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A B S T R A C T

Granitic rocks are ubiquitous worldwide in ancient and active tectonic settings, representing powerful sources of
information about the Earth’s past and present geodynamic behaviour. Numerous recent milestones fostering our
knowledge of granites would have not been possible without a long-lasting, sometimes controversial, discussion
on their origin and significance that has taken place over the last two centuries. Here we present a chronological
review of how granites have been defined and interpreted in the context of the major theories that have suc-
cessively governed the history of Earth Science. The main authors, scientific approaches, interpretations, and
type-localities that have influenced knowledge about granitic rocks are summarized from the 18th and 19th
centuries, when Earth Science was governed by the Neptunism, Plutonism and Uniformitarianism paradigms, to
the acceptance of the Plate Tectonics theory and the very end of the magmatism vs. transformism debate in the
late 20th century. Some of the most influential scientific advances in Earth Science, such as the invention of the
polarizing microscope and the birth of geochemistry, as well as the role of schools of thought in these successive
debates, are further discussed. Moreover, we review the recent and ongoing discussions on the mechanisms of
magma generation, segregation, ascent and emplacement leading to the formation of granitic batholiths, as well
as the observational, analytical, experimental, and numerical modelling approaches currently used for investi-
gating granitic rocks. The history of granite science is classified into different periods of stasis or “normal”
science, which were followed by scientific revolutions triggered by a growing number of inconsistencies. Our
current understanding of granitic rocks is inevitably influenced by the preceding paradigms and disputes.
Consequently, gathering and valuing the chronology, historical milestones, and overall evolution of ideas and
theories on what granites are is crucial for the future directions of granite research.

1. Introduction

“The competition between paradigms is not
the sort of battle that can be resolved by proofs”
Thomas S. Khun, 1970. The Structure of Scientific Revolutions

Granitic rocks (Fig. 1) constitute a major proportion of the upper
continental crust (~86–88 vol%; Wedepohl, 1969, 1995), and the
average geochemical composition of the whole continental crust is often
interpreted to be granodioritic (Clarke, 1992; Gao et al., 1998; Cobbing,

2000). Investigations of granitoid rocks have historically provided, and
are still providing, important constraints on ancient and active geo-
dynamic processes of the Earth. Our current knowledge of the global
timing and secular changes of tectonic processes, the temporal varia-
tions in the strength of the lithosphere, and the creation and recycling of
the continental crust, have greatly benefited from the study of granitic
rocks (e.g., Pupin, 1980; Pearce et al., 1984; Pitcher, 1997a, 1997b;
Bonin et al., 2002; Brown, 2013; Moyen et al., 2017; Palin et al., 2020;
Gómez-Frutos et al., 2023). Moreover, one of the major mechanisms of
heat and mass transfer within the Earth’s crust is the transport of magma
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from zones of melting and melt segregation in the lower to middle crust
to zones of emplacement in the upper crust (Sandiford et al., 1991;
Petford et al., 2000; Bons et al., 2009; Cruden and Weinberg, 2018 and
references therein). The origin and significance of granitic rocks have
been debated for more than two centuries, and many milestones have
been achieved after controversial discussions that divided different
schools of thought and generations of scientists. However, despite their
importance for laying the foundations and influencing current knowl-
edge of granites, the historical paradigms and ideas addressing the
origin of granitic rocks are often addressed separately (Read, 1957;
Rudwick, 1962; Porter, 1976; Pitcher, 1997a, 1997b), and have rarely
been reviewed in one place (Clarke, 1996; Young, 2018). Furthermore,
the logic through which knowledge of granitic rocks was progressively
gained within the Neptunism, Plutonism, and Uniformitarianism para-
digms has been often overlooked.

According to the Oxford English Dictionary, a ‘concept’ is “an idea or
mental image which corresponds to some distinct entity or class of entities, or
to its essential features, or determines the application of a term (especially a
predicate), and thus plays a part in the use of reason or language”. Here we
therefore use the term “granite concept” to refer to how humans have
seen and defined granitic rocks as a distinct and meaningful class and
how they perceived, interpreted, and understood granitic rocks during
different periods of recent history, either by the interpretation of facts,
mental impressions, or opinions and beliefs. Considering the historical
perspective of this review, as well as the bountiful terminology
employed over the ca. 240 yr. time span that it covers, the broad terms
“granitic rock”, “granitoid rock”, or “granite” are used in an inter-
changeable manner throughout this review to refer to coarse-grained
quartz-bearing igneous or igneous-looking rocks (e.g., Marmo, 1967a,
1967b; Pearce et al., 1984; Cobbing, 2000; Chen and Grapes, 2007;
Young, 2018). When referring to specific sub-classes of granitic rocks,
the non-genetic normative terms and compositions of the sub-
commission on the Systematics of Igneous Rocks from the Interna-
tional Union of Geological Sciences (IUGS) are used (Streckeisen, 1974;
Le Bas and Streckeisen, 1991; Le Maitre et al., 2002). Outdated, obso-
lete, or archaic terms are solely employed in the context of classical
studies or when mentioning rock names in the language they were
originally defined.

The term granite, as well as the rock type of that name (Fig. 1), has
played a significant role in the history of modern society. The origin of
the term granite, from the Latin word granum, is attributed to Andrea
Celsapino in 1596 CE, an Italian physician, philosopher, and botanist at
the Sapienza-Università di Roma (Italy). The influence of the granite
concept on the modern history of human society becomes clear, for
example, in the toponomy of different regions worldwide (e.g., New
Hampshire, the Granite State in the United States of America (USA), or
Aberdeen, the Granite City in Scotland), as well as in its historical and
current usage as a building, paving, and sculpting stone (e.g., Langer,
2001). Among other famous monuments, the Amenhotep III statue, now
on display at the British Museum (London, United Kingdom) but origi-
nally located at the Mut at Karnak temple (Egypt), as well as the Bri-
hadeeswarar Temple building (India) or the Mount Rushmore National
Memorial (USA), are made up of granite. The classical literature of the
19th and 20th centuries further provides evidence of the linkage be-
tween human cultures and the granite concept, as evidenced for example
in Jules Verne’s 1864 novel Journey to the Center of the Earth. Even well-
known historical characters, who were not geoscientists per se, specu-
lated about the origin and significance of granitic rocks. The German
poet, playwright, novelist, and scientist Johann Wolfgang von Goethe,
for example, wrote extensively about the Brocken granite in the Harz
Mountains (Germany) and its significance for understanding the for-
mation of the Earth (Baldridge, 1984; Wolf et al., 1989). Other examples
are Leonardo da Vinci, who made detailed drawings and observations of
granitic formations in the mountains of northern Italy, and Benjamin
Franklin, who wrote about the geology of the Appalachian Mountains in
the USA and about the granitic rocks therein (e.g., Gortani, 1962; Dean,

2009).
Granitic rocks have drawn the attention of scientists, particularly

geologists, for centuries because of their ubiquity in the Earth’s crust
(Fig. 1), the historical and ongoing debates on their origin and signifi-
cance, and their association with orogenesis and ore deposit formation,
among other processes. Granites are, however, difficult rocks to work
with. In the field, geologists have typically encountered problems
related to the common lack of discernible lower and upper contacts of
granitic plutons, their internal structural and compositional complexity,
and the wide variety of textures and accessory minerals that they
contain. Granite research is equally challenging in the laboratory due to
the wide range of geochemical and isotopic compositions that these
rocks have, and the difficulties in experimentally replicating the physi-
cochemical conditions of their formation. The history of the research on
granitic rocks is marked by the fact that different investigations into
their origin and significance have yielded numerous contradictory re-
sults and interpretations (e.g., Backlund, 1938; Miller et al., 1988;
Klötzli et al., 2001, 2002; Finger and Clemens, 2002). Nevertheless, such
challenges have not discouraged the scientific community from keeping
momentum, as demonstrated by the constant development of new
analytical techniques and instruments, and by the paradigm shifts that
have represented consecutive scientific revolutions (Kuhn, 1970; Bak,
1996) during the long-lasting and controversial history of the granite
concept.

The non-genetic German term Massige Gesteine (massive rocks)
(Rosenbusch, 1877a, 1896) began to be used in the late 19th century to
define crystalline or glassy rocks that, when observed in outcrop, show
uniform textures and a massive character that allowed them to be
distinguished from metamorphic or sedimentary rocks. Long before that
time, however, investigations into and discussions about granitic rocks
were already frequent. A primitive origin of granites supported by nep-
tunists (i.e., being the oldest and hardest rocks of the Earth, formed under
deep water conditions; Werner, 1787) contrasted the magmatic origin
suggested by plutonists (e.g., Hutton, 1794), marking the debate on the
origin and significance of granites during the 18th century. Subse-
quently, other influential works within the uniformitarianism paradigm
(e.g., Hutton, 1795a, 1795b; Lyell, 1838; Keilhau, 1843; Darwin, 1845),
as well as the invention of the petrographic microscope and the birth of
geochemistry (Clarke, 1868; Rosenbusch, 1877a; Iddings, 1890), resul-
ted in the diversification and specialization of research on granites
during the 19th century. Ideas about transformism, granitization, and
the metasomatic origin of granites later gained popularity due to a
growing number of textures, compositions, and field features that could
not be explained by the current knowledge of the epoch. With these new
ideas, research on granitic rocks abruptly entered a long-lasting debate
between the concepts of magmatism vs. transformism (e.g., von Bunsen,
1861; Read, 1957; Marmo, 1967a, 1967b; Pitcher, 1987; Pitcher, 1997a,
1997b; Young, 2018). At the end of the 20th century, after more than
two centuries of the emergence, integration, and eventual obsolescence
of terminology used to refer to different types of Massige Gesteine, the
IUGS Commission on Systematics in Petrology (CSP, founded in 1970)
officially proposed the term igneous rock (e.g., Streckeisen, 1974). This
term, although semantically genetic (i.e., from the Latin ignis, meaning
fire), had non-genetic implications and could be used for both igneous
and igneous-looking rocks, irrespective of their genesis (Streckeisen,
1974; Le Bas and Streckeisen, 1991; Le Maitre et al., 2002). Since the
proposal of this term, several genetic and non-genetic classifications for
granitic rocks have been proposed, and many of them have already been
abandoned. Presently, granites sensu stricto are understood to be coarse-
grained, crystalline igneous rocks with a modal abundance of quartz
between 20 vol.% and 60 vol.% relative to feldspar, and which may
include one or more micas, hornblende and many other accessory
minerals (Streckeisen, 1974; Le Maitre et al., 2002). As a sub-class of
plutonic rocks, granites are presumed to have crystallized at depth from
molten material (Hutton, 1794; Walton, 1960; Le Maitre et al., 2002),
and references to a possible metasomatic origin of granitic rocks are
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Fig. 1. Examples of type localities where granitic rocks have played a significant role in the history of Earth Sciences: (a) Outcrop of the Glen Tilt complex (granite
dykes with pink colour) at its contact area with the metasedimentary rocks of the Dalradian Supergroup (grey-coloured rocks), Tilt river, Perthshire, Scottish
Highlands (described in Hutton, 1794); photograph courtesy of Robert Butler (river width is ~3 m; see detailed outcrop sketch in Fig. 2b). (b) Syenite sill intruding
parallel to bedding of Cambrian and lower Ordovician shales at Enerhaugen, Oslo, south Norway (described in Lyell, 1841; Keilhau, 1843); photograph reproduced
from Hestmark (2011). (c) Contact between the Cape Granite Suite (light coloured) and the metasediments of the Malmesbury group (dark coloured) at the Sea Point
locality, Cape Town, South Africa (described in Masson, 1776; Playfair and Hall, 1813; Darwin, 1845); photograph courtesy of University of Cape Town (buildings for
scale). (d) Typical field aspect of the granites at Sierra Madre de Chiapas, southwestern Mexico (described in von Humboldt, 1822); photograph courtesy Gabriel
Serrano López (compass for scale). (e) Granite gneiss outcrops at the southwestern sector of Geographe Bay, Western Australia (described in Baudin, 1974) (cars in a
parking lot on the right side for scale). (f) Granitic gneisses at the Aston-Hospitalet Massif, eastern Pyrenees, SW Europe (described in Lacroix, 1896, 1898; Daly,
1898; Adams, 1901); photograph courtesy of Pilar Clariana (field of view is ~30 cm). See locations in Figs. 6, 7. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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almost non-existent in the modern literature. Present controversies
regarding granitic rocks are, mostly, focused on specific issues such as
melt generation and segregation, magma ascent and emplacement, and
post-crystallization evolution. Here we present a chronological review of
the mutual interactions between the granite concept and the history of
Earth Sciences. The review is structured following the different currents
of geological thought that have existed during the past two centuries,
with special emphasis on the arguments, explanations, and contro-
versies on the origin and significance of granitic rocks (Figs. 2–4). The
history of the scientific knowledge of granites is divided into different
paradigm-governed periods according to the ideas of Kuhn (1970)
(Fig. 5), including the 18th, 19th, and late 19th to late 20th centuries.
The current state of the art of the granite concept is further summarized
by reviewing the different genetic and non-genetic classification
schemes for granitoid rocks, as well as the observational, analytical,
experimental, and numerical modelling approaches that are currently
being employed. We also evaluate the role of FAIR (Findable, Accessible,
Interoperable, Reusable) initiatives that have emerged in recent years,
which have fostered the quantity, and quality, of granite-related data
during the Digital Age (Figs. 6, 7).

