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Interior crises are understood as discontinuous changes of the size of a chaotic attractor that occur
when an unstable periodic orbit collides with the chaotic attractor. We present here numerical
evidence and theoretical reasoning which prove the existence of a chaos-chaos transition in which
the change of the attractor size is sudden but continuous. This occurs in the Hindmarsh—Rose model
of a neuron, at the transition point between the bursting and spiking dynamics, which are two
different dynamic behaviors that this system is able to present. Moreover, besides the change in
attractor size, other significant properties of the system undergoing the transitions do change in a
relevant qualitative way. The mechanism for such transition is understood in terms of a simple
one-dimensional map whose dynamics undergoes a crossover between two different universal
behaviors. ©2003 American Institute of Physic§DOI: 10.1063/1.1594851

Nonlinear systems are usually able to display different on neurons subject to electrical stimulus result in the obser-
dynamic behaviors depending on system parameters and vation of two significant dynamic behaviors of the action
external inputs. When these are slightly modified the sys- potential. The simplest one consists in trains of sharp peaks
tem dynamics usually experiences little modifications, ex- known as spikes, while the other, which is more complicated,
cept when these changes occur in the vicinity of a critical consists of bursts of spikes alternated by time lapses of qui-
point, in which case an abrupt qualitative change or tran-  escence. The nature of the dynamics in the two cases can be
sition in the dynamics occurs. An important example of  either periodic or chaotic. It is commonly believed that the
these transitions is the case when the system changes its information in the nervous system is encoded and transmit-
behavior from periodic to chaotic. This has been an ob- ted by means of sequences of spikedthough it is contro-
ject of major attention since the beginning of the study of versial if the relevant observable is the mean frequency of
chaos theory, and several types of transition, called routes the spike firing, or other statistical properties of the inter-
to chaos, have been discovered. Chaos-chaos transitions spike intervalgsee Refs. 2—4 and references therdifore-

in which the nature of the chaotic dynamics changes over, spiking and bursting is also present in other types of
abruptly between two qualitatively different chaotic at- electrically excitable cells, such as muscle fibeis, bio-
tractors have received less attention, but are equally im- chemically excitable cells, such as hepatoc§temd in
portant. In this article we present the observation of a  chemical system§.This makes the study of spiking and
chaos-chaos transition of a new type. This occurs in a bursting dynamics an object of major interest within the
system which belongs to a class which is of major impor- theory of nonlinear dynamics and chaos because of the spe-
tance in biological physics and in chemistry: a bursting-  cial nature of the dynamics involved and because of its ap-
spiking system. This kind of system is able to display two plications to neurobiology, other biophysical fields, chemis-
main types of dynamics: firing of spikes at more or less try and possibly other fields.

regular intervals, and bursting of trains of spikes inter- The electrical activity of a neuron is determined by the
woven with periods of quiescence. Neurons are one ex- electrical properties of the axon membrane whose character-
ample of such systems for which the pattern of spiking is ization requires at least two variables to describe the activity
of great importance because it is believed that it codifies of the channels which exchange ions with the environment.

the information transmitted by the neuron. The transi-  These can be of one of two types: fast or slow. Moreover,
tion between these two types of dynamics in a well estab- there are also external inputs, which are given by electric
lished neuron model is studied here. currents injected in the neuron from the environment, other

neurons, or the experimental setting. Hindmarsh and Rose
have proposed a phenomenological model which takes this
. INTRODUCTION into account; it is a third order system of nonlinear ordinary
_ _ differential equations which are able to display spiking or
Neurons can be seen as nonlinear dynamic Systems  sting dynamics depending on the system parameters
where the relevant dynamic variable is the membrane potengnich describe the state of the neuron and the external in-
tial that propagates along the axon. Experiments performef s |n appropriate ranges of parameters it has been found to

be a realistic description of the electro-physics observed in
dElectronic mail: jgm@ffn.ub.es experiments. For example, Rabinovieh al® have found
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that it provides a good description of the dynamics observed 2wkE - T T T T T T

in experiments made with isolated neurons of the Pyloric {4 ]

control pattern generator of the California spiny lobster. % ool

Moreover, this model is being currently used in diverse the- 10 y \A

oretical and computational studies of the nonlinear dynamics ' S ———

of individual neuron¥™ as well as of ensembles of 20f LN S

neurons->13 ~ 10 -
In this article we will study the transition between the ¥ ool J .

