m bioengineering

Systematic Review

The Accuracy of Algorithms Used by Artificial Intelligence in
Cephalometric Points Detection: A Systematic Review

Julia Ribas-Sabartés

check for
updates

Citation: Ribas-Sabartés, J.;
Sanchez-Molins, M.; d’Oliveira, N.G.
The Accuracy of Algorithms Used by
Artificial Intelligence in
Cephalometric Points Detection: A
Systematic Review. Bioengineering
2024, 11, 1286. https:/ /doi.org/
10.3390/bioengineering11121286

Academic Editor: Yangi Yang

Received: 8 October 2024
Revised: 2 December 2024
Accepted: 12 December 2024
Published: 18 December 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Meritxell Sanchez-Molins and Nuno Gustavo d’Oliveira *

Departamento de Odontoestomatologia, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona,
Campus Bellvitge, 08097 L'Hospitalet de Llobregat, Barcelona, Spain; julia.ribas.sabartes@gmail.com (J.R.-S.);
meritxellsanchez@ub.edu (M.S.-M.)

* Correspondence: nunocorreiadesousa@ub.edu; Tel.: +34-934-037-221

Abstract: The use of artificial intelligence in orthodontics is emerging as a tool for localizing cephalo-
metric points in two-dimensional X-rays. Al systems are being evaluated for their accuracy and
efficiency compared to conventional methods performed by professionals. The main objective of
this study is to identify the artificial intelligence algorithms that yield the best results for cephalo-
metric landmark localization, along with their learning system. A literature search was conducted
across PubMed-MEDLINE, Cochrane, Scopus, IEEE Xplore, and Web of Science. Observational
and experimental studies from 2013 to 2023 assessing the detection of at least 13 cephalometric
landmarks in two-dimensional radiographs were included. Studies requiring advanced computer
engineering knowledge or involving patients with anomalies, syndromes, or orthodontic appliances,
were excluded. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) and Newcastle-Ottawa Scale (NOS) tools. Of 385 references, 13 studies met the inclu-
sion criteria (1 diagnostic accuracy study and 12 retrospective cohorts). Six were high-risk, and seven
were low-risk. Convolutional neural networks (CNN)-based Al algorithms showed point localization
accuracy ranging from 64.3 to 97.3%, with a mean error of 1.04 mm =+ 0.89 to 3.40 mm =+ 1.57, within
the clinical range of 2 mm. YOLOv3 demonstrated improvements over its earlier version. CNN have
proven to be the most effective Al system for detecting cephalometric points in radiographic images.
Although CNN-based algorithms generate results very quickly and reproducibly, they still do not
achieve the accuracy of orthodontists.

Keywords: artificial intelligence; cephalometry; anatomic landmarks; cephalometry landmarks;
orthodontics

1. Introduction

Artificial Intelligence (Al) is defined as the ability of a computer to perform tasks that
are typically undertaken by humans, attempting to mimic their logic, intelligence, and
discernment [1].

To better understand how this technology operates, it is essential to introduce the
learning methods currently employed and their modes of action, enabling Al to perform
the tasks it can accomplish today.

e  Machine learning (ML) is a subset of Al and can be considered the central axis. Its func-
tioning is based on the exposure to multiple sample data and their desired outcomes.
This aims to “train” the algorithm, and through a set of probability and statistical tools,
allows the machine to automatically detect new patterns and solve problems on its
own [1-3].

e Deep learning (DL) is a part of machine learning. It seeks to mimic the human cognitive
system by creating an artificial neural network with multiple layers, aiming to create a
system that analyzes data and identifies more complex patterns than initially presented
to improve its detection [2,4]. The learning method involves exposing the algorithm to
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pairs of data and their corresponding labels, such as relating a cephalometric point
to its definition repetitively, so that it can predict the labeling of new data in the
future [1]. While deep learning includes other types of models, such as recurrent
neural networks (RNNs) for sequential data or transformers for language, CNNs are
specifically designed to recognize spatial hierarchies in data, making them well-suited
for tasks like image classification, object detection, and segmentation. Today, the most
commonly used method for detection in radiological tests is CNN [1].

As early as 1950, scientist Alan Turing, one of the founders of modern computers, first
described artificial intelligence. His goal was to create computers that imitated human
behavior, highlighting their intelligence and critical thinking. In his famous “Turing Test”,
he attempted to converse with a computer to determine if it could think and reason [5]. Six
years later, in 1956, John McCarthy, a computer scientist and cognitive scientist, defined
Al at the Dartmouth College [1] conference as the science and engineering of making
intelligent machines [6]. From then on, the path toward this direction began to open in
many areas of life, including medicine. In Dentistry, Al has also played a significant role,
contributing to radiographic interpretation, as well as the detection of dental caries, cysts
and tumors, histological studies, evaluating growth and development, and predicting
treatment outcomes [7]. It is important to note that the role of the professional remains
entirely necessary. Orthodontics requires very meticulous precision, as the results usually
generate irreversible changes [8], so it is the professional who must continue to provide
their own knowledge acquired from extensive training and experience to achieve a final
diagnosis and corresponding treatment plan [2].

Among the most promising applications of Al in orthodontics are the decision to
perform dental extractions, the classification of malocclusions using three-dimensional
imaging systems such as cone beam computed tomography (CBCT), the evaluation of
skeletal age, the prediction of growth patterns, and the planning of orthognathic surgeries.
Technology has also facilitated the precise location of cephalometric points, among other
functions [1,2].

Tracing it back to its beginning, cephalometry was introduced by Broadbent and
Hofrath in 1931 [9] in the field of orthodontics. Its purpose was to stop making diagnoses
based solely on clinical observation and dental casts and begin analyzing malocclusions
from a much deeper perspective, relating them to skeletal, facial, and dental morphology.
Since then, cephalometric study has become the standard diagnostic method for clinical
practice and research in orthodontics.

To perform a cephalometric analysis, it is necessary to start by making a very detailed
detection of the anatomical points in the craniofacial region from a radiological image.
Traditionally, this is a two-dimensional lateral cephalometric radiograph of the skull,
although three-dimensional images are increasingly being used [10]. This process requires
a considerable investment of time and is usually challenging for two main reasons: first, it
is laborious to obtain good projections of the craniofacial region in two dimensions due to
the superposition of structures; secondly, there is significant anatomical diversity among
patients [11].

The importance of correctly positioning these anatomical references is paramount as
they directly influence the case analysis and treatment decision. An incorrect location by
just a few millimeters or degrees can cause a wrong classification of the pathology, leading
to poor practice as a result [10].

