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ABSTRACT

Core ellipticals, which are massive early-type galaxies with almost constant inner surface brightness profiles, are the result of dry mergers. During
these events, a binary black hole (BBH) is formed, destroying the original cuspy central regions of the merging objects and scattering stars that are
not on tangential orbits. The size of the emerging core correlates with the mass of the finally merged black hole (BH). Therefore, the determination of
the size of the core of massive early-type galaxies provides key insights not only into the mass of the black hole, but also into the origin and evolution
of these objects. In this work, we report the first Euclid-based dynamical mass determination of a supermassive black hole (SMBH). To this end,
we study the center of NGC 1272, the second most luminous elliptical galaxy in the Perseus cluster, combining the Euclid Visible Camera (VIS)
photometry coming from the Early Release Observations (EROs) of the Perseus cluster with the Visible Integral-field Replicable Unit Spectrograph
(VIRUS) spectroscopic observations at the Hobby-Eberly Telescope (HET). The core of NGC 1272 is detected on the Euclid VIS image. Its size is
1”729 + 0”07 or 0.45 kpc, which was determined by fitting PSF-convolved core-Sérsic and Nuker-law functions. We deproject the surface brightness
profile of the galaxy, finding that the galaxy is axisymmetric and nearly spherical. The two-dimensional stellar kinematics of the galaxy is measured
from the VIRUS spectra by deriving optimally regularized non-parametric line-of-sight velocity distributions. Dynamical models of the galaxy
are constructed using our axisymmetric and triaxial Schwarzschild codes. We measure a BH mass of (5 + 3) x 10° M, which is in line with the
expectation from the Mgy —r, correlation, but is eight times larger than predicted by the Mpy—o correlation (at 1.80 significance). The core size,
rather than the velocity dispersion, allows one to select galaxies harboring the most massive BHs. The spatial resolution, wide area coverage, and
depth of the Euclid (Wide and Deep) surveys allow us to find cores of passive galaxies that are larger than 2 kpc at a redshift of up to 1.

Key words. galaxies: elliptical and lenticular, cD — galaxies: individual: NGC 1272 — galaxies: kinematics and dynamics — galaxies: nuclei —
galaxies: photometry
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1. Introduction

Massive early-type galaxies (ETGs) are commonly found at the
centre of galaxy clusters and are the result of mostly dissi-
pationless mergers. During these events, nuclear supermassive
black hole (SMBH) binaries are formed. Gravitational sling-
shots eject stars on radial orbits from the center of the remnant
galaxy, destroying the power-law surface brightness distributions
found in lower-luminosity ellipticals (Faber et al. 1997). Gravi-
tational wave recoil (Khonji et al. 2024) can enhance the scour-
ing mechanism. Through this core-scouring mechanism, the
surface brightness profile /(r) of most massive ETGs becomes
almost constant within a break (or core) radius ry, and for r < ry
one finds I(r) oc 77, with y < 0.3 (Faber et al. 1997). The break
radius ry, is tightly correlated with the mass of the central black
hole (BH); moreover, it is anti-correlated with the central surface
brightness (Mehrgan et al. 2019). A broader correlation between
rp, and the luminosity or stellar mass of the galaxies is also estab-
lished (Laine et al. 2003; Rusli et al. 2013a). Moreover, within
1y, the distribution of orbits becomes tangentially anisotropic
(Thomas et al. 2014), as only stars avoiding the center can sur-
vive the scouring (Milosavljevi¢ & Merritt 2001; Thomas et al.
2014; Rantala et al. 2018, 2019). Although alternative expla-
nations for the formation of cores have been proposed, such
as the “tidal deposition” discussed by Nasim et al. (2021) and
the feedback by active galactic nuclei (see Teyssier et al. 2011;
Martizzi et al. 2012; Choi et al. 2018), they fail to explain this
tangential anisotropy signature.

Black holes with dynamically measured masses of greater
than 10'° M, that is, hypermassive black holes (HMBHs),
are still rare. They cannot be found using the Mgy—o rela-
tion (Saglia et al. 2016): a dissipationless merger of equal-mass
galaxies doubles the mass of the resulting BH, maintains or even
reduces the velocity dispersion of the system (Lauer et al. 2007,
Naab et al. 2009). A large fraction of brightest cluster galaxies
(BCGs) in the local Universe have relatively low velocity dis-
persions: Kluge & Bender (2023) measure on average a veloc-
ity dispersion of 250kms~! for their large sample of BCGs,
with only 10% of objects having oo > 300 km s7L. The Mgy—o
relation translates o = 250kms~! into BH masses of around
only about 6 x 108 M. Nevertheless, HMBHs are found in
BCGs, the largest (4 x 10'° M) known being in Holm 15A
(Mehrgan et al. 2019). The most promising way to search for
HMBHs is to select massive ETGs, in particular BCGs, with core
radii of the order of or larger than 0.6 kpc (Holm 15A has a core
radius of 4 kpc). The Euclid Wide and Deep Surveys will allow
us to find these objects in large numbers and out to redshifts
of around 1 thanks to their excellent spatial resolution, large
area coverage, and depth. Here we report the detection of the
1’729 (or 0.45 kpc) core of NGC 1272, which was measured on
the Euclid Early Release Observations (EROs) Visible Camera
(VIS) (Euclid Collaboration 2024a) image of the Perseus cluster
(Cuillandre et al. 2024a,b), and the dynamical determination of
the mass of its BH.

