
AnA! ... Akll_I(Akll ... A(k+l)II_1)"" with A i E{Ol h,Olh+l} 
for i~O, IAkl/ ... A(k+I)II-II=p and k31 is the smallest in­
teger such that A(k_I)II" .• Akll_l::f:Akll ... A(k+I)II_1' Then 
o(l)=BIIB 1 ... Bk"-I(Bk,, ... B(k+ 1),,-1)" with B(k~ I)" .. · 
B kll-I =1= B kll' .. R (k+ 1)11- 1 . Therefore, o(l) is q-preperiodic 
for some q~ 1. In view of the definition of 8 we have 
IBil<IAil for all i;;,O. Hence, '1<1'. 

If [ is p-periodic with 1'>1 then [e{O~,OI~}. If 
[=(Olt then o(l)=Ox and the proposition follows. Hence, 
we assume that I "'{0~,(01)~,0!~). Then the lemma follows 
as in the preperiodic case. 

Finally, in order that o(l) be eventually periodic, from 
the definition of 0, it follows that [ has to be eventually 
periodic too. This ends the proof of the lemma. • 

Lemma 5.11. Let [ be extremal such that 
0([)=0(B,B2 ... Bk)~ with k;;,l, BiE{O,OI,I,IO} for 
i=I,2, ... ,k-1 and BkE{OI,!}. Then [=0(B,B2 ... B,)~ 
with 1;;,1, BiE{O,OI,I,IO} for i=I,2, ... ,I-1 and 
B,E{OI,I}. In particular, I is p-preperiodic for 
some p~l. 

Proof. Since o([) *OX we have that [${O~,(OW}. If 
[=Ol~ then the lemma follows. Hence, we may assume [ is 
t-nice of order b;;,1 with tE{O,I} because it is extremal. 

We shall prove the lemma in the casc t = I. The case t = 0 
follows similarly. By the definition of 0, [ can be written as 
OI"(A, ... Ak_IOI"+I)~ with Ai = 01", and biE{b,b+l} 
for i= 1,2, ... ,k-1. Thus, 

[= O( I"A 1 ... A k-. 10 I )~= O( 1"01"10 1"' ... 01"'-10 I)X 

=0(1"-1101"1-110 ... 1"'-1-110 !)x. 

• 
The next proposition characterizes the extremal se­

quences which have some iterate by 0 equal to 01%. 
Proposition 5.12. An extremal sequence l satisfies 

8"([)=0Ix for some m;;'O if and only if l is 
p-preperiodic for some p~ 1. 

Proof Assume first that l is p-preperiodic with I' '" I. If 
1'= I then, by Lemma 5.9, [=Ol~. Assume that 1'>1. By 
Lemma 5.10 and Proposition 5.6, 0(0 is extremal and 
q-preperiodic with q<p. By iterating this process we obtain 
that 8"(l)=Olx for some m>O. 

Now suppose that 8"(l) = 0 1 x for some m;;' O. Then the 
proposition follows directly from the inductive use of 
Lemma 5.11. • 

We note that, from Proposition 5.12 and the iterative use 
of Lemma 5.11 we get that each extremal p-preperiodic se­
quence is of the form 0(11) ~ with 1 a finite sequence of O's 
and I's. 

From Proposition 4.3 we see that each kneading invari­
ant of a rotation [ is extremal. By Proposition 5.7 we get that 
8111 (l) is a kneading invariant of a ''rotation for each m30. 
Therefore, by Lemma 5.8, 8"(O*0Ix for each m;;'O. So, [ 
is not preperiodic by Proposition 5.12. Next we show that 
indeed the extremality and the non-preperiodicity of a se­
quence characterize the kneading invariants of rotations. 

Theorem 5.13. An admissible sequellce l is the 
kneading invariant of a rotation if and only if is 
extremal and nol preperiodic. 

Proof. The "only if" part follows from Propositions 5.7 
and 5.12 and Lemma 5.8. 

Now we prove that if [ is extremal and not preperiodic 
then it is the kneading invariant of a rotation. Let us split the 
study into two cases. 