To try to avoid the variability in positioning between observers due to the lack of
certainty in the exact location of the points, and the intra-observer error that can be gener-
ated by the fatigue caused by manual execution and the time it entails, it is necessary to
reconsider the current situation and provide solutions to professionals.

In this context, the emergence of semi-automated programs [11,12] has marked a
significant advance, but it has been recently recognized that there is a need for a fully
automated tool based on Al that can perform these tasks with consistent precision and high
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reliability, processing large volumes of data efficiently and eliminating the inconsistencies
inherent in human intervention [10].

Over the last few years, a large body of literature has been published on the detection
of cephalometric points, which has made it evident that there is a need to filter and classify
the information. Furthermore, although Al is a tool that promises great functionality, it still
has certain limitations, such as difficulty in achieving precision in detection when there is
variability in the image, differences in the demographics of the subjects, heterogeneity in the
characteristics of malocclusion [13], overfitting in the data used for training, and erroneous
results in the test data [14], among others. Given these circumstances, the motivation
for carrying out this systematic review lies in deepening and establishing the existing
knowledge, as well as in addressing the present unknowns.

Current evidence suggests that the most widely used and best-performing form of
artificial intelligence for detecting cephalometric points in two-dimensional images is CNN
using the deep learning method. Additionally, the algorithm currently associated with
the lowest error rate is believed to be You Only Look Once Version 3 (YOLOv3), which
also utilizes deep learning. However, while manual localization of points remains more
accurate than automated methods, artificial intelligence demonstrates better reproducibility
compared to detection performed by professionals.

The main objective of this study is to identify the artificial intelligence algorithms that
yield the best results for cephalometric landmark localization, along with their learning sys-
tem. Secondary objectives include analyzing the most commonly used Al algorithms today,
comparing the accuracy of cephalometric point detection by Al with that by professionals,
and determining the reproducibility of Al compared to manual tracing.

2. Materials and Methods

The protocol for this review was conducted following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) [15] protocols and was registered
with PROSPERO under the registration number CRD42024599610.

2.1. Focused Question

What forms of Al have the lowest error and highest reproducibility in detecting
cephalometric landmarks in lateral cranial teleradiography compared to professionals?

2.2. Eligibility Criteria
A PICO question (Table 1) was designed to determine the eligibility criteria and to
enable us to answer the research question.

Table 1. PICO (P, population; I, intervention; C, comparison; O, outcomes).

PICO Question for Inclusion Criteria

P (Population) Orthodontic patients with lateral cranial radiographs (2D)

Automatic detection of cephalometric landmarks by artificial intelligence
(AI) models

C (Comparison)  Reference standards established by professionals and the existing literature

I (Intervention)

Measurable or predictive outcomes, such as accuracy, sensitivity,

© (Outcomes) and reproducibility

The types of studies included were diagnostic accuracy studies (DASs) and cohort
observational studies published in the last 10 years (2013-2023) that exclusively evaluated
the detection of cephalometric landmarks using artificial intelligence for orthodontics in
lateral cephalometric radiographs, provided these were not derived from 3D images such
as CBCT. All studies analyzing at least 13 cephalometric landmarks in soft and/or hard
tissue and performing any type of analysis on AI methods or comparisons of these were
considered. Similarly, comparisons between Al methods and/or conventional analysis
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methods were accepted. Studies providing results such as mean error, accuracy, sensitivity,
and reproducibility were also included.

Case—control studies, case series, cross-sectional studies, case reports, personal opin-
ions, letters to the editor, and systematic reviews were not considered. Studies including
patients with craniofacial anomalies or syndromes or patients undergoing orthodontic
treatment were excluded. Articles focusing on complete cephalometric analysis rather than
the exclusive detection of landmarks, those too specific to Al making them difficult for the
authors to interpret, and those with purposes other than orthodontics were also excluded.
Finally, articles not available in full text were excluded.

No restrictions were applied regarding patient age or language.

2.3. Search Strategy and Information Sources

An electronic literature search was performed in PubMed-MEDLINE, Cochrane, Sco-
pus, IEEE Xplore, and Web of Science between November and December 2023, and the
search strategy applied across the different electronic databases was based on a combina-
tion of Medical Subject Headings (MeSH) and free-text terms found in titles and abstracts.
The keywords used were “artificial intelligence”, “cephalometry”, “anatomic landmarks”,
“cephalometry landmarks”, and “orthodontics”, combined with the Boolean operators

AND and OR. The strategy employed for each data source is shown in Table 2.

Table 2. Search strategy by databases.

Databases Search Strategy

((artificial intelligence [Title/ Abstract] AND anatomic landmarks
[Title/ Abstract]) OR cephalometry [Title/ Abstract] OR cephalometry

Pubmed landmarks [Title/ Abstract]) AND orthodontics [Title/ Abstract] AND (“2013”
[Date—Publication]: “2023” [Date—Publication])
Scopus artificial AND intelligence AND cephalometric AND landmarks
Cochrane artificial intelligence AND orthodontic appliance
IEEE Xplore artificial intelligence AND cephalometric landmarks
Web of Science ((TS = (artificial intelligence)) AND TS = (cephalometric landmarks)) and

2023 or 2022 or 2021 or 2020 or 2019 or 2016 (Publication Years)

2.4. Study Selection and Data Extraction

The selection of studies was conducted by one researcher (R-S.]) in three phases,
following the selection steps outlined in the PRISMA [15] statement, and was subsequently
reviewed by a second researcher (d’O.NG).

First, duplicate articles were removed. Next, the remaining articles were screened
by title and abstract, excluding only those references that provided information irrelevant
to the research question. In the second phase, articles that did not provide sufficient
information for a decision to exclude were retrieved in full text to assess their eligibility
based on the pre-established criteria. Finally, the full-text articles were read and selected
according to the same criteria used in the second phase.

The data extraction process was conducted by R-S.J and checked by d’O.NG Any
disagreements were resolved through careful discussion.

The information gathered from each reference was classified according to: study
identification (author, year, country of publication), study design, originating institution,
objectives, number of participants, age and gender, algorithm and learning method, num-
ber and location of cephalometric landmarks, number of images for training, validation,
and testing, gold standard, success detection rate (SDR) within a clinical range of 2 mm
expressed as a percentage, mean radial error (MRE) and standard deviation (SD) expressed
in millimeters, and finally, other possible outcomes.
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2.5. Risk of Bias

A quality assessment was carried out by two reviewers, R-S.J and d’O.NG to determine
the risk of bias of the included studies.

