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Abstract: Pine nuts are highly valued products on the market, with 20 species being the most com- 7 

mercially significant both globally and locally. Among these, Mediterranean pine nuts (Pinus pinea) 8 

are the most highly valuated, reaching prices up to 100€/Kg, in contrast with other species sold at 9 

much lower prices (Chinese and Russian pine nuts). The high prices added to the lack of fast and 10 

low-cost analytical methods to assess the authenticity in routine analysis make pine nuts highly 11 

vulnerable to fraudulent practices. This study proposes a reliable method for pine nuts geographical 12 

and botanical origin authentication. The volatile and semi-volatile terpene hydrocarbon fingerprint 13 

of a set of 245 pine nuts from different origins (Spain, China, and Russia) and different species was 14 

analysed by HS-SPME-GC-MS. PLS-DA models were built to differentiate between Iberian and non- 15 

Iberian samples and between production regions on Pinus pinea samples, with satisfactory cluster- 16 

ing on all categories based on their respective PLS-DA score plots. Both models were internally and 17 

externally validated, achieving correct classification values of 100% and over 96% respectively, en- 18 

suring that model predictions are reliable. Hence, this method has proved to be a suitable option for 19 

pine nut authentication on industry routine analysis supporting official controls. 20 

Keywords: Pine nut; Authenticity; Food fraud; Fingerprinting; Sesquiterpene hydrocarbons; HS- 21 

SPME-GC-MS; PLS-DA  22 

 23 

1. Introduction 24 

 25 

Pine nuts are among the most expensive products on the market used in many culi- 26 

nary preparations worldwide. These nuts are considered gourmet healthy products, due 27 

to their nutritional values. They are rich in proteins (35%) and fats (50%) predominantly 28 

unsaturated fatty acids such as omega-6 and omega-9, and contain a great number of mi- 29 

cronutrients, liposoluble bioactive and other compounds of interest (1). According to the 30 

Food and Agriculture Organization (FAO), only 29 of the 636 scientifically recognized 31 

species of the genus Pinus produce edible pine nuts, and only 20 of these are significantly 32 

commercialized both globally and locally (2). One of the most significant species world- 33 

wide is the southern European species Pinus pinea, which has been consumed for more 34 

than 20 centuries (1). Its production covers an area of 903,723 ha distributed mainly in 35 

Spain (490.000 ha, especially in Catalonia and Castile-Leon), Portugal (130.000 ha), Italy 36 

(40.000 ha) and Turkey (183,128 ha) (3). Besides Pinus pinea, the most commercially im- 37 

portant species of pine nuts worldwide are Pinus koraiensis (Chinese and Korean pine), 38 

Pinus gerardiana (Pakistani pine) and Pinus sibirica (Russian pine) (4).  39 

 40 

Mediterranean pine nut (Pinus pinea) is the most highly valued species on the market, 41 

with an exceptional flavour and nutritional composition. Compared to Chinese and Paki- 42 

stani pine nuts, it contains double protein amount and less carbohydrates and fats. Pinus 43 

pinea kernels are thin and with a homogeneous soft colour, can be distinguished physi- 44 

cally and organoleptically from other important species such as Pinus koraiensis kernels, 45 
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which are thicker, with triangular shape and a characteristic brown hat on the tip, or Pinus 46 

gerardiana kernels, which are cylindrical and of a darker tone. However, these differences 47 

may not be detected by the consumer who are unaware of these variations, or they may 48 

not be useful if this product is in flour or another processed forms (5). Although more 49 

appreciated, there are no recognized geographical designation to differentiate Mediterra- 50 

nean Pinus pinea from other species or origins (1). These are mainly consumed locally, but 51 

their production is insufficient to satisfy the current high demand. In contrast, production 52 

and particularly exportation of pine nuts from other countries such as China or Russia 53 

have increased considerably in the last years, with China leading the market over the past 54 

decade, accounting for 61% of global exports in 2021 (mainly from Pinus koraiensis) (6). 55 

The pine nut production and commercialization lacks great commercial structures and 56 

involves numerous intermediaries between the producer and the consumer which makes 57 

traceability harder  (1). Regarding market value, Pinus pinea kernels can reach prices of up 58 

to 100 €/Kg, while other species sold indistinctly under the generic name "pine nuts" are 59 

available at much lower prices in the market and compete with Mediterranean production 60 

(7).  61 

Therefore, the high variance of prices, lack of geographical and botanical origin trace- 62 

ability and high competitiveness from emerging markets, make pine nuts highly vulner- 63 

able to fraudulent practices. According to the European Commission, during the first 64 

three months of this year (2024), 3,5% of food fraud suspicions have been reported in Eu- 65 

rope in the category "Nuts, nuts products and seeds", which include pine nuts (8–10).  66 