Case 1.[ is periodic. In view of Lemma 5.10, by iterat­
ing the deflation process we eventually get 

8'(l) = 0,,' 0,,-1"'" 02'0, (l) = O~ 

for some n~O (where OJ is the deflation transforma­
tion used at the step (i) for i=I,2, ... ,n). Obviously, O~ 
is the kneading invariant of the rotation with angle O. 
Using Proposition 5.7 we can reverse the above defla-
tion process to get successively that o,~ '(()~), 
"-I O-I(O~) 0·-1 0-1(0 00

) I k d' . . ul/_lo /1 , ••• , VI 0 •• • 0v/1 = _ are nea mg mvan-
ants of rotations. 

Case 2. l is not eventually periodic. III view of Proposi­
tion 5.6 and Lemma 5.10 we can apply the deflation process 
infinitely many times without reaching a periodic sequence. 
Let 01' ... ,0/1 ,... be this sequence of deflations. Set 
[,,= 01I'02I,·"'o,~'«0In for n;;'l. Then [" is the knead­
ing invariant of a rotation with rational angle a II = P 11/ q /I 
with (1'" ,q,,) = 1. By using Proposition 5.7 one can check 
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(see the proof of Theorem II 2.2.1 of Ref. I) that the se­
quence {q,JIIEN is increasing and going to infinity with n. 
Furthermore, 

lall-al/+II~1!q~ 

for each n. Therefore, the sequence {all} converges to some 
value a*. The map which associates the angle of a rotation to 
the kneading invariant of the rotation is continuous when 
equipping the set of admissible sequences with the usual 
metric 

d({} {} ..;; Ix,,-y,,1 
XII liEN' YII IIEN)= L.t 2" 

11=0 

Consequently, the sequence {11l}IIEN of kneading invariants 
of rotations by angle all converges to the sequence I which is 
the kneading invariant of the rotation by angle a*. • 

VI. EXTREMAL BLOCKS 

From the results obtained in Section IV (see Propositions 
4.2 and 4.3) we know that if [[ (0), ... ,[ (n - I)] is a kneading 
invariant of a composition of rotations in n-circles, then 

(a) l(k)"",kOd1d, ... , and 
(b) [( 7 i(k»= 7 i(k)Od Id, ... ~ u i([(k» 

~7J(k)ldld2'" for each k=0, ... ,1l-1 and j;;;'O. 
Let [Of!o, ... ,(n-I),I,,_I] be a set of symbolic se­

quences, where -1 j are admissible sequences (in the sense of 
Sec. V), and let 7 be a cyclic permutation of {D, ... ,n - I}. We 
say that [Of!o, ... ,(n-I)f!,,_I] is an n-extremal block if 

(An) kf!,=kOd1d, ... , and 
(Bn) 7 i( k)f! Titk) = 7 i (k )Od 1 d, ... ~ if i (kf! ,) 

~7J(k)ldld, ... for each k=O, ... ,n-1 and j;;;'O. 
Notice that these conditions correspond to conditions (a) 

and (b), and are the analogous to conditions (A) and (B) 
from Sec. V for rotations. 

Given an admissible sequence f! = dod 1 ... we say that f! 
is weightable of order m if Idjdj+I ... di+III-111 
E{IOdl ... d",_dl' Ildl ... d",_III}, for all i;;;'O, where 
Id, ... d,+,·11 denotes the number of elements di equal to I, 
with i~j~i+r. That is, Idj ... di+rll=2:j=odi+j' 

If f! is weightable of order m, we define the weight of 
orderm of A, denoted by w",(f!), as 10dl ... d",_III' 

Next we will be interested in proving that all the se­
quences -1 i from an n-extremal block are weightable of order 
n. To do it, we need some auxiliary lemmas. 

Lemma 6.1. Let [Of!o, ... ,(n-I)f!,,-d be an 
n-extremal block with cyclic permutation 7, and let 
m,k,j and F be int.~gers such that m,k E {O, ... ,n -I}, 
j,/;;;;'O, 7J(k)= 7 J (m)=I, ui(kf!,)=ldod l ... and 
ifJ (mf!",)=ldod; .... Then the following hold: 

(I) If do=d l =0, then do", 1 or d; '" 1. 
(2) If do=d'i and ui(kf!,)<uj'(mf!",), then 

u i+ 1 (kf!,)< u i' + 1 (mf!",). 