2. The 18th century: Neptunism and Plutonism paradigms

“I have been particularly anxious about this subject of granite”
James Hutton. Theory of the Earth: With Proofs and Illustrations, in
Four Parts: Volume 3

The term granite has been used without any quantitative mineral-
ogical connotation for centuries. The Swiss naturalist Horace-Bénédict
de Saussure recognized and described, in his Voyages dans les Alpes travel
journals, different granitic rocks cropping out in the European Alps
(Figs. 6, 7) (de Saussure, 1779, 1786). From Saussure’s works, two main
concepts that became central to the debate on granites during the
following tens of years stand out: the “stratification” of granites, inferred
from the fact that some minerals appear aligned in bands, and their non-
primitive origin (i.e., not a primordial part of the Earth), inferred from
observations of granitic veins intruding surrounding schists (i.e., Granit
Veiné). Five years later, Patrin (1791) used the term Pierre Graphique to
refer to a quartz-feldspar rock that he found forming a mountain in the
eastern part of Siberia (Figs. 6, 7), and highlighted its resemblance to
rocks from other parts of the world. It was only three years later that the
Scotsman James Hutton officially published his interpretations on the
veined granites hosted in schists and marbles at the type-locality of Glen
Tilt in the Central Highlands of Scotland (Fig. 1a, 2b, 6) (Hutton, 1794).
Although the basic dynamics of terrestrial processes had already been
discussed in his essay Theory of the Earth: or an investigation of the laws
observable in the Composition, Dissolution, and Restoration of Land upon the
Globe (Hutton, 1785), it was in 1794 when Hutton stated that he found
“the most perfect evidence that the granite had been made to break the Alpine
strata and invade that country in a fluid state”. In this groundbreaking
work, which had benefitted from discussions with John Clerk of Eldin
and the Duke of Athol (landowner of the Glen Tilt area), and corrobo-
ration by the investigations of Sir James Hall in southwest Scotland
(Hall, 1794), Hutton concluded that: “Granite, which has been hitherto
considered by naturalists as being the original or primitive part of the Earth, is
now found to be posterior to the Alpine schists” (Fig. 2b-d). This work,
together with the first two parts of Hutton’s treatise on the Theory of the
Earth with proofs and illustrations in four parts (Hutton, 1795a, 1795b),
exceptionally illustrated by Playfair (1802), is believed to have estab-
lished the basic ideas of Plutonism (Fig. 2b-d). The third part of Hutton’s
Theory of the Earth (Hutton, 1899) remained lost for 60 yr. and was
published after being released to the Geological Society by the Scottish
merchant and geologist Leonard Horner in 1856 (e.g., Bonney, 1899).
The fourth part is still missing.

Hutton’s observations reinforced the ideas that had originally been
proposed by the Italian abbot, geologist, and naturalist Anton Lazzaro

Moro during his research on volcanic islands, while trying to explain the
occurrence of crustaceans and other marine organisms on mountains
(Moro, 1740a, 1740b) (Fig. 6). The breakthrough ideas of Moro and
Hutton about the Earth’s origin and rock-forming processes were
incompatible with the dominant school of geology at the end of the 18th
century in Freiberg (Saxony), where Abraham Gottlob Werner was the
inspector of mines and professor of mining and mineralogy at the Mining
Academy. Unlike Hutton, Werner never published the whole of his
theory, and it was only by unpublished materials and the lecture notes of
his students that his thoughts could be pieced together (Rudwick, 1962;
Seddon, 1973; Hallam, 1983; Stone, 2020). Werner’s theory was
partially stated in his book Kurze Klassifikation und Beschreibung der
verschiedenen Gesteinsarten (Werner, 1787), which since its publication
constituted the basis of the Neptunism movement. Neptunists advocated,
based on previous classifications from other authors (e.g., Lehmann,
1756; Füchsel, 1761; Desmarest, 1774) (Fig. 2a), that rocks were formed
as a result of chemical precipitation from cosmic material in the early
Earth’s oceans (i.e., Allgemeines Gewaesser) in a sequence of five series:
(1) Primeval (Urgebirge), (2) Transition (Übergangsgebirge), (3) Second-
ary or Stratified (Flötz), (4) Alluvial or Tertiary (Aufgeschwemmte) and
(5) Volcanic Series. Crystalline rocks, such as granites, gneisses, and
metasediments, were attributed by Werner and other Neptunism advo-
cates to the Primitive series and were thus considered the oldest and
hardest rocks of the Earth, formed under very deep, calm water condi-
tions. Because no life was thought to have existed during the Primitive
series, granite rocks were free of fossils.

The Primitive origin of granites as suggested in Werner’s theory
clashed with numerous field observations reported during the late 18th
and early 19th centuries, as evidenced above with the Saussure’s and
Hutton’s Granit Veiné. Another example were the observations of Mar-
zari-Pencati (1806, 1820), who demonstrated that, in the Fassa Valley
(Dolomites), igneous dykes crosscut and thus postdate banded lime-
stones (Predazzite) that in turn record contact metamorphism. Another
example is the work of the Prussian zoologist and botanist Peter Simon
Pallas during his expeditions in Russia (e.g., Pallas, 1777, 1812; Parker,
1973). Close to the city of Chelyabinsk, Pallas described porphyritic
granites belonging to Hercynian batholiths that intruded as large vein-
like bodies into metamorphic schists and marbles of the eastern flank
of the Urals (Fig. 6). Early in the 19th century, other intrusive granites
than those reported by de Saussure (1786) and Patrin (1791) were
described outside of Scotland, in the Western Cape Province (South
Africa) (Figs. 1c, 6). As pointed out by Master (2009), the Cape Granites
(Fig. 1c) played an important role in the Neptunism vs. Plutonism debate
during the late 18th and early 19th centuries. Some descriptions of these
rocks pointed out their similarity to the granites cropping out in the Alps
(e.g., Hamilton, 1778), and many other naturalists and travellers also
reported the textural and mineralogical features of the Cape Granites
and discussed their intrusive nature and relationships with the sur-
rounding rocks (e.g., Masson, 1776; Anderson, 1778; Sonnerat, 1782;
Sparrman, 1785; Barrow, 1801; Degrandpré, 1801).

3. The 19th century: “normal” science

“This intrusion the schists all around it does roast,
and when it is absent it alters them most”
The Grizzly Bears Book of the Geological Survey of Scotland (c.
1875)

3.1. Uniformitarianism

During his lifetime (1726–1797), James Hutton did not witness the
acceptance of his ideas by the scientific community, in part because his
theories denied the influence of supernatural forces on the Earth system.
However, at the beginning of the 19th century, currents of thought
about the origin of granites, veins, and even mountain building started
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to drift towards the basis of Plutonism (Hallam, 1983; Master, 2009;
Leddra, 2010; Rapprich et al., 2019; Stone, 2020).

From 1800 to 1830, granitic rocks were reported around the globe in
numerous studies, travel journeys, and correspondence among scientists
with no consensus on their origin and significance (among others,
Ramond, 1801; Herrgen, 1802; Breislak, 1811; Hall, 1815; Cortesi,
1819; Bakewell, 1823; Gemmellaro, 1823; Palassou, 1823; Crawford,
1824; Enys, 1833; Cormack and Bruton, 1928) (Figs. 3, 6). The pro-
gressive shift of thinking on the origin of granite from the 1830s is
illustrated by the lectures given between 1809 and 1833 by Robert
Jameson, Regius Professor of Natural History at Edinburgh University,
who had previously studied with Werner at Freiberg (Bailey and Tait,
1921; Stone, 2020). It is known that, by the 1830s, Jameson had
accepted some of the Huttonian ideas about intrusive granites, as
revealed by his students’ notes (McCormick, lecture 84, 28 March 1831;
in Stone, 2020): “The granite sometimes forms veins in the surrounding
mica-slate – and as veins are generally considered newer than the formation
in which they occur – the mica slates, it would appear have existed prior to the
Granite”.

The main people responsible for promoting and extending Hutton’s
theory on Plutonism (which formerly was, in fact, a theoretical
construct; e.g., Kuhn, 1970; Baker, 1998; Rossetter, 2018) were Charles
Lyell (1797–1875) and Mary Elizabeth Horner (Rudwick, 1970, 1998;
Dott, 1998; Virgili, 2003) (Fig. 3b, e). In the three volumes of the Prin-
ciples of Geology, Lyell revisits the work of Hutton and settles an even
more solid paradigm for the rock-forming processes across space and
time: the theory of Uniformitarianism (Lyell, 1830, 1832, 1833) (Fig. 5).
This theory postulated that the Earth’s landscape had been sculpted over
the course of an inconceivably long natural history by gradual processes
that are visible at the surface and are governed by natural laws. For a
summary of different aspects of the research, lectures, theories, letters,
and travels of Lyell and Horner, which are out of the scope of this work,
the reader is referred to Lyell (1849, 1853, 1881), Bailey and Hartley
(1960), Greene (1973), Porter (1976), Dott (1998), Wool (2001) and

Virgili (2007). Concerning granites, their relevance and influence on the
novel ideas is clearly recognisable in Lyell’s work.

One of the best documented studies on granites carried out by Lyell
and Horner is their 1837 trip to Norway and their observations, together
with Prof. Baltazar M. Keilhau, in the vicinity of Christiania (present-day
Oslo) (e.g., Holtedahl, 1963; Marmo, 1967a, 1967b; Hestmark, 2011)
(Figs. 1b, 3b, 6). They documented contact zones between sedimentary
rocks and large intrusive bodies of granite and syenite, revisiting the
phenomenon of metamorphism that they had already coined in the
Principles of Geology (Lyell, 1833) and citing examples from the High-
lands of Scotland (Fig. 1a), the Alps, Cornwall, and Table Mountain at
the Cape of Good Hope (Figs. 1c, 6). The observations and in-
terpretations in Oslo confirmed Lyell’s theories and were key for the
development of the well-known book Elements of Geology (Lyell, 1838),
which was presented to the research community three years later (Lyell,
1841) and became an influential work in Lyell’s lectures in North
America between 1841 and 1853 (Dott Jr., 1996; Dott, 1998). According
to Lyell’s view, rocks could be classified in four great classes (Lyell, 1838
- Part I, Chapter I): Aqueous (i.e., sedimentary), Volcanic, Plutonic, and
Metamorphic (Fig. 3e). Regarding Plutonic rocks, Lyell wrote: “The
granites have been formed at great depths in the earth and have cooled and
crystallized slowly under enormous pressure where the contained gases could
not expand. […] large masses of granite are found to send forth dikes and
veins into the contiguous strata, very much in the same way as lava and
volcanic matter penetrate aqueous deposits” (Fig. 3e).

On the other hand, during the same trip to Christiania (Fig. 1b, 6),
Baltazar M. Keilhau interpreted a gradual and complete passage of
granitic rocks into stratified rocks with fossils, and described gradual
changes from granite to a “primitive” gneiss (Hestmark, 2011). With his
ideas, Keilhau was probably one of the pioneers of the transformism (i.
e., granitization) theory that divided many geologists some tens of years
later. In fact, widely used terms during the 19th century, such as
transmutation and granitification, were already coined by Keilhau, who
probably also was the first geologist noting the room problem (see below)

Fig. 2. Representative illustrations from some of the most scientifically influential works on the geological knowledge during the 18th century. (a) Reproduction of
an illustration from Lehmann (1756) representing one of the first known geological cross-sections, used by Werner to propose the idea of Neptunism (i.e., rocks
belonging to Primitive, Transition, Secondary, Tertiary, and Volcanic series are continuously superimposed) (scale is unknown). (b) Outcrop sketch from Hutton
(1794, 1899) of the crosscutting relationships between granite veins and pre-existing schists exposed at Glen Tilt (Scotland) (hammer for scale). (c) Redrawn sketch
of a representative cross-section of the Island of Arran (which has a length of ~15 km) from Hutton (1899), showing the relationships of a granite intrusion and the
pre-existing sediments and metasediments. (d) Redrawn illustration from James Hutton in the late 18th century and discovered in 1968 by a descendant of John
Clerk of Eldin, representing a sequence of sedimentary rocks crosscut by an igneous intrusion in a trench for an artificial canal near Frederick Street in Edinburgh
(Craig, 1978) (scale is unknown). See text for further references.
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in the emplacement of igneous rocks (Keilhau, 1828, 1838, 1843;
Marmo, 1967a).