In addition to economic repercussions, food safety concerns are a significant conse- 67 

quence of fraud. Any non-compliance with label specifications means that the composi- 68 

tion, including absence of allergens and other undesirable compounds, cannot be guaran- 69 

teed, thereby raising important safety issues. In the case of pine nuts, it is notable to men- 70 

tion Pine Mouth Syndrome (PMS), also called pine nut syndrome (PNS), a taste disturb- 71 

ance also known as cacogeusia, characterized by a metallic and bitter flavour that emerges 72 

after 1-3 days of pine nuts consumption (11). This alteration was first described in the 73 

European medical conference 2001 and several hundred cases have been described in the 74 

literature after that. It has been exclusively associated with the consumption of a non- 75 

edible species of pine nuts, Pinus armandii, which is sometimes sold mixed with Chinese 76 

pine nuts (Pinus koraiensis), or as other edible pine nut species (12,13).   77 

 78 
Research on analytical methods for food authentication has grown greatly over the 79 

past 20 years, resulting in numerous research articles. Even so, the food industry, partic- 80 

ularly the nut industry, still lacks fast and low-cost analytical methods to assess the au- 81 

thenticity of products in routine analysis (14). Therefore, the development of efficient and 82 

affordable tools to determine the botanical and geographical origin of pine nuts is crucial 83 

to prevent food fraud and increase consumer confidence.  84 

 85 

In recent years, several studies have been carried to find suitable methods for the 86 

authentication of nuts. The most significant analytical methods for high-fat content foods 87 

include spectroscopy, stable-isotope analysis, DNA-based methods and chromatography 88 

methods that have high selectivity, sensitivity and accuracy (14). Spectroscopic techniques 89 

are low-cost, non-destructive and easy to implement. Near infrared spectroscopy has been 90 

used for geographical identification of samples of Pinus pinea kernels grown in different 91 

areas of Chile (15), and for the authentication of an Italian Hazelnut PDO (Nocciola 92 

Romana) (16). Specific isotopic markers have shown satisfactory results for the geograph- 93 

ical authentication of hazelnuts (17), but they are not suitable for verifying their botanical 94 

origin, as these markers are primarily influenced by soil and climatic factors. In this regard, 95 

DNA methods are reliable to identify the botanical origin of nuts. Although they tend to 96 

be overly complex and expensive, various studies are currently demonstrating the suc- 97 

cessful application of rapid and cost-effective molecular methods, such as RAPD-PCR for 98 

differentiation and identification of hazelnut cultivars (18) or the study of polymorphic 99 
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sites of the chloroplast genome for varietal determination of hazelnuts (19). Nevertheless, 100 

although genetic approaches are suitable to assess the botanical origin, they cannot deter- 101 

mine the geographical provenance. Likewise, the study of the fatty acid profile was pro- 102 

posed for the botanical identification of pine nuts (20), but their efficiency as geographical 103 

markers has not been demonstrated. In contrast, methods based on gas  chromatography 104 

coupled to mass spectrometry (21) allow both botanical and geographical authentication 105 

of several hazelnuts with classification rates higher than 90%, proving to be effective 106 

methods and applicable to routine analysis. Most of the current methods are preliminary 107 

methods, highlighting the necessity to develop methods that include an external valida- 108 

tion. 109 

 110 

Some of the above-mentioned studies are based on a targeted approach, which fo- 111 

cuses on the detection of specific analytes or a group of them. These methods are useful 112 

for food authentication when the molecules to be detected are known a priori, and they 113 

are usually robust, reproducible and easy transferable among different laboratories. How- 114 

ever, they often provide limited information for detecting fraud and insufficient protec- 115 

tion for consumers. Additionally, when working with complex matrices such as food 116 

products, the quantification of compounds using a target approach can be challenging 117 

and may provide insufficient information when dealing with complex issues like origin 118 

and species authentication. In these cases, non-targeted methods that enable the acquisi- 119 

tion of multiple non-target parameters to obtain a comprehensive view of the sample com- 120 

position could be a better option. Fingerprinting methods are non-targeted analytical ap- 121 

proaches based on the use of raw analytical signals, such as a chromatogram, and are 122 

currently a major focus of research for food authentication (22,23). 123 

In fingerprinting approaches, once all data are acquired through one or more analyt- 124 

ical techniques such as spectroscopy or chromatography, multivariate qualitative chemo- 125 

metric methods are applied to extract relevant information and discriminate the data 126 

based on their metabolic profile (24). In multivariate methods several steps are followed: 127 

exploratory techniques, classification or discriminant analysis and a validation step. Ex- 128 

ploratory techniques are unsupervised methods that provide information on the relation- 129 