(3) If do'" do and ui(kf!,)<u i ' (mf!",), then 

u i+ I(kf!,l;;;' u j' + I(mf!",l. 
Proof. (I) Ifdo=dl=O, then from the definition of an 

n-extremal block it follows that 1f!,=lOd'{ ... 

~ if i(kf!,) = IOOd, ... and so d'{ = O. Analogously, we have 
IOO ... ~ld'ld; ... ~I1D ... . Therefore it is not possible that 
d(,=d~ = 1. 

(2) It follows directly from the definition of the order 
relation between two sequences. 

(3) We have 

Since do",d" it follows do=O< 1 =d". Then by (2) we 
obtain 

=7(l)d l ··· 

as claimed. • 
Lemma 6.2. Let [Of!o, ... ,(Il-I)f!,,-d be all 

n-extremal block with cyclic permutation r. Let k 
and j be integers such that kE{O, ... ,Il- l}, j;;;'O, 
7J(k)=I, ui(kf!,)=ldlld l ... alld 1f!,=ld'ld; .... For 
each m~l, set r ll1 =ld(, ... d:II _ I II • Then we have: 

(1) If rm=ldo ... dlll_11 1 for some m~l, thell 
0''' (If! ,)~ 0''' + i (kf! k)' 

(2) If r",+I=ldll ... d",_111 for sOllie 111;;;'1, thel1 
u'" + i (kf! ,) ~ u"'( If! J). 

(3) For all m;;;.1 we have 
Ido ... dlll_11 1 E {I'm ,1'111+ I}. 

Proof Since [Of!II, ... ,(n-I)f!,,-d is an II-extremal 
block, 1f!,=IOd; ... ~ui(kf!,)=ldodl···~lld; .... 

We start by proving (I). The equality 
Ido ... dlll_11 1 = rill = Id(, ... d~I_111 tells us that for each 
i ~ m - 1 such that d i"* d: there exists j ~ m - 1, j '* i with 
the property that d,=d; and d; =di . Then, by Lemma 6.1(2) 
and (3), statement (1) holds. Statement (2) follows in a simi­
lar way. 

Now we prove (3). If If!,=ui(kf!,), then 
Ido ... dlll_11 1 = IOd; ... d~'_111 for all m~ 1, and we are done. 
Suppose If!t<ui(kf!,). Let q be the smallest integer ;;;.0 

such that d~=O"'I=dq. Then Ido ... di-III=IDd; ... d'_III· 
for all j~q, and Idl1 ... dqll=lld; ... d~ll=rq+1. No~ we 
apply u q+ 1 t.o the inequality If! t< u i( kf! ,) and, from (2), 
we obtain uJ+q+l(kf!,)~uq+I(lf!,). 

If uJ+q+l(kf!,)=uq+I(If!,), then Idll ... d",-III 

=lld; ... d;',_111 for all m;;;.q+1 and (3) follows. If 
ui+q+l(kf!,)<"q+I(lf!,), let p be the smallest integer 
larger than or equal to 1 such that dq+p=O,*l=d~+p. Then 

Ido ... di-III=lld; ... d;_,11 for all j~q+p and 
Ido ... dq+pl l = 10d; ... d~+pll' Now, in a similar way as 
above, from (I), it follows u q+p+ l(lf!,)~ u q+p+ 1 +i(kf!,). 

In this way we can obtain (3) inductively. • 
Corollary 6.3. Let kf!,=kdlld l ... be a sequence 

from an n-extremal block. Then f!, is weightable of 
order n. Moreover, if for some non-negative inte­
gers rand s we have that o""(kf!,)~u'''(kf!,), then 

Idm ... d(r+ 1)11-111 ~Id SII ... d(s+I)II_III' 
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Proof. Le1 r=ld, ... d,,_,I,. We have to see that 
Id;" ... d(i+,),,_,I,E{r,r+l} for all i;;'O. We use Lemma 
6.2(3) with j=in and m=lI. Then we obtain I=k because 
r1=id and, hence, I"I/=r. 