bursting and the spiking dynamics in the chaotic regime of 10k _

the Hindmarsh—Rose neuron model. We will show that the 0 00 1200

transition between these two types of behavior can be a
chaos-chaos transition for which the attractor size changes
suddenly but continuously as a system parameter is varie@G. 1. Two types of dynamic behavior for the dynamics of the Hindmarsh—
The existence of this transition is of interest in neurobiology,Rose model given by Eqel)—(3) with r=0.0021:(a) spiking dynamics at
because this provide a mechanism that allows rapid switch-— 331 andb) bursting dynamics alt=3.28.
ing between different relevant neuronal behaviors. Then, the

study of this transition may be useful to understand how the

nervous system is able to give fast responses to external z=—r[z—4(x+9)]. 3
H 14,15 . - .
stimulus: In these equationg(t) and z(t) are auxiliary variables de-

From the point of view of chaos theory, this behavior goriping  respectively, fast and slow transport processes
presents certain resemblance with the chaos-chaos transitigR;oss the membrane. The external current applieénd

known as interior crisis that was discovered by Grebogi, Othe jnternal state of the neuran, are the control parameters
and Yorke'® These authors observed discontinuous changess the model used often. Rabinovieh al® have found that
of attractor size caused by the collision of an unstable perizy, <0 0021 this is a realistic description of the electro-

odic orbit with a small sized attractor at certain critical Pa-physics of certain neurons axons. The spiking and bursting
rameter value. In co_ntrast,_the transition presented here, atlégimes displayed by this system are represented in Fig. 1.
though very steep, is continuous; therefore, we propose {§pe gpiking behavior, as shown in Figal, is characterized

call it a continuous interior crisis. The mechanism for theby a oscillation ofx(t), which can be viewed as a series of

continuous interior crisis is also different than the one 9OV-peaks or spikes. The bursting behavibig. 1(b)] is charac-
erning the discontinuous crist§.By means of the study of

, X ! X terized by the alternation between two types of dynamics:
an appropriate one-dimensional map we will show that thg,ne of spiking nature and the other with no oscillations, in

transition between' the bursting and the spiking regimens Cafhich the systems appear to be at rest; when a nonoscillatory
be seen as a continuous change between two universal tyPgse interval ends with the first spike of a series we have a
of nonlinear dynamics: the dynamics of the quadratic mapp st The transition between these two types of dynamic
which models the spiking behavior, and the dynamics for thg,ehayiors when a control parameter is changed will be stud-
asymmetric tent map, which models the bursting behavior. ;o4 here.

This article is then organized as follows. In Sec. Il we — £o this nonlinear oscillator, working in the chaotic re-

present numerical results for the Hindmarsh—Rose r_ﬁOde'gime, we have observed that a small change of the vallie of
which show that this system is able to undergo a continuoug, r) in a proper critical region results in a large change of

interior crisis when the transition from bursting to spiking the attractor size, as well as in qualitative changes of other
dynamics occurs. In Sec. Il we will define a new one dimen-gjgnificant properties such as the statistics of the return times
sional map whose behavior can smoothly change from bursse 'y () Although we will present here results mainly for

ing to spiking dynamics with the sharpness of the transition_ 0.0021, we will note that similar behaviors can be ob-

given by the properties of the map, providing in this way ageryed for other sets of parameter, and for changingile
mechanism for the continuous interior crisis. In Sec. IV We| s maintained fixed. At the above parameter values, this
will discuss the above results both in terms of its interest tQygtem s chaotic only within two disjoint intervals of values
biophysics and of its relevance in the theory of dynamicyt | (3,135 3.150and[3.222,3.31% This last interval will
systems and chaos, to finally end with a summary. be studied here. An elementary bifurcation analysis shows
that the dynamics occurs around a single unstable fixed point
having a spectrum of eigenvalues of the type+,+); i.e., a
saddle. Numerical results for the two largest Lyapunov ex-
The Hindmarsh—Rose equatindefine a recognized ponents, and the bifurcation diagram given from the con-
model for the bursting-spiking dynamics of the membranesecutive maxima reached byt), xy, , are displayed in Figs.
voltage, x(t), observed in experiments made with single 2(a) and 2b), respectively. They show how a chaotic attrac-
neurons. The equations of the model written in dimensiontor undergoes a sudden but continuous change around the
less form read value of 1 ~3.2958. This transition, as seen in the bifurca-