Another important source of information for Lyell during the
development of his theories on the origin and significance of granite
were the observations of Charles Robert Darwin (1809–1882), who in
turn benefited from Lyell’s theories during his investigations aboard the
HMS Beagle (e.g., Burchfield, 1974; Rosen, 1982; Herbert, 1991, 2005;
Secord, 1991; Master, 2012) (Fig. 6). Among Darwin’s numerous
geological observations, those made at Cape Town in 1836 and in South
America in 1831–1836 stand out (Fig. 6). In Cape Town, Darwin revis-
ited previous interpretations of the Green Point Contact (also known as
the Sea Point Contact; Fig. 1c), (Masson, 1776; Anderson, 1778; Son-
nerat, 1782; Playfair and Hall, 1813) and interpreted the schist enclaves
lying within the granitic mass as “interconnected pendant slivers of infol-
ded suprapositional schists that were intruded parallel to their schistosity by
thin fingers of granite, and then eroded to reveal apparently detached schist
fragments in the granite” (Master, 2009, 2012). In South America
(Fig. 3c), Darwin also made abundant contributions to the understand-
ing of granitic rocks as demonstrated by the number of times (172) that
the word granite appears in his Geological Observations on South America
(Darwin, 1846). During his visits along the eastern coast of Brazil
(Fig. 6), Darwin wrote (Darwin, 1845, 1846): “Along the whole coast of
Brazil, for a length of at least 2000 miles, and certainly for a considerable
space inland, wherever solid rock occurs, it belongs to a granitic formation.
The circumstance of this enormous area being constituted of materials which
most geologists believe to have been crystallized when heated under pressure,
gives rise to many curious reflections”. With curious reflections Darwin was
referring in part to the room or space problem, first noted by Keilhau
(1838): “Was this effect produced beneath the depths of a profound ocean?
or did a covering of strata formerly extend over it, which has since been
removed?”. Darwin’s observations in Chile also raised some controversial
points for scientific knowledge and for Darwin himself, e.g., about the
structure and crosscutting relationships in the red granites from the
Chilean Cordillera (Darwin, 1846): “There are gigantic mountain-like
masses of red granite, which have been injected whilst liquefied, and
which, nevertheless, display in parts a decidedly laminar structure” (Fig. 3c).

Darwin was not, however, a pioneer in the study of granites in Latin
America, which always had been seen as a valuable building stone.
During the Incan Empire, granitic rocks were exploited and worked from
the Cañar mountains, in the present-day province of Cuenca (Ecuador)
(Velasco, 1844), and granite was also used to build most of the city of
Machu Picchu in the Vilcabamba range (south Peru) (Delgadillo, 2013).
The first known geological reports on the granites of Latin America are
those from the German explorer Alexander von Humboldt in Mexico
(von Humboldt, 1822, 1825), where he described pics granitiques (i.e.,
granitic summits) in the Sierra Madre of western Mexico (Figs. 1d, 6).
Humboldt also showed large granitic bodies and their crosscutting re-
lationships with sedimentary and volcanic rocks in many representative
cross-sections of the Earth’s crust. The von Humboldt, 1841 cross-
section (Fig. 3f) provides an excellent synthesis of the geological
knowledge of that epoch, where granites are depicted as large intrusive
masses with different ages relative to the surrounding strata. The French
naturalist Alcide Dessalines d’Orbigny also provided very detailed de-
scriptions of the geology of South America during his trip from 1826 to
1834 (Orbigny, 1834).

Other detailed maps and descriptions carried out before Darwin’s
publications were those from the Salesian Juan de Velasco and his
expedition colleagues (e.g., Velasco, 1844; Garrido, 2020) (Fig. 6).
Another important contribution to the knowledge of granitic rocks in
South America during the 19th century (postdating the work of Darwin)
is considered to be the travel chronicle of Jean Baptiste Boussingault,
Joaquin Acosta, and Francois Desiree Roulin in Nueva Granada (a
Spanish Viceroyalty that extended over present-day Colombia,
Venezuela, Ecuador, Panama, and Guyana) (Boussingault, 1849). In this
work, granite bodies from different areas are described in detail,
including their structure, mineralogy, and relationship with the

surrounding rocks. In Ecuador, the Professor of Geology and Mineralogy
at the National Polytechnic School of Quito, Franz Theodor Wolf, also
made important contributions to the knowledge of the geology of the
country, including investigations on granitic rocks (Wolf, 1892). Besides
numerous descriptions of the field occurrence, mineralogy, and struc-
ture of granitic rocks across the country, it becomes clear that Wolf was
familiar with the ongoing debate on the origin of granites: “geologists do
not agree (...) it is one of the most difficult questions in geology (...) we do not
claim that all plutonic rocks have the same origin of an igneous-fluid magma,
or that they are in their primitive state, because I admit for many a very deep
metamorphosis” (Wolf, 1892).

The Australian continent also played an important role on the origin
and development of the knowledge of granites during the 19th century
(Figs. 6, 7). Darwin visited Australia in 1836 and, although his in-
vestigations on granites there were limited, he reported the existence of
granites in the Vale of Clwydd (New South Wales) and on the Vancouver
Peninsula (Western Australia) (Darwin, 1845; Armstrong, 1985; Nich-
olas and Nicholas, 2008) (Fig. 6). The geology of Australia had been
previously described by the Frenchman Nicolas Baudin and his team
during expeditions in 1800–1803 (Mayer, 2009), and later on by other
several exploration projects that focused on the biodiversity, geography
and geology of the region (e.g., Péron et al., 1807; King, 1827; Lesson
and Duperrey, 1830). The mineralogist of the Baudin expedition, Louis
Depuch, was responsible for most of the geological observations that can
be found within the travel chronicles (Baudin, 1974). Among the ob-
servations, similarities between the granites in the Baie du Géographe
(now Geographe Bay; Western Australia; Fig. 1e) and those described by
de Saussure (1779) in the European Alps are remarkable (Baudin, 1974;
Mayer, 2009): “it is impossible not to be convinced here of the fact, which
Mr. de Saussure was the first to recognize and which several naturalists still
contest, that granites are apt to stratify”. The Baudin expedition also re-
ported and described granite outcrops in north Tasmania, the Blue
Mountains in New South Wales, and the southern Australian Coast.
According to their observations and the dominant, Wernerian, rock
classification scheme of the epoch, they suggested a mostly primitive
origin for this whole part of the continent (Werner, 1787; Baudin, 1974;
Mayer, 2009).

The second half of the 19th century saw both a diversification and
specialization in the study of granites. The Plutonism paradigm pro-
posed by Moro (1740a, 1740b) and Hutton (1795a, 1795b), popularized
and embedded within Uniformitarianism by Lyell (1833, 1838), and
supported by the observations and descriptions of Darwin (1845, 1846),
among others, gave rise to a period of paradigm-governed, “normal”
science (Kuhn, 1970) (Fig. 5). This period, comparable to the states of
stasis according to Bak’s (1996) model of self-organised criticality, was
characterized by the accumulation of inconsistencies and the emergence
of new ideas leading to a collapse and to the occurrence of a scientific
revolution (Kuhn, 1970), or an “avalanche” in the sandpile analogy
(Bak, 1996) (Fig. 5). The study of granites moved from being purely
observational and based on reports of their existence and mode of
occurrence in different parts of the world, to become somehow reduc-
tionist. Thus, many scientists started to carry out more detailed in-
vestigations of granites focused on, for instance: the development of
foliations and other structural features (Sharpe, 1852; Mackintosh,
1868; Ormerod, 1869; McMahon, 1887), their mineralogy and petrology
(Haughton, 1858, 1859, 1864; Cooke, 1866; Hull, 1874) (Fig. 4); their
formation mechanisms and effects on their host rocks (Ramsay, 1841;
Von Buch, 1845; Duke, 1853; Bonney, 1888; Reade, 1889), their mafic
and felsic enclaves (Phillips, 1880, 1882; McCormick, 1886), and their
relationship with ore deposits and mining districts (Ansted, 1849; Hunt,
1849; Phillips, 1849; Pissis, 1850; Domeyko, 1855).

The knowledge of granites was probably further fostered by the
emergence of several large-scale geological maps. Although the first
known maps representing geology were drawn by the Count Luigi Fer-
dinando Marsili (Marsili, 1717; Romano et al., 2016), William Smith
(Smith, 1815), and Carlos de Gimbernat (de Gimbernat, 1806, 1808; see
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a review in Vila, 2016), those produced during the mid-19th century
allowed larger-scale comparisons between different regions of the world
and provided a global overview of the occurrence of granitic rocks and
their distribution. For example, the geological maps of Europe (Dumont,
1857) and the United States (Marcou, 1853) provided very detailed
information about the classes of granitic rocks in these territories, in all

cases accompanied by detailed mineralogical information. The geolog-
ical maps of the globe from Boué (1844) and Marcou (1861), described
in detail by Oldroyd (2014), also represented the worldwide distribution
of granites, which were in some cases lumped together with different
metamorphic schist series, and in other cases distinguished as granite in
the legend.

Fig. 3. Representative illustrations from some of the most scientifically influential works on scientific understanding of granitic rocks during the 19th century. (a)
Emplacement dynamics of a granite according to Scrope (1825) (scale is unknown). (b) Granite veins intruding Silurian strata and gneiss in the vicinity of Christiania,
Norway (Lyell, 1838) (scale is unknown). (c) Representative cross-section from the town of Copiapo to the western base of the Andean Main Cordillera (Darwin,
1846) (cross section length is ~225 km); pink and red colours represent granites and andesites; blues correspond to porphyries and conglomerates; yellows represent
gypsum or gypsiferous formations; dark-green refers to feldspathic clays and slates. (d) Observations on the structural relationships between granite, schist, and
mixture zones in the Torry Beach area (Aberdeen, Scotland) from Harris (1888) (mapped area is ~67 m2). (e) Idealized illustration of the origin and mode of
occurrence of different rock types published as the frontispiece from Charles Lyell’s Principles of Geology (second American edition; Lyell, 1857) (scale is unknown).
(f) Representative cross-section summarizing the mid-19th century understanding of the structure Earth’s crust and its major constituents, including granites (von
Humboldt, 1841) (scale is unknown). See text for further references. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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3.2. The birth of geochemistry

The last decades of the 19th century saw an increasing interest in
granites through the emerging discipline of Geochemistry. This term was
coined by the chemist Christian Friedrich Schönbein in 1838 in Basel
(Switzerland) (e.g., Fairbridge, 1998) based on the work of Lunn et al.
(1835). Noteworthy is the work on granite geochemistry, and more
specifically on fluid and melt inclusions, by the British geologist Henry
Clifton Sorby, to whom the manufacture of the first rock thin sections is
attributed. Through the comparison of the properties of experimentally-
grown and natural crystals (the latter belonging to metamorphic rocks,
quartz veins, and igneous rocks), Sorby (1858) demonstrated that the
study of cavities containing fluid (i.e., fluid and melt inclusions) could be
used to determine whether rocks in which they are contained were
deposited from aqueous solutions or crystallized from a melt (e.g.,
Correns, 2003; Bodnar, 2018). Significantly earlier than Sorby’s work,
the investigations of Scrope (1825) stand out (Fig. 3a). Through the
study of volcanoes and volcanic products in south Italy (Sicily, and the
Pontine and Aeolian Archipelagos), Central France (Auvergne, the
Velay, and Vivarais areas), and north Germany (Eifel volcanic region),
Scrope (1825) proposed that a wide range of igneous rocks could orig-
inate from the differentiation of a primary magma by “some chemical
process in an internal reservoir” (see below). Moreover, this author further
provided other speculations on the viscosity of magmas and their rela-
tionship with crystal and vapour composition. Years later, the chemist
Robert von Bunsen also investigated the origin of granites and their
water content. Through his investigations on the volcanic rocks of Ice-
land, von Bunsen (1851) showed evidence of the coexistence between
felsic and mafic lavas. As Bunsen considered it impossible that potassic
granites could be formed from the same primary magma as basalt, he
proposed the existence of two primary magmas, basic and acid. Years
later, Bunsen’s reflections would also become part of the debate on the
origin of granite from a geochemical point of view (von Bunsen, 1851,
1861) (see below).