ship between samples, variables and the interaction between samples and variables, re- 130 

vealing trends among them (25). The most popular exploratory techniques are principal 131 

components analysis (PCA) and hierarchical cluster analysis (HCA). The PCA is based on 132 

the generation of new variables (main component or PCs) as a combination of the original 133 

variables that retain the maximum possible information of the original data. HCA is useful 134 

for identifying patrons and underlying structures as it organizes information in hierar- 135 

chical groups based on similarity and represented in a denogram. (26). Classification or 136 

discriminant techniques are supervised techniques that associate analytical data of sam- 137 

ples with their membership in predefined classes. They classify unknown samples in the 138 

class whose characteristics they most closely match. The main discriminant techniques are 139 

partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), 140 

quadratic discriminant analysis (QDA) and k nearest neighbours (KNN), among others. 141 

PLS-DA is one of the most commonly used discriminant techniques. It involves defining 142 

multiple classes, after which samples are classified into one of these classes based on max- 143 

imizing the correlation between the data and each category. In doing so, PLS-DA identi- 144 

fies the features that exhibit the greatest differences between categories while reducing 145 

the impact of variables not relevant to a specific category. However, this method tends to 146 

overfit the data, making an external validation necessary (25). External validation is per- 147 

formed by predicting the class of samples that had not been used to construct the model, 148 

aiming to verify that the results are statistically valid and that can accurately classify new 149 

samples (26).  150 

 151 

Regarding marker selection, studies on virgin olive oils (27,28) revealed that sesquiterpene 152 

hydrocarbons are highly effective for varietal and geographical authentication. 153 
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Sesquiterpenes are a group of C-15 (29) semi-volatile secondary metabolites that play an 154 

important role in defence against herbivores and plant pathogens (27). The production of 155 

these compounds is influenced by pedoclimatic and genetic factors, making it closely 156 

linked to the cultivar and geographical area, while being minimally influenced by storage 157 

and processing conditions (30). These compounds can be easily extracted by headspace 158 

solid-phase microextraction (HS-SPME) of the sample headspace followed by GC-MS (31), 159 

a simple, solvent-free and automatable technique. Sesquiterpene fingerprinting performed 160 

by HS-SPME-GC-MS followed by PLS-DA has proven to be a good choice for botanical 161 

and geographical authentication of virgin olive oil in routine analyses. This methodology 162 

could be useful for the authentication of other food matrices. While other nut species typ- 163 

ically lack appreciable amounts of sesquiterpenes in their kernels, conifers are known for 164 

their abundant production of volatile and semi-volatile terpene (VST) metabolites (32). 165 

Some VST hydrocarbons have also been identified in pine nut kernels, indicating that this 166 

fraction could serve as potential authentication markers (33).  167 

 168 

Hence, the objective of this study is to verify whether VST fingerprinting combined to PLS- 169 

DA, which proven successful in other food matrices, could serve as an effective tool for the 170 

routine authentication of both the geographical and botanical origin of pine nuts. For this 171 

purpose, the VST fingerprints of 245 pine nuts samples from different origins (Spain, China, 172 

and Russia) and different species were analysed by HS-SPME-GC-MS. PLS-DA models 173 

were built to differentiate between (i) different species of pine nuts based on their country 174 

of origin, and (ii) Iberian Pinus pinea samples from Catalonia and Castile and Leon regions. 175 

Both internal (cross-validation) and external validation were performed. Finally, regres- 176 

sion coefficients of PLS-DA model were evaluated in order to tentatively identify the com- 177 

pounds characterizing each class of pine nut and discriminate then from others.  178 

 179 

2. Materials and Methods 180 

 181 

2.1 Sampling 182 

 183 

The sample set consisted of 245 traceable pine nuts samples from different geograph- 184 

ical origins (Table 1). Of these samples, 170 were Iberian production pine nuts (Pinus pinea 185 

cultivars) and 75 were non-Iberian production pine nuts (other species). Among the Ibe- 186 

rian samples, 74 were cultivated in Catalonia (CAT), directly obtained from the Institut de 187 

Recerca i Tecnologia Agroalimentària (IRTA) and 96 were cultivated in Castile and Leon  188 

(CL), directly obtained from the Instituto Nacional de Investigación y Tecnología Agraria 189 

y Alimentaria (INIA) and the Centro de Servicios y Promoción Forestal y de su Industria 190 

de Castilla y León (CESEFOR). The remaining non-Iberian pine nuts were cultivated in 191 

different non-European countries (China, Russia and others) and obtained from commer- 192 

cial suppliers. Samples were collected over four consecutive harvest years (2020, 2021, 193 

2022 and 2023). The entire set was preserved at 4ºC and analysed in January 2024. Random 194 

selection was employed during the sample analysis to prevent any selection bias. 195 