t

II. CONTINUOUS CRISIS IN THE HINDMARSH-ROSE
MODEL

K=y+3x2—x3—7+1, 1) t|pn dla_gram, bears a fa§t decreage of the size qf thg one-
dimensional attractor which describes the dynamics in the
y=1-5x%—y, (2 Poincaresection, and a qualitative change in the nature of the
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FIG. 3. Characterization of the bursting-spiking statistics of the
FIG. 2. Characterization of the dynamics of the Hindmarsh—Rose modeHindmarsh—Rose model with=0.0021 as a function of the external blas
given by Egs(1)—(3) with r=0.0021 as function of the external biis(a) Examples of histograms ite) the bursting regimel=3.28), and(b) the
the two largest Lyapunov exponents) bifurcation diagram given by the  spiking regime [=3.31). (c) Dependence of the spread of the interspike

maxima ofx(t) (with a detailed view of the narrow part given in the inset intervals,Ay, , onl, (d) a scaled view of this dependency, ajia close-up
and(c) estimate of the size of the attractor as given by the range of variationo the transition region.

of x(t), A,(l) (with its derivative shown in the ingetThe vertical dotted
lines signal the critical valué:=3.295 85.(d) The functionA,(l), and(e)
its derivative, both displayed in a narrow interval around the transition point.

finite [Fig. 2(d)]. The numerical evaluation of the derivative

of this function,dA,/dl, is very sensitive to small statistical
dynamics as indicated in the inset where the well knowrerrors because of the small interval between consecutive
portrait of dynamics of the quadratic mdp® has emerged points which amplifies these errors when the numerical de-
abovel.. The change in the dynamics arouhgl when | rivative is computed. However, we have been able to obtain,
increases does affect the size of the three dimensional attrawith the above statistics, the results in Fige)2which indi-
tor as well. This is demonstrated in FigicRwhere the val- cate a bounded value foiA, /d| at the critical point. So we
ues of the range of variation of(t), AX=Xuax—Xmin,» @p-  conclude that there is no singularity at the inflection point in
pear as a function of [similar results have also been this case.
obtained fory(t) andz(t)]. There is a decrease in the size of The change of structure of the bifurcation diagram in
the three-dimensional attractor along a curve which display&ig. 2(b) suggests that the crisis implies deep and significa-
a sharp inflection point di-~3.295 85 which we identify as tive variations in the properties of the dynamics before and
the critical point. The changes depicted in Figd)2nd 2c) after the transition. For this particular model, which is a rep-
occur within a narrow parameter intervall ~0.01 (i.e., resentation of a real biophysical system, it is proper to study
Al/1:~0.003). This sudden continuous change is what wehe dependence oh of the dynamics of the peaks of the
call here a continuous interior crisis. To get a more propemembrane voltages(t). This is because it is assumed that
characterization of the transition a detailed studyAgfl), the information carried along an axon by the membrane volt-
and its derivative, has been performed in the close neighborge is codified in the time intervals between successive
hood of the transition point. To obtain reliable results, twvomaximal=“i.e., in the interspike intervals, Because of this,
averages have been performed to comp\él): for each it is common to characterize the dynamicsx¢f) by means
choice ofl, first a very large time average ¥X3L0’ time  of the interspike interval distribution functiord(7). We
steps was made for a given initial condition; then, the resultshave studied an estimate bf(7) by computing interspike
obtained have been averaged over 240 different initial coninterval histograms as those shown in Fig&)3and 3b),
ditions. This provides a quite smooth result fog(1) around  where two plots ofH(7), each at a different side of the
I which indicates that the slope of this function lgtis  critical point, show how below the crisis these intervals are
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widespread along an asymmetric distribution, while above, 32— 7T T T T
the spread of the values afis much smaller and the distri- i @
bution tends to be more symmetric. Above the transition we = g
have the spiking regime where the time intervals between the 330~ Spikes u
maxima (spikes are narrowly grouped around certain aver- i i
age values. Below the transition we have the bursting regime - 8
where spiking periods, with interspike intervals described by — 38 7
the short time part of the distribution, are separated by non- L i
spiking intervals whose duration is given by the large time r Bursts 1
part of the distribution. The study of this chaos-chaos transi- 3.26 B ]
tion, asl increases, in terms dfl(7) is given in the main = g
body of Fig. c), which shows the spread of the distribution, B N N B
estimated as the difference between maximum and minimum e
values of the interspike intervals observed, = 7y ax LET T Eg (b)