The tool used for the diagnostic accuracy study was QUADAS-2 to assess the risk
of bias and concerns regarding applicability [16]. The following domains were analyzed:
(1) patient selection; (2) index test (s); (3) reference standard; (4) flow and timing.

Publications were categorized as follows: (A) low risk of bias (bias that does not
seriously affect the results); (B) high risk of bias (bias that undermines the reliability of the
results); (C) unclear risk of bias when there were very few details available to classify as
“high” or “low” risk.

For comparative cohort observational studies, NOS [17] was implemented, which eval-
uates studies based on three categories: (1) Selection, (2) Comparability, and (3) Outcome.
Each category was scored according to a number of specific evaluations, with a maximum
total of 9 stars. A study with a score of 7 or more stars was considered to have a low risk of
bias, while a score below 7 stars indicated a high risk of bias.

3. Results
3.1. Study Selection

The flowchart of the study selection process is shown in Figure 1. The initial electronic
search revealed a total of 385 records, with 89 references being duplicates. After reviewing
the titles and abstracts, 44 studies were selected for a more detailed examination, resulting
in the exclusion of 252 studies. Subsequently, 31 articles were discarded for not meeting the
selection criteria [9,18-47], and no additional studies were found through manual search.
Finally, the application of the inclusion criteria allowed for a total of 13 references to be
included in the qualitative review.

Throughout the process, there was consensus between the authors regarding the
selection and classification of the literature.

3.2. Risk of Bias Assessment for Diagnostic Accuracy Studies

Figure 2 shows the risk of bias assessment for the included reference classified as a
diagnostic accuracy study, performed using the QUADAS-2 tool [16]. As shown in the
figure, the symbol (+) indicates low risk of bias, the symbol (?) indicates unclear risk of
bias, and (-) represents high risk.

Domain 1: Patient Selection

In terms of risk of bias, this study [48] was considered to have a high risk in patient
selection. Although the selection was conducted randomly and the patients were represen-
tative of the context in which the test is intended to be applied, some were excluded due
to pathological conditions such as cleft palate or craniofacial syndromes. Accordingly, the
applicability of this study was also rated as high risk.

Domain 2: Index Test

The index test was performed consistently and applied to all patients without variabil-
ity, resulting in a low risk of bias. However, the applicability risk was rated as unclear due
to insufficient details about the algorithms used for the Al systems.

Domain 3: Reference Standard

The reference standard was applied by consensus among three experts; however,
inter-rater consistency was not assessed, leading to an unclear risk of bias for this domain.
The applicability of the reference standard was considered low risk.

Domain 4: Flow and Timing

Both the index test and reference standard were applied to all patients without any
losses, and the timing was appropriate. This domain was rated as having a low risk of bias
for both applicability and overall bias.
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Identification

Screening

Eligibility

Included

Identifying studies through databases and registries ]

Records identified by
PubMed (n = 189)
Cochrane (n = 3)
Scopus (n = 82)
IEEE Xplore (n = 24)

Web of Science (n = 87)

Total (n = 385)

Duplicate records removed before

selection

(n = 89)

\4

Selected records

(n = 296)

Records excluded by title and

abstract

(n=252)

Full-text articles assessed for
eligibility
(n=44)

Studies included in qualitative
synthesis

n=13)

Excluded records, with reasons (n = 31):

Full-text not available (n = 2);

Different study design and not specified in title and abstract (n
=10);

Complete cephalometric analysis (n = 6);

Analysis of less than 13 cephalometric references (n = 2);

No orthodontic purpose (n = 1);

Different purposes to the exclusive detection of cephalometric
points (n = 1);

Includes patients with craniofacial syndromes/malformations,
prosthetics, and/or orthodontics (n = 3);

High complexity about Al (n = 6).

Figure 1. PRISMA flowchart of search strategy and study selection.
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Figure 2. Risk of bias for diagnostic accuracy studies [48].

3.3. Risk of Bias Assessment for Cohort Observational Studies

Table 3 shows the risk of bias assessment for cohort observational studies according to
NOS [17]. According to the table, a total score of less than seven stars indicates a high risk
of bias, while a total score of seven stars or more is considered to indicate a low risk of bias.
Based on this assessment scale, seven studies [10,49-54] were classified as low risk, and
five studies [55-59] were classified as high risk.

Table 3. Risk of bias assessment according to Newcastle-Ottawa Scale for observational cohort

studies.
Selection Comparison Outcomes
Demonstration
Representa- Study . -
Tiveness Unexpo- Exposure of an Aspect of Controls for . Sufficiently Adequacy of
Articles of the se Determi- Interest not Study An Evaluation Long Cohort Conclusions
E Cohort s Present at the Controls Y of the Result Follow-Up oI
xposed . nation Additional . Monito-ring
Selection Start of the Time
Cohort Stud Factors
udy

Kim Y, et al. [58] * * * * * * (6) HIGH
K 1 * Kk Kk % * Kk Kk o
Bulatova G, et al. [52] * * * * * * * * (8) LOW
Santos Menezes L,
etal. [53] * * * * * * * * ®) LOW
LR R O ¢ * L. A
Yao], etal. [55] * * * * * * (6) HIGH
Zhao C, et al. [54] * * * * * * * (7) LOW
Ristau B, et al. [50] * * * * * * * (7) LOW
Ramadan R, et al. [49] * * * * * * * (7) LOW
Hwang H, et al. [59] * * * * * * (6) HIGH
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Table 3. Cont.
Selection Comparison Outcomes
Demonstration

Representa- Study .

Tiveness Unexpo- Exposure of an Aspect of Controls for . Sufficiently Adequacy of

. se ) Interest not Study Evaluation Long .
Articles of the Cohort Determi- P h C 1 Any £ the Resul Follow-U Cohort Conclusions
Exposed ono nation resent at the ontrols Additional of the Result oL ow-Lp Monito-ring
Selection Start of the Time

Cohort

Study Factors

Ugurlu M [56]

* % * * K K o

Davidovitch M,
etal. [57]

* % * * K K o

The NOS includes 3 categorical criteria with a maximum of 9 points/stars. A score of > 7 stars is considered as
“low risk of bias”; a score of < 6 stars is considered as “high risk of bias”.

3.4. Data Extraction: Qualitative Synthesis

The information extracted from the selected publications for this review is summarized
in Tables A1 and A2, which are included in the Appendix A. These tables analyze, whenever
possible, the study design and institutional origin, objectives, and participant characteristics;
the Al algorithm and its learning method; the number and location of cephalometric
landmarks; the characteristics of the images used as well as the comparison method with
the gold standard; and finally, the results in terms of success rate (SDR), mean error (MRE),
or other relevant outcomes.