Since (Till(k.1k) =kdjl/dillf. I"" t!zen I dill ... d(i+ 1)11-111 

E{r,r+ I} and cl, is weightable of order II. 
Now suppose a""(kcl,)<;;a''''(kclk) and 

Id,w ".d(s+ 1)11-111 < Id rn . .. d(r+q)lI_ ,II and we shall obtain a 
contradiction. Indeed, then Id", ... d(,d ,),,_,1, = W,,(clk), 
Id"" .. . d(i+' ),,-,1, = w,,(clk) + 1 and a""(kclk)< a"'(kcl,)· 

Since kclk =kOd, ... <;; (T"'(kcl,) < if"'(kcl,)<;;kl d, ... , 
from w,,(cl,) = IOd, ... d,,_,I, and from Lemma 6.1 it follows 
(T" (kcl ,) <;; cr'" + "( kcl k) <;; a"" +"( kcl k) <;; (T" (kcl ,). Therefore 
(T(d' )"(kcl,) = a("+' )"(kcl,) = a"(kclk)' Then (T"(kcl,) 
=k(lll ... IlM)'X, where lli=d ill ... d(i+l)Il-1 for l~i~M 
and M=gcd(r,s). In this situation, the first II elements of 
a"'(kcl,) and of a''''(kcl,) must be equal to IlM, in contra­
diction with our hypothesis. • 

The above corollary allows us to define a deflation op~ 
erafion Ll on the space of se:quences from n-extrernal blocks, 
in the following way: 

where Il(dm ... d(r+ 1)11- I) = \dm · •• d(r+ 1)11- 1\1 - w,/(-1k) for 
every ,.;:::0. 

This deflation operation gives us a new admissible se­
quence II-(kcl,) for every k. We want to show that these 
sequences correspond to kneading invariants of rotations. 
First of all, as for the deflation operation of rotations, we 
shall prove that, in some sense, a commutes with 0". 

Lemma 6.4. Let kclk be a sequence from an 
II-extremal block and let rand s be non-negative 
integers such that u""(kclk)<;;U''''(kclk)' Theil 
(I' (~( kcl ,»<;; (T'(II-( kcl k»' 

Proof. Set (TI"II(k.1k) = kdl"ll' "dm +II - I •.. and (FslI(k.1k) 
=kd.w ".dslI +I1 - I ,,·· Assume that Id rll ... d(H 1)11-111 

*ld,,, ... d(,+,),,_,I,. Then, from Corollary 6.3, we get that 

= W,,(clk)+ I. 

Therefore a'(II-(kclk»=O ... <1...=(T'(II-(kclk» as it was 
claimed. 

If Idm ... d(r+ 1)11-11 I = IdslI ... d(s+ 1)11-111 then it follows 
that (T'(~(kclk»=dod: ... and (T'(II-(kclk»=d(,d'{ ... , i.e., both 
sequences coincide at the first symbol. Furthermore, from 
Lemma 6.2(1), it follows that a('+')"(kcl,)";;(TU+')"(kclk) 
and we are in a situation which is similar to the initial one. 
Repeating the same argument in an iterative way, the lemma 
follows. • 

Proposition 6.5. Let [Oclo, ... ,(n-I)4,,_,] be an 
II-extremal block. Then II-(kcl,) is extremal for each 
k=O,.,,)n-l. 

Proof. Since kclk=kdod, ... =kOd, ... , from Corollary 
6.3 it follows that lI-(kclk)=Ocl for some admissible se­
quence cl. 

Now we shall prove that II-(kclk)=d(,d: ... satisfies con-
dition (B), that is, II-(kcl,)=d(,d: ... <;;u'(II-(kcl,» 
=d;d;+ I"':::;; Id; ... for all r;:::O. Since k.1k:::;;(Trll(k-1k)' 

from Lemma 6.4, it follows that lI-(kclk)<;;U"(II-(kcl,». If 
d; = 0 then, obviously (T' (II-(kcl ,»<;; 1 d: .... If d; = 1 then, 
by the definition of II-(kcl k), we have 
Id,,, ... dv+,),,-d,=w,,(clk)+1. Now we claim that this 
equality is equivalent to the hypothesis of Lemma 6.2(2). 
Indeed, if in Lemma 6.2 we takej = rn then, clearly, k = I. 
So, if in Lemma 6.2 we set m = n we get that 1'111::= WI/(-1k) 
and the claim is proved. Then, since kclk<;;cr""(kcl,), by 
Lemma 6.2(2) we have u("+')"(kclk)<;;(T"(kcl,). From 
Lemma 6.4 we obtain a("+')(II-(kcl,»<;;(I(II-(kcl,». There­
fore a"(II-(kJjk»= lu'+' (lI-(kcl,»<;;1 a(1I-(kJjk» = I d: ....• 