— Tmin - The curve obtained shows indeed a continuous tran- g 10 n"“--u.,n_

sition atl. between a region in whichA,; remains nearly 3 10° '“"D--n..u__n
constant to another where it changes steadily. It is to be noted o i i .‘.:I.:E."lj
that there is a formal resemblance between the plot in Fig. 0,0131 ———r
3(c) and the curve of the order parameter in continuous phase B .0 B0 0-0-0-0-0-0-0-.g-0-0-0
transitions studied in condensed matter physics. This resem- 0014 =, oa ]
blance can be enhanced by means of the following trivial &0,007'_ g
scaling transformation:1*=1-—1, A*=|A,—(a+bR)] L (C) ]
with a andb given by a least squares fit to a straight line of 000 o 000l5 0002 00025 0003

the results forA (1) in the chaotic region with<I-. The
transformation inl just means to swap the above-below re-
gimes, and the transformations Ay, mean to define an “or-  FIG. 4. Study of the phase diagram of the Hindmarsh—Rose model around
der parameter” which is null in one of the two regimes andthe continuous crisis at=0.0021.(a) Line of critical points between burst-
positive in the other. As seen in Fig(dB, the curves do look N9 and spiking dynamics in the plare-r. (b) Absolute value of the de-
like those of a continuous phase transition, corresponding thgatlve of the width of the distribution, andc) the largest Lyapunov
ponent, both along the line of critical points. In all these plots the
ordered phase to the simply spiking attractor. However, we&quares indicate points obtained numerically and the lines are used to guide
do not have the singular behavior characteristic of seconthe eye.
order phase transitions, because the slopdbfl*) stays
bounded as we approach the transition poig. 3(e)].

The phase diagram in the neighborhood of the transition
point at r=0.0021 andl-=3.2958 has been studied by
means of the calculation of a segment of the line of critical
points. This has been obtained from the derivativeAof
with respect tol at 20 different values of to obtain the
valuesl(r) where the extrema alA/dt are. This provides

fche curve of_c_ritical point_s in th_e plz_me_r separa_ting_burst- dependence of the dynamic behavior on increa€ingas a

ing from spiking dynamlcs_\{vh|ch IS dls_play_e_d n _Fg._a)i characteristic bifurcation diagraffrig. 5(e)] which results in
The sharpness of the transition along this critical line is meag, o suppression of chaos by an inverse period doubling cas-
sured by means of the absolute valuedaf/dt, presented in ;546 This behavior can also be followed by the Lyapunov
Fig. _4(b) wh|_c_h shov_vs that_ it changes monotonically along exponent[Fig. 5(g)] which decreases with increasing

the line of critical points being larger for smaller valuesof 5150 characteristic structures caused by periodic windows in
The largest Lyapunov exponent along this line remains alyg chaotic regime. We take this model as a paradigm of
most constan{Fig. 4(c)] at a positive value X,~0.014), " eqjar chaotic oscillations, i.e., of spiking behavior.

which is an indication that the system stays chaotic along = another representative map displaying a different char-

r

f(x)=2Cx+2x?, (4)

with C the control parameter. Its chaotic dynamics, as illus-
trated in Figs. 8), 5(c), 5(e), and %g), is characterized by
irregular oscillationgFig. 5a)] caused by the motion around
a fixed point close to the minima df(x) [Fig. 5c)]. The

this curve. acteristic chaotic behavior is the tent map

1-rx, if x=2/(1+r),
Ill. THE MECHANISMS FOR THE CONTINUOUS f(x)= ) (5
CRISIS x—1, if x>2/(1+r),

We will use one-dimensional discrete maps of the formwith r a parameter, which takes positive values. Its dynamic
Xn+1= f(Xn) which, being the simplest mathematical modelsbehavior for large (i.e., for a highly asymmetric maypro-
able to display chao¥;'® are good tools to understand the vides a prototype for bursting behavior, as show in Figs.
mechanism behind this transition. A well known model 5(b), 5(d), 5(f), and §h), where a representative point start-
which holds the essence of many real chaotic systems is thiag at large values ox falls down along the second branch
quadratic map, which is given by of the map towards the minimum &{x), and there the first
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1 FIG. 6. Continuous interior crisis in the 2H-ma) Dynamics of the type

of the tent map fore=0.12, and(b) of the type of the quadratic map
C r for 0=0.34 andx,=0.141, after 1biterations in the two caséthe different
elements in these plots are to be identified as in Figa) &nd 3b)].