The galaxy is the second brightest elliptical galaxy of
Perseus. With a total magnitude in the V band corrected for
Galactic absorption V‘T) of 11.27 (de Vaucouleurs et al. 1991),
we compute a luminosity of L = 1.3 x 10'' L, using 72 Mpc
as the distance of the cluster (Kluge et al. 2024), with which
1”7 translates to 0.35kpc. The stellar mass of the galaxy is
9 x 10" M, using our dynamically determined mass-to-light
ratio of 7 My/L (see Sect. 3) and the effective radius quoted
in de Vaucouleurs et al. (1991) is 57” or 20kpc. With these
properties, NGC 1272 belongs to the class of cD galaxies, the
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most massive ellipticals. We expect such objects to be triaxial
with a low V/o parameter (the ratio between the mean stellar
velocity V and the velocity dispersion o~ of the galaxy), to be
detected as radio sources, and to have extended X-ray emission
(Bender et al. 1989). Consistent with this, Veale et al. (2017)
present the stellar kinematics of NGC 1272 obtained with the
VIRUS-P spectrograph and classify the galaxy kinematically as
a slow rotator. Park et al. (2017) detect a faint radio source at its
center and McBride & McCourt (2014) study the properties of
the double jets emerging from the center of the galaxy (which
are bent with a curvature radius of 2 kpc). Arakawa et al. (2019)
detect and study the X-ray minicorona of the galaxy, measuring
a temperature of 0.63 keV and a size of 1.2 kpc.

The structure of the paper is as follows. In Sect. 2 we
describe the photometric and spectroscopic observations of
NGC 1272. The dynamical modeling is presented in Sect. 3. We
draw our conclusions in Sect. 4, where we discuss the prospect
of exploiting the Euclid survey (Euclid Collaboration 2024b) to
find large cores up to redshift 1 in order to probe the formation
redshift of the most massive BHs in galaxies.

2. Observations

NGC 1272 was observed during the early days of the
Euclid survey as part of the pointings covering the Perseus
galaxy cluster (Cuillandre et al. 2024b), one of the objects
selected for the EROs program. The VIS (Euclid Collaboration
2024a) and Near-Infrared Spectrometer and Photometer (NISP)
(Euclid Collaboration 2024c) ERO images of the cluster were
reduced as described in Cuillandre et al. (2024a). Based on this
dataset, studies of the Perseus intracluster light and intracluster
globular clusters are described in Kluge et al. (2024) and a study
of its dwarf galaxy population is presented by Marleau et al.
(2024).

In Sect. 2.1 we make quantitative use of the VIS image
of NGC 1272, with pixel size and resolution of 0”/1 and 0717,
respectively. We used the near-infrared images (with 0’3 pixels)
to assess the absence of dust in the central regions of the galaxy.
The complementary spectroscopic information is described in
Sect. 2.2.

2.1. Photometry

Figure 1 shows a cutout of the FEuclid VIS image of
NGC 1272. The isophote shape analysis was performed follow-
ing Bender & Moellenhoft (1987). Figure 2 shows the result-
ing surface brightness profile calibrated to the V band for
compatibility with the results of Rusli et al. (2013a). We perform
the calibration by integrating the profile in circular apertures,
which we shift to reproduce the aperture photometry listed in
Hyperleda'. Finally, we adopt the correction for Galactic absorp-
tion and cosmological surface brightness dimming adopted in
de Vaucouleurs et al. (1991) by matching our aperture magni-
tude within 57" —which is the half-luminosity radius— to V¥ +
2.5log;,2 —which is half the total luminosity of the galaxy. We
measure the photometry out to 147" from the center, down to
24.9 mag arcsec™; this is five times the distance reached by our
stellar kinematics. The galaxy is round, with ellipticities smaller
than 0.15 and isophotes showing only small deviations from per-
fect ellipses. For radii of greater than about 45”, the center of
the isophotes starts to drift toward the direction of NGC 1275
and the position angle twists by 70°. In the inner 172, the

I http://atlas.obs-hp.fr/hyperleda/
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Fig. 1. Cutout of the Euclid VIS image of NGC 1272.

surface brightness increase toward the center slows down, point-
ing to the presence of a core.

The sizes of the cores of ETGs have been determined in the
past using the Nuker law (Faber et al. 1997) and the core-Sérsic
law (Graham et al. 2003). The advantages and disadvantages of
the two approaches have been discussed at length in the liter-
ature and depend on how well the outer parts of a galaxy can
be described by either law. In the following, we rely on both
approaches as a way to estimate the systematic effects that affect
our measurements.