  196 
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Table 1. Number and geographical origin of all samples from the four harvest years: 2020,2021, 2022 197 
and 2023. 198 

 

Origin 

 Harvest years 

2020 2021 2022 2023 Total  

Iberian Castile and Leon (CL) 11 10 75 0 96 

 Catalunya (CAT) 25 24 25 0 74 

Non-Iberian China 0 20 29 0 49 

 Russia 0 5 12 1 18 

 Non-EU (others) 0 5 3 0 8  

 Total 36 64 144 1 245   

 199 
 200 

2.2 Headspace-solid phase microextraction (HS-SPME) 201 

 202 

Around 1 g of pine nuts (5-8 pine nuts) was introduced into vials of 10 mL closed 203 

with headspace caps. The headspace solid-phase microextraction (HS-SPME) was per- 204 

formed with the help of an autosampler Combi-pal (CTC Analytics, Zwinger, Switzer- 205 

land) at the conditions reported by Vichi S. et al. (31). Briefly, sample was conditioned un- 206 

der agitation (250rpm) for 10 minutes at 70 °C. After that, a divinylbenzene/carboxen/pol- 207 

ydimethylsiloxane (50/30 μm DVB/CAR/PDMS, 2cm length) fiber provided by Supelco 208 

(Bellefonte, PA) was inserted through the PTFE/silicone septum and exposed to the sam- 209 

ple headspace, at 70 °C for 60 minutes. Subsequently, the fiber was removed into the pro- 210 

tective needle and exposed into the gas chromatography injection port at 260 °C for 10 211 

min to allow the desorption of analytes. In this step, the injector was maintained in split- 212 

less mode for 5 min. 213 

 214 

2.3 Gas chromatography-mass spectrometry (GC-MS) 215 

 216 

The sample set was analysed by an Agilent 6890 N Network GC system coupled to a 217 

quadrupolar mass selective analyser Agilent 5975C Inert MSD (Agilent Technologies, 218 

Santa Clara, California, USA). The carrier gas used was helium at a flow of 1.5 mL/min. 219 

Analytes were separated on a Supelcowax-10 capillary column (60 m × 0.25 mm i.d., 0.25 220 

μm film thickness) from Supelco (Bellefonte, PA). Column temperature was initially held 221 

at 40 °C for 3 min, then increased to 100 °C at a rate of 4 °C/min, after that increased to 200 222 

°C at 5 °C/min and finally increased to 260 °C at 15 °C/min, holding the last temperature 223 

for 5 min. Other temperatures were 230 °C for ion source and 280 °C for transfer line. Mass 224 

spectra were acquired at 2.3 scan/s with an electron energy of 70 eV. Data was acquired 225 

using the selected ion monitoring (SIM) mode, obtaining the Extracted Ion Chromatogram 226 

(EIC) of 7 specific ions: m/z 93, 95, 119, 159, 161, 189, 204, which had been reported to be 227 

specific for VST  (34). 228 

 229 

2.4 Fingerprinting approach 230 

 231 

The seven EICs were acquired from 0,094 min to 47,192 min obtaining 6621 scans per 232 

ion and therefore 46347 variables per sample (6621 scans x 7 ions). After acquiring data 233 

for all samples, a data matrix was constructed for each ion, with scan intensities of each 234 

Extracted Ion Chromatogram (EIC) represented along the columns and individual sam- 235 

ples along the rows. Then, EICs of each ion were normalized and aligned among them 236 

using the algorithm Correlation Optimized Warping (COW) on Matlab®. Finally, the 237 

seven aligned matrices were concatenated conforming a two-way unfolded matrix (245 238 

samples x 46347 variables). 239 
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 240 

2.5 Chemometrics 241 

 242 

2.5.1 Data pre-processing and exploration 243 

 244 

Before performing partial least squares discriminant analysis (PLS-DA) a pre-pro- 245 

cessing and exploration step was performed using SIMCA software v13.0 © (Umetrics AB, 246 

Sweden). For pre-processing, two different treatments were tested (mean centering and 247 

scaling), where scaling proved to be the optimal one. For exploration, a Principal Compo- 248 

nent Analysis (PCA) was performed in order to identify potential outliers according to 249 

Hotelling’s T2 range and model residuals. 250 

 251 

2.5.2 Partial least squares discriminant analysis (PLS-DA) 252 

 253 

Two different types of binary PLS-DA models were built using SIMCA software 254 

v13.0 © (Umetrics AB, Sweden): one to classify all samples from distinct species (n=245) 255 

between “Iberian” and “non-Iberian”, and one to classify only Pinus pinea Iberian samples 256 