The geochemical research on granites of the British metallurgist,
geologist, and mining engineer John Arthur Phillips during the last de-
cades of the 19th century was also remarkable. Phillips published
several results of granite geochemical analyses, among other rock types
and soils, and became one of the first scientists, together with H. C.
Sorby, to use the polarizing microscope (Phillips, 1849, 1871, 1873,
1880, 1882). This instrument had been invented by W. H. Fox Talbot in
1834 by making use of William Nicol’s single-vision 1828 calcite prism,
and the work of Dana (1877) and Rosenbusch (1877a, 1877b) contrib-
uted to its popularity (Fig. 4a) (see below). The most complete whole-
rock geochemical analyses published in the 19th century that we have
been able to find are those by Phillips (1880), which included data for
the Silica, Alumina, Phosphoric anhydride, Titanic, Ferric oxide, Ferrous
oxide, Manganous oxide, Lime, Magnesia, Potassa, and Soda contents of
granites cropping out in several quarries in England, Scotland, and
Ireland. Other 19th century examples of whole-rock geochemical ana-
lyses of granites are the studies of the microscopic structure and
chemical composition of Irish granites (Hull, 1874), as well as the
structural, mineralogical, and geochemical investigations of granite
quarries throughout England (Harris, 1888). On the other hand, the first
known geochemical analysis of specific granite-forming minerals,
namely feldspar, black mica, and beryl, were those presented to the
Royal Irish Academy by Samuel Haughton, professor of geology at
Trinity College (Dublin) (Haughton, 1853, 1855, 1862). In the United
States, since the establishment of the United States Geological Survey
(USGS) in 1879, several projects also reported the properties and the
major element compositions of granites (among other rock types) and
their mineral assemblages throughout the country, with Frank Wig-
glesworth Clarke as the chief chemist (e.g., Clarke, 1868, 1887; Clarke
and Chatard, 1884; Kinahan, 1887; Van Hise, 1890; Turner, 1899;
Mathews, 1900).

Several other works described granitic rocks around the world

during the last decades of the 19th century. Although it would be
impossible to address all of these in this review, those focused on the
magmatism vs. transformism debate, are referred to below. Notable is
also the pioneering work of McMahon (1887) on the Gneissose-Granite
of the Himalayas, the summary of the geology of southern India by
Newbold (1850), and the geological interpretations and petrographical
descriptions of granitoid rocks made by G. F. Scott Elliot along the Nile
River summarized by Raisin (1893) (Fig. 6).

4. From the late 19th century, part I: global flood of knowledge

“The “facts” of today are the hypotheses of yesterday”
Reginald Aldworth Daly, 1914. Igneous Rocks and Their Origi

With the development of geochemistry, research on granitic rocks
shifted from being purely observational to analytical. The observational
aspect, however, also flourished thanks to the emergence and optimi-
sation of the polarizing microscope and the concomitant increase of
petrographical studies during the late 19th and early 20th centuries
(Fig. 4). As a result of the new ideas on the origin and significance of
granites and other igneous rocks, the first problems with their classifi-
cation became central to discussions among scientists worldwide. Until
that moment, the term granite had been used to refer to any kind of
massive crystalline rock with a broadly felsic composition. However,
that broad use was no longer acceptable from the late 19th century,
since interpretations of the origin of granitic rocks were directly corre-
lated with their textural properties and chemical compositions (Fig. 4b-
e).

Among many other works, two textbooks on petrography are
believed to have changed the course of the study of igneous rocks (e.g.,
Cross, 1902; Pitcher, 1997a, 1997b): Lehrbuch der Petrographie (Zirkel,
1866) and Die mikroskopische Physiographie der massigen Gesteine
(Rosenbusch, 1877a), with the latter considered to contain the first
published global classification of igneous rocks. In this classification,
several sub-types of granites and syenites were proposed in addition to
the definition of granite sensu stricto: a rock containing quartz and
orthoclase, small amounts of plagioclase (oligoclase or albite), and
micas and/or amphibole. For granitic rock containing biotite but no
muscovite or amphibole, Rosenbusch (1877a) used the expression
“granite” (e.g., Marmo, 1967a, 1967b).

Several other references stand out for furthering the knowledge of
granite petrology during the late 19th and early 20th centuries. A good
example is the textbook of Cossa (1881) (Fig. 4b), which influenced the
Italian school of mineralogy and petrology by providing instructions for
thin section preparation and the use of the polarizing microscope, as
well as a complete set of colour plates representing different granite-
forming minerals and textures. Furthermore, the work of Teall (1888)
(Fig. 4c, d), from the British school (understanding school as a group of
individuals with a common scientific tradition, thought, and/or views
about a given subject), also provided numerous petrographic de-
scriptions, geochemical analyses, and raised valuable points about the
classification of igneous rocks, which he did not attempt to apply into his
textbook: “the more rocks are studied the less they seem to me to adapt
themselves to any classification at all” (Teall, 1888) (Fig. 4c, d). In fact,
these and many other schools of thought have played a significant role
on the evolution of our knowledge of granitic rocks by enhancing the
magnitude of scientific revolutions. Instead of convincing individual
scholars, a set of inconsistencies, arguments, and alternative explana-
tions may eventually become convincing enough so that a whole school
topples at once and completely changes its view. In these scenarios,
paradigm shifts may be harder to accomplish, but when they happen,
they are larger. The concept of schools of thought may be compared to
the assortative mating phenomenon of Human Evolution theory (e.g.,
Bons et al., 2019), i.e., the innate tendency to mate and have children
with like persons, which creates regions with particular (genetic) traits
and sharp boundaries between them. In science, these regions may be
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understood as schools of thought and, yet not helpful for evolution to
reach optimum fitness, it is a protective mechanism for preserving ge-
nomes (or, in science, common scientific traditions, thoughts, and views
about a given subject).

One year later after Teall’s (1888) work, another textbook published
by the director of the Geological Survey of France, August Michel-Lévy,
attempted to provide a new classification scheme for igneous rocks
(Michel-Lévy, 1889). This new classification, the first of many following
versions and revisions that would be published in the later decades, was
based on previous observations and textural interpretations (Michel-
Lévy, 1878a, 1878b, 1889; Fouqué and Michel-Lévy, 1879, 1882), as
well as on the initial proposal of Rosenbusch (1877a, 1877b). Con-
cerning granites, Michel-Lévy (1889) proposed a classification for the
Famille des Granites based on their depth of emplacement, including:
Profondeur (granites, granulites, and granites à amphibole), Filons (granu-
lites and microgranulites), and Épanchements (among others, micro-
granulites, micropegmatites, porphyres globulaires) (see Section 5). The
same classification scheme (i.e., deep, vein-type, and eruptive rocks)
was also followed for the Famille des Syenites, the terminology of which
was reduced and significantly simplified by Michel-Lévy (1889) after
Rosenbusch (1877a, 1877b).

For the Russian school, the work of Feodor Yulievich Levinson-
Lessing, Professor at the University of St. Petersburg, was particularly
influential. Among other contributions, Petrographisches Lexicon (Petro-
graphic Lexicon) (Levinson-Lessing, 1893a, 1895) and Tablitzy dlya
Mikroskopicheskikh Opredeleni Porodoobraznykh Mineralov (Levinson-

Lessing, 1893b; translated into English by Cole and Gregory, 1893)
provided Russian scientists with new techniques that were emerging in
western Europe for the study and interpretation of rocks under the mi-
croscope, including granites and granite-forming minerals.

In the United States, the work of Joseph Paxon Iddings was extremely
influential within different departments and faculties of geology and
petrology. Iddings spent two years (1879–1880) at the University of
Heidelberg with Prof. Rosenbusch conducting petrographic in-
vestigations that resulted in several publications on the significance,
formation and classification of granitoids and other igneous rocks (e.g.,
Hague and Iddings, 1885; Rosenbusch and Iddings, 1888; Iddings, 1890,
1892a, 1892b, 1893a, 1893b). Among his works, Iddings (1893a,
1893b, 1898a, 1898b) presented the largest dataset ever published of
geochemical analyses of igneous rocks from the Los Andes cordillera, the
Yellowstone National Park, and Christiania region, and included a large
set of compositional plots. Furthermore, The Origin of Igneous Rocks
(Iddings, 1892b) became as influential as it was controversial for the
scientific community since, besides providing new ideas on the origin
and classification of igneous rocks, it questioned the assumptions and
interpretations of granites that had previously been made by Scrope
(1825), Darwin (1844), von Bunsen (1851), or Durocher (1859) (see
Section 5).

The large amount of observational, analytical, and (embryonic)
experimental data on igneous rocks, and specifically on granites, gave
rise to several classification issues. For example, confusion stemmed
from the inclusion of a wide range of granite-looking rocks within the

Fig. 4. (a) One of the first known schematic drawings of a polarizing microscope specifically designed for the study of rock thin sections (H. Rosenbusch model, Serial
Number 131) (Dana, 1877; after Rosenbusch, 1873, and Zirkel, 1873). (b-e) Microscopic illustrations of granitoid textures published in some of the most influential
works on igneous petrography of the late 19th century. (b) Cossa (1881), Tavola IV, Fig. 5: thin section of a diorite in which chlorite (yellow) sheets are observed to be
normally displaced at the flake plane (light grey colours correspond to quartz and feldspar); magnification: 180 (location not provided). (c) Teall (1888), plate 35:
quartz (white), feldspar (grey), dark mica (biotite, yellow), chlorite (green), and apatite (brown) – Shap biotite-granite (granitite) (Devonian) intrusive in Ordovician strata
(Cumbria, NW England); magnified 30 diameters. (d) Teall (1888), plate 42: feldspar (dark grey), white mica (brown and yellow), and quartz (light grey) – Pre-Carboniferous
(Upper Ordovician) schistose Wicklow granite intrusive in Lower Palaeozoic strata (Leinster, Ireland); magnified 25 diameters. (e) Rosenbusch (1873), Tafel VII, Fig. 40:
Biotite-granite close to Schlierbach (Heidelberg); quartz and feldspar in white, biotite in green and brown (magnification not provided). Note that plate descriptions and
indications on magnification in this caption are those originally published by the authors. See text for further references. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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general term granite, but this term itself was not yet properly restricted
(e.g., granites sensu stricto, granite-porphyries, granophyres, quartz
porphyries, pitchstones, rhyolites, feldspar-bearing high-grade micas-
chists, and migmatites). The subclassification of these rocks according to
their relative age or area of occurrence further added more layers of
complexity to this problem (e.g., Johnstone, 1887; Harker, 1896; Daly,
1910). The emergence of petrography as a subfield of petrology also
produced an increase in the detail of the investigations on granites and
thus a magnification of their differences, leading to complex sub-
classifications often based on very slight changes in the modal abun-
dance or texture of mineral assemblages (e.g., Michel-Lévy, 1889; Cross,
1898). Further confusion was related to the different approaches to the
classification of granites proposed, adapted, and modified by petrolo-
gists from different schools in a brief period of time, among others: (1)
the mode of occurrence (e.g., Dikes, Necks or Plugs, Sills, Laccoliths,
Bysmaliths, and Bathyliths; Chamberlin and Salisbury, 1904), (2) their
timing relative to orogenesis (e.g., Synkinematic, Late-kinematic, Post-
Kinematic; Sederholm, 1891), (3) their petrogenesis and chemical and
mineralogical features (e.g., the CIPW System or the Persalane, Dosalane,
Salfemane, Dofemane, and Perfemane rock groups; Iddings, 1898b; Cross
et al., 1902; Lœwinson-Lessing, 1911; Young, 1999), or (4) a combina-
tion of the above (e.g., Daly, 1905). The minutes and publications
derived from meetings of the American Academy of Arts and Sciences,
the Royal Society of Edinburgh, and the Mineralogical Society of Great
Britain and Ireland are illustrative of these developements. For more
information about these and other historical classifications of igneous
rocks, some of which still cause debate among scientists, the reader is
referred to Section 6.1 and to the exceptional reviews of Cross (1898),
Iddings (1898b), Tomkeieff (1939), Barbarin (1990, 1999), and Pitcher
(1997a, 1997b). Regarding the magmatic, metamorphic, or meta-
somatic origin of granites (e.g., Walton, 1960; Marmo, 1967a, 1967b;
Kresten, 1988; Clarke, 1996), this issue is addressed in more detail in the
following section.