Among the 13 selected articles, seven authors [10,49,51,55,56,58,59] aimed to develop
and test new algorithms to be compared with the manual localization of cephalometric
landmarks performed by professionals. Results were reported in terms of mean successful
detection within a clinical range of 2 mm and mean error, with values ranging from 64.3%
to 97.30% and from 1.04 mm =+ 0.89 to 3.40 mm =+ 1.57, respectively. Notably, the SDR
value reported by Kim YH et al. [58] was the lowest, testing a fully automatic model based
on CNN on 950 cephalograms and 13 hard tissue points. In contrast, Kim J et al. [51] and
Ramadan R et al. [49] also employed models for detecting regions of interest (ROI) and
achieved higher percentages, ranging from 83.6% to 90.39%. Yao ] et al. [55] achieved the
highest success rate with an algorithm based on a global detection module and a locally
modified module, tested on 512 radiographs and 37 cephalometric landmarks in both hard
and soft tissue. Regarding mean error, Yao J et al. [55] also obtained the best value, while
Ugurlu M [56], testing the CranioCatch algorithm on 1620 cephalograms and 21 soft and
hard tissue points, achieved the highest error.

On the other hand, with a different objective, five studies [48,50,52,53,57] aimed to
test algorithms and compare their results with the same gold standard as the previous
ones, namely, manual tracing. Consequently, the results differed from those previously
mentioned. Ristau B et al. [50], Bulatova G et al. [52], Santos Menezes L et al. [53], and
Davidovitch M et al. [57] focused on measuring the differences in landmark localization
between Al and conventional methods according to the x/y coordinate axes. Santos
Menezes L et al. [53] also modified brightness and contrast conditions. For the x-axis, the
best-located points were Nasion [52] and Gonion [53], while the worst were Porion [50,53],
Gonion [52], Orbital, Ptm, and Basale [57]. For the y-axis, the least differing references were
Nasion [52], Pogonion [53], nose tip, and point B [57], while the worst localized were the
apices of lower incisors [50,52], Subnasal [53], Orbital [50], Porion [50,57], soft Pogonion,
and upper lip [57].

Ye H et al. [48] evaluated three Al methods (MyOrthoX, Angelalign, and Digident) on
a sample of 33 cephalograms and 32 landmarks from both tissue types in terms of SDR and
MRE for each algorithm in clinical ranges of 1 and 2 mm, achieving promising results with
Angelalign, with a successful detection rate of 93.09% and a mean error of 0.80 mm =+ 0.26.

Finally, Zhao C et al. [54] evaluated the new Multi Scale-YOLOV3 algorithm, com-
paring it quantitatively and qualitatively with YOLOV3 as the reference standard. In this
study, using a sample of 400 cephalograms and 19 landmarks from both soft and hard
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tissue, the success rate improved by 3.5% for the new model. Although mean error was
not reported, it was noted that both minimum and maximum errors for cephalometric
landmark localization were better for MS-YOLOv3.

Additionally, it is noteworthy that all the collected studies employed Al systems using
the same learning method, namely, DL and CNN, except for Lee J et al. [10], whose method
was based on Bayesian convolutional neural networks (B-CNN).

4. Discussion

In this study, the aim was to analyze the most prominent artificial intelligence (AI)
methods currently available for automating the detection of cephalometric landmarks. Our
goal was to understand their limitations and advantages in order to provide orthodontists
with tools that simplify their work and effectively address current patient demand.

Recent studies have validated the existence of systems capable of producing tracings
very similar to those performed by professionals. A notable example is the work by Yao ]
et al. [55], who, in 2022, developed an algorithm based on a global detection module and
a locally modified module, achieving a level of precision close to the gold standard, with
results of 97.30% and 1.04 mm = 0.89 in terms of SDR and MRE, respectively. These values
could be explained, among other factors, by the exclusion criteria applied in the study,
which avoided cephalograms from patients with conditions that could hinder accurate
detection, such as cleft lip or palate, orthodontic appliances, among others. However,
CNN-based models tested in the research by Kim ] et al. [51], Lee J et al. [10], Ramadan R
et al. [49], and Ugurlu M [56] also achieved promising SDR values ranging from 76.2% to
90.39%, and MRE values ranging from 3.4 to 1.23 mm.

B-CNN represent a promising option for improving the localization of cephalometric
landmarks. Unlike more common approaches such as CNNs, this option does not limit
itself to learning solely from training data but also considers the uncertainty associated with
its predictions. This factor is particularly relevant in fields where precision and confidence
in results must be excellent, as demonstrated by Lee ] et al. [10] on the public dataset
established at the 2015 IEEE International Symposium on Biomedical Imaging.

On the other hand, models based on the concept of creating regions of interest (ROI)
also demonstrated very good precision [49,51,58]. This process involves identifying areas
where cephalometric landmarks would be located based on distinctive features and then
determining their coordinates. Although Kim YH et al. [58] did not achieve clinically valid
results, Kim J et al. [51] and Ramadan R et al. [49] did, with an average success rate of up to
86.5%. However, evidence from Hwang JJ et al. [60] highlights a limitation of this approach,
as it prevents the system from learning from the entire image and instead focuses on a
small portion. Similarly, Kim J et al. [51] emphasized the importance of generalization
when selecting training images to avoid overfitting and, consequently, unrealistic results.
This issue can arise when the dataset is limited; therefore, the study utilized a total of
3150 radiographs from 10 hospitals with different types of radiographic machines, image
qualities, and patient characteristics, which contributed to the validity of their findings.

The YOLOV3 algorithm was tested by Bulatova G et al. [52] with 110 radiographs for
hard tissue points, and also by Hwang H et al. [59], who trained it with 1983 cephalograms
and tested it with 200, to detect both hard and soft tissue points. The results were almost
identical in both cases, with 75% of the points correctly identified. In fact, Hwang H
et al. [19], in 2020, also demonstrated with this same algorithm and an automatic frame-
work of 80 cephalometric points, a precision and reproducibility very similar to human
performance, concluding that this solution is a viable option for identification.

Recently, Zhao C et al. [54] conducted a comparison between YOLOvV3 and an im-
proved version called MultiScale-YOLOV3. It is noteworthy that the findings showed a
slight improvement for this new variant. For both versions, the point with the lowest suc-
cess rate was Gonion, typically due to overlapping areas. However, for MS-YOLOV3, the
point with the lowest error was Pogonion soft tissue, contrasting with the higher error rate
observed for YOLOvV3 at the same point. This finding could be considered an improvement
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for this new variant, as soft tissue points are usually challenging to identify due to their lack
of contrast. In this case, there is an improved error trend for this cephalometric reference
with MS-YOLOVS.