(n=170) between “CAT” and “CL”. Hotelling’s T2 and range and model residuals were 257 

evaluated to identify potential outliers.  258 

The full data set (n=245) was divided randomly into training set and validation set 259 

using the Matlab® program, always maintaining the original proportions of the sample 260 

classes. 80% of the data set was used for the training set (n= 196) and 20% of this was used 261 

for the validation set (n= 49). This process was effectuated three times obtaining three dif- 262 

ferent validation sets (three iterations).  263 

The training sets were used to construct PLS-DA training models. On each model, 264 

the number of Latent Variables (LV) was selected according to the first lowest RMSEcv. 265 

After choosing the LV, a verification was carried out to confirm the models were not over- 266 

fitted by doing both ANOVA of the cross-validated predictive residuals (p-value) and 267 

permutation tests where 20 different models were developed and compared with the orig- 268 

inal model. Finally, a 10%-out cross-validation was carried out as the internal validation, 269 

obtaining a Root Mean Squared Error of Cross Validation (RMSEcv) and misclassification 270 

results (expressed as mean of three iterations ±standard deviation), which were used to 271 

evaluate the suitability of the three type of models (three iteration each).  272 

 273 

2.5.3 External validation (EV) 274 

 275 

The external validation was conducted by using each training model to predict the 276 

class of the corresponding validation samples. The prediction efficiency of each model 277 

was evaluated by calculating the mean percentage and standard deviation of correct clas- 278 

sification across three iterations. 279 

 280 

2.5.4 Evaluation of PLS-DA regression coefficients 281 

  282 
The regression coefficients of PLS-DA model built using the full sample set were 283 

evaluated to assess the contribution of variables from each EIC. A regression coefficient 284 

was considered significant when its value exceeded the standard error of cross validation. 285 

For the variables contributing the most to prediction, the spectrum of the corresponding 286 

chromatographic peak was obtained in the full scan mode, in order to tentatively identify 287 

the compounds that characterize each class of pine nut and discriminate it from others.  288 

 289 
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3. Results and discussions 290 

 291 

3.1 Data obtaining 292 

 293 

In this study, chromatographic data was obtained by applying headspace solid- 294 

phase microextraction gas chromatography (HS-SPME-GC-MS) on the whole pine nut 295 

kernels. Preliminary tests comparing the analysis of whole and ground pine nuts showed 296 

no significant difference in the response of the VST (data not shown). Consequently, 297 

whole pine nut kernels were used for the analysis to reduce sample manipulation, pro- 298 

cess time and cost, which is favourable for its application in routine analyses. 299 

 300 

3.2. Data pre-processing and exploratory analysis 301 

 302 

Once the EICs of the seven ions specific for VST (m/z 93, 95, 119, 159, 161, 189, and 303 

204) were obtained, they were normalized and subsequently aligned using the COW al- 304 

gorithm, specific for chromatographic data. Alignment was performed in order to correct 305 

the retention shifting between samples caused by instrumental factors inherent in chro- 306 

matographic techniques. Normalization was performed to correct magnitude changes 307 

that can occur when analysing a large sample set by GC-MS over an extended period due 308 

to variations in instrumental response (35).  309 

When all data was aligned and normalized, the seven ion matrices were concatenated 310 

conforming a two-way unfolded matrix (253 samples x 46347 variables). Two different 311 

treatments prior to multivariate analysis were tested: centering and autoscaling. On the 312 

one hand, centering reduces differences between high and low abundant metabolites of 313 

the same sample by subtracting the mean of each variable from the data. On the other 314 

hand, autoscaling makes samples comparable by removing the scale differences among 315 

them; it involves centering the data and dividing it by the standard deviation (36). Au- 316 

toscaling is recommended for chromatographic data when comparing minor and major 317 

compounds with different intensities (37). In this study, autoscaling proved to be the best 318 

pretreatment.  319 

 320 

On exploratory analysis, no potential outliers were detected according to Hotelling’s 321 

T2 range and model residuals. Preliminary examination of the PCA score plots indicated 322 

that, even in a non-supervised analysis, pine nuts clustered successfully based on their 323 

geographical and botanical origin. Figures 1a and 1b depict the same PCA score plot ob- 324 

tained using the entire sample set, but evidencing the samples according to their belong- 325 

ing to different classes and sub-classes. In Figure 1a, samples are coloured as “Iberian” 326 

and “Non-Iberian” pine nuts. Although there was a very slight overlap between both 327 

groups, the clustering of the Iberian (Pinus pinea) and non-Iberian (other pine nut species) 328 

samples was remarkable. On both categories, some samples stood out from the central 329 

circle. They were not considered outliers because they aligned with the variability ob- 330 

served in the other samples, indicating they represented natural variability within the 331 

same group.  332 

Observing the same PCA score plot but dividing “Iberian” Pinus pinea samples into 333 

