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Observation of a continuous interior crisis in the Hindmarsh–Rose
neuron model

J. M. González-Mirandaa)

Departamento de Fı´sica Fundamental, Universidad de Barcelona, Avenida Diagonal 647,
08028 Barcelona, Spain

~Received 6 March 2003; accepted 5 June 2003; published 1 August 2003!

Interior crises are understood as discontinuous changes of the size of a chaotic attractor that occur
when an unstable periodic orbit collides with the chaotic attractor. We present here numerical
evidence and theoretical reasoning which prove the existence of a chaos-chaos transition in which
the change of the attractor size is sudden but continuous. This occurs in the Hindmarsh–Rose model
of a neuron, at the transition point between the bursting and spiking dynamics, which are two
different dynamic behaviors that this system is able to present. Moreover, besides the change in
attractor size, other significant properties of the system undergoing the transitions do change in a
relevant qualitative way. The mechanism for such transition is understood in terms of a simple
one-dimensional map whose dynamics undergoes a crossover between two different universal
behaviors. ©2003 American Institute of Physics.@DOI: 10.1063/1.1594851#
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Nonlinear systems are usually able to display different
dynamic behaviors depending on system parameters and
external inputs. When these are slightly modified the sys-
tem dynamics usually experiences little modifications, ex-
cept when these changes occur in the vicinity of a critical
point, in which case an abrupt qualitative change or tran-
sition in the dynamics occurs. An important example of
these transitions is the case when the system changes
behavior from periodic to chaotic. This has been an ob-
ject of major attention since the beginning of the study of
chaos theory, and several types of transition, called routes
to chaos, have been discovered. Chaos-chaos transition
in which the nature of the chaotic dynamics changes
abruptly between two qualitatively different chaotic at-
tractors have received less attention, but are equally im-
portant. In this article we present the observation of a
chaos-chaos transition of a new type. This occurs in a
system which belongs to a class which is of major impor-
tance in biological physics and in chemistry: a bursting-
spiking system. This kind of system is able to display two
main types of dynamics: firing of spikes at more or less
regular intervals, and bursting of trains of spikes inter-
woven with periods of quiescence. Neurons are one ex
ample of such systems for which the pattern of spiking is
of great importance because it is believed that it codifies
the information transmitted by the neuron. The transi-
tion between these two types of dynamics in a well estab
lished neuron model is studied here.

I. INTRODUCTION

Neurons can be seen as nonlinear dynamic syst
where the relevant dynamic variable is the membrane po
tial that propagates along the axon. Experiments perform
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on neurons subject to electrical stimulus result in the obs
vation of two significant dynamic behaviors of the actio
potential. The simplest one consists in trains of sharp pe
known as spikes, while the other, which is more complicat
consists of bursts of spikes alternated by time lapses of
escence. The nature of the dynamics in the two cases ca
either periodic or chaotic. It is commonly believed that t
information in the nervous system is encoded and trans
ted by means of sequences of spikes,1 although it is contro-
versial if the relevant observable is the mean frequency
the spike firing, or other statistical properties of the int
spike intervals~see Refs. 2–4 and references therein!. More-
over, spiking and bursting is also present in other types
electrically excitable cells, such as muscle fibers,5 in bio-
chemically excitable cells, such as hepatocytes,6 and in
chemical systems.7 This makes the study of spiking an
bursting dynamics an object of major interest within t
theory of nonlinear dynamics and chaos because of the
cial nature of the dynamics involved and because of its
plications to neurobiology, other biophysical fields, chem
try and possibly other fields.

The electrical activity of a neuron is determined by t
electrical properties of the axon membrane whose charac
ization requires at least two variables to describe the acti
of the channels which exchange ions with the environme
These can be of one of two types: fast or slow. Moreov
there are also external inputs, which are given by elec
currents injected in the neuron from the environment, ot
neurons, or the experimental setting. Hindmarsh and Ro8

have proposed a phenomenological model which takes
into account; it is a third order system of nonlinear ordina
differential equations which are able to display spiking
bursting dynamics depending on the system parame
which describe the state of the neuron and the externa
puts. In appropriate ranges of parameters it has been foun
be a realistic description of the electro-physics observed
experiments. For example, Rabinovichet al.9 have found
© 2003 American Institute of Physics
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that it provides a good description of the dynamics obser
in experiments made with isolated neurons of the Pylo
control pattern generator of the California spiny lobst
Moreover, this model is being currently used in diverse t
oretical and computational studies of the nonlinear dynam
of individual neurons10,11 as well as of ensembles o
neurons.12,13