We begin the process of deriving the size of the core of
NGC 1272 by fitting a 5000 x 5000 pixel (250" x 250"") image
extracted from the VIS mosaic with the PSF-convolved core-
Sérsic function provided by the Imfit code® of Erwin (2015),
using the image of a star extracted in the vicinity of the galaxy
as the PSF. Fitting larger cutouts requires prohibitively large
computing time without improving the determination of the core
size. As implemented in Erwin (2015), the core-Sérsic function
is

) 7 \Cs ves/acs 7ocs 4 rgcs 1/nacs
ICS(V) =7 [1 + (7) ] €xp —bn T s
e

ey

where

1/n
I = ICS,bz_yCS/“CS exp [bn (zl/acs E) } , )

Te
and b, ~ 2n — 1/3 + 4/405n. Similarly, the Sérsic function is
1/n
r
Is(r) = I.exp l—b,, (—) ] .
¥

[

3)

Here, 7. is the half-luminosity radius, /. the intensity at 7., n
the Sérsic index, ry, the break radius, and Icsp, is the intensity at

2 https://www.mpe.mpg.de/~erwin/code/imfit/index.html

’C\‘Z_\ ‘\\\\‘\\\\ \\_ [T ‘:\\\\ TTTT 1]

o 18 = . | .

7 - i 015 % ]

S 20 - .

o - 4\ ; ]

¥ g2 f 15 M ¥
E f 1 o005F!
o 24T - i

2 | | - HHHHEH

0.05 [ C 5

C 50 | é@%

" . o C ﬁ

n 0 7 1 © 0 __; ‘S

< 4 o x ]

1 - §

-0.05 — -90 ] ]

:\H\\\\‘\\\\‘\\_ :\ H\\\\‘\\\\‘\\:

1 2 3 1 2 3
(A /arcsec)/* (A /arcsec)l/4

Fig. 2. Photometry profiles of NGC 1272. Top Left: Surface brightness
profile of NGC 1272 measured from the Euclid VIS image, calibrated
to the V band, and corrected for Galactic absorption and cosmological
dimming, as a function of the 1/4 power of the semi-major distance A
on the sky in arcsec. Bottom Left: Difference ASB between the surface
brightness profile of NGC 1272 and the surface brightness of the core-
Sérsic+Sérsic model. Right: Ellipticity 1 — B/A, where B is the semi-
minor axis length on the sky (top) and PA (bottom) as a function of the
1/4 power of A. The solid red lines show the core-Sérsic+Sérsic model.
The dashed lines show its core radius. The blue line shows the ellipticity
profile of the axisymmetric deprojection. The green line shows the PA
profile of the triaxial deprojection.

ry. Also, —ycs is the slope of the power-law inner profile, and
acs specifies the sharpness of the transition to the outer, Sér-
sic profile. In Tables 1 and 2, we provide the values of uy(r.)
and py(rp) that calibrate the surface brightness profiles yus =
=2.5logg Is/Ie + py(re) and pcs = —=2.510gg Ics/Icsp + 1y (ry)
to the V band.

The core-Sérsic model reproduces the surface brightness of
the galaxy accurately, with residuals of less than 0.1 mag, even
if it has a constant ellipticity and position angle. The resulting
parameters of the fit are given in Table 1; in particular, the size
of the core is perfectly resolved by the spatial resolution of the
VIS image. According to Thomas et al. (2016), we expect this
to match the size of the sphere of influence of the central black
hole of the galaxy. The best fitting value of n (21.1) is unreal-
istically large, as is that of r., which is two orders of magni-
tudes larger than the size of the fitted image; this stems from the
almost power-law behavior of the outer profile, which is typi-
cal of BCGs (Kluge & Bender 2023). Both parameters are to be
considered as a convenient parametrization of the galaxy pro-
file out to the limit of the image and increasing with the image
size. More importantly, the values of r, and ycs show no sig-
nificant dependency on this choice. The statistical errors listed
in Table 1 (and further below in Tables 2 and 3) are minute,
because there are a great many independent points in the image.
We have rounded them up to the first or second digit. Fitting the
surface brightness of Fig. 2 with a one-dimensional Sérsic profile
without PSF convolution delivers similar results within the sys-
tematic errors estimated below.
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Table 1. Parameters of the core-Sérsic best fits.

Image PA 1-BJ/A n Te Hy(ry) b acs ycs
[deg] [”] [mag arcsec™] []

VIS —34.1+0.1 0.10+£0.01 21.14+0.02 22807@+]26  17.83+0.01 124+001 3.99+001 0.21+0.01

VIS®  -354+0.1 0.15+0.01 12.1+0.1 349+1.0 17.93 £ 0.01 141 +0.01 247+0.01 0.15+0.01

F555W  -35.1+0.1 0.11+0.01 21.14 18392@ 1+ 4 17.85 +0.01 127001 3412001 0.17+0.01

F814W -348+0.1 0.11+0.01 21.14 16246@ £ ] 17.83 £ 0.01 125+001 3.64+001 0.19+0.01

Notes. We list the fitted image (column 1), the position angle (column 2), the ellipticity (column 3), the values of n, 7., py (1), 1, @cs, and ycs
(columns 4, 5, 6, 7, and 8, respectively), see Eq. (1). Italic font marks the unreliability of the values. “The value is unrealistically large, see text.

®With second Sérsic component, see Table 2.

Table 2. Parameters of the second Sérsic component.