“CAT” and “CL” origin (Figure 1b), it is notable to mention that, even between samples 334 

of the same species, there was a discrete clustering based on geographical origin. Even so, 335 

“CAT” and “CL” samples overlapped significantly, indicating that these samples, alt- 336 

hough cultivated in different regions, could share some similar characteristics. 337 

 338 
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(a) (b) 

Figure 1. Score plots of PCA with third and second principal components based on pine nut VST  339 
data coloured by a) “Iberian”/”non-Iberian” categories (n=245, 6 PC, Q2=0.613); b) 340 
“CAT”/”CL”/”non-Iberian” categories (n= 245, 6 PC, Q2=0.613).  341 

 342 

3.3. PLS-DA authentication models development and internal validation 343 

 344 

As PCA is an unsupervised analysis, it can be significantly influenced by instrumen- 345 

tal noise and variables unrelated to sample classification. Conversely, the supervised tech- 346 

nique PLS-DA identifies the most distinctive features between categories while minimiz- 347 

ing the influence of unrelated variables. As this is expected to enhance discrimination, 348 

PLS-DA was applied for the development of subsequent classification models. 349 

Two different types of binary PLS-DA models were built to assess the efficiency of 350 

VST fingerprinting for pine nuts authentication: (i) a model to classify samples from dif- 351 

ferent species and origins (n=245) as “Iberian” Pinus pinea and “non-Iberian” samples from 352 

distinct species; (ii) a model to classify only Iberian Pinus pinea samples (n=170) into 353 

“CAT” and “CL” categories. No potential outliers were found in any of these models.  354 

 355 

As expected, since PLS-DA is specifically designed to discriminate between clas- 356 

ses,  PLS-DA score plot of “Iberian” / “non-Iberian” PLS-DA model (Figure 2a) showed 357 

better separation between classes with respect to the corresponding PCA score plot (Fig- 358 

ure 1a).  Moreover, the Iberian samples presented lower dispersion compared to the non- 359 

Iberian ones. The lower variability among Iberian samples is likely because they were 360 

from the same species and a more confined geographical area.  361 

 362 

 

  

(a) (b) 

Figure 2. Score plots of PLS-DA models based on pine nuts VST fingerprinting (mean and standard 363 
deviation of three iterations): a) “Iberian”/”non-Iberian” model (n=245, 4 latent variables or LVs, 364 
RMSEcv=0.095, p < 0.05); b) “CAT”/”CL”- model (n=170, 5 LVs,  RMSEcv=0.157, p < 0.05). 365 
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The score plot of the “CAT” / “CL” model (Figure 2b), revealed appreciable differ- 366 

ences between “CAT” and “CL”. Despite some slight overlap, consistent with the patterns 367 

observed in the PCA score plot, the PLS-DA was effective in distinguishing between the 368 

two classes. This suggests that while “CAT” and “CL” pine nuts shared characteristics 369 

due to being from the same species, they could still be differentiated based on their re- 370 

gional cultivation differences.  Regarding the dispersion of the samples, “CAT” samples 371 

exhibited tighter clustering than “CL” samples.  372 

 373 

To assess the discriminant capacity of these models, an internal validation was con- 374 

ducted through a leave 10% out cross-validation (Tables 2 and 3). The cross validation 375 

results for both the “Iberian” / “non-Iberian” and the “CAT” / “CL” PLS-DA models 376 

demonstrated a classification accuracy of 100% in all cases. 377 

 378 

 379 

 380 
Table 2. Results of the leave 10%-out cross-validation of the “Iberian” vs “non-Iberian” PLS-DA 381 
model (mean ± standard deviation of three iterations). 382 

“Iberian” vs “non-Iberian” model1 

  
Members 

(n) 

Iberian 

(n) 

Non-Iberian 

(n) 

Correctly classified 

(%) 

Iberian 170 170 ± 0 0 ± 0 100% ± 0 

Non-Iberian 75 0 ± 0 75 ± 0 100% ± 0 

Total 245 170 ± 0 75 ± 0 100%± 0 

1 N = 245, 4 LVs, RMSEcv=0.095, ANOVA p-value <0.05 383 

 384 
Table 3. Results of the leave 10%-out cross-validation of the “CAT” vs “CL” PLS-DA model (mean 385 
± standard deviation of three iterations). 386 

 387 

“CAT” vs “CL” model1 

  
Members 

(n) 

CAT 

(n) 

CL 

(n) 

Correctly classified 

(%) 