In this article we will study the transition between th
bursting and the spiking dynamics in the chaotic regime
the Hindmarsh–Rose neuron model. We will show that
transition between these two types of behavior can b
chaos-chaos transition for which the attractor size chan
suddenly but continuously as a system parameter is va
The existence of this transition is of interest in neurobiolo
because this provide a mechanism that allows rapid swi
ing between different relevant neuronal behaviors. Then,
study of this transition may be useful to understand how
nervous system is able to give fast responses to exte
stimulus.14,15

From the point of view of chaos theory, this behavi
presents certain resemblance with the chaos-chaos trans
known as interior crisis that was discovered by Grebogi,
and Yorke.16 These authors observed discontinuous chan
of attractor size caused by the collision of an unstable p
odic orbit with a small sized attractor at certain critical p
rameter value. In contrast, the transition presented here
though very steep, is continuous; therefore, we propos
call it a continuous interior crisis. The mechanism for t
continuous interior crisis is also different than the one g
erning the discontinuous crisis.16 By means of the study o
an appropriate one-dimensional map we will show that
transition between the bursting and the spiking regimens
be seen as a continuous change between two universal
of nonlinear dynamics: the dynamics of the quadratic m
which models the spiking behavior, and the dynamics for
asymmetric tent map, which models the bursting behavio

This article is then organized as follows. In Sec. II w
present numerical results for the Hindmarsh–Rose mo8

which show that this system is able to undergo a continu
interior crisis when the transition from bursting to spikin
dynamics occurs. In Sec. III we will define a new one dime
sional map whose behavior can smoothly change from bu
ing to spiking dynamics with the sharpness of the transit
given by the properties of the map, providing in this way
mechanism for the continuous interior crisis. In Sec. IV
will discuss the above results both in terms of its interes
biophysics and of its relevance in the theory of dynam
systems and chaos, to finally end with a summary.

II. CONTINUOUS CRISIS IN THE HINDMARSH–ROSE
MODEL

The Hindmarsh–Rose equations8 define a recognized
model for the bursting-spiking dynamics of the membra
voltage, x(t), observed in experiments made with sing
neurons. The equations of the model written in dimensi
less form read

ẋ5y13x22x32z1I , ~1!

ẏ5125x22y, ~2!
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ż52r @z24~x1 8
5!#. ~3!

In these equationsy(t) and z(t) are auxiliary variables de
scribing, respectively, fast and slow transport proces
across the membrane. The external current applied,I , and
the internal state of the neuron,r , are the control parameter
of the model used often. Rabinovichet al.9 have found that
for r'0.0021 this is a realistic description of the electr
physics of certain neurons axons. The spiking and burs
regimes displayed by this system are represented in Fig
The spiking behavior, as shown in Fig. 1~a!, is characterized
by a oscillation ofx(t), which can be viewed as a series
peaks or spikes. The bursting behavior@Fig. 1~b!# is charac-
terized by the alternation between two types of dynam
one of spiking nature and the other with no oscillations,
which the systems appear to be at rest; when a nonoscilla
time interval ends with the first spike of a series we hav
burst. The transition between these two types of dyna
behaviors when a control parameter is changed will be s
ied here.

For this nonlinear oscillator, working in the chaotic r
gime, we have observed that a small change of the valueI
~or r ) in a proper critical region results in a large change
the attractor size, as well as in qualitative changes of ot
significant properties such as the statistics of the return tim
of x(t). Although we will present here results mainly forr
50.0021, we will note that similar behaviors can be o
served for other sets of parameter, and for changingr while
I is maintained fixed. At the above parameter values,
system is chaotic only within two disjoint intervals of value
of I , @3.135,3.150# and @3.222,3.319#. This last interval will
be studied here. An elementary bifurcation analysis sho
that the dynamics occurs around a single unstable fixed p
having a spectrum of eigenvalues of the type~2,1,1!; i.e., a
saddle. Numerical results for the two largest Lyapunov
ponents, and the bifurcation diagram given from the co
secutive maxima reached byx(t), xM , are displayed in Figs
2~a! and 2~b!, respectively. They show how a chaotic attra
tor undergoes a sudden but continuous change around
value of I C'3.2958. This transition, as seen in the bifurc
tion diagram, bears a fast decrease of the size of the o
dimensional attractor which describes the dynamics in
Poincare´ section, and a qualitative change in the nature of