Image PA 1-B/A n Te uy(re)
[deg] [ [mag arcsec™2]
VIS 503+0.1 0.14+0.1 2.62+001 140.8+0.1 25.04 + 0.01

Notes. We list the fitted image (column 1), the position angle (column 2), the ellipticity (column 3), and the values of n, r., py(r.) (columns 4, 5,

and 6, respectively); see Eq. (3).

Table 3. Parameters of the Nuker best fit.

Image PA 1-B/A 1y (rp) N an BN YN
[deg] [mag arcsec™2] "1
VIS -339+0.1 0.1 17.86 1.29+0.01 235+0.01 142+0.01 0.12+0.01

Notes. We list the fitted image (column 1), the position angle (column 2), the ellipticity (column 3), the values of uy(ry,), v, @n, Bn, and yn

(columns 4, 5, 6, 7, and 8, respectively), see Eq. (4).

We further explore the systematic errors affecting the estima-
tion of the core radius by fitting the same image with the Imfit
implementation of the (PSF-convolved) Nuker-law:

“

r\oN (rn—Bn)/an
r v

Y
In(r) = IN,bZ(BN_”")/O‘N (r_b) h [1 + (—

Here, —yn is the asymptotic logarithmic slope inside 7, —f8x is
the asymptotic outer slope, and the an parameter describes the
sharpness of the break; Iy is the intensity at r, and the surface
brightness profile un(r) = —=2.5log,oIn/INb + 1y (1b) is calibrated
to the V band through the value of uy(#,) given in Table 3. The
Nuker fit delivers a core-size determination similar to that found
using the core-Sérsic function (see Table 3) and, as noted above,
describes the outer power-law behavior of the galaxy profile rea-
sonably well.

Inspection of the NIR images (see Fig. 3) confirms that the
central region of NGC 1272 is not strongly affected by dust:
core sizes of between 1725 and 1”729 are obtained when fitting
these images. The slope of the surface brightness profile inside
ry is between 0.1 (from the Nuker fit) and 0.2 (from the core-
Sérsic fit), which is within the range expected for core ellipticals
(Faber et al. 1997).

A more realistic estimate of the effective radius of the galaxy
that better catches the varying ellipticity and Position Angle
(PA) profiles (see Fig. 2) is obtained by fitting a two-component
model: an inner core-Sérsic plus an outer Sérsic profile. The
results are listed in Tables 1 and 2. The core radius is somewhat
larger and the inner slope ycs of the profile somewhat shallower
than above. Fig. 4 shows the fractional residuals between the
image and the model, the absolute values of which are always
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smaller than 0.1. The surface brightness is reproduced with a
root mean square (RMS) of 0.028 mag (see Fig. 2).

de Rijcke et al. (2009) collected F555W and F814W ACS
images of NGC 1272 with the Hubble Space Telescope (HST),
obtaining a factor two better pixel size and resolution than our
Euclid VIS images. We performed core-Sérsic fits to 179" x 184"
images with Imfit, fixing the value of n to the result obtained
from the VIS image. The results are given in Table 1, where we
calibrate u, = —2.5log I, to the V band as above. We measured
r, = 1”727 and 17725 in the two bands, demonstrating that possi-
ble color gradients do not strongly affect the determination of ry.

The statistical errors reported in Tables 1, 2, and 3 are very
small due to the large number of pixels fitted. More significant
are the systematic errors that come from the different fitting func-
tions used to measure r,. Averaging the five estimates of ry, pre-
sented above, we obtain 1”729, or 0.45 kpc, with a RMS of 0”707,
which we adopt as our measurement error.

We deproject the surface brightness profile using the axisym-
metric deprojection code of Magorrian (1999), assuming that
the galaxy is edge-on, as is usually done in such cases
(Lipka & Thomas 2021). Other options are explored below,
when triaxial deprojections are considered. The blue line in
Fig. 2 shows that this deprojection reproduces the ellipticity pro-
files, but cannot reproduce the PA profile (assumed to be constant
in axisymmetric deprojections). The intrinsic flattening profile
q(r) —where g = c¢/a and a and c are the major and minor semi-
axes of the galaxy— derived in this way is around 0.9 (see Fig. 5).

We also explore the range of possible triaxial deprojections
following de Nicola et al. (2020). The reconstructed p and g pro-
files (where p = b/a and b is the intermediate semi-axis of the
galaxy) are shown in Fig. 5 and demonstrate that the galaxy is



Saglia, R., et al.: A&A, 692, A124 (2024)

Fig. 3. The Ig, Y, Jg, and Hg cutouts of the inner 6” X 6" of NGC 1272.

almost spherical and close to axisymmetric, with p ~ 1 and
g = 0.9. For some viewing angles, the strong PA radial varia-
tion (see Fig. 5) forces a twist of the principal axis with radius,
which explains why the p and ¢ profiles can become larger than
one at the same distance (de Nicola et al. 2020).