We say that an ll-extremal block is nOllpreperiodic if 
II-(kclk) is not preperiodic for each k=O,I, ... ,n-l. Then, 
from the characterization of the kneading invariants of rota­
tions (see Theorem 5.13) and from the above statements, we 
obtain as a corollary the following theorem. 

Theorem 6.6. Given a nonpreperiodic n-extremal 
block [Ocl", ... ,(n-I)4,,_,]' all the extremal se­
quences II-(kclk)' for k=O,I,.:.,n-l, are kneading 
invariants of rotations. 

The next result shows that all the sequences II-(kclk)' for 
k=0,1, ... ,n-1 are in fact equal. 

Theorem 6.7. [Ocl" , ... ,(n-I )cl,,-'] be a nonprep-
eriodic n-extremal block. Theil, for all 
k=0,1, ... ,1I-1 we have II-(Ocl,,)= II-(kcl k) and 
w,,(cl,,) = W,,(clk)' 

Proof. Thanks to Theorem 6.6, wc know that all the ex­
tremal sequences II-(kclk) for k=O,I, ... ,n-1 are kneading 

. invariants of rotations. It is well known that for a given 
kneading invariant of a rotation Od, d, ... , the angle a of the 
rotation satisfies 

. IOd,d2 ···d,,-d, 
a= lIm . 

n 

To see it we note that d,=E(la)-E«I-I)a) for each 1'3 I. 
So, 

II 

",,11- [ 

£..;=1 d i 
=---= 

n 

E«n -I )a) 
-->(1'. 

n 

Now, let 'Yk denote the angle of the rotation correspond­
ing to the sequence II-(kcl,), where cl,=Od:d; ... and 
lI-(kcl,)=Od,d, ... . By Corollary 6.3 we know that the sc­
quences clk are weightable of order n with weight W,,(clk)' 
By cutting the sequence cl, in blocks of length n, and by the 
definition of 11-, we obtain 

/-1 /-1 

IOd; ... d;,,_,I,=L Idj" ... dj,,+,,_,I,=L (W,,(clk) 
j== 0 j== () 

,-, 
+dj)=lw,,(clk)+L dj . 

j=O 

Consequently, lim,~~( 1/ 1)lod: .. .d:'H I, =w,,(clk) + 'Yk . 
For any integer j, there exists an integer p such that pn<;;j 
«p+ 1)n. Then we have 
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IOd; ... d;JII+IlI_III-j~ld; ... d;+1I1_111 

~IOd; ... d[p+ 1 )11+111- d 
and thus Iim,_,%(III)ldi ... dihl-III=W,.(e!k)+Y,. On the 
other hand, since 'T is a cyclic permutation we may assume 
that r'-,(k)=O. Then, thanks to Lemma 6.2(3), 

Id;,_, ... d;,_k+",_111 E {Id:: ... d;:l-ill ,Id:: ... d::,_11 1 + l}, 
where 1o=d;;d'{ .... This yields 

lim (IJ/JId;,_k ... d;,_kll = w,Mo) + Yo 
11-'% 

and, consequently, W,,(e!k) + Yk= w,,(e!o) + Yo for all k. 
Since the WIlC,1k) are integers and the Yk are numbers in 
[0,1) we have w,,(e!,) = w,,(e!o) and Yk= Yo for all 
k=O,I, ... ,II-1. This ends the proof of the theorem. • 

In the sequel we shall denote 1'0=1'1="'=1',,-1 simply 
by I' and w,,(e!o) = w,,(e! I) = ... =w,,(e!k) by w. 