5. From the late 19th century, part II: magmatism vs.
transformism

“Are there Granites and Granites after all?”
Herbert Harold Read, 1947. Granites and Granites. Geological Society
of America Memoir 28: Origin of Granite

The research on granitic rocks saw its most polarized controversy
from the late 19th to the late 20th centuries. As a result of the growing
number of inconsistencies derived from field observations, structural
interpretations, and geochemical investigations (named anomalies in
Fig. 5), chemists, physicists, and geologists were divided among mag-
matists and transformists. The debate on whether granites are of
magmatic, metamorphic, or metasomatic origin, and the related struc-
tural and petrogenetical implications of each potential hypothesis,
governed more than one century of widespread debate in almost all the
geological societies, schools of thought, and geological surveys. Given
the significant number of reviews that have already addressed this
granite controversy (Walton, 1960; Marmo, 1967a, 1967b; Pitcher,
1987; Clarke, 1996; Pitcher, 1997a, 1997b; Brown, 2013), we focus the
present section on two of the main debated issues: the space or room
problem (e.g., Keilhau, 1838), and the origin of granitic melts (e.g.,
Tuttle and Bowen, 1958).

About the room problem, Read (1948) wrote: “it is the room problem
that lies at the heart of the granite problem, and the room problem is a matter
to be dealt with by field geology”. The room problem, in fact, dates back to
1837 when Charles Lyell, Marie Elisabeth Lyell, and Baltazar M. Keilhau
visited Norway and provided contrasting interpretations on the origin of
the granites cropping out close to the city of Oslo (e.g., Holtedahl, 1963;
Marmo, 1967a, 1967b; Hestmark, 2011) (see Section 3; Figs. 1b, 6). At
that time, the idea of magmatism implied that the space needed for the
formation of a body of granite was exactly the same of that occupied by

the granite itself once formed. In contrast to this, room was not needed
for the formation of granites according to the transformist views, which
suggested that granites were formed by the replacement or trans-
formation in the solid state of pre-existing rocks (Keilhau, 1838). The
apparently unattainable dimensions required for the formation of
granites as explained by magmatists led the transformists to gain traction
in the late 19th century, and a wide range of arguments invoking
granitization were reported to explain the formation of granitic rocks
worldwide. Concepts such as pseudomorphism (variations in miner-
alogy, texture or composition of a granite simulating primary sedi-
mentary or volcanic structures and/or mineral phases; Bowes, 1953;
Stringham, 1953), gradation and continuity (the process by which a pre-
existing rock passes gradationally into granite; Anderson, 1937; Good-
speed, 1948; Eckelmann and Poldervaart, 1957), or relict stratigraphy
(the occurrence of pre-existing layers within a granite that maintain a
relative stratigraphic position; Misch, 1949; Pitcher, 1952) were used as
arguments for a metasomatic or metamorphic origin of granitoid rocks.
The formation of rapakivi granites through replacement of red sand-
stones in the Fennoscandian Peninsula suggested by Backlund (1938), or
the formation of gabbro and diorite as mafic fronts resulting from the
expulsion of matter during granitization of metagreywackes (Reynolds,
1943, 1947), are good examples of the aforementioned concepts.

However, years before granitization had gained popularity and was
eventually refuted, several geologists attempted to solve the room
problem from a magmatic point of view by means of assimilation. Within
this framework, granites from Oslo were again the source for the in-
terpretations of Kjerulf (1855, 1879). This author agreed with previous
interpretations of Lyell (1838, 1841) regarding a plutonic origin for the
Oslo granites despite acknowledging the room problem pointed out by
Keilhau (1838). Kjerulf (1879) suggested that the space needed for the
emplacement of granites was progressively gained by the assimilation of
sedimentary rocks, rather than created through forceful intrusion by
displacing the surrounding strata. Other contemporaneous influential
petrologists from the French and Finnish schools further developed the
ideas of assimilation and anatexis (i.e., partial melting of rocks) (e.g.,
Michel-Lévy, 1888, 1893; Sederholm, 1897, 1907; Lacroix, 1898).

Authors from the French school based their interpretations on pio-
neering investigations of the mid-19th century that addressed the origin
of granites from an extreme transformist perspective. For example, Boué
(1824) first proposed igneous liquefaction as a process for turning
metamorphic schists into igneous rocks, and the French chemist Sainte-
Claire Deville first suggested the existence of agents minéralisateurs (i.e.,
mineralizing agents) that chemically transform the rocks through which
they diffuse (see Holmes, 1945). Virlet D’Aoust (1844a, 1844b) coined
the term imbibition, a precursor of granitization, to describe the process
by which igneous materials could soak into metasedimentary rocks
further transforming them into granites. Later, investigations by Delesse
(1861) further provided insights for the French school of transformism:
“plutonic rocks are formed from metamorphic rocks; they represent the
extreme term of general metamorphism; they are the effect rather than
the cause of metamorphism”. This author further suggested that grani-
tized plutonic rocks may become so mobile that they could be squeezed
towards higher levels of the crust to form intrusive granites.

Occupying the middle ground between the endmembers of extreme
magmatism and transformism, Michel-Lévy (1888, 1893) suggested that
intrusive granite masses pervasively altered their surrounding strata,
promoting the formation of more granite rocks. According to this
interpretation, which was based on the ideas of Virlet D’Aoust (1844b),
the upwelling rate of a given granitic intrusion was determined by the
rate of absorption of the roof and walls of the reservoir, where granitic
material assimilates the surrounding rocks that progressively sink and
are transformed into granite gneiss, gneissose granite and, finally,
granite (Michel-Lévy, 1888, 1893). Furthermore, the investigations of
Lacroix (1898) in the granitic rocks from the Pyrenees (Fig. 1f)
emphasized the contact zones with the surrounding schists. From field
and mineralogical observations along the Garonne River in the Haute-
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Ariège, Lacroix obtained strong evidence regarding the occurrence of
granitic intrusions and their relationship to the assimilation and meta-
morphism of surrounding rocks. This author attributed strong feldspa-
tisation of metamorphic aureoles to the migration of a granite substance
into the country rock, in the presence of mineralizing agents, as well as
the possible removal of certain elements in the exomorphic contact zone
under the same intrusion conditions (Lacroix, 1896, 1898; Daly, 1898).
From this work, the Pyrenees turned out to be the flagship for the
transformist ideas of the French school, being defined as a district in
which remarkable rock transformations could be clearly seen. A
geological excursion to the Pyrenees led by Prof. Lacroix within the
framework of the Eighth International Geological Congress (Paris, year
1900) (see summary in Adams, 1901) further fostered the discussion on
the origin of the Pyrenean granites, which remained open until the late
20th century (e.g., Guitard, 1960, 1970; Autran et al., 1970).

In Finland, the spread of transformism was mainly lead by the head
of the Finnish Geological Survey, Jakob Johannes Sederholm
(Sederholm, 1907, 1911, 1926). From observations on Precambrian
rocks of southern Finland, Sederholm encountered difficulties in
explaining different outcrop features in terms of classical magmatism,
which led him to introduce the terms palingenesis (i.e., rebirth) and
anatexis (i.e., to melt down) to account for peculiar mixed rocks, mig-
matites (Sederholm, 1907): “because the mixture of different constituents is
the characteristic feature of all these different rocks, I would suggest for them
the name migmatites”. The term palingenesis was also used by Sederholm
(1907) to explain the inception of the granitization phenomenon, where
the (re-)melting of older granites formed granite melts that were later on
intruded at higher levels while granitizing their adjacent rocks, thereby
not requiring room. Sederholm (1926) also defined migmatites as an
intermediate rock type between igneous and metamorphic end mem-
bers, which were commonly found in migmatitic terrains together with
other rock varieties such as arterites, agmatites, eruptive breccias, banded-
gneisses, ptygmatitic migmatites, and diktyonites (see comparisons between
Finnish and Scottish rocks in Read, 1925).

The interpretation by French and Finnish schools regarding the for-
mation of granites and their relationship with migmatites did not
necessitate a choice between either magmatic emplacement through
forceful intrusion or extreme transformism by mysterious replacement
reactions driven by fluids. A coupled process under high-temperature
conditions, where minor intrusions of granitic magma caused the
transformation of surrounding strata into more granitic rocks, was more
acceptable given the knowledge of that epoch, and furthermore reduced
the room problem by several orders of magnitude. The growing in-
consistencies between field observations (Michel-Lévy, 1888; Lacroix,
1898; Read, 1925; Sederholm, 1926) and the tenets of magmatism
questioned the theories involving forceful intrusions as the origin of
granitic rocks. “Granites are very big things, not hand specimens”, noted
Read (1948) several years later, when introducing the room problem in
the well-known review Granites and Granites.

Despite maintaining traditional views on magmatism, some geolo-
gists were forced to acknowledge the existence and importance of
metasomatic granites during the early 20th century. This was the case of
the Finnish geologist Pentti Eskola. About Sederholm, Eskola wrote (see
Eskola’s prologue in Sederholm, 1967): “one may ask how he, a pupil of
Harry Rosenbusch, the extreme magmatist, became the announcer of gran-
itization”. Sederholm’s (1891) classification of granitic rocks (see Sec-
tion 4) according to their time of formation relative to orogenesis was,
nevertheless, adapted by Eskola (1932). In this classification, Groups I,
II, and III of Sederholm (1891) were defined in Eskola (1932) and later
on refined in Eskola (1955) as: (I) Synkinematic granites, of meta-
somatic origin with gneissose texture, which are associated with greatly
differentiated complexes varying through all calci-alkalic members from
peridotites to granites, (II) Late-kinematic granites, of metasomatic
origin with aplitic texture, which were formed at a later stage of the
orogeny and thus crosscut the country rock and some of its deformation
structures, and (III) Post-kinematic granites, of magmatic origin and

completely devoid of gneissosity. This latter type of granite, often
characterized in Finland by rapakivi textures, was the only true
magmatic granite in Eskola’s opinion (Eskola, 1955): “the rapakivi plu-
tons are the purest magmatic granites in our country. From them we can
follow all gradations to metasomatic granites” (see Marmo, 1967a, 1967b;
Pitcher, 1997a, 1997b; Eklund et al., 2008).

At the other end of the spectrum are the observations reported by
advocates of magmatism of the English and German schools regarding
the origin of granites. One of the best examples are the geochemical
investigations of Rosenbusch (1877b) on the contact metamorphic slates
surrounding the Barr-Andlau Pluton in the northern Vosges (France).
From a series of geochemical analyses along sampling profiles from
distal towards proximal areas of the margin of the granite, the author
concluded that metamorphism adjacent to granitic bodies always took
place without significant chemical changes. Another exceptional
example refuting the existence of granitization were the observations of
Callaway (1894) in a paper entitled Is granite ever metamorphic? In this
work, the author investigated contact zones between granites and sur-
rounding schists in Great Britain, which were believed to show transi-
tional or gradational contacts. At three investigated localities, Callaway
(1894) refuted the former interpretations about a metamorphic or
metasomatic origin of the exposed granites by showing evidence of
granitic veins or intrusive and “net” contacts between granites and
sedimentary country rocks. However, Callaway (1894) did not account
for the room problem. Hans Cloos, from the German school, attempted to
solve the room problem and suggested that large batholiths posing
controversial space problems were in truth large intrusive sheets (Cloos,
1923). This interpretation involved less room needed to form such
structures, although vertical or horizontal crustal extension was neces-
sary to accommodate the intrusive sheets following crustal
discontinuities.

Previous work by Daly (1912), who also advocated for the forceful
intrusion of granitic magmas, was influential to the understanding of the
room problem. Based on the occurrence of intrusion breccias observed
along the margins of large granitic masses along the North American
Cordillera, Daly (1912) coined the term magmatic stoping and defined it
as “the successive engulfment of suites of blocks broken out of the roof and
walls of the batholith”. Pitcher et al. (1958) later proposed lateral
magmatic widening as the mechanism of emplacement for the relatively
large Donegal granite in northwest Ireland. Numerous investigations on
this area had already been published, suggesting either a magmatic
(Haughton, 1862) or metamorphic (Scott, 1861) origin. However,
Pitcher et al. (1958) provided new meaningful observations and detailed
geological mapping of different granite units, acknowledging that a
“metamorphic” origin appeared reasonable for one part, and an
“igneous” origin for another. Pitcher et al. (1958) found that discon-
tinuous metasedimentary horizons in the country rocks were also pre-
sent within the granite as a relict or ghost stratigraphy, a phenomenon
that had classically been used as an argument for granitization. How-
ever, they attributed it to a syn-plutonic origin for these horizons, which
developed a strong marginal lineation during compression caused by
sequential pulses of a plexus of wedge-like granite sheets (see a review in
Cobbing, 2000).