FIG. 1. Two types of dynamic behavior for the dynamics of the Hindmars
Rose model given by Eqs.~1!–~3! with r 50.0021:~a! spiking dynamics at
I 53.31, and~b! bursting dynamics atI 53.28.
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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dynamics as indicated in the inset where the well kno
portrait of dynamics of the quadratic map17,18 has emerged
above I C . The change in the dynamics aroundI C when I
increases does affect the size of the three dimensional at
tor as well. This is demonstrated in Fig. 2~c! where the val-
ues of the range of variation ofx(t), Dx5xMax2xMin , ap-
pear as a function ofI @similar results have also bee
obtained fory(t) andz(t)]. There is a decrease in the size
the three-dimensional attractor along a curve which displ
a sharp inflection point atI C'3.295 85 which we identify as
the critical point. The changes depicted in Figs. 2~b! and 2~c!
occur within a narrow parameter interval,DI'0.01 ~i.e.,
DI /I C'0.003). This sudden continuous change is what
call here a continuous interior crisis. To get a more pro
characterization of the transition a detailed study ofDx(I ),
and its derivative, has been performed in the close neigh
hood of the transition point. To obtain reliable results, tw
averages have been performed to computeDx(I ): for each
choice of I , first a very large time average (33107 time
steps! was made for a given initial condition; then, the resu
obtained have been averaged over 240 different initial c
ditions. This provides a quite smooth result forDx(I ) around
I C which indicates that the slope of this function atI C is

FIG. 2. Characterization of the dynamics of the Hindmarsh–Rose m
given by Eqs.~1!–~3! with r 50.0021 as function of the external biasI : ~a!
the two largest Lyapunov exponents,~b! bifurcation diagram given by the
maxima ofx(t) ~with a detailed view of the narrow part given in the inse!,
and~c! estimate of the size of the attractor as given by the range of varia
of x(t), Dx(I ) ~with its derivative shown in the inset!. The vertical dotted
lines signal the critical valueI C53.295 85.~d! The functionDx(I ), and~e!
its derivative, both displayed in a narrow interval around the transition po
wnloaded 04 Jun 2010 to 161.116.168.169. Redistribution subject to AIP l
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finite @Fig. 2~d!#. The numerical evaluation of the derivativ
of this function,dDx /dI, is very sensitive to small statistica
errors because of the small interval between consecu
points which amplifies these errors when the numerical
rivative is computed. However, we have been able to obt
with the above statistics, the results in Fig. 2~e! which indi-
cate a bounded value fordDx /dI at the critical point. So we
conclude that there is no singularity at the inflection point
this case.

The change of structure of the bifurcation diagram
Fig. 2~b! suggests that the crisis implies deep and signifi
tive variations in the properties of the dynamics before a
after the transition. For this particular model, which is a re
resentation of a real biophysical system, it is proper to stu
the dependence onI of the dynamics of the peaks of th
membrane voltage,x(t). This is because it is assumed th
the information carried along an axon by the membrane v
age is codified in the time intervals between success
maxima,1–4 i.e., in the interspike intervals,t. Because of this,
it is common to characterize the dynamics ofx(t) by means
of the interspike interval distribution function,H(t). We
have studied an estimate ofH(t) by computing interspike
interval histograms as those shown in Figs. 3~a! and 3~b!,
where two plots ofH(t), each at a different side of th
critical point, show how below the crisis these intervals a

el

n

t.

FIG. 3. Characterization of the bursting-spiking statistics of t
Hindmarsh–Rose model withr 50.0021 as a function of the external biasI :
Examples of histograms in~a! the bursting regime (I 53.28), and~b! the
spiking regime (I 53.31). ~c! Dependence of the spread of the interspi
intervals,DH , on I , ~d! a scaled view of this dependency, and~e! a close-up
to the transition region.
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widespread along an asymmetric distribution, while abo
the spread of the values oft is much smaller and the distri
bution tends to be more symmetric. Above the transition
have the spiking regime where the time intervals between
maxima~spikes! are narrowly grouped around certain ave
age values. Below the transition we have the bursting reg
where spiking periods, with interspike intervals described
the short time part of the distribution, are separated by n
spiking intervals whose duration is given by the large tim
part of the distribution. The study of this chaos-chaos tran
tion, as I increases, in terms ofH(t) is given in the main
body of Fig. 3~c!, which shows the spread of the distributio
estimated as the difference between maximum and minim
values of the interspike intervals observed,DH5tMax