VII. KNEADING INVARIANTS 

From Sec. IV we already know that the kneading invari­
ants of a composition of rotations in n circles satisfy condi­
tions (i~"n) and (Bn). If \ve think in the case of the rotations, 
the nonpreperiodicity of an extremal block is the straightfor­
ward candidate to the property we need to complete the char­
acterization of the kneading invariants of a composition of 
rotations. However, as the following example shows, a stron­
ger condition is needed. 

Example 7.1. Let . /=(OAo,IA I ) be with 
Ao=OI(111110)" and A ,=(011111)". It is not difficult to see 
that, if we take T(i)=i+ 1 (mod 2) for i=O,I, this is a 
2-extremal block and that /l(An) = /l(A ,)=(OUr. Since 
/l(e!o) and /l(e! I) are not preperiodic then the block.! is 
nonpreperiodic. Let us see that, indeed, . ! is not the knead­
ing invariant of any composition of rotations in 2-circles. 
Otherwise, there exists [r (T , having .. ;; as the kneading in­
variant. Then, the address 'Of [~flO) is 1. Hence, [~frCO»O. 
On the other hand, since (011)7. is the kneading inv~riant of 
the rotation by angle 2/3, the map f;."IIO.I) is just this rota­
tion. So, ([;.,,)'(0) = f~.,,(O) = 0; a contradiction. 0 

Next we state the stronger condition we need. Let 
[De! 0" .. ,(n- 1 )c\,,- I] be an n-extremal block. We say that it 
is strongly nonpreperiodic if each of the sequences A, for 
k=O,l, ... ,n-l is not preperiodic. Then we have the fol­
lowing theorem which is the main result of this paper. 

Theorem 7.2. A kneading invariant of a composition of 
rotations in n circles is an n-extremal block which is nonpre­
periodic and strongly Ilonpreperiodic. 

To prove this theorem we need to show first which is the 
geometrical meaning of the deflation operation on the knead-
ing invariants of the composition of rotations in n circles. \'Ve 
do this in the following proposition. We shall use the follow­
ing notation. Let [(x) = kdod I'" be the itinerary of a point by 
a composition of rotations in n circles. Then the admissible 
sequence dod l ... will be denoted by i(x). 

Proposition 7.3. Let [[(O), ... ,[(n--1)] be the kneading in­
variant o[ a composition o[ rotations in n circles [r,(%' Then 
the following holds: 

(a) w=w"(I(Oll="'=w,,cI(n-I))=E (};;':,ia(i)). 

(b) For k=O,i, ... ,Il-i the map P~,(rl/k,k+l) is a rotatioll witlz 
angle Y=};;':li a(i) alld kneading invariant /l([(O)) 
= /l([(1 ))= ... =/l(l(n - 1 )). 

Proof. First we prove (b). For I~O we have 

[~,a= [r'.a+a07+"·+aOr'-\ (*). 

Since 'T is a cyclic permutation, 7'1 = id and hence P;,allk.k+ \) 
is a rotation of angle (a+ (lOT+'" + (lOr' - 1)( k) for all 
k = 0, ... ,n - 1. Now we prove that the kneading invariant of 
such rotation is /l([(0)). 

Denote by d;ldi ... the kneading invariant of P;.«hk,k+ I)' 
Then, in view of the definition of address, d:11 is 0 if tt:~( k) 
is smaller than k + 1 - a and 1 otherwise, where a 
= };;':Ii a(i(k)) -E[};;':,i a( T'(k))]. 

By (*), we have 

11111-1 /11111-1 \ 

f';'~(k)=r""(k)+ ~) a(,J(kll-El ~) a(7'(k»))-

Therefore, 

,,-I ( ,,-I ) 

f';:':,(k)=k+m~) a(,J(k))-E m,;, a(i(k)) , 

because i/=id. 
For shortness denote };;':lia(,J(k)) by f3. Hence d;', is () 

if (m+l)f3-E(mf3)<I+E(f3) and I otherwise. Set 
/l([( k)) =d::d'( ... , then 

d;;/ = I::!. (dlllll ... d ul1 + I )11-1) = Idl1l11 ... dulI + I )11- til 

- w lI (1k) = Idlllll ... d(lII+ I )/I-III-idod I ... dl/-11 1· 

Hence, by Proposition 4.2 and the fact that 
Idmll ... d(III+I)II_III=2:~/:(:dlllll+i' we obtain 

d;:, = E «m + 1 ) (3) - E (m f3) - E( f3). 