Contrasting positions were taken by geologists since the late 19th
century, but the room problem within the magmatism vs. transformism
debate was not polarized on a geographical basis. There were as many
extreme magmatists in the French and Finnish schools as there were
extreme transformists in the English and German schools. For example,
investigations by Currier (1937, 1947), member of the United States
Geological Survey, and Reynolds (1943, 1947, 1958), Fellow of the
Royal Society of Edinburgh, promoted a metamorphic or metasomatic
origin of granites (e.g., by Lewis, 2021).

The origin of granitic magmas was the second major question in the
magmatism vs. transformism debate and, unlike the room problem, was
solely pursued within the magmatic school of thought. If granites were
magmatic, then the origin of granitic magmas and the conditions at

E. González-Esvertit et al. Earth-Science Reviews 261 (2025) 105008 

11 



which they formed, including their water content, were key issues to be
understood. The origin of this discussion dates back to the birth of
geochemistry and experimental petrology, which marked the onset of
numerous investigations on the order of crystallization of mineral pha-
ses and their physicochemical conditions of growth (see Section 3). The
presence of water in granitic magmas was acknowledged following the
work by Sorby (1858) on fluid inclusions in granites, and by Scheerer
(1862) on melting of hydrous salts as a magma analogue. However,
before reaching this stage, the controversy on the origin of granitic
magmas was focused on the fusion of rocks: dry, or wet? (see Chapter 6
in Young, 2018). The leading advocates for the dry fusion were the
Frenchmen Baptiste Xavier Fournet and Joseph Marie Durocher (e.g.,
Fournet, 1844, 1845; Durocher, 1859). Wet fusion (involving the pres-
ence of H2O and other volatile phases) was accepted later during the
second half of the 19th century. This theory had major implications for
the understanding of how granitic magmas form and, more specifically,
for the physicochemical laws governing the process of magmatic
differentiation.

The concept of magmatic differentiation was proposed and subse-
quently investigated by, among others, Scrope (1825), von Bunsen
(1851, 1861), Iddings (1893b, 1896), and Harker (1896, 1909) (see
Section 3). However, it only started to gain advocates since the petro-
graphic and geochemical insights provided in the seminal work of
Brögger (1894) (see Pitcher, 1997a, 1997b). From field observations and
geochemical analyses of the granites cropping out in southern Norway,
Brögger (1894) suggested that the sequence of mineral phase crystalli-
zation reflected the differentiation of the original magma, from basic to
acid: “the oldest rocks are the most basic, the youngest are the most acid, and
between the two extremes I have found a continuous series”. At that time, it
was already known that, under wet conditions, a granitic melt could be
formed at much lower temperatures than an equivalent anhydrous melt,
which had major implications for the research on the order of crystal-
lization of mineral phases, or “crystallization series” (e.g., Fouqué and
Michel-Lévy, 1882; Brögger, 1894; Iddings, 1896). Understanding of the
specific order in which mineral phases are formed during the cooling
and solidification of the magma, was based on the relative melting
points of minerals. It was known that the crystallization temperature of
micas was lower than that of feldspar, and still lower than that of quartz
(see Chapter 6 in Young, 2018). On this basis, works from the late 18th
century had already suggested that quartz, the phase with the highest
melting temperature, should crystallize before the more fusible feldspar
and, therefore, euhedral quartz crystals should show imposed faces on
the subsequent feldspar crystals rather than the opposite (e.g., Kirwan,
1793, 1800). By the end of the 19th century, however, it was known that
that the actual order was precisely the reverse, as demonstrated by von
Bunsen (1861): “No one seems to have considered that the temperature at
which a body solidifies for itself is never the temperature at which it becomes
solid from its solutions in other bodies”.

Later on, the order of crystallization in granitic magmas was further
investigated by Guthrie (1884), who first suggested the idea of eutectics,
Vogt (1884, 1888), regarded as the founder of the modern experimental
petrology, and Rosenbusch (1910), who maintained that molten mate-
rial with a composition of primary magma exists within the Earth’s
interior, where it continually differentiates. Moreover, according to
Rosenbusch (1910), variations in differentiation could occur because of
variations in temperature and pressure during crystallization. This latter
idea served as the basis for the seminal experimental work of Norman L.
Bowen on the crystallization of silicate melts and its relation to natural
associations of igneous rocks (see a review in Grove and Brown, 2018).
Bowen investigated crystallization processes in different silicate melts
and binary, ternary, or composite systems. Among other findings, those
related to different binary and ternary systems, as well as the invaluable
insights into the fractional crystallization of basalt under anhydrous
conditions, represented a milestone for igneous petrology in the early
20th century (e.g., Bowen, 1912, 1913, 1916). Later, Bowen started to
work with Frank Tuttle, who during the 1940s conceptualized and built

an apparatus to simulate varying conditions in the Earth’s crust. The hot-
seal hydrothermal quenching apparatus, painstakingly described in Tuttle
(1948) and nowadays stored at the Carnegie Institution for Science Earth
and Planets Laboratory Archives (Washington DC, USA), represented the
inception of a plethora of investigations on mineral systems including
volatile components, which had been sparse until that moment (e.g.,
Goranson, 1936). At that time, the origin of granite was viewed differ-
ently by field researchers with strong backgrounds in structural geology
and metamorphic petrology, who favoured a non-magmatic origin of
granite, and those with backgrounds in experimental petrology. Two
quotations from leading researchers in these fields are illustrative: “the
best geologist is he who has seen the most rocks” (Read, 1939), and “look as
one will at the rocks he cannot see them in process of formation” (Bowen,
1948). In this framework, the seminal work of Tuttle and Bowen (1958)
on the haplogranite system NaAlSi3O8–KAlSi3O8–SiO2–H2O (Ab-Or-Qtz-
H2O) demonstrated that granitic rocks could be formed from granitic
magmas. Only a few years later, Winkler and von Platen (1961) exper-
imentally tested high-grade metamorphism and anatexis of different
greywackes, finding that tonalitic or granodioritic compositions were a
final stage in the anatectic process. This milestone offered an even more
convincing hypothesis for the formation of granitic melts and ultimately
granitic rocks, significantly contributing to the understanding of their
genesis. Granite, therefore, turned out to be strictly magmatic for most
experimental petrologists (see Bailey and Macdonald, 1976), whereas
other geologists maintained opposite views on the basis of field and
petrographic evidence (see Walton, 1960; Marmo, 1967a; Vernon, 1986;
Pitcher, 1987; Clarke, 1996; Pitcher, 1997a, 1997b; Brown, 2013).

6. The granite concept since the Plate Tectonics theory

“Some granites are cooler than others”
Vhairi Mackintosh. Cosmos Magazine - 2 Jul 2018

Alfred Wegener’s continental drift theory (Wegener, 1912) is widely
understood as the precursor to the Plate Tectonics theory. However, it is
worth noting that, long before that moment, Benjamin Franklin already
pointed out that the movement of continents across the Earth’s surface
should be driven by some internal force: “Thus the surface of the globe
would be a shell, capable of being broken and disordered by the violent
movements of the fluid on which it rested” (Franklin, 1782). The initial
ideas of Franklin and Wegener were initially met with great scepticism
due to the lack of plausible mechanisms (Oreskes, 1999), which were not
discovered and accepted until the 1960s–1970s. Processes such as
mantle convection, seafloor spreading, and slab pull and ridge push,
provided reliable explanations for the large-scale movement of the
Earth’s lithosphere, and agreed with observations from seafloor map-
ping, paleomagnetic analysis, geochemical compositions, and large-
scale tectonics (Dietz, 1961; Hess, 1962; Vine and Matthews, 1963;
Wilson, 1965, 1975; McKenzie and Parker, 1967; Ringwood, 1974;
Anderson, 1982; Tatsumi, 1986; McKenzie, 1989). Plate tectonics is thus
a scientific revolution not only for granite science but for the under-
standing of the past, present and future behaviour of our planet; its in-
fluence on the knowledge of granitic rocks has therefore been crucial
during the last 60 yr. (Fig. 5). One of the most important contributions
was, for example, to distinguish granites from different tectonic settings
and sometimes with different sources, mineralogy or compositions, such
as in orogenic, anorogenic, and mid-ocean ridge environments (e.g.,
Chappell and White, 1974; Pitcher, 1983, 1987; Pearce et al., 1984;
Maniar and Piccoli, 1989; Brown, 1994).

However, the Plate Tectonics theory did not directly end the mag-
matism vs. transformism debate, since many inconsistencies concerning
granitic magma generation, segregation and emplacement were still
debated (Fig. 5). These inconsistencies are exceptionally well docu-
mented in the work of Pitcher (1987), where it is first acknowledged that
“the advent of the Plate Tectonic Hypothesis has emphasised the relationship
between cause, process and the regional geological environment” but, later, it
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is stated that “whilst many granites are essentially magmatic and intrusive
others are metamorphic and replacive”. However, Plate Tectonics did
contribute to increasing the explanatory power of magmatism and
decreasing that of transformism (Fig. 5). The magmatism vs. trans-
formism debate lasted until the late 20th century, with some in-
vestigations published based on studies of different regions of eastern
Europe as the last witnesses of this long-lasting discussion (Korzhinskii,
1962; Dobretsov and Shafeev, 1991; Stumbea, 2003; Sedova et al., 2013;
Aranovich, 2017). The magmatism paradigm prevailed, and granite
research entered progressively, for a second time (see Section 3), the
current paradigm-governed, stasis period of normal science (Kuhn,
1970) (Fig. 5). Accordingly, most current investigations into granitic
rocks (see below in this Section) are part of a reductionist science trend,
based on detailed studies about specific fields and sub-fields that offer
their findings as part of a wider knowledge gap (Tex, 1990; Clarke,
1996; Petford et al., 1997).

The last half-century of research on granitic rocks, since the accep-
tance of the Plate Tectonics theory and the establishment of the mag-
matism paradigm, has mostly consisted, in Kuhn’s words, of “puzzle
solving”; which is, for clarity, to address problems that are believed in
advance to have a solution (Fig. 5). This period has further fostered the
proposal of tens of genetic and non-genetic classifications, some of them
still used and some others already proven to be only valid for the context
where they were proposed (see Section 6.1). Publications that categor-
ically support a non-magmatic origin for igneous-looking rocks are
almost absent in the modern literature. Noteworthy abundant are,
however, investigations that tentatively attribute a non-magmatic origin
to granite-looking rocks, suggesting that: (1) rocks showing very
different field appearances (gneiss, trondhjemite, and mica schist among
others) may be derived from similar precursors by mineralogical and
chemical changes induced by deformation and metasomatism, and (2)
deformation and metasomatism can also give a very similar appearance
to previously different rocks (e.g., Hanor and Duchač, 1990; Almond
et al., 1997; Elburg et al., 2001, 2012; Martin, 2006; Zirner et al., 2015).
These investigations reflect how neglected ideas may eventually become
central for explaining inconsistencies in new paradigms that have more
explanatory power (Fig. 5). This phenomenon can be compared, as with
the concept of the schools of thought (see Section 4), with Evolution
theory. In this case, reusing old, neglected ideas to solve new problems is
analogous to the role of refuges during evolution (Fig. 5), where old
genomes may persist in isolated places without following the main
evolutionary trend and may subsequently join the mainstream again.

It is currently widely accepted by the scientific community that
granites sensu stricto are plutonic (Hutton, 1794; Walton, 1960; Le
Maitre et al., 2002) silica-rich felsic rocks that contain modal quartz (Q),
alkali feldspar (A), and plagioclase (P) in the following proportions: 20
< Q < 60 and A: P = 90: 10 to 35: 65, and that they may contain one or
more types of mica, amphibole, and many other accessory minerals
(Streckeisen, 1974; Le Maitre et al., 2002). However, metasomatic
pseudo-granites are also proposed to still exist, as recently demonstrated
for the Himalayan banded tourmaline leucogranites, formed by meta-
somatism of a psammitic country-rock (Dyck and Larson, 2023), or the
granites in the Mt. Painter Inlier that are alteration products of meta-
sedimentary rocks of the Radium Creek Group (Weisheit et al., 2013).

Current research on granitic rocks can roughly be divided in two
major approaches (see below): (1) observational and analytical and (2)
experimental and numerical modelling. Although it is beyond the scope
of this work to thoroughly review the bountiful literature of these two
approaches, below we provide a summary of their main milestones and
current debates (see Sections 6.2 and 6.3).