CAT 74 74 ± 0 0 ± 0 100% ± 0 

CL 96 0 ± 0 96 ± 0 100% ± 0 

Total 170 74 ± 0 96 ± 0 100% ± 0 

1N = 170, 5 LVs, RMSEcv=0.157, ANOVA p-value <0.05 388 

 389 

To exclude model overfitting, ANOVA results and permutation test were carried out. 390 

Overfitting occurs when a model is too finely tuned to the specific dataset, accounting for 391 

not only the relationship between predictors and response but also the noise and other 392 

extraneous factors, making the model less applicable to new data.  This test shuffles class 393 

labels to create multiple random models. If the actual model outperforms these random 394 

models, it confirms that the observed group differences are real and not by chance. The 395 

performance of the original model compared to random models is assessed by the Predic- 396 

tion Coefficient (Q²) and the Coefficient of Determination (R²). Q² measures the model's 397 

ability to predict new samples, while R² indicates how well the model explains the varia- 398 

bility in the training data. Figure 3 illustrates the results of permutation test conducted for 399 

the PLS-DA models for pine nuts authentication. The positive Q² of the model, in opposi- 400 

tion to the negative Q² values of the random models, confirms the absence of model over- 401 

fitting. 402 

In resume, ANOVA results (p < 0,05) and permutation test showed that the models 403 

were not overfitted and had a high discriminant capacity.  404 
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Figure 3. Permutation test assessed by the Prediction Coefficient (Q²) and the Coefficient of Deter- 405 
mination (R²) of (a) “Iberian” vs “Non-Iberian” PLS-DA model (b) “CAT” vs “CL” PLS-DA model. 406 

 407 

3.4. External validation 408 

 409 

External validation is a crucial step in the development of PLS-DA models to ensure 410 

reproducibility of predictions, and validate the meaningfulness of results for practical  im- 411 

plementation of the model. If misclassified samples in external validation are greater than 412 

those in internal validation, it may indicate that the model is overfitted, considering noise 413 

instead of the underlying pattern. To conduct external validation of each model (“Ibe- 414 

rian/”non-Iberian” and “CAT/”CL”), the corresponding sample sets (n=245 and n=170, re- 415 

spectively) had been randomly divided into training set (80% of the samples: n=196 and 416 

n=136, respectively) and validation set (80% of the samples: n=49 and n=34, respectively). 417 

This process was conducted three times (three iterations) to ensure that the external vali- 418 

dation was set-independent. After optimization and internal validation described in 3.3, 419 

training models were applied to predict the class of the respective validation samples. The 420 

prediction efficiency of each model was evaluated by calculating the percentage of correct 421 

classification, expressed as mean and standard deviation across the three iteration sets. In 422 

line with the results obtained in the internal validation, excellent results (Tables 4 and 5) 423 

were obtained in the external validation for all models.  All the pine nut samples were 424 

correctly classified as “Iberian” and “non-Iberian”, and Pinus pinea Iberian samples were 425 

classified by their region of origin with correct classification rates higher than 96% in all 426 

categories, and an overall accuracy of 98%.  These results demonstrated the high efficiency 427 

of PLS-DA models based on VST fingerprinting for pine nut authentication. 428 

 429 

Table 4. Results of external validation of the “Iberian” vs “non-Iberian” PLS-DA model. Mean and 430 
standard deviation of the three sample sets (3 iterations), for each category. 431 

“Iberian” vs “non-Iberian” model1 

  
Members 

(n) 

Non-Iberian 

(n) 

Iberian 

(n) 

Correctly classified  

(%) 

Non-Iberian 15 15 ± 0 0 ± 0 100% ± 0 

Iberian 34 0 ± 0 34 ± 0 100% ± 0 

Total 49 15 ± 0 34 ± 0 100% ± 0 

1 N = 196, 4 LVs, ANOVA p-value <0.05 432 

  433 
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Table 5. Results of external validation of the “CAT” vs “CL” PLS-DA model. Mean and standard 434 
deviation of the three sample sets (3 iterations), for each category. 435 

“CAT” vs “CL” model1 

  
Members 

(n) 

CAT 

(n) 

CL 

(n) 

Correctly classified  

(%) 

CAT 15 15 ± 0 10 ± 0 100% ± 0 

CL 19 0,7± 0,6 18,3 ± 0,6 96% ± 0,03 

Total 34 15,7 ± 0,6 18,3 ± 0,6 98% ± 0,02 

1N = 136, 5 LVs, ANOVA p-value <0.05 436 

 437 

3.5. Exploration of PLS-DA regression coefficients 438 

 439 

Regression coefficients of PLS-DA models built using the full sample set were evalu- 440 

ated to determine which variables from each EIC contributed most significantly to the 441 

model’s prediction, ensuring that the models rely on meaningful chemical information. 442 

This exploration was carried out for both the “Iberian” vs “non-Iberian” model and the 443 