Therefore, d;;, is 0 if E«m+ l)f3)-E(mf3) is E(f3) and 1 if 
E«m+ 1)f3)-E(mf3) is E(f3) + 1. Since 

E«m + 1)f3)- E(mf3)"" (m + 1 )f3- E(mf3) 

<E«111 + 1 )f3)- E(mf3) + 1, 

then d:/1 and d;;/ must coincide. Thus, the kneading invariant 
of f'~."llk.k+I) is /l([(k)) for each k=O,I, ... ,n-1. Since 
f'~."II,.k+ I) are the same rotation for all k, it follows that 
their kneading invariants are all L\(l(O)). 

Now we prove (a). In view of (b) and Theorem 5.13, 
[[(0), ... ,[(11-1)] is nonpreperiodic. Then, thanks to Theorem 
6.7 it is enough to compute w(i(o)). We proceed by induc­
tion. Set itO) = Odld, ... . Then 1011=0=E(a(0)). Assume 
now that 10dl ... d,il=E[};;=oa(i)] for some /;;>0. We shall 
prove that 10dl ... d'+III=E[};;~,\a(i)]. This will end the 
proof of the lemma. As in the proof of Proposition 4.2 we 
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have that d,+, = I if and only if L:~~oa(i) 
-E[L:~~oa(i)l;;'l-a(l+ I). That is, d,+,=1 if and only if 
L:~~.',a(i);;'E[L:~~oa(i)l+ 1. Consequently, if d,+, = I we 
have E[L:~!,',a(i)] = E[L:~~oa(i)]+ I and then 
10d, ... ,dH.,I, =E[L:~!.',a(i)]. If d,.,., =0, then 
E[L::~ya(i)]=E[L::~oa(i)] and hence 10d, .. . d,+ ,I, 
=E[L:i~,',a(i)]. • 

Proof of Theorem 7.2. The extremality and the nonprep­
eriodicity follow from Propositions 4.3 and 7.3, and Theo­
rem 5.13. Let us prove the stro'ngly nonpreperiodicity. As­
sume that [[( O), ... ,l( n - I) 1 is the kneading invariant of a 
composition of rotations in 11 circles f TA • We suppose that it 
is not strongly nonpreperiodic and we shall obtain a contra­
diction. 

Suppose that there is some k E to, 1 , ... ,n -1} such that 
Hk)=kdo ... dll/(dm+l".dm+p)'l. with dlll::f=.dm+ p for some 
m;;'O and p;;, I. Let 1= "'''(k). From the extremality of the 
kneading invariant it follows that 

for i equals to III and m+llp. Since dm::f=.dm+l'=dm+llp' ei­
ther dill or dm 1-lIp is 0 and the other symbol is 1. Thus, by 
applying ()' to the above inequalities, from Lemma 6.1 we 
"ht.,;n th._.f fA A )'Z~~r(i{n)~(A . // 'IT. v...,...... ..1<.. \"'m+I"'''''m+pJ ~V\~\'JJ ~\""'/I/+ 1··· ..... /I/+pJ . 

Then l(l)=IO(dm+, ... dm+"t and so, c,(l(l)) is eventually 
periodic. On the other hand, from Proposition 7.3 it follows 
that c,(l(l)) is the kneading invariant of the rotation 
r;."II'.'+ ,). Then, from Theorem 5.13, C,(l(l)) is a periodic 
sequence (Ob, ... b,,_,t for some q;;, I and f~."II"'+ ') is a 
rotation by a rational angle. Therefore, in view of Ref. 1, all 
the points in [I, I + I) have one of the sequences 
(),i«Ob, ... b,,_,t) for j=O,I, ... ,q-1 as itinerary under 

t:,(rllU+ I)' 
From the fact that either d/l/=q or d1l/ 711p =1 

or conversely and since l(f~."(k))=(}"(l(k)) 