When testing Al for analysis according to x/y coordinate axes [50,57], different studies
reached varying conclusions, with no clear trend of results observed among them. Ye H
et al. [48] compared the tracing accuracy of automatic programs and found that the results
of MyOrthoX, Angelalign, and Digident were very close to clinically acceptable standards,
with success rates between 93% and 89.99% and errors ranging from 0.8 to 1.11 mm. This
study also considered the time required and observed no significant difference between the
algorithms, nor an unequivocal trend favoring one modality over another in terms of time
savings. However, the time was substantially shorter compared to professionals, which
aligns with findings from other researchers.

Among the conditions that could influence accurate landmark localization, Kim ]
et al. [51] referred to image quality. A significant correlation was observed between ex-
aminers and the deep learning model’s accuracy in locating the landmarks, suggesting
that cephalogram image quality affects precision for both. Image quality could depend
on factors such as focus-to-receptor distance, sensor type, manufacturer, etc. Specifically,
it was observed that higher tube tension, longer exposure time, and smaller sensor size
led to decreased performance [51]. Meanwhile, Santos Menezes L et al. [53] analyzed the
impact of brightness and contrast adjustments on CEFBOT detection and concluded that
marking errors were frequent when contrast was high and brightness was low, especially
in the identification of soft tissues.

Locating cephalometric landmarks in hard and/or soft tissue is a factor that affects
their accurate detection. A consistent pattern was observed across the 13 studies reviewed,
with landmarks located in hard tissue demonstrating a higher success rate than those in
soft tissue. Soft tissues generally have poorer boundaries and lack distinctive features
compared to hard tissues [10,48,49,54,55]. Ye H et al. [48] also attributed this to areas with
higher darkness or lower brightness. The landmark with the most significant overall error
was Pogonion soft tissue.

Regarding hard tissue landmarks, those located in bilateral or overlapping cranial
structures were particularly challenging to identify [50,51,55]. According to evidence gath-
ered by Durao AP et al. [61], landmarks such as Porion, Condylion, Orbital, Basion, Gonion,
Anterior Nasal Spine, and Posterior Nasal Spine are particularly prone to errors. During this
review, it was noted that the Pterygoid landmark might overlap with the pterygomaxillary
fissure, while Gonion could be confused with the mandibular ramus [54,55]. On the other
hand, Articulare would be challenging due to its location at the junction of the mandibular
condyle and the external dorsal contour of the temporal bone [10,54], and Porion could be
confused with the auricular structure of the internal auditory canal [48,50,54]. Additionally,
anatomical references in curved areas, such as point A [10] situated in the premaxilla or
point B in the chin [51], also faced difficulty due to a lack of distinctive features, such as
intersections with other lines [10,51,55,58]. However, according to Yao J et al. [55], the error
associated with the Chin point was attributed more to the lack of chin development than to
the curvature of the area. Dental landmarks, whether in the apical or coronal region, can
present identification challenges due to the presence of open apices, dental crowding, or
lack of contrast with surrounding bone [55].

Finally, when evaluating the x and y axes, no definitive conclusions were reached
regarding which axis exhibited lower precision.

In this analysis, the researchers established a clinical threshold of 2 mm to assess
the precision of artificial intelligence, as this was the most commonly used range in the
reviewed literature. However, the authors of this study question the suitability of this
criterion, arguing that it might encompass too broad a margin of error to be considered
acceptable. According to scientific evidence [61,62], a range of 1 to 2 mm could be deemed
valid without compromising diagnosis and, consequently, treatment planning.
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In three of the selected articles [48,51,55], the performance of algorithms was examined
within ranges of 1 mm or less, showing a significant decrease in the average success rate,
ranging from 54% to 60%. These figures are considered too low for clinical application.
The Angelalign algorithm, used by Ye H et al. [48], stood out with a success rate of 78%,
even surpassing other Al models at greater distances. These findings highlight the need to
continue refining artificial intelligence systems to achieve precision comparable to that of
orthodontists.

4.1. Limitations

Our review may have certain limitations, starting with two of the exclusion criteria
applied. Studies focusing on highly specific or advanced levels of expertise in artificial
intelligence were excluded, which may have led to missing valuable data. This criterion was
motivated by the aim to ensure that the authors could fully understand the subject matter
and provide a more general and accessible approach for our target audience: orthodontic
professionals. Additionally, only articles published in the last 10 years were considered
to ensure that this study reflects the most recent and updated literature. However, this
temporal restriction might have led to the omission of classic or fundamental works on the
topic.

4.2. Future Investigations

Future research should aim to continue exploring the integration of artificial intel-
ligence by including a broader range of specialized studies and utilizing larger datasets
with greater heterogeneity in conditions, such as overlapping and varying quality im-
ages, differences in skeletal structures, or different dental statuses, thereby achieving more
generalized results.

5. Conclusions

e Our findings suggest that CNNs represent the most promising Al form for detecting
cephalometric landmarks in 2D lateral cranial teleradiography, offering lower error
rates and higher reproducibility compared to other Al types reviewed.

e However, due to significant heterogeneity in study designs, data collection, and
performance metrics, a definitive quantitative comparison was not feasible

e  While Al demonstrates faster and more reproducible results than manual tracing, no
algorithms currently match the precision of human professionals.

e  Future research should aim to standardize evaluation criteria and datasets to enable a
more robust comparison of Al methods.
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Appendix A. Data Collection Tables

Table A1l. Summary table of the articles included in the systematic review.