The deprojection with the lowest RMS in surface brightness
is obtained at angles of (6, ¢, ) = (64°,124°,23°), roughly 26°
above the equatorial plane and about 34° away from the interme-
diate axis. However, it is clear that reconstructing the true orien-
tation of the galaxy is almost impossible given its almost spher-
ical geometry. The green line in Fig. 2 shows that this deprojec-
tion indeed reproduces the PA profile (in addition to the ellip-
ticity profile). We further explore alternative deprojections with
comparably good surface brightness RMS: a (mildly) prolate and
an (almost) spherical deprojection (similar to the axisymmetric
one, but matching the PA twist). Both are obtained assuming that
the line of sight is along the major axis of the galaxy and starting
the deprojection routine with constant profiles g(r) = 0.7 and
q(r) = 0.95 in the prolate and spherical cases, respectively.

2.2. Spectroscopic observations and kinematics

We observed NGC 1272 spectroscopically with the Visible
Integral-field Replicable Unit Spectrograph (VIRUS) at the
Hobby-Eberly Telescope (HET) on 3 March 2022. The point-
ing of the telescope was optimized to observe NGC 1275; as
a result, the integral field unit (IFU) covering NGC 1272 was
slightly off-center and did not uniformly cover the galaxy. The
seeing reported during the observations was FWHM = 2/36.
The diameter of the single fiber is 1”75. Given the size of the core
measured above (a diameter of 276), the spatial resolution of this
data set is marginally sufficient to resolve the sphere of influence
of the central BH of the galaxy. Rusli et al. (2013b) find that in
such cases, an unbiased recovery of the BH mass is possible if
the dark matter (DM) halo of the galaxy is taken into account
in the dynamical modeling, as done here; see below. The data

RA 49.75

Fig. 4. Percentage residuals after subtraction of the core-Sérsic + Sérsic
model.

Spherical

1.1 1
1.0p 1
= 1 ;
~,0.9F 1
0.8 1
0.7 {
1.1 [ *  Axisymmetric ]

[ —— Triaxial ]

—-— Prolate ]

T 5 2.0
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Fig. 5. Profiles of p(r) and ¢(r) (where p = b/a, ¢ = c/a, and
a, b, and ¢ are the major, intermediate, and minor semi-axis of the
galaxy) derived from the axisymmetric (dotted), triaxial (full line),
spherical (dashed line), and prolate (dashed-dotted line) deprojections
of the galaxy, as a function of distance r from the center. The red and
blue shaded areas show the whole range of allowed deprojections with
RMS < 1.2 X RMS,i; (de Nicola et al. 2020, 2022a,b).
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Fig. 6. Two-dimensional stellar kinematics of NGC 1272. The horizontal and vertical dashed lines show the major and minor axes of the galaxy,

respectively. North is up and east is to the left.

cover a wavelength interval ranging from 3470 A t0 5540 A with
a spectral resolution of 5.6 A.

We used the Voronoi tessellation method of Cappellari &
Copin (2003) to spatially bin the spectral data for a target aver-
age signal-to-noise ratio (S/N) of 40. With this target S/N, spec-
tra were only binned together starting approximately 3" from
the center of the galaxy, thus maximizing the spatial resolution
of our data within the core region. This resulted in a total of 110
spatial bins. We measured the stellar kinematics using WINGFIT
(Thomas, in prep.), which delivers optimally smoothed non-
parametric line-of-sight velocity distributions (LOSVDs) using
the model optimization approach of Thomas & Lipka (2022).
The stellar kinematic fits were performed using the MILES
library (Sanchez-Bldzquez et al. 2006) of stellar templates. Fol-
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lowing the strategy laid out in Mehrgan et al. (2023), we per-
formed a careful pre-selection of templates in order to mini-
mize distortions of the LOSVDs due to template mismatch. To
this end, we fitted the average spectrum of the central 2" of
the galaxy using all the templates of the MILES library with a
Gauss-Hermite LOSVD that was fixed to be symmetric around
a line-of-sight velocity of zero. We selected the set of 18 tem-
plates that in the best fit received a non-zero weight. Using this
set, we fitted all bins of the galaxy with non-parametric LOSVDs
without the symmetry costraint. Also following Mehrgan et al.
(2023), we used no additive polynomials in the fit and only a
minimal third-order multiplicative polynomial. Fits were per-
formed in the wavelength interval between 4700 and 5400 A.
The resulting two-dimensional kinematic maps are shown in
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Fig. 7. Radial stellar kinematics of NGC 1272. The red lines show the
axisymmetric fit to the stellar kinematics of the galaxy (black data
points with error bars) as a function of the distance R from the center of
the galaxy on the sky.

Table 4. Parameters of the axisymmetric and triaxial dynamical
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0
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Vlos [km s71]

1000 1500

modeling.

Model Mgy Ty logpp10 YDM ol
[10°Mo]  [Mo/Lo]  [Mokpe™] ]
Axisymm. 51+32 71=+15 72+02 003 124+04
Axisymm. Q3 1.8 8.9 7.3 0 0.8
Axisymm. Q4 5.9 7.7 7.4 0 1.24
Triaxial N 4.3 7.7 7.6 0.6 0.8
Triaxial S 7.6 6.4 73 0.6 12
Prolate N 7.6 6.4 7.1 0.0 15
Prolate S 1.0 5.1 7.0 0.2 0.7
Spherical N 7.6 6.4 7.4 0.0 15
Spherical S 10.9 3.9 7.8 0.8 1.7

Notes. We list the model type (column 1), the BH mass (column 2), the
dynamically determined mass-to-light ratio (column 3), the logarithm of
the DM density at 10 kpc (column 4), the inner slope of the DM density
profile (column 5, bound to be larger or equal to 0), and the radius of
the BH sphere of influence (column 6).