(c) Bifurcation diagram with an enlargement of the upper critical region
show in the inset(d) Lyapunov exponentthe A=0 line appears as a dashed
line).

FIG. 5. Main features of the dynamics of the quadratic rfleft) and the
tent map(right). (a) and(b) Time series using dots for the iterates and dotted
lines to guide the eydc) and(d) Plot of the magthick line), iterated point
(circles, tracks of the iterategthin line), and the auxiliaryx,. =X, line
(dashedl (e) and (f) Bifurcation diagrams(g) and (h) Lyapunov exponent
(the A=0 line appears as a dotted ljndhe plots in(a) and(c) are forC

=—0.90 andx,=0.314, and the plots ifb) and (d) are forr=11.0 and  Hereo is a control parameter, while and y are fixed by the
Xo=0.141 (in all cases to first D points of the time series have been following condition of continuity of the map:

discardedl
0.10{x—x)+12=12 R, (7)
o/X+X—-1=12 R, (8

branch sends it back to a large valueafn an event which . L

we identify as a burst. The bifurcation diagrdiig. 5(f)] with Re (0,1) a parameter that is flxegiat: 0.590216 4 for
: . . . . most of the article. The branch fer>x has the shape of a

displays a band with a width that increases with the asymF1 erbola having its concavity up. the left asvmptote is ver-

metry of the map(i.e., with the height of the burstand yp 9 y up, ymp

displays little structure in the spatial distribution of phasetICaI while the right asymptote has slope equal to one, so

. ! providing a mechanisms for bursting. Around the minima the
space points. The Lyapunov exponent dependenae[Big. s ) o .
. . function is rounded, allowing spiking dynamics. The param-
5(h)] is almost flat and unstructured for sufficiently asym- .
. . : eter o controls the concavity of the hyperbola and then the
metric maps. More details on the properties of each of thes

maps, which are examples of different universal behaViorBurstmg intensity, allowing the transition between the two

for the dynamics of chaotic system, can be found in the%ehawors. The branch for=x'is a hyperbola having a left

literature!”'8 The transition from a sustained bursting re- asymptote which is horizontal and a right asymptote which is

) . o . vertical; this provides an additional control on the bursting
gime to a simpler spiking regime can be modeled by a con- . S .

! " . : activity which is needed to have the height of the bursts
tinuous transition between these two universal behaviors. Fcir

this aim we will use maps having the shape of an hyperboI%Tr';?iié'_‘sei')’"fi‘nzuz;as'p;gsburSt'ng regijras it occurs in real
so that the motion around the asymptotes is mainly of the The dynamic behavi(;r for this map is presented in Fig.

type of the tent map, Wh”e the motion around the vertex is Of6. There is a sustained bursting regime that occurs at small
the type of the quadratic map.

values ofo [Fig. 6(a)] which is similar to that of the tent map

According to these ideas, we propose the following map,,”~ . S o .
that holds the essential features of real bursting-spiking SyS(jepmted in Figs. ) and %d), and a spiking regime at larger

tems, which we call the 2H map because it is made of tw values ofc [Fig. 6(b)] similar to that of the quadratic map in

hyperbolas: Ci:igs. Ha) and Hc). The bifurcation diagram and the
' Lyapunov exponent presented in Fig&c)éand Gd) present a

_ _ sustained bursting behavior for<0.26 and the characteris-

F(x) = 0.10(x—x)+12, if Xsf () tic structure of a quadratic map fer=0.28. There is a criti-
olX+x—1, if Xx>X. cal region around a critical point at-~0.267 in which the
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LR REPA the map allows the height of the peaks to be stabilized

12.0 b) — .
® against changes af. For o large (0=0.28 the vertex of the
,P?f[D("] 60 map is broader and only the dynamics around the fixed point
= ' Xg, o/Xg+Xg—1=Xg, is allowed giving rise to a quadratic

map like behavior. The transition between these two regimes
occurs at the value of = o at which the maximum value
that the coordinate of a phase poixt, can reachf[D(o)],
equals the value of the abscissa of the inflection point of the