Number of Participants

Author Ace
Origin Study Design Originating Institution Objectives 8
Year Gender
Other
Kim YH, et al. [58] Yonsei University Dental Te.stmg fuuy éutomatlc 950 RX
Korea RCC Hospital point localization model Age: -
2021 P based on CNN Gender: -
Investigating the accuracy
KimJ, et al. [51] . . . . of automated identification 3.150 RX
10 university hospitals in . Age: -
Korea RCC South Korea of lateral cephalometric Gender: -
2021 points using RetinaNet as ’
CNN
Comparing the accuracy of
Bulatova G, et al. . CNN-based YOLOV3 110 RX
[52] College of Dentistry, . .
RCC . . . algorithm with manual Age: -
USA University of Illinois "
2021 localization performed by Gender: -
experts
30 RX
Federal University of Bahia, . Age: >18 years old
Santos Menezes L, Piracicaba Dental School, Evaluation of CTEFBQT Al Gender: -
o . software to identify . .
etal. [53] University of Campinas, LT Others: without serious
. RCC L - cephalometric points in o o
Brazil University of Sao Paulo, . craniofacial deformities and
L. four brightness and .
2023 Federal University of s asymmetries, unerupted
. . contrast conditions .. .
Sergipe, Brazil incisors and teeth impacted
on the apex of the incisors.
Testing a BCNN-based 400 RX (ISBI public data
Lee], etal. [10] . . model for cephalometric
Ewha Womans University L . IEEE 2015)
Korea RCC . landmark localization with
Medical Center Seoul . Age: 6 to 60 years old
2020 uncertainty-based
. . Gender: -
confidence regions
512 RX
Age: 9 to 40 years old
Gender: 247 men,
Developing a new system 265 women
Yao J, et al. [55] West China School of for the automatic Others: No patients with
China RCC Stomatology, Sichuan localization of absent, atypical or missing
2021 University cephalometric points, central incisors, molars,
based on CNN orthodontic wearers, cleft lip
or palate, maxillofacial
trauma or candidates for
surgery or implants.
Evaluation of the
Jiading Central Hospital, = MS-YOLOV3 algorithm for 400 RX (ISBI public data
Zhao C, et al. [54] S . .
China RCC Shanghai University of automatic landmark IEEE 2014)
2023 Medicine and Health detection, and quantitative Age: 6 to 60 years old
Sciences and qualitative comparison Gender: -

with YOLOV3
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Table A1. Cont.
Author Number O,i P:rtlupants
Origin Study Design Originating Institution Objectives 5
Year Gender
Other
60 RX
Comparing the reliability G?r?de(;r_' )
Ristau B, et al. [50] Louisiana State University of AudaxCeph for Others: Com leté dentition
USA RCC School of Dentistry, New identifying cephalometric o pret . ’
. without craniofacial
2022 Orleans landmarks with human .. .
trackers abnormalities, asymmetries
or significant double borders
of the mandible
Faculty of Engineering and
Computer Science, Ha'il
University 400 RX (ISBI public data
Ramad[zrgl]R, etal Faculty of Computing and Testing deep learning IEEE 2015)
Saudi Arabia RCC Artificial Intelligence, model based on centroid Age: 7 to 76 years old
2022 Benha University registration and ResNet50 Gender: 235 women,
Department of Computer 165 men
Engineering, Balkan
International University,
To compare and evaluate
Hwang H, et al. fully automated
. . . . . 2.183 RX
[59] RCC Seoul National University cephalometric point Ace: -
South Korea Dental Hospital localization based on a new G n%i .r' )
2021 form of YOLOV3 with ender:
manual tracing
Compare the accuracy of 3A3gI§X_
Ye H, etal. [48] Chongging Medical autorr;gtlsa(r); ﬁl_ca)istl'Sted Gender: -
China RCT 5ANS Prog you Others: No patients with
University MyOrthoX, Angelalign and . .
2023 . . cleft lip and palate, systemic
Digident with manual . ; .
.. diseases or craniofacial
localization
syndromes
Ugurlu M [56] Faculty of Dentistry, Develop Al model 1.620 RX
o L . (CranioCatch) for
Tiirkiye RCC Eskisehir Osmangazi . . Age: 9 to 20 years old
. . automatic detection of
2022 University . . Gender: -
cephalometric points
Ealiton ot
Davidovitch M, ce halomgetric oints b Age: -
etal. [57] RCC University Orthodontic P the Al P h y Gender: -
Israel Clinic Tel Aviv University ¢ /agocep Other: No congenital
2022 convolutional neural craniofacial /dental
network (CNN) artificial . .
anomalies or facial trauma

intelligence system

RCC: retrospective comparative cohort; DAS: Diagnostic Accuracy Study; Al: artificial intelligence; CNN: con-
volutional neural networks; BCNN: Bayesian convolutional neural networks; YOLOv3: You Only Look Once

version 3; MS-YOLOv3: Multi-Scale You Only Look Once version 3.
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Table A2. Summary table of the characteristics of the articles included in the systematic review with respect to the intervention and results.

INTERVENTION OUTCOMES
Cephalometric Images:
Algorithm Landmarks: Training ..
Learning Method Number Validation Gold Standard  SDR Clinical Range 2 mm MRE +/- SD Others
Location Test
del’ig’{irr? ai‘légs;of ML performed }I\l/il;legrr;ggiliz 6(4)1i'13t/ivith Mean MRE: -
. 8 . .. by 2 pha p ) Cephalometric point with
. interest with points, : 800 training . the highest success rate: . .
Kim YH, et al. - 13 points Ty orthodontists o the highest mean error: S
and detection : 100 validation : UIBy LIB 78.7% : -
58] machine to predict Hard tissue 50 test with15and 5 Cephalometric point with 2.39 mm Cephalometric
Coordin;es years of the}iowest succfss rate: Ar point with the lowest
CNN, DL experience 46.7% mean error: UIB 1.36 mm
Fully automated . Mean MR%:.91836 mm +/-
1 P:ﬁdlcglon d 1.392 training ML performed Ce lﬁ?grr;lggilil 803i.r61t/2/vith Cephalometric point with SDR clinical range 0-1 mm
algorithm based on . 1218 additional by 2 e hihest stconss rate: §  the highest mean error: Mean SDR: 56.55%
Kim J, et al. phases: keglon o 20 points training and orthodontists & 100% ) Mdé6 distal 2.09 mm +/- Cephalometric point with the
[51] g‘tter‘i?t (ROé) Hard tissue development with 30 and 10 Cephalometric point with 191 ) highest success rate: S 98%
fi ec leH al? 440 validation years of the lowest sticcess rate: Cephalometric point with Cephalometric point with the
an dmgr 100 test experience Mx6 root 65% ' the lowest mean error: lowest success rate: B 26%
prediction ° Crown Mx1 0.46 mm +/-
CNN, DL 0.37
Absolute difference between Al and
MT according to X,Y coordinate axes
p > 0.05 (no significative diference):
75% points
p < 0.05 (significative diference):
25% points
. . - ML performed Eje X:
Bulatova G, YOLO version 3 16 points No algorithm ple)r 3rme . . Point that differs the most: Go
etal. [52] CNN, DL Hard tissue development orthoc}llontists absolute value 8.7 +/-9
P Point that differs the least: Na

absolute value 1.4 +/- 3.9
Eje Y:

Point of greatest difference: L1apex
absolute value 5.4 +/- 2.9
Point that differs the least: Na
absolute value 1.3 +/-2.7
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Table A2. Cont.