=ldi(dm+I ... dm+p)'X with iE{m,m+np}, there exists a 
point x in [1,1 + I) having itinerary 11 (dm + , .. . d", +"f under 
fr.(f' Thus, from the definition of D. it fo!lO\vs that the r;,(f-
,tmerary of x is (Ib, ... b,,_,)x. But, since 
Ilb, ... b"_,I,*lob, ... b,,_,I,, we get that 
(lb, ... b,,_,)x*(}'J«Ob, ... b,,_,)~) for all j=O,I, ... ,q 
- 1; a contradiction. • 

VIII. ON THE CONVERSE OF THEOREM 7.2 

In the previous sections we have shown that each knead­
ing invariant of a composition of rotations in 11 circles is an 
n-extremal block which is strongly nonpreperiodic and non­
preperiodic. To show that these conditions characterize in­
deed the kneading invariants of the compositions of rotations 
in n circles we have to show the converse. To do this we 
propose the following procedure. 

We shall start by defining a deflation operation p on the 
space of sequences of n-extremal blocks which can be 
though of as a "local" version of c,. 

Let. /=[040, ... ,(n-I)4,,_,] be an n-extremal block 
with a cyclic permutation r. Set k4, = kdt,dj... for all 

_ . _I r"- 2(O) ,-11-2(0)1 _ r',-2(o) 
k-O,I, ... ,n-1 and 7T-do ,d, ,- d, . 
Then, for k=~(O) with j=0,1, ... ,n-2, we define 

p(d~_ j-2 ,d~_ j_1 )d~_ j" ,d~lI_ j-3 

p(dt_ j-2 ,dt- j_1 )d~lI_ j'" 

where o(d:,,_j_2,d:,,_j_,)=!d:,,_j_2,d:,,_j_,!,-7T for all 
r;;' I and 

!
k, if k<""-'(O), 

p(k)= k-l ;f k>.,"-'tOI 
l" -, ._.... ,-,. 

Let 1= ""-, (0). From Lemma 6.2(3) it follows that 
p(k4,) E{p(k)}X{O,I}N for each k*l. We denote 
[p(040), .. . ,p«/- 1 )41-1),p«1+ 1)41+ ,), ... ,p«n -1)4 ,,- ,)l 
by pC i). Then the following can be proved straightfor­
wardly 

Proposition 8_1. Let. /=[040, ... ,(n-1)4,,-,] be an 
n-extremal block with a cyclic permutation T. Then 

(1) pC. /) is an (n-1)-extremal block with cyclic 
permutation r' such that r'(p(k))=p(r(k)) for 
all k* ""-,(0) and r' [p(",,-2(O))]=0. 

(2) p"-'(. !)=C,(k4,) for all k=O,I, ... ,n-1. 
Moreover, we conjecture the following 
Conjec.,!ure 8_2. If. / is an n-extremal strongly 

nonpreperiodic block, then p(.!) is also strongly non­
preperiodic. 

We note that in the case of rotations the notion of 
strongly nonpreperiodicity coincides with the notion of noo­
preperiodicity. Therefore, as an immediate consequence of 
the above conjecture and proposition we obtain 

Corollary 8.3. Any n-extremal strongly nonpreperiodic 
block is nonpreperiodic. 

Moreover, Conjecture 8.2 shows us a possible stmtegy to 
prove the converse of Theorem 7.2. This strategy is based in 
the following new conjecture. 

Conjecture 8.4. Let .! be an n-extremal nonpreperiodic 
block. If p(. /) is the kneading invariant of a composition of 
rotations, then so is . /. 

Finally, if the above two conjectures hold, we obtain the 
following characterization 

Theorem 8.5. A block. / is the kneading invariant of a 
composition of rotations in n circles if and only if it is 
n-extremal and strongly nonpreperiodic. 

Concluding Remark. As it has been said in Sees. I and 
III the coding at the level of the composition of rotations in 
n circles is easily translated to the natural coding of curves in 
a tubular neighborhood U of the heteroclinic cycle. Thus, 
Theorem 7.2 and the results and conjectures in this section 
characterize the coding of the unstable branches of the sin­
gularities Po, p, ,"', p,,_, for the perturbed vector field sat­
isfying H, to H" in U. The big open question is to describe 
these codings in the general case, that is, if we do not restrict 
the allowed perturbations to the n-dimensional subvariety of 
the parameter space described by H, through H". 
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