D(0) |xd ey
00 0102030405

X [¢)

ogh VDT map, f(x), which is the point where the first branch of the
® o4 (C)_E map stops having an effect on the dynamics, thus signaling
§ ' 3 the end of the sustained bursting-spiking dynamics. The con-
B e - dition for the critical point is then
04 D(oc)=X. ©)
5_102‘_ This indeed occurs atr¢~0.267 as shown in Fig. (@).
% 200 There is a narrow critical region aroug because the high-
8 500 est value thak,, ;= f(x,) can reach for each is given by
& _400'_| N T f[D(o)] which, as shown in Fig.(d), is a continuous func-
000 009 018 027 036 045 054 tion which has zero slope in almost all of its range of defi-
5 nition except in a small region aroung: where the large
U e o e I o L B o slope of f(x) aroundx causes large changes ffiD(o)]
04} ] 0 @ from tiny changes irv; therefore, there is a sharp transition
I;f 03 from bursting to spiking dynamics.
& 02 The study of the 2H map presented here has been made
01 for a continuity condition[Egs. (7) and (8)] with R
N = oo L1 =0.590216 4. The effect of changifyon the parameters
0002 04 06 08 10 002 0.4 06 08 L0 and y is small for intermediate values & (0.2<R<0.8),
R R and so is the effect onr¢ [Fig. 7(e)]. The change oR has

more notorious consequences when the width of the attractor
FIG. 7. Mechanism for the continuous interior crisis in the 2H nm{apThe of the 2H map,W(a), is considered. According to the dis-

function f(x) with the relevant quantities written as labels in the axes, and . . . L .
the relevant points indicated by circles. The dashed ling=ix (the par- cussion in the previous paragraph, this is givenWo)

ticular curve plotted is forr=o¢). (b) Dependence ok, (dashed ling = f[_D(U)]_ D(U')’ as illustrated by the thin and thick lines
D=f(x,,) (thin line), andf(D) (thick line) on o. (c) Difference between the  in Fig. 7(b), which trace the envelopes of the attractor plotted

abscissa of the inflexion point of the 2H map, and the abscissa of the in Fig. 6(c). W(o) is continuous and bounded @t because
maximum reachable phase poii, as a function ofo (the conditionx of the Continuity and boundednessfofHowever, its deriva-

—D=0 has been plotted as a dashed line to guide th¢ éjePlot of the . i . . .
derivative off[D(o)] as a function ofr (thick line). (€) Dependence oR tive at the critical poinfdW/do] . may be discontinuous

of the transition pointgc (thick line), and the map parametéxgthin line) because when computed frotm< o is given by the lower
anqx (da_shed ling (f) The derivatiye o_f the width of the attractor at the pranch of the 2H map, while when computed from o is
gr;tl:(?]e::ltir:)(znéf;omputed from beloithick line) and from abovéthin line) as given by the upper branch. As illustrated in Figf)7his is
' indeed the case for alR, with the exception ofR
~0.590216 4, which was the value chosen here with the
purpose of studying a map in qualitative agreement with the
size of the attractor decreases very fast, having an envelopesults for the Hindmarsh—Rose model presented in Figs.
which shows an inflection point, while the Lyapunov expo-2(c)—2(e).
nent reaches a broad maximum. This behavior is what we It is to be noted that the overall critical behavior is not
have called a continuous interior crisis. altered in an essential form when small modifications are
The mechanism of the transition is as follows. There aranade to the shape of the 2H map by modifying E&j. This
three relevant quantities related to the functi) which s illustrated in Fig. 8 for four such modifications. Although
defines the 2H-mafFig. 7(a@]: the abscissa of the minimum there are certain changes on the valuesr @t which there
of f(X), xn= o, and the images obtained applyifi(x) to  are periodic windows, on the structure of the spatial distri-
X, once, D(o)=f(x,)=2Vo—1, and twice, f[D(o)]. bution of the map points, and on the steepness of the transi-
D(o) is the minimum value off(x); then f[D(o)], the tion, in all cases, we observe the same general features de-
maximum value that a phase point,, can reach under in- scribed in the above paragraphs.
finite iterations of the map. The functionsg,(o) andD(o) Finally, one has to note that the analogy between interior
increase monotonously from=0, while f[D (o) ] decreases crisis and phase transitions suggested here is only formal, as
monotonouslyFig. 7(b)]. Therefore, foro small (6=0.26) one should expect from the different nature of the systems
the vertex of the map is very acute and the tent map behavmplied: deterministic for the crisis, and statistical for phase
ior, with little contamination of the curved vertex, is domi- transitions. According to the above results this appears lim-
nant; moreover, the flat part at the left of the first branch ofited to the existence of discontinuous and continuous