“CAT” vs “CL” model.  444 

For the variables contributing the most to prediction, the spectrum of the correspond- 445 

ing chromatographic peak was obtained in the full scan mode, in order to tentatively iden- 446 

tify the compounds that distinguish each class of pine nut. All EICs provided relevant 447 

information, as indicated by the regression coefficient plots (Figures 4a and 4b). Particu- 448 

larly, m/z 93, 95, 119 and 204 provided the most influential contributors to discrimination. 449 

Total Ion Chromatogram (TIC) highlighting the variables associated to the most signifi- 450 

cant regression coefficients (Figures 3c and 3d) revealed that not only major but also very 451 

minor compounds significantly contributed to the discrimination of both models. This 452 

underscores that minor VST , typically overlooked in a targeted approach, played a crucial 453 

role in these discrimination models, remarking why fingerprinting approach could be a 454 

better option for pine nuts authentication.  455 

The most relevant compounds for each model, highlighted in Figures 4c and 4d were 456 

tentatively identified on the basis of their mass spectra and elution order as mono and 457 

sesquiterpene compounds, confirming that the models were based on meaningful data. 458 

Monoterpene compounds mainly distinguished non-Iberian pine nuts, while Iberian ones 459 

were mainly distinguished by their sesquiterpene pattern. For the Iberian samples, the 460 

most relevant compounds presented a mass spectrum that could be tentatively attributed 461 

to limonene (a cyclic monoterpene), amorphene, cubebene or junipene (all three sesquit- 462 

erpene hydrocarbons), among others. For the non-Iberian samples, the most relevant 463 

peaks could be tentatively identified as monoterpene compounds such as α-pinene, β- 464 

pinene, cymene, or myrcene, among others. Several chromatographic peaks were only 465 

present in samples of one of the “Iberian” or “non-Iberian” classes. This information may 466 

be considered for the authentication of pine nuts not only on the entire kernel or flour, but 467 

also as part of complex processed foods. It must be clarified that the goal of the study was 468 

not to conduct an exhaustive study of all discriminant variables or shift towards targeted 469 

analysis. Instead, we focused on verifying the terpene nature of the most relevant varia- 470 

bles and gaining insights into their overall molecular structure. More detailed and focused 471 

studies would be required to study deeply the specific chemical structure of compounds 472 

that were relevant to the model prediction. 473 

 474 
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(b) 

 

(c)   (d) 

Figure 4. Exploration of regression coefficients of PLS-DA models. a) PLS-DA regression coefficients 475 
of the “Iberian” vs “non-Iberian” model, selected from the significant ones according to a threshold 476 
of 0.0002 and -0.00015 (Blue: relevant for “Iberian”; red: relevant for “non-Iberian”). b) PLS-DA re- 477 
gression coefficients of the “CAT” vs “CL” model, selected from the significant ones according to a 478 
threshold of 0.00045 and -0.0005 (Blue: relevant for “CAT”; red: relevant for “CL”). c)  Total Ion 479 
Chromatogram (TIC) highlighting the acquisition points corresponding to the most relevant regres- 480 
sion coefficients of (a) (Blue for “Iberian” coefficients; red for “non-Iberian” coefficients). d)  Total 481 
Ion Chromatogram (TIC) highlighting the acquisition points corresponding to the most relevant 482 
coefficients (Blue for “CAT” coefficients; red for “CL” coefficients). 483 

4. Conclusions 484 

 485 

In conclusion, VST  fingerprinting obtained through HS-SPME-GC-MS proved to be 486 

a suitable method for geographical and botanical authentication of pine nuts. VST, previ- 487 

ously studied for the authentication of other food matrices and abundantly produced by 488 

conifers, have proven to be effective markers for pine nut authentication. In addition, the 489 

use of a solvent-free and automatable data acquisition technique applied on the whole 490 

pine nut kernels, could reduce both time and costs, making it suitable for routine analyses 491 

on official controls. Moreover, the applied chemometric approach (PLS-DA) has allowed 492 

the discrimination of samples according to the characteristic patterns of each class. Suc- 493 

cessful discrimination results have been obtained on the models discriminating between 494 

Iberian and non-Iberian samples and between Iberian samples cultivated in different ge- 495 

ographical areas (Catalonia and Castile-Leon) with correct classification values of 100% 496 

for internal validation and values above 96% of correct classification for external valida- 497 

tion, ensuring that model predictions are reliable.  Finally, the study of the regression co- 498 

efficients has demonstrated that the model's predictions are based on significant chemical 499 

information, with both major and minor VST  contributing individually to the method's 500 

discrimination. This highlights why the fingerprinting approach could be a better option 501 

for pine nut authentication. 502 

  503 
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