Fig. 6; the corresponding radial profiles can be seen in Fig. 7.
We measured the stellar kinematics out to a maximum dis-
tance of 38", or 0.66 times the effective radius quoted by
de Vaucouleurs et al. (1991). The galaxy has small mean rota-
tion (at most v = 20kms™!), a relatively low velocity disper-
sion o of around 250kms~!, increasing to 270 km s~ toward
the center (admittedly with only one point within 1 arcsec of the
center), an almost zero third-order Hermite parameter /3, and
a zero fourth-order Hermite parameter sy, which decreases to
about —0.05 toward the center. The data presented by Veale et al.
(2017) match these findings, though the h4 obtained by these
authors is always approximately zero. We averaged (v> + 0%)%,
with equal or luminosity weights, to get an estimate of o, that
is, the velocity dispersion within the half-luminosity radius (even
if our stellar kinematics only reach out to two-thirds of r.; see
above). We find o, = 247 + 3kms~!, which we adopt in Sect. 4.

For the subsequent dynamical analysis, we sampled and
fit the non-parametric LOSVDs between +1400kms~' with
Nyl = 25 velocity bins, and no Hermite parameters. An exam-
ple LOSVD measured near the center of the galaxy is shown
in Fig. 8, where the red line connects the values produced by
the best-fitting base model. Finally, to ensure that we are able

Fig. 8. Line-of-sight velocity distribution measured at 4 arcsec from the
center of NGC 1272 (filled circles with error bars). The red line connects
the values provided by the base model.
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Fig. 9. Results of the axisymmetric modeling of NGC 1272 of the com-
plete stellar kinematic dataset. As a function of the quality of the fits
measured by the AIC, we show: from left to right, and from top to bot-
tom: the BH mass Mpy; the dynamical V-band mass-to-light ratio Y, v;
the DM density at 10kpc pjo; and the inner slope of the DM density
profile ypm. The gray points show the individual models, the red dots
show the best-fitting model, and the black lines show the lower envelope
of the distributions of gray points.

to estimate the uncertainties of our dynamical models, we split
our data into four quadrants (indicated by ql, q2, q3, and g4
in Fig. 6) along the minor and major axes of the galaxy for the
axisymmetric dynamical models, and into two halves (quadrants
ql/g4, northern, and q2/q3, southern) split by the major axis for
the triaxial analysis. By modeling quadrants or halves indepen-
dently, we can estimate the uncertainties of our best-fit modeling
parameters from the scatter between them. However, the orien-
tation and positioning of the IFU give us a much better coverage
of the q3 and g4 quadrants, or the east side of the galaxy. There-
fore, we expect the most reliable dynamical constraints to come
from these regions.
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Fig. 10. Spherically averaged mass profiles of NGC 1272. The solid
and dashed lines show the total and stellar profiles, respectively. The
triaxial, prolate, and spherical models are averaged over the two sides.
The vertical dashed line shows the position of the core radius.
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Fig. 11. Anisotropy profiles 8 (where 8 = 1 — 02 /0%, and or and o
are the spherical tangential and radial velocity dispersions, respectively)
of the different models. The triaxial, prolate, and spherical models are
averaged over the two sides. The distances to the center are in units of
the core radius.

3. Dynamical modeling

Given the results presented in Fig. 5 (NGC 1272 is almost spher-
ical and axisymmetric, but triaxiality and a prolate shape can-
not be excluded), we construct both axisymmetric and triaxial
Schwarzschild models of the galaxy. The axisymmetric model-
ing is similar to that of Mehrgan et al. (2024), with the following
modifications. We fit the four quadrants both independently and
together, determining the mass of the central BH Mpy and the
stellar mass-to-light ratio T, (i.e., no radial variations of T, are
considered because of the rather coarse and sparse sampling of
our stellar kinematics). We use a spherical Zhao (1996) halo with
a = 1 and B = 3, defined by pj¢; the DM density at 10kpc; rs,
the scale radius of the halo, which is allowed to vary up to the
largest distance probed by our kinematics (Lipka et al. 2024);
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and ypy > 0, the inner slope of the DM halo:
k

(r/r "™ (1 + r/ry* 7o

pom(r) = (5)

and k = p1o (10kpe/rs)™ (1 + 10kpe/rg)* ™.

The triaxial modeling follows de Nicola et al. (2024) and
uses the Schwarzschild code SMART (Neureiter et al. 2021) to
determine Mgy and Y., considering a DM halo that is triaxial,
described by its shape parameters ppy and gpym plus pio and
vpMm, fixing rg to a large value (158 kpc). We model the north-
ern (quadrants q1 and g4 in Fig. 6) and southern (quadrants q2
and g3 in Fig. 6) halves of the galaxy separately to assess the
systematic uncertainties.