2tMin . The curve obtained shows indeed a continuous tr
sition at I C between a region in whichDH remains nearly
constant to another where it changes steadily. It is to be n
that there is a formal resemblance between the plot in
3~c! and the curve of the order parameter in continuous ph
transitions studied in condensed matter physics. This res
blance can be enhanced by means of the following triv
scaling transformation:I * 5I C2I , D* 5uDH2(a1bR)u
with a andb given by a least squares fit to a straight line
the results forDH(I ) in the chaotic region withI ,I C . The
transformation inI just means to swap the above-below r
gimes, and the transformations inDH mean to define an ‘‘or-
der parameter’’ which is null in one of the two regimes a
positive in the other. As seen in Fig. 3~d!, the curves do look
like those of a continuous phase transition, corresponding
ordered phase to the simply spiking attractor. However,
do not have the singular behavior characteristic of sec
order phase transitions, because the slope ofDH* (I * ) stays
bounded as we approach the transition point@Fig. 3~e!#.

The phase diagram in the neighborhood of the transi
point at r C50.0021 andI C53.2958 has been studied b
means of the calculation of a segment of the line of criti
points. This has been obtained from the derivative ofDx
with respect toI at 20 different values ofr to obtain the
valuesI (r ) where the extrema ofdD/dt are. This provides
the curve of critical points in the planeI 2r separating burst-
ing from spiking dynamics which is displayed in Fig. 4~a!.
The sharpness of the transition along this critical line is m
sured by means of the absolute value ofdD/dt, presented in
Fig. 4~b! which shows that it changes monotonically alo
the line of critical points being larger for smaller values ofr .
The largest Lyapunov exponent along this line remains
most constant@Fig. 4~c!# at a positive value (l1'0.014),
which is an indication that the system stays chaotic alo
this curve.

III. THE MECHANISMS FOR THE CONTINUOUS
CRISIS

We will use one-dimensional discrete maps of the fo
xn115 f (xn) which, being the simplest mathematical mode
able to display chaos,17,18 are good tools to understand th
mechanism behind this transition. A well known mod
which holds the essence of many real chaotic systems is
quadratic map, which is given by
wnloaded 04 Jun 2010 to 161.116.168.169. Redistribution subject to AIP l
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f ~x!52Cx12x2, ~4!

with C the control parameter. Its chaotic dynamics, as illu
trated in Figs. 5~a!, 5~c!, 5~e!, and 5~g!, is characterized by
irregular oscillations@Fig. 5~a!# caused by the motion aroun
a fixed point close to the minima off (x) @Fig. 5~c!#. The
dependence of the dynamic behavior on increasingC has a
characteristic bifurcation diagram@Fig. 5~e!# which results in
the suppression of chaos by an inverse period doubling
cade. This behavior can also be followed by the Lyapun
exponent @Fig. 5~g!# which decreases with increasingC
along characteristic structures caused by periodic window
the chaotic regime. We take this model as a paradigm
regular chaotic oscillations, i.e., of spiking behavior.

Another representative map displaying a different ch
acteristic chaotic behavior is the tent map

f ~x!5H 12rx, if x<2/~11r !,

x21, if x.2/~11r !,
~5!

with r a parameter, which takes positive values. Its dynam
behavior for larger ~i.e., for a highly asymmetric map! pro-
vides a prototype for bursting behavior, as show in Fi
5~b!, 5~d!, 5~f!, and 5~h!, where a representative point star
ing at large values ofx falls down along the second branc
of the map towards the minimum off (x), and there the first