INTERVENTION OUTCOMES
Cephalometric Images:
Algorithm Landmarks: Trainin s
Learnign ¢ Method Number Valid ati(%n Gold Standard  SDR Clinical Range 2 mm MRE +/- SD Others
Location Test
Reliability. Mean ICC between Al
_and MT for four
brightness and contrast settings:
X axis: ICC > 0.93 (very good). Best
outcome Al with V3, worst with V4.
Y axis: ICC > 0.89 (good). Best
outcome Al with V3, worst with V4.
Reproducibility. p < 0.05 between
Al and MT for four brightness and
ML performed contrast settings:
Santos CEFBOT 19 points - by 2 examiners, _ Xaxis:
Menezes L, CNN . DL 15 Hard tissue No algorithm ECont (control) - - Point Wlth highest error: Po
etal. [53] ’ 4 Soft tissue development and ECal (p <0.001) in V1, V2, V3, V4, V5.
(calibration) Point with lowest error: V1 Pog (p:
0.949); V2 L1 (p: 0.897); V3 Go (p:
0.978); V4 B (p: 0.991); V5 S (p: 0.994)
Y axis:
Point with highest error: Sn
(p <0.004) in V1. En V2, V3, V4, V5
all the point p > 0.05.
Point with lowest error: V1 Lis (p:
0.974); V2 Ar (p: 0.949); V3 Pog (p:
0.952); V4 L1 (p: 0.985); V5 Po (p:
1.00)
ML carried out Mean SDR: 82.11% Mean MR}%'%SS o +/
BCNN-b b Cephalometric point with -, 1 -10metri int with
-based 19 point 150 traini y two expert . . ephalometric point wi
points raining P the highest success rate: LI : .
Lee], etal. model 15 Hard ti lidati specialists in 97 339 the highest mean error:
[10] ar .tlssue - validation orthodontics SO ) Pog’ 2.62 mm +/-2.07 -
4 Soft tissue 250 test o ¢ Cephalometric point with ol .
CNN, DL junior and th : Cephalometric point with
- e lowest success rate: A .
senior the lowest mean error: S

point 52%

0.86 mm +/- 1.92
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Table A2. Cont.

INTERVENTION OUTCOMES
Cephalometric Images:
Algorithm Landmarks: Training ..
Learning Method Number Validation Gold Standard  SDR Clinical Range 2 mm MRE +/- SD Others
Location Test
. o Mean MRE: 1.04 mm+/-
Algorithm based Cep%:ﬁ;ﬂi%ﬁ gz)ler’g f/)v ith 089 . SDR clinical range 1 mm
on a global 37 points 312 training ML performed the highest success rate: Cepha'lometnc point Wlth Mean SDR: 54.05%
Yao ], etal. detection module . A by two expert o the highest mean error: Cephalometric point with the
26 Hard tissue 100 validation : Mes 100% , .
[55] and a locally ; orthodontic P Pog’ 2.03 mm +/-5.95 highest success rate: Prn 94%
oo 11 Soft tissue 100 test ey Cephalometric point with e X -5S ral :
modified module specialists . Cephalometric point with Cephalometric point with the
CNN DL the lowest success rate: Go hel ) o
! and Pt 65% the lowest mean error: Prn lowest success rate: Pt 27%
0.5 mm +/-0.32
Mean SDR MS-YOLOv3:
80% Mean MRE MS-YOLOv3: -
Cephalometric point with ~ Cephalometric point with
the highest success rate: S the highest mean error: Go
and PNS 95.33% 2.43 mm +/- 1.56
. Cephalometric point with ~ Cephalometric point with
Multi-Scal 19 points 1950 trainin focalisation  the lowest success rate: Go  the lowest mean error:
Zhao C, etal. YOLOV3 15 Hard 2 -validation  performed b 55.33% Pog’ 1.13 mm +/- 0.62 -
[54] NN DL St ssue Ao P i Mean SDR YOLOV3: Mean MRE YOLOV3: -
! oftissue s YeO(Ii?DS sac 76.55% Cephalometric point with
v Cephalometric point with the highest mean error:
the highest success rate: S Pog’ 3.25 mm +/-1.79
91.33% Cephalometric point with
Cephalometric point with the lowest mean error:
the lowest success rate: Go ANS 1.46 mm +/- 0.97
52%
Mean difference Reviewer-
AudaxCeph X, Y axis (mean + SD of
error) (regarding p > 0.05)
X axis: Deviation Al: Po 2.6 mm +/-
ML pg;fgrmed ) 2.1.p=088.
Ristau B, et al. AudaxCeph 13 points No al _orithm orthodontists ) i Y axis: Dev13t1(1)r;AI:_L§ dex 2.0
[50] CNN, DL Hard tissue d lg with 31 and 34 mm +/-13. p = 0.46.
evelopment years of Or18+/-1.2p=0.11,Po 2.3 mm
experience +/-22p =036

Difference Reviewer- AudaxCeph X,

Y axis (%)
X axis: Po 35.8%
Y axis: L1 apex 40%
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Table A2. Cont.

INTERVENTION OUTCOMES
Cephalometric Images:
Algorithm Landmarks: Training ..
Learning Method Number Validation Gold Standard  SDR Clinical Range 2 mm MRE +/- SD Others
Location Test
Mean SDR Testset 1: Mean MRE Testset 1: 1.23
90.39% mm +/-0.73
Cephalometric point with ~ Cephalometric point with
the highest success rate: S the highest mean error: A
Y%o point 2.1 mm +/- 1.43
CNN-based model Cephalometric point with ~ Cephalometric point with
creating ROIs . the lowest success rate: A the lowest mean error: S
Ramadan R (regions of interest) 19 points ;g(o) g:iraré% %Lt};\]eéfgfm:r? point 70.1% 0.33 mm +/-0.12
’ and feature 15 Hard tissue y pe Mean SDR Testset 2: Mean MRE Testset 2: 1.37
etal. [49] . ; . testset, 100 orthodontic 0
extraction with 4 Soft tissue testsot2) alist 82.66% +/-0.88 mm
ResNet50 specialists Cephalometric point with ~ Cephalometric point with
CNN, DL the highest success rate: S the highest mean error: LI
and upper incisal edge 3.51 mm +/-2.01
97.2% Cephalometric point with
Cephalometric point with the lowest mean error:
the lowest success rate: L1 Upper incisor edge 0.32
25.4% mm +/-0.22
Mean SDR: 75.45%  Mean MRE: 1.76 mm +/-
19 points ML performed glepl?alﬁmfmc point V:It}é Cephalometric point with
Hwang H, YOLO version 3 15 HaI; d tissue 1.983 training by 1 examiner € nighes 95613/2(3655 rate: the highest mean error: Or
etal. [59] CNN, DL 4 Soft tissue 200 test Wlte};‘( Sgr%’:r?é‘: of Cephalometric point with Cep}%églirrr?erg‘izg ofi)ﬁgtlwith
p the lowest success rate: Go

38%

the lowest mean error: LI
1.04 mm +/-0.60
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Table A2. Cont.