In both the axisymmetric and triaxial cases, we maximize the
quantity § = § — & y? to determine the orbital weights. Here y?
is calculated from the model fit to the observed non-parametric
LOSVDs, and S is the Boltzmann entropy (Thomas et al. 2004).
The deprojected light distributions are used as a constraint and
the parameter & is the smoothing of the models, which is deter-
mined following the prescriptions of Lipka & Thomas (2021)
and Thomas & Lipka (2022), which involve the determination
of the effective degrees of freedom meg. The parameters Mpy,
T, p1o, and rg (in both the axisymmetric and triaxial cases), plus
ppom and gpy in the triaxial case, are determined by minimizing
the generalized Akaike information criterion AIC, = X2+ 2meg
over a grid of & values.

The resulting axisymmetric best fits to the kinematics are
shown in Fig. 7; the derived parameters for the different fit types
are listed in Table 4. Our base result is the axisymmetric model
of the entire stellar kinematic data set; it fits the kinematics
very well (see red line in Fig. 7), delivering a reduced y* of
X*/(Ngata — Megg) = 0.91. Figure 9 shows Mgy, .y, p1o, and
YoM as a function of the quality of the fit measured by the AIC,
value. Every parameter is well constrained, with small statistical
errors (so small that we do not quote them in Table 4). In partic-
ular, we detect a BH of 5 x 10° M, a mass-to-light ratio (. y of
7.1 My /Lo, in between the values derived from our stellar popu-
lation analysis for the Kroupa or the Salpeter initial mass func-
tion (IMF, see below), a DM density at 10 kpc (approximately
30”) similar to the values reported for other massive elliptical
galaxies (Mehrgan et al. 2024), and a cored DM density profile.
We compute the radius rsop of the sphere of influence of the BH
as the distance from the center where the total mass (stellar plus
DM without a BH) is equal to Mgy (Thomas et al. 2016). Our
rsor matches the value of r, and is larger than half the FWHM of
the seeing of the spectroscopic observations. This, together with
the modeling of the DM halo of the galaxy, allows an unbiased
estimate of the BH mass (Rusli et al. 2013b).

We gauge our (systematic) errors by looking first at the
axisymmetric modeling of the two quadrants covering larger
parts of the galaxy, q3 and q4. Here the BH mass can be as low as
1.8 x 10° M, and Y,y as large as 8.9 My /Lo, with slightly larger
DM densities. Further insights into our systematic errors are
gained from the triaxial SMART modeling. All models fit the kine-
matic data well, with Xz/ (Ngata — Megr) between 0.6 and 1.0 The
best-fitting triaxial model delivers Mgy = (5.9 + 1.7) x 10° Mo,
averaging over the two halves of the galaxy; the smallest and
largest values for the BH mass are obtained when fitting the
southern half of the galaxy (where the kinematic coverage is rel-
atively sparse) in the prolate and spherical cases, respectively.
The dynamical stellar mass-to-light ratio Y,y ranges from 4 to
7.7 Mo/ Lo. The density of the DM halo (log,o010/[Mo kpc_3] =
7.3 £ 0.3, averaging over all triaxial models and halves) agrees
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(middle), and the My —o (right) relation. The black data points are from

Rusli et al. (2013a), Saglia et al. (2016), Thomas et al. (2016), Mehrgan et al. (2019), Neureiter et al. (2023), and de Nicola et al. (2024). The blue

data points are core ellipticals with a stellar mass of greater than 10'> M.

While the galaxy follows the Mgy —r, given by Thomas et al. (2016) and

the Mgy—M. relation of Saglia et al. (2016) for the sample of CorePowerE, it deviates by a factor of 8.4 from the Mpy—o relation of Saglia et al.
(2016), or by a factor of 1.8 of the 1o error combined with the intrinsic scatter in the relation (shown by the dotted lines).

with the axisymmetric result. The slope ypy of the DM den-
sity profile is smaller than 1, but possibly steeper than the cored
halo determined axisymmetrically. The errors quoted in Table 4
for our base result are the RMSs of the nine listed best-fitting
models. Finally, the best-fitting shape of the DM halo is spher-
ical (ppm = gpm = 1), with only the prolate case delivering
PpM = 0.9.

Figure 10 summarizes the spherically averaged stellar and
total mass profiles derived by the dynamical models we consid-
ered. The total mass distribution is robustly determined in the
region probed by the measured kinematics, with only small devi-
ations between the different models. Inside the sphere of influ-
ence (roughly the size of the core), the differences between the
profiles reflect the observed scatter in the BH mass. The stellar
mass profiles scale according to the derived T, y values. The DM
mass is equal to the stellar mass at approximately the outermost
radius probed by our stellar kinematics. Using the best-fit value
of T,y = 7.1 My/Ls, we estimate the total stellar mass of the
galaxy from the total luminosity L = 1.3 x 10" Ly quoted in
Sect. 1 to be 9 x 10'! M, which we use in Sect. 4.

The anisotropy S profile (where 8 = 1 — 0%/0s, and ot
and oR are the spherical tangential and radial velocity disper-
sions, respectively) is not particularly well constrained, but dis-
plays the typical feature of core ellipticals (Thomas et al. 2014).
Figure 11 shows that the § profile of the base model becomes
tangentially anisotropic within the core radius (the result of core
scouring) and more isotropic in the outer part, similarly to the
spherical model. The triaxial model is overall mildly tangentially
anisotropic, while the prolate model is radially anisotropic out-
side the core.