FIG. 4. Study of the phase diagram of the Hindmarsh–Rose model aro
the continuous crisis atr 50.0021.~a! Line of critical points between burst-
ing and spiking dynamics in the planeI 2r . ~b! Absolute value of the de-
rivative of the width of the distribution, and~c! the largest Lyapunov
exponent, both along the line of critical points. In all these plots
squares indicate points obtained numerically and the lines are used to g
the eye.
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branch sends it back to a large values ofx in an event which
we identify as a burst. The bifurcation diagram@Fig. 5~f!#
displays a band with a width that increases with the asy
metry of the map~i.e., with the height of the bursts! and
displays little structure in the spatial distribution of pha
space points. The Lyapunov exponent dependence onr @Fig.
5~h!# is almost flat and unstructured for sufficiently asym
metric maps. More details on the properties of each of th
maps, which are examples of different universal behav
for the dynamics of chaotic system, can be found in
literature.17,18 The transition from a sustained bursting r
gime to a simpler spiking regime can be modeled by a c
tinuous transition between these two universal behaviors.
this aim we will use maps having the shape of an hyperb
so that the motion around the asymptotes is mainly of
type of the tent map, while the motion around the vertex is
the type of the quadratic map.

According to these ideas, we propose the following m
that holds the essential features of real bursting-spiking
tems, which we call the 2H map because it is made of t
hyperbolas:

f ~x!5H 0.10/~x2x!112, if x< x̄,

s/x1x21, if x. x̄.
~6!

FIG. 5. Main features of the dynamics of the quadratic map~left! and the
tent map~right!. ~a! and~b! Time series using dots for the iterates and dott
lines to guide the eye.~c! and~d! Plot of the map~thick line!, iterated point
~circles!, tracks of the iterates~thin line!, and the auxiliaryxn115xn line
~dashed!. ~e! and ~f! Bifurcation diagrams.~g! and ~h! Lyapunov exponent
~the L50 line appears as a dotted line!. The plots in~a! and ~c! are forC
520.90 andx050.314, and the plots in~b! and ~d! are for r 511.0 and
x050.141 ~in all cases to first 104 points of the time series have bee
discarded!.
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Heres is a control parameter, whilex̄ andx are fixed by the
following condition of continuity of the map:

0.10/~ x̄2x!112512 R, ~7!

s/ x̄1 x̄21512 R, ~8!

with RP(0,1) a parameter that is fixed atR50.590 216 4 for
most of the article. The branch forx. x̄ has the shape of a
hyperbola having its concavity up, the left asymptote is v
tical while the right asymptote has slope equal to one,
providing a mechanisms for bursting. Around the minima t
function is rounded, allowing spiking dynamics. The para
eter s controls the concavity of the hyperbola and then t
bursting intensity, allowing the transition between the tw
behaviors. The branch forx< x̄ is a hyperbola having a lef
asymptote which is horizontal and a right asymptote which
vertical; this provides an additional control on the bursti
activity which is needed to have the height of the bur
limited ~i.e., a sustained bursting regime! as it occurs in real
bursting-spiking systems.

The dynamic behavior for this map is presented in F
6. There is a sustained bursting regime that occurs at s
values ofs @Fig. 6~a!# which is similar to that of the tent map
depicted in Figs. 5~b! and 5~d!, and a spiking regime at large
values ofs @Fig. 6~b!# similar to that of the quadratic map i
Figs. 5~a! and 5~c!. The bifurcation diagram and th
Lyapunov exponent presented in Figs. 6~c! and 6~d! present a
sustained bursting behavior fors&0.26 and the characteris
tic structure of a quadratic map fors*0.28. There is a criti-
cal region around a critical point atsC'0.267 in which the

FIG. 6. Continuous interior crisis in the 2H-map.~a! Dynamics of the type
of the tent map fors50.12, and~b! of the type of the quadratic map
for s50.34 andx050.141, after 104 iterations in the two cases@the different
elements in these plots are to be identified as in Figs. 5~a! and 5~b!#.
~c! Bifurcation diagram with an enlargement of the upper critical regi
show in the inset.~d! Lyapunov exponent~theL50 line appears as a dashe
line!.
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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size of the attractor decreases very fast, having an enve
which shows an inflection point, while the Lyapunov exp
nent reaches a broad maximum. This behavior is what
have called a continuous interior crisis.