INTERVENTION OUTCOMES
. Cephalometric Images:
Leai;ligno;lt/lll:’:ho d Lz;\lﬁlnn:g‘l;l;s: ‘;l;rl?:ilzrilgn Gold Standard  SDR Clinical Range 2 mm MRE +/- SD Others
Location Test
Mean SDR Angelalign:
93.09%
Cephalometric point with Mean MRE Angelalign:
the highest success rate: c 12810 mm +/-0.26 N SDR clinical range <1 mm:
Sn, Ul, LI, Si, Pog’, Me’, ephalometric point wit Mean SDR Angelalign: 78.08%
Gn’, S, P{\I/?e, %10; Pog,Gn,  the hfiger?r;nii}{l frzri)r : Pt Cephalometric point with the
Cephalometric point with  Cephalometric point with é‘ég}}lliﬁrﬁi?ss gf{ Sghg fh/?e
the lowest success rate: Po  the lowest mean error: Go 1 P t P te: Pt 40%
and Pt 79% 0.46 mm +/- 0.54 Mean SDR MyOrthoX: 67.02%
Mean SDR MyOrthoX: Mean MRE MyOrthoX: eaﬂ 1 yOrthoX: ¢ b th N
ML performed 89,9'9% . . 0.97 mm +/- 0.51 Cgp alometric p01nt.w1t toe
MyOrthoX 32 points ; by an Cephalometric point with  Cephalometric point with (l:ugﬁe?t suicgss r@te,zc. Srh? h{“
Ye H, et al. Angelalign 2 HaI; d tissue No algorithm orthodontist, the hlghest’succgss rate: the highest mean error: leP alometric pom. [‘_l]\?A 50/e
[48] Digident . and verified by ~ Gn, Sn,Pog’, Gn’,S,PNS,  UIA 2.39 mm +/- 1.05 owest success rate: o
2 11 Soft tissue development y 0 Mean SDR Digident: 59.13%
CNN, DL P 2 more Pog 100% Cephalometric point with ean igident: 57.15 7
orthodontists Cephalometric point with  the lowest mean error: Sn .Cephalometrlc point with the
the lowest success rate: 0.55 mm +/-0.32 highest success rate: Pog,. Me 95%
UIA 35% Mean MRE Digident: 1.11 Cephalometric point with the
Mean SDR Digident: mm +/-0.48 lowest success rate: Prn 19%
87.53% . Cephalometric point with Mean time
Cephalometric point with the highest mean error: Manual group: 153.47 s +/- 14.83
the highest success rate: Prn 2.34 mm +/- 1.57 Al group: Angelalign: 5.18 s +/-
Ul, L, Pog’, S, PNS, Pog, Cephalometric point with 0.19. MyOrthoX: 1.08s +/-0.12.
Gn, Me, Pcd 100% the lowest mean error: Gn Digident: 5.60 s +/-0.20
Cephalometric point with 0.43 mm +/- 0.29
the lowest success rate:
ANS 35%
Mean SDR: 76.2% Mean MRE: 340 mm +/-
Cephalometric point with - . .
. . ML performed po P ) Cephalometric point with
UgurluM CranioCatch 17 %—IlaFr) gl’fiissue 114%63;1231;&2% by 1 examiner the hlghesgtSS ‘315/5635 rate: S the highest mean error: Go
[56] CNN, DL 4 Soft tissue 180 test with 9 years of Cephalometric point with 8.30 mm +/-2.98

experience

the lowest success rate: Go
48.3%

Cephalometric point with

the lowest mean error: S
0.62mm +/-0.43
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Table A2. Cont.

INTERVENTION OUTCOMES
Cephalometric Images:
Algorithm Landmarks: Training ..
Learning Method Number Validation Gold Standard  SDR Clinical Range 2 mm MRE +/- SD Others
Location Test
ML performed Mean MRE: - Significant difference in points
by 7 Cephalometric point with -
. . between Al and MT according to X,
orthodontic the highest mean error: -
21 points ) teachers, 9 3rd Pog’ in Y axis 2.67 +/- 2.55 X gc%;dl—mteyelszg -
Davidovitch Algoceph . . year residents . o mm axis: Or 1.0/ mm +/- 1.29, Ptm
M, et al. [57] CNN, DL 12 Iélsfl;chtslsszlele ISIeoVaellioﬁlgrr: and 10 1st year Mean SDR: 85.72% Cephalometric point with 0.99 mm +/-0.98, Ba 1.03 mm +/-
p residents, and 4 the lowest mean error: Soft . i 0.90
technicians nose 0.01 mm +/- 0.75 and Y axis: Pog’ 2.67 mm +/-2.55, Ul
from the B point 0.01 +/- 0.65 mm 1.11 mm +/-1.16, Po 1.14 mm +/-
imaging center in Y axis. 1.41

SDR: successful detection rate; MRE: mean radial error; SD: standard deviation; DL: deep learning; ML: manual localization; CNN: convolutional neural networks; ROI: regions of
interest; V1: —30% brightness, +30% contrast; V2: —15% brightness, +15% contrast; V3: original; V4: +15% brightness, —15% contrast; V5: +30% brightness, —30% contrast; Ar: articular;
A: A point; Ba: basion; B: supramentonal; ANS: anterior nasal spine; PNS: posterior nasal spine; Go: gonion; Gn": gnation; L1 apex: lower incisor apex; Ul: upper lip; LI: lower lip; Lis y
LIB: lower incisal edge; Me: chain; Me” and Mes: soft chin; Root Mx6: root 1st maxilar molar; Root Mdé: distal first mandibular molar root; Crown Mx1: maxillary incisor crown; Na:
nasion; Or: orbitale; Pt: pterygoid; Prn: pronasal; Pog: pogonion; Pog’: soft pogonion; Po: porion,; Ptm: pterygomaxillary fissure; Pcd: posterior condyle; Sn: subnasale; Si: mentolabial
groove; S: sella; Ul: upper incisor; UIA: upper incisor apex; UIB: upper incisal margin.
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