Measuring Lick indices and fitting them with the simple
stellar population models of Thomas et al. (2003) and Maraston
(2005), we find that the best fit has a simple stellar population
as old as the Universe, a metallicity of slightly above solar, and
is more than a factor of two overabundant in a-elements. The
derived V-band mass-to-light ratio is 6 M/L, with a Kroupa
IMF and 8 M /L., with a Salpeter IMF. This matches the dynam-
ically determined ', y, without unambiguously preferring one of
the two options.

Finally, we estimate the mass that has been expelled from
the core during its formation. We consider the core-Sérsic solu-
tion obtained with the second Sérsic component (see second line

of Table 1) and consider the Sérsic function with n 12.1,
re = 3479, and uy(re) = 23.57, which reproduces the core-
Sérsic solution outside the core region. We integrate the lumi-
nosity difference, or the luminosity deficit L4, between the two
functions out to 8”, finding Lges = 2.7 X 10° Lo, Using the
dynamically determined Y.y = 7 My/Lg, this translates into a
mass deficit of Mges = 1.9 x 1010 My, or 3.8 Mgy, in the range
found by Rusli et al. (2013a). According to the simulations of
Gualandris & Merritt (2008), mass deficits of up to 5 X Mgy can
result from single dry mergers.

4. Conclusions

We present a measurement of the size (0.45 kpc) of the core of
NGC 1272 based on the VIS image of the Perseus cluster taken
as part of the Euclid ERO campaign. The dynamical modeling
of the stellar kinematics collected with the VIRUS spectrograph
at the HET allows us to measure the mass (5 +3)x 10° M, of the
BH at the center of the galaxy. While in line with expectations
from the Mgy—ry, correlation of Thomas et al. (2016), the cen-
tral surface brightness versus Mpy correlation of Mehrgan et al.
(2019), and the Mgy—M. relation of Saglia et al. (2016), the BH
mass of NGC 1272 is a factor of 8 larger than predicted by the
Mygy—o relation of Saglia et al. (2016), or 1.8 times the 1o error
combined with the intrinsic scatter in the relation (see Fig. 12).
This corroborates the conclusion that the velocity dispersion is
not the best indicator of the BH mass for core galaxies with
stellar masses of the order of or larger than 10'> My: five out
of the six galaxies with such a stellar mass in Fig. 12 have BH
masses larger than predicted by the Mgy—o relation. Therefore,
the most efficient and rapid method to search for galaxies har-
boring the most massive BHs is to look for passive objects with
large cores and low central surface brightness. In the local Uni-
verse, a galaxy with a core size of 1kpc contains a BH with a
mass of 10'° M.

The Euclid VIS images in the Ig band deliver a PSF with
FWHM ~ 0”717 and a pixel size of 0’1, with a depth of 24.5 mag in
the Wide Survey (at 100 for extended sources) and 2 mag deeper
in the Deep Survey. Near-infrared Yg, Jg, and Hg images pro-
vide photometry with 0”3 pixels. Combined with ground-based
images, the surveys will deliver not only photometric redshifts for
each detected source, but also physical parameters, such as stellar
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Fig. 13. Correlation between the core radius r, and stellar mass M,.
The black datapoints are from Rusli et al. (2013a), Saglia et al. (2016),
Thomas et al. (2016), Mehrgan et al. (2019), Neureiter et al. (2023),
and de Nicola et al. (2024). NGC 1272 is shown in red. The blue
cross shows the position of the BCG on the EDISCS cluster CL1216
(Saglia et al. 2010). The black solid line shows log,,(M./Ms) =
0.64log,,(ro/kpc) + 12.1; the dotted lines show the +lo scatter
(0.26 dex) in the relation.

masses and sizes. At the end of the mission, the Wide Survey will
cover about 14 000 deg? of extragalactic sky, along with 50 deg?
at the Deep Survey. This unprecedented dataset will allow us to
search for galaxies with cores that are larger than 2 kpc out to a
redshift of 1 (where they will subtend an angle of 0’5 on the sky)
as a function of stellar mass. We plan to establish the redshift up to
which the correlation between r, and total stellar mass exists (see
Fig. 13) and study its possible evolution with a large statistical
sample, indirectly probing the possible coevolution of BHs and
galaxy properties at the highest BH mass end. For example, the
blue cross in Fig. 13 shows the position of the BCG of the EDISCS
cluster CL1216 at a redshift of 0.8 (Saglia et al. 2010). We mea-
sured the size of its core in the available HST images, deriving
1.5 kpc (or 0”/5) from a core-Sérsic fit, and 2.21 kpc (or 0”/7) from
a Nuker fit. Such a core will be measurable in the VIS mosaics of
the Wide survey. With a stellar mass of log, M. /Me = 11.82, the
BCG appears to have a larger core than local core ellipticals of
similar mass. Using the local r,—Mpy relation, we estimate that
an HMBH with a mass of greater than 10'° M, could be already in
place at such a high redshift in this galaxy. Spectroscopic follow-
up (possible at the Extremely Large Telescope) of selected galax-
ies with similarly large and bright cores will deliver the dynamical
mass confirmation.
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