The mechanism of the transition is as follows. There
three relevant quantities related to the functionf (x) which
defines the 2H-map@Fig. 7~a!#: the abscissa of the minimum
of f (x), xm5As, and the images obtained applyingf (x) to
xm once, D(s)5 f (xm)52As21, and twice, f @D(s)#.
D(s) is the minimum value off (x); then f @D(s)#, the
maximum value that a phase point,xn , can reach under in
finite iterations of the map. The functionsxm(s) andD(s)
increase monotonously froms50, while f @D(s)# decreases
monotonously@Fig. 7~b!#. Therefore, fors small ~s&0.26!
the vertex of the map is very acute and the tent map beh
ior, with little contamination of the curved vertex, is dom
nant; moreover, the flat part at the left of the first branch

FIG. 7. Mechanism for the continuous interior crisis in the 2H map.~a! The
function f (x) with the relevant quantities written as labels in the axes, a
the relevant points indicated by circles. The dashed line isy5x ~the par-
ticular curve plotted is fors5sC). ~b! Dependence ofxm ~dashed line!,
D5 f (xm) ~thin line!, andf (D) ~thick line! on s. ~c! Difference between the
abscissa of the inflexion point of the 2H map,x̄, and the abscissa of th
maximum reachable phase point,D, as a function ofs ~the conditionx̄
2D50 has been plotted as a dashed line to guide the eye!. ~d! Plot of the
derivative of f @D(s)# as a function ofs ~thick line!. ~e! Dependence onR
of the transition point,sC ~thick line!, and the map parametersx̄ ~thin line!
and x ~dashed line!. ~f! The derivative of the width of the attractor at th
critical point computed from below~thick line! and from above~thin line! as
a function ofR.
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the map allows the height of the peaks to be stabiliz
against changes ofs. For s large~s*0.28! the vertex of the
map is broader and only the dynamics around the fixed p
xF , s/xF1xF215xF , is allowed giving rise to a quadrati
map like behavior. The transition between these two regim
occurs at the value ofs5sC at which the maximum value
that the coordinate of a phase point,xn , can reach,f @D(s)#,
equals the value of the abscissa of the inflection point of
map, f ( x̄), which is the point where the first branch of th
map stops having an effect on the dynamics, thus signa
the end of the sustained bursting-spiking dynamics. The c
dition for the critical point is then

D~sC!5 x̄. ~9!

This indeed occurs atsC'0.267 as shown in Fig. 7~c!.
There is a narrow critical region aroundsC because the high
est value thatxn115 f (xn) can reach for eachs is given by
f @D(s)# which, as shown in Fig. 7~d!, is a continuous func-
tion which has zero slope in almost all of its range of de
nition except in a small region aroundsC where the large
slope of f (x) around x̄ causes large changes inf @D(s)#
from tiny changes ins; therefore, there is a sharp transitio
from bursting to spiking dynamics.

The study of the 2H map presented here has been m
for a continuity condition @Eqs. ~7! and ~8!# with R
50.590 216 4. The effect of changingR on the parametersx̄
and x is small for intermediate values ofR (0.2,R,0.8),
and so is the effect onsC @Fig. 7~e!#. The change ofR has
more notorious consequences when the width of the attra
of the 2H map,W(s), is considered. According to the dis
cussion in the previous paragraph, this is given byW(s)
5 f @D(s)#2D(s), as illustrated by the thin and thick line
in Fig. 7~b!, which trace the envelopes of the attractor plott
in Fig. 6~c!. W(s) is continuous and bounded atsC because
of the continuity and boundedness off . However, its deriva-
tive at the critical point@dW/ds#s5sC

may be discontinuous
because when computed froms,sC is given by the lower
branch of the 2H map, while when computed froms.sC is
given by the upper branch. As illustrated in Fig. 7~f! this is
indeed the case for allR, with the exception of R
'0.590 216 4, which was the value chosen here with
purpose of studying a map in qualitative agreement with
results for the Hindmarsh–Rose model presented in F
2~c!–2~e!.

It is to be noted that the overall critical behavior is n
altered in an essential form when small modifications
made to the shape of the 2H map by modifying Eq.~6!. This
is illustrated in Fig. 8 for four such modifications. Althoug
there are certain changes on the values ofs at which there
are periodic windows, on the structure of the spatial dis
bution of the map points, and on the steepness of the tra
tion, in all cases, we observe the same general features
scribed in the above paragraphs.