6.1. The classification(s) of granites

Naming and categorizing igneous rocks, including granites, has been
highly controversial for geologists for the past two centuries. Since the
acceptance of the Plate Tectonics theory, more than 30 non-petrogenetic

and petrogenetic classifications of granitic rocks have been proposed
(see the reviews of Barbarin, 1990, 1999; Frost et al., 2001; Bonin et al.,
2020; Garcia-Arias, 2020). However, widespread agreement on the most
suitable classification has not been yet reached. As pointed out by
Garcia-Arias (2020), this long-lasting pursuit probably lies in the
intrinsic “imperfection” of the existing chemical classification systems,
which, if perfect, should provide names that convey all relevant infor-
mation about a given sample: modal mineralogy, texture, chemical
composition and genesis. For example, the widely accepted non-genetic
classification of Streckeisen (1974) can be easily applied in the field and
does not require determination of the other minerals (besides quartz and
feldspars) that are present in the rock, nor how these rocks formed.
However, this is also a limiting factor because the classification does not
consider the abundance and composition of other mineral phases that
may have significant petrological implications. Another example is the
petrogenetic classification of Chappell and White (1974) that, although
widely adopted, is not always straightforward when indicator minerals
are absent, such as cordierite for S-type, amphibole for I-type, and
orthopyroxene (or pigeonite or fayalite) for C-type granites (Ague and
Brimhall, 1988; Barbarin, 1990; Kilpatrick and Ellis, 1992; Frost et al.,
2001). Other drawbacks of these “alphabet” genetic classification
schemes are that they often use a single parameter to infer a unique
source. For example, peraluminous granites are equated to S-types, and
therefore deemed to have a sedimentary source, whereas other origins
and pathways may lead to the same composition (Alonso-Perez et al.,
2009). Moreover, the classification of granites according to these mul-
tiple schemes is sometimes seen as a goal in itself, which is an approach
that contributes little to our understanding of granite petrogenesis.

In this section, most used classifications are summarized, including
details of their major strengths and potential pitfalls. Classifications of
granitic rocks here reviewed are based on a wide number of variables
including, among others, mineralogical modal compositions, petro-
graphic features, accessory mineral phases, nature and abundance of
enclaves, major or trace element compositions, and isotope geochem-
istry. The principal non-petrogenetic classifications of granitic rocks are
presented in Table 1 (Streckeisen, 1974; De la Roche et al., 1980; Debon
and Le Fort, 1988; Middlemost, 1994; Frost et al., 2001; Barton and
Young, 2002; Frost and Frost, 2008; Enrique and Esteve, 2019; Glazner
et al., 2019). They are based on either mineralogical modal abundances
or major element compositions, and have the major advantage of being
non-genetic. It is explicitly stated in Le Maitre et al. (2002) that the
Subcommission on Igneous Petrology of the IUGS was based on
Streckeisen (1974) and Le Bas and Streckeisen (1991) to provide
nomenclature and classification to all igneous and igneous-looking rocks.
Most authors now agree to use the modal classifications recommended
by the IUGS (e.g., Streckeisen, 1974; Middlemost, 1994; Le Maitre et al.,
2002), which use subdivisions and nomenclatures based on a limited
number of variables, and are generally widely accepted (e.g., Frost et al.,
2019; Bonin et al., 2020; Garcia-Arias, 2020). However, other petrolo-
gists have recently questioned and reformulated these schemes (e.g.,
Glazner et al., 2019).

The principal petrogenetic classifications of granitic rocks are sum-
marized in Table 2 (Didier and Lameyre, 1969; Capdevila and Floor,
1970; Capdevila et al., 1973; Tauson and Kozlov, 1973; Chappell and
White, 1974, 2001; Orsini, 1976, 1979; Ishihara, 1977, 2004; White and
Chappell, 1977; Loiselle and Wones, 1979; Lameyre, 1980; Pupin, 1980,
1985; Keqin et al., 1982; Lameyre and Bowden, 1982; Yang, 1982;
Pitcher, 1983, 1987; Pearce et al., 1984; Nachit et al., 1985; Rossi and
Chevremont, 1987; Maniar and Piccoli, 1989; Barbarin, 1990, 1999;
Castro et al., 1991; Didier and Barbarin, 1991; Kilpatrick and Ellis, 1992;
Tischendorf and Förster, 1992) and have already been exhaustively
discussed in Barbarin (1999) and Frost et al. (2001). These classification
schemes gained popularity with the advent of modern geochemical
methods, which provided evidence of the relationships between the
mineralogical, chemical, and/or isotopic composition of granitoid rocks
and their petrogenesis or tectonic setting (e.g., Pearce et al., 1984;
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Maniar and Piccoli, 1989). In some cases, petrogenetic granite classifi-
cations were devised as bimodal schemes that progressively gained
complexity by means of new sub-divisions and/or petrogenetic con-
strains. The two original I- and S-type granite endmembers, initially
proposed by Chappell and White (1974) and subsequently com-
plemented by the A-, M-, C- and H-types (Chappell and White, 2001;
White and Chappell, 1977; Loiselle and Wones, 1979; Castro et al.,
1991), are a good example of this growing complexity.

6.2. Observational and analytical approaches for investigating granitic
rocks

Observational and analytical approaches of current research on
granitic rocks encompass field-based, mineralogical, geophysical, and
geochemical investigations (e.g., Liesa et al., 2021; Dahlquist et al.,
2022; Milani et al., 2022; Song and Xu, 2022; Turner et al., 2022),
commonly related to geothermal energy (e.g., Singh et al., 2020; Klee
et al., 2021; Chandrasekharam et al., 2022) and the exploration for ore
deposits (e.g., Harlaux et al., 2021; Lehmann, 2021; Zhang et al., 2021;
Wang et al., 2022a, 2022b). Global investigations are generally repre-
sented by multidisciplinary approaches at the interface between struc-
tural geology and petrology. The observational approach for the study of
granitoid rocks often starts with geological-structural mapping through
classical fieldwork (e.g., Cobbing, 2000; IGME-BRGM, 2009; Casini
et al., 2015; Tavazzani et al., 2017; Errandonea-Martin et al., 2018;
Secchi et al., 2021; Russo et al., 2022) and, in high-altitude or inacces-
sible areas, remote sensing-based technologies (e.g., Watts and Harris,
2005; Haselwimmer et al., 2011; Karimzadeh and Tangestani, 2021).
Recently, the historical importance and future directions of geological
mapping have been reviewed by Butler et al. (2024). Another

fundamental and widely applied observational mesoscale approach for
the study of granites is the mapping, measurement, and quantification of
fabrics (Bouillin et al., 1993; Bouchez, 1997; Moyen et al., 2003; Car-
reras et al., 2004). At the microscopic scale, beyond optical petrography,
Electron Back Scatter Diffraction (EBSD) analyses with Scanning Elec-
tron Microscope (SEM) have also become a popular observational
approach in the study of tectonic fabrics and sub-fabrics present in
granitic rocks (e.g., Peternell et al., 2010; Mamtani and Renjith, 2015;
Ávila et al., 2022), which may provide insights into the stress, strain,
temperature, and pressure conditions of granitoid deformation (Hirth
and Tullis, 1992; Stipp et al., 2002; Cross et al., 2017; Gomez-Rivas
et al., 2020).

Geophysical imaging of granite bodies may also be classified as an
observational approach. Among others, electric (e.g., Olhoeft, 1981;
Jover, 1986), magnetic (e.g., Schwarz, 1991; Maré and Thomas, 1997;
Kadioglu et al., 1998), and seismic surveys (Wenzel et al., 1987; Améglio
and Vigneresse, 1999) have been conducted during the past decades.
Moreover, high-resolution seismic reflection profiles and the 3D inver-
sion of gravity data have provided valuable insights into the deep ge-
ometry and the internal structure of granitoid masses (e.g., Mair and
Green, 1981; Evans et al., 1994), as well as the large-scale crustal ar-
chitecture of different orogens worldwide (Muñoz, 1992; Mortimer
et al., 2002; Korsch et al., 2012; Ayarza et al., 2021). Gravity survey data
and methods such as 2D forward modelling and 3D inversion can be
considered as the most used and insightful geophysical imaging tech-
niques for granitic rocks (e.g., Vigneresse, 1990, 1995, 1999; Améglio
et al., 1997). Since differences in gravity signatures are based on density
contrasts between granitoids (generally with lower density, thus
showing negative gravity signatures) and surrounding rocks
(Vigneresse, 1990; Améglio and Vigneresse, 1999; Wang et al., 2011),

Fig. 5. Schematic timeline of the historical development of the granite concept through time, after the ideas of Kuhn (1970) and Clarke (1996). Each new paradigm
about the origin of granites is settled (i.e., established) through a “scientific revolution” after “great scientific achievements”. Scientific revolutions are followed by a
period of “normal” science (paradigm-governed), where specific investigations or case studies are carried out through “puzzle solving” (i.e., investigating problems
that are believed in advance to have a solution; stasis periods according to Bak, 1996). As more inconsistencies and new ideas emerge (anomalies falling outside the
explanatory power of a given theory), the paradigms experience a crisis and collapse progressively, which forces a new revolutionary change (“avalanche” in the
sandpile analogy of Bak, 1996). Ideas from preceding paradigms are often used to foster the explanatory power of the newly settled ones. See text for further
explanations.
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these techniques have allowed the identification of the shape and
extension at depth of outcropping granite bodies in, e.g., the Congo
Craton (Shandini and Tadjou, 2012), the Pennine area (Kimbell et al.,
2010), the Pyrenees (Ayala et al., 2021), and the Arabian Shield
(Mukhopadhyay et al., 2021). Furthermore, they have allowed the
detection of concealed subsurface igneous masses of contrasting size and
composition in many regions where, for example, granitic basement
rocks are located beneath thick sedimentary sequences (Cooper Basin in
Central Australia, Meixner et al., 2014; Middle and High Atlas in
northern Africa, Elabouyi et al., 2022; or Northland in New Zealand,
Stagpoole et al., 2016), and even in the subsurface of the Moon
(Andrews-Hanna et al., 2013, 2014) and Mars (Kiefer, 2004).

Regarding analytical approaches, whole-rock geochemical data are
commonly used for the petrogenetic and non-petrogenetic classification
of granitic rocks (see Tables 1 and 2 and Section 6.4). Moreover,
geochemical investigations on accessory minerals of granites have
gained popularity during the recent decades due to their potential use
for correlation, dating, and unravelling the temperature and pressure
conditions of granite formation. Zircon, for example, is an outstanding
U–Pb geochronometer due to, among others, its high closure temper-
ature and the long-lasting stability of its atomic structure (e.g., Davis
et al., 2003; Harley and Kelly, 2007). U–Pb zircon geochronology has
therefore been applied to granitic rocks worldwide to obtain insights
into major orogenic events (e.g., Aguilar et al., 2014; Heilbron et al.,
2017). However, in some cases, the robustness of zircon can be a hin-
drance to determine the magmatic age of granites, as the mineral is not
always reset during anatexis (Bea et al., 2021). In these cases, U–Pb
dating of monazite and titanite (Elburg et al., 2003) can be more
informative. The trace element and isotopic composition of igneous

zircons, as well as of micro-zircon inclusions in accessory minerals, are
furthermore considered as petrogenetic indicators (e.g., Belousova et al.,
2002; Bell and Kirkpatrick, 2022; Guo et al., 2022; Yang et al., 2024).
Recently, zircon oxygen isotopic signature and water content have also
been suggested as a potential tool to distinguish I- and S-type granites
(Mo et al., 2023).

Beyond zircon, other accessory minerals are also targets of
geochronological investigations on granites. U–Pb dating of apatite
crystals can provide accurate geochronological data, although it is rec-
ommended to apply it in combination with other geochronological data
for comparison and data validation (e.g., Ferreira et al., 2019; Van Daele
et al., 2020). In fact, two main possible pitfalls must be considered when
carrying out U–Pb dating of apatite-bearing granitoid rocks. First, its
closure temperature of ~450–550 ◦C (e.g., Schoene and Bowring, 2007),
which is significantly lower than that of zircon (~<900 ◦C; e.g., Cher-
niak and Watson, 2003). And second, its potential crystal-plastic
deformation and recrystallization, which causes chemical changes in
the trace element composition substantially decreasing the U/Pb ratio
(Ribeiro et al., 2020). Another useful method generally applied to zircon
and apatite crystals to gain insights into the exhumation paths of granitic
rocks is the measurement of fission-tracks, i.e., regions of high density of
crystalline defects formed due to the damage inferred by fission decay of
238U (Reiners and Brandon, 2006). Other methods applied to diverse
accessory minerals for constraining the crystallization age of granitic
rocks are, for example, cassiterite U–Pb and muscovite Ar–Ar dating
on granite-related ore deposits, such as skarn- and greisen-type deposits
(Chen et al., 2018; Tichomirowa et al., 2019; Bui et al., 2022), in-situ
Lu–Hf geochronology of apatite through laser ablation tandem induc-
tively coupled mass spectrometry (LA-ICP-MS/MS), as well as the

Table 1
Summary of the main non-petrogenetic classifications of granitoid rocks, including the parameters or properties utilised for categorizing, a broad summary of the
resulting classes, and their potential problems and pitfalls.