o=0
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12 e chaos-chaos transition, which bears certain resemblance with
the discontinuous interior crisis, and which may, and should
not, be confused with it. Moreover, we have presented a
simple mechanism which, being based on universal models
of chaotic dynamics, possibly gets the essence of this transi-
tion not only in the Hindmarsh—Rose model but also in other
bursting-spiking systems.
0 i On the other hand, the existence of continuous interior
0.00 0.12 0.24 crisis in the Hindmarsh—Rose neuron model has also poten-
¢ ° tial applications in biophysics because it provides a switch-
FIG. 8. Structural stability study or the 2H map as displayed by the bifur-ing mechanism by which a very small change on a system
cation diagrams of some variations of B6). (a) Using R= 3 for the con- ~ parameter, or on a external input, can toggle the dynamics
tinuity condition Egs.(7) and (8). (b) Leaving f(x) as in Eq.(6) for x<x  between two significantly different dynamic behaviors. An
and usings/x+1.08— 1 for x>x. Leavingf(x) as in Eq.(6) for x>x and  example illustrating this occurs in neurobiology, where a ma-
using (c) 0.10/(x— y) + 18, or(d) 0.20/(x— x) + 12 for x<X. jor problem is to understand how the nervous system is able
to give quick responses given the presence of time delays

and noise(see Refs. 14 and 15 and references therdine

changes in the attractor size, in formal correspondence WitBresent study provides a mechanism which allows rapid
first order and higher order phase transitions. This corresporitches between different neuronal dynamic behaviors: pro-
dence breaks down in our case when the derivatives of thgje that the system was initially tuned close to the continu-
width of the attractor are considered, because the infinit¢ s interior crisis. small changes in neuronal input would
divergence proper of second order phase transitions is Nofoqyce very rapid changes in the pattern of neural spiking.
observed here in the Hindmarsh—Rose model. An infiniter, 5 the occurrence of continuous interior crisis in neural
divergence, maintaining the continuous crisis, could be engqdels might be relevant because it provides a new mecha-
forced in the map by changing its first branch for a function,ism 1o deal with this problem. This is an alternative to mul-
having an infinite slope ax. This could be achieved, for isiaple dynamic systems, which is the only other possibility
example, using the upper arc of an hyperbola with its Syminat has been proposed until n&°

metry axis parallel to the-axis and its vertex in the inflec- In conclusion, by means of the study of the bursting
tion pgint (x,y). _Other curves, such as the first quadrant Ofdynamics of the Hindmarsh—Rose neuron model, a sharp
an ellipse with its lower point atx(y), would have also  chags_chaos transition has been identified in which the shape
worked. This has not been done here because this divergenge ie attractor changes in an abrupt but continuous way
at oc is not observed in the Hindmarsh—Rose model. Thigggether with other relevant properties of the system. The
discussion, however, suggests that the dynamic behavioggnsition has a well defined critical point and a narrow criti-
available to the 2H map could deserve additional indepeng,) region around it. This transition is different from the well
dent study from the point of view of theoretical physics andynown interior crisis, which is a discontinuous change of
mathematics, beyond the interdisciplinary biophysical apjze Because of the formal analogy with phase transitions in

proach given to the present article. condensed matter physics we have proposed to call this new
transition a continuous interior crisis. Its mechanism, as
IV. DISCUSSION AND CONCLUSIONS shown by means of the introduction of a new one-

The observation of a continuous interior crisis in the dimensional discrete map, the 2H map, happens to be a

Hindmarsh—Rose neuron model presented here is relevaffoSSover between two different universal forms of chaotic

both for the theory of nonlinear dynamics and chaos, and foPehavior which has to be sharp for a well defined bursting

biophysics, particularly for neurobiology. regime _to exist. These_ resuIFs_ have na_tural applications in
The study of transitions between different dynamic be-PioPhysics where bursting-spiking chaotic systems are com-

haviors in nonlinear systems is an issue of major interest fof1on, and might be relevant in other fields, such as chemistry,

the theory of nonlinear dynamics and chaos. An importantVhere chaos-chaos transitions occur.

result in this field has been the discovery of different routes
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