Finally, one has to note that the analogy between inte
crisis and phase transitions suggested here is only forma
one should expect from the different nature of the syste
implied: deterministic for the crisis, and statistical for pha
transitions. According to the above results this appears l
ited to the existence of discontinuous and continuo
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changes in the attractor size, in formal correspondence
first order and higher order phase transitions. This corresp
dence breaks down in our case when the derivatives of
width of the attractor are considered, because the infi
divergence proper of second order phase transitions is
observed here in the Hindmarsh–Rose model. An infin
divergence, maintaining the continuous crisis, could be
forced in the map by changing its first branch for a functi
having an infinite slope atx̄. This could be achieved, fo
example, using the upper arc of an hyperbola with its sy
metry axis parallel to thex-axis and its vertex in the inflec
tion point (x̄,ȳ). Other curves, such as the first quadrant
an ellipse with its lower point at (x̄,ȳ), would have also
worked. This has not been done here because this diverg
at sC is not observed in the Hindmarsh–Rose model. T
discussion, however, suggests that the dynamic behav
available to the 2H map could deserve additional indep
dent study from the point of view of theoretical physics a
mathematics, beyond the interdisciplinary biophysical
proach given to the present article.

IV. DISCUSSION AND CONCLUSIONS

The observation of a continuous interior crisis in t
Hindmarsh–Rose neuron model presented here is rele
both for the theory of nonlinear dynamics and chaos, and
biophysics, particularly for neurobiology.

The study of transitions between different dynamic b
haviors in nonlinear systems is an issue of major interest
the theory of nonlinear dynamics and chaos. An import
result in this field has been the discovery of different rou
to chaos.17,18These are transition phenomena that make c
otic a nonchaotic system when a control parameter
changed, which include period doubling cascades, inter
tency, and Hopf bifurcations among others. Less attent
however, has been received by the chaos-chaos transitio
which relevant observables of a chaotic attractor change
sudden way with the control parameter. In this case,
copies of the same system having very close parameter
ues may bear very different properties, still being both c
otic. The discontinuous interior crisis16 is a well known phe-
nomenon of this kind. In this article, by means of a particu
observation, we have proven the existence of a new typ

FIG. 8. Structural stability study or the 2H map as displayed by the bi

cation diagrams of some variations of Eq.~6!. ~a! Using R5
1
3 for the con-

tinuity condition Eqs.~7! and ~8!. ~b! Leaving f (x) as in Eq.~6! for x< x̄

and usings/x11.08x21 for x. x̄. Leaving f (x) as in Eq.~6! for x. x̄ and

using ~c! 0.10/(x2x)118, or ~d! 0.20/(x2x)112 for x< x̄.
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chaos-chaos transition, which bears certain resemblance
the discontinuous interior crisis, and which may, and sho
not, be confused with it. Moreover, we have presented
simple mechanism which, being based on universal mod
of chaotic dynamics, possibly gets the essence of this tra
tion not only in the Hindmarsh–Rose model but also in oth
bursting-spiking systems.

On the other hand, the existence of continuous inte
crisis in the Hindmarsh–Rose neuron model has also po
tial applications in biophysics because it provides a swit
ing mechanism by which a very small change on a sys
parameter, or on a external input, can toggle the dynam
between two significantly different dynamic behaviors. A
example illustrating this occurs in neurobiology, where a m
jor problem is to understand how the nervous system is a
to give quick responses given the presence of time de
and noise~see Refs. 14 and 15 and references therein!. The
present study provides a mechanism which allows ra
switches between different neuronal dynamic behaviors: p
vided that the system was initially tuned close to the conti
ous interior crisis, small changes in neuronal input wou
produce very rapid changes in the pattern of neural spik
Thus the occurrence of continuous interior crisis in neu
models might be relevant because it provides a new me
nism to deal with this problem. This is an alternative to m
tistable dynamic systems, which is the only other possibi
that has been proposed until now.19,20

In conclusion, by means of the study of the bursti
dynamics of the Hindmarsh–Rose neuron model, a sh
chaos-chaos transition has been identified in which the sh
of the attractor changes in an abrupt but continuous w
together with other relevant properties of the system. T
transition has a well defined critical point and a narrow cr
cal region around it. This transition is different from the we
known interior crisis, which is a discontinuous change
size. Because of the formal analogy with phase transition
condensed matter physics we have proposed to call this
transition a continuous interior crisis. Its mechanism,
shown by means of the introduction of a new on
dimensional discrete map, the 2H map, happens to b
crossover between two different universal forms of chao
behavior which has to be sharp for a well defined burst
regime to exist. These results have natural applications
biophysics where bursting-spiking chaotic systems are c
mon, and might be relevant in other fields, such as chemis
where chaos-chaos transitions occur.
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