Reference
(chronological
order)

Parameters considered Classification at glance Potential pitfalls

Lacroix (1933)
Major element composition

Calc-alkaline hyperaluminic
Calc-alkaline
Alkaline

In disuse – Terminology and sub-classes have been
improved and/or updated

Shand (1948);
Barton and Young
(2002)

Major element composition (Aluminium
Saturation Index)

Peralkaline; Metaluminous; Weakly/Strongly
peraluminous

In use - Terminology and sub-classes have been
improved and/or updated

Streckeisen (1974) Major element composition (volumetric
% normative composition of quartz, K-
felspar, plagioclase feldspar)

Widely used, applicable in the field, inexpensive.
Recommended by the International Union of Geological
Sciences

Other minerals than quartz and feldspars are not
considered.

De la Roche et al.
(1980)

Major element composition
(Multicationic chemical parameters R1
and R2; Oxide percentages converted to
millications)

Incorporates all of the major elements that are relevant
to both the rock mineralogy and petrology. Similar
nomenclature as in Streckeisen (1974)

Not suitable for granitic rocks because K-feldspar
and albite plot at the same point (see Batchelor and
Bowden, 1985)

Debon and Le Fort
(1988) Major element composition (Oxide

percentages converted to millications)

Applicable in two steps: sample nomenclature and
identification through cationic values, and sample
association to magmatic three possible groups
(Aluminous / Alumino-Cafemic / Cafemic). First step
with similar nomenclature as in Streckeisen (1974)

In disuse - Terminology and sub-classes have been
improved and/or updated. According to Bonin et al.
(2020), it should be resurrected and used as the most
ideal classification

Middlemost (1994)
Major element composition (% alkali
and silica content)

Recommended by the International Union of Geological
Sciences – Similar nomenclature as in Streckeisen
(1974)

Other minerals than quartz and feldspars are not
considered

Frost et al. (2001)
Major element composition (Fe-
number, Modified alkali–lime index,
and Aluminium Saturation Index)

Three-tiered classification scheme that uses familiar
chemical parameters to successively distinguish among
(i) magnesian and ferroan, (ii) alkaline, alkali-calcic,
calc-alkaline and calcic, and (iii) peraluminous,
metaluminous and peralkaline types

Not (yet) widely applied. Terminology and sub-
classes have been improved and/or updated - See
Frost and Frost (2008)

Frost and Frost
(2008) Major element composition (Alkalinity

Index & Aluminium Saturation Index)

Introduction of the alkalinity index and feldspathoid
silica-saturation index allows to apply the three-tiered
classification scheme of Frost et al. (2001) to all
alkaline rocks, including feldspathoid-bearing rocks

Not (yet) widely applied.

Enrique and Esteve
(2019)

Major element composition (SiO2, CaO,
and K2O)

Chemical approximation to the normative QAP
diagram. Similar nomenclature as in Streckeisen (1974)

Other minerals than quartz, feldspars, and
feldspathoids are not considered. Sodium not
considered.

Glazner et al. (2019)
Major element composition

Based on the QAP system but adding quantitative data
to rock names

See numerous comments in Frost et al. (2019) and
Hogan (2019)
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recently developed in-situ triple quadrupole inductively coupled plasma
mass spectrometry (LA-QQQ-ICPMS) Rb–Sr dating of mica (Zack and
Hogmalm, 2016; Wang et al., 2022a, 2022b).

Isotopic investigations also constitute a wide category within the
analytical approaches addressing the origin and significance of granitic
rocks. Investigations on whole-rock radiogenic isotope ratios, such as
87Sr/86Sr, 143Nd/144Nd, and the various Pb isotope ratios, currently play
a major role on granite petrogenetic investigations, including the origin
and composition of magma sources, the mantle-crust interactions,
crustal melting processes, and the identification of the geotectonic
setting (e.g., McCulloch and Chappell, 1982; Foden et al., 2002; Farina
et al., 2014; Zametzer et al., 2022). Moreover, the study of radiogenic
isotopes in single mineral grains or mineral separates, such as 87Sr/86Sr
on K-feldspar (e.g., Siebel et al., 2005) and 176Hf/177Hf on zircon (e.g.,

Chagondah et al., 2023), also provide very meaningful insights into the
assimilation of wallrock material and magma mixing processes during
granite petrogenesis. In this framework, analytical profiles through
zircon and feldspar crystals, namely crystal isotope stratigraphy
(Davidson et al., 1998), may help to reveal both the magmatic history
and post-magmatic subsolidus re-equilibration of a given granite.

Reconstructions of the temperature and pressure conditions of
granite formation have also a strong analytical basis that targets many
accessory minerals. Among others, the two-feldspar, hornblende-
plagioclase, pyroxene-ilmenite, pyroxene-biotite, garnet-hornblende,
muscovite-biotite, and garnet-biotite methods are based on mineral
compositions and activity models to infer the temperature and/or
pressure of crystallization, although they are strongly dependent on
other factors (see Anderson, 1996; Anderson et al., 2008). When present

Table 2
Summary of the main petrogenetic classifications attempted for granitoid rocks (updated after Barbarin, 1999), including the parameters or properties employed for
categorizing, a broad summary of the resulting classes, and their potential problems and pitfalls.

Reference
(chronological order)

Parameters considered Classification at glance Potential pitfalls

Didier and Lameyre (1969); Didier and
Barbarin (1991)

Mineralogy and associated
enclaves

C-type (crustal granitoids; leucogranites)
M-type (mixed or mantle granitoids; monzonites and
granodiorites)

In disuse - Diagnostic minerals and enclave
types may not be present

Capdevila and Floor (1970);
Capdevila et al. (1973) Petrographic features Mesocrustaux / Mixtes / Basicrustaux

In disuse - Diagnostic minerals and textures
may not be present

Tauson and Kozlov (1973)
Trace element composition
[Discrimination diagrams]

Plumasitic leucogranites / Ultra-metamorphic
granites / Palingenic granites / Plagio-granites /
Agpaitic leucogranites

In disuse - Outdated terminology

Chappell and White (1974, 2001); White
and Chappell (1977); Loiselle and Wones
(1979); Castro et al. (1991); Kilpatrick
and Ellis (1992)

Major element composition
and Mineralogy

I-type (Igneous source) / A-type (Anorogenic) / S-
type (Sedimentary source) / M-type (Mantle-derived)
/ C-type (Charnockitic) / H-type (Hybrid source)

Granitoids rarely come from single sources.
Diagnostic minerals may not be present for
some sources. See text for further pitfalls and
other comments in Frost et al. (2001)

Orsini (1976, 1979)
Petrographic features

Aluminic subalkaline / Hypoaluminic Subalkaline /
Calc-alkaline

In disuse - Diagnostic minerals and textures
may not be present

Ishihara (1977, 2004) Fe-Ti oxides content,
associated mineralization,
δ34S and δ18O values

Depending on the occurrence or absence of magnetite
(magnetite-andiIlmenite-series, respectively)

Processes that can control the stability of
magnetite in granitic rocks are not fully
considered. See comments in Frost et al. (2001)

Lameyre (1980);
Lameyre and Bowden (1982) Mineralogy

Based on the QAP system and the four major series,
differentiates among: Leucogranites (Crustal fusion) /
Calc-alkaline series / Tholeiitic series / (Per)Alkaline
series

In disuse - not accepted nowadays to link QAP
compositions with possible magmatic sources

Pupin (1980, 1985) Zircon morphology,
petrographic features,
accessory minerals

Types 1–7 grouped in Crustal, Mixed, and Mantle
granites on the basis of zircon typological populations
and their “Typological Evolutionary Trend” (TET).

In disuse - Diagnostic minerals and zircon
morphology may not be present

Keqin et al. (1982) Associated mineralization Transformation type (Continental Crust) / Syntexis
type (transitional Crust) / Mantle-derived type

In disuse - outdated terminology

Yang (1982)
Petrographic features

Metamorphic type / Crustal type / Mixed source type
/ Mantle-derived type

In disuse - Diagnostic minerals and textures
may not be present

Pitcher (1983, 1987)
Geodynamic setting

Hercynotype / Caledonian type / Andinotype / West
Pacific type / Nigeria type In disuse - outdated terminology

Pearce et al. (1984)
Trace element composition
[Discrimination diagrams]

Distinction among tectonic environments on the basis
of (among others) Rb-Ta-Nb-Y relationships: Ocean
ridge granites / Volcanic arc granites / Within-plate
granites / Collisional granites

Not applicable to post-collisional granitoids
because they plot over the range of
classification fields

Nachit et al. (1985)
Biotite composition
[Discrimination diagrams]

Distinction among magmatic series on the basis of Al
and Mg contents of biotite: Alumino-potassiques /
Calcoalcalines et subalcalines / Alcalines et
hyperalcalines

In disuse - Processes that can control the
composition of biotite in granitic rocks are not
fully considered

Rossi and Chevremont (1987)
Mineralogy (mafic
minerals)

Depending on the mafic mineral content, distinction
among: Aluminopotassique / Monzonitique /
Calcoalcaline / Tholeitique / (Per)Alcaline

Diagnostic minerals and textures may not be
present

Maniar and Piccoli (1989)

Major element composition
[Discrimination diagrams]

Distinction among tectonic environments (Island arc
granitoids, Continental arc granitoids, Continental
collision granitoids, Postorogenic granitoids, Rift-
related granitoids, Continental epeirogenic uplift
granitoids, and Oceanic plagiogranites

Not applicable to post-collisional granitoids
because they plot over the range of
classification fields

Barbarin (1990, 1999) Petrographic features,
Mineralogy, Major element
composition

Three main groups that are further subdivided and
correlated to major tectonic settings: Crustal / Mixed
/ Mantle

It compresses the wide range of bulk
compositions of granitoids into six rock types.
See comments in Frost et al. (2001)

Tischendorf and Förster (1992) Major and trace element
composition
[Discrimination diagrams]

Distinction among granitoids tectonic environment
on the basis of K2OxRb / MgO – Na2OxZrxY diagram
(Ocean ridge, Volcanic arc, Within plate, and
Collisional)

In disuse – Processes such as magma mixing
and wall rock assimilation are not considered
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in granitoid rocks, garnet also represents a useful tool in petrogenetic
studies for unravelling the pressure (e.g., garnet-biotite-plagioclase-
quartz mineral assemblage) and temperature (e.g., garnet-biotite min-
eral assemblage) of crystallization (e.g., Dahlquist et al., 2007).
Furthermore, titanite, a common accessory mineral in mainly metal-
uminous granites, can also be used as an empirical geobarometer when
crystallized under near-solidus conditions together with a particular
mineral assemblage (Erdmann et al., 2019). Additionally, significant
advances in barometric and thermometric estimations of granite for-
mation have been made from diffusion modelling coupled to de-
terminations of titanium concentrations in zircon (Schiller and Finger,
2019) and (more commonly) in quartz, the latter also known as
Titanium-in-quartz thermobarometry (Wark and Watson, 2006; Huang
and Audétat, 2012). A noteworthy finding from Titanium-in-quartz
thermobarometry is the significantly low formation temperature
(474–561 ◦C) obtained by Ackerson et al. (2018) for the Tuolumne
Intrusive Suite in the Sierra Nevada Batholith, California. Although low-
temperature magma storage had already been inferred from volcanic
rocks, for example in the Taupo Volcanic zone (Rubin et al., 2017), re-
sults from Ackerson et al. (2018) may represent one of the paradigm-
shifts of the 21st century regarding the knowledge of granitic rocks,
with major implications on their petrogenesis. However, these findings
have also been suggested to be problematic (Clemens et al., 2020).
Furthermore, beyond investigations of granite petrogenesis, the post-
magmatic evolution on granitoid rocks has also been investigated
through studies on hydrothermal minerals. This wide topic includes
chemical and stable isotope analyses on quartz veins and related ores
hosted in granitic rocks (Sun and Eadington, 1987; Bhattacharya et al.,
2014), as well as microthermometry and microanalysis of fluid in-
clusions (Wagner et al., 2016; Tang et al., 2021).

6.3. Experimental and numerical modelling approaches for investigating
granitic rocks

Approaches that address the origin and significance of granitic rocks
from an experimental or numerical modelling background may be
classified in three different perspectives. Chronologically ordered, they
correspond to the origin of melt (i.e., fluid present or absent partial
melting and melt segregation), its ascent and emplacement (i.e.,
continuous or episodic ascent, and mode of emplacement in different
tectonic settings), and the post-magmatic tectono-thermal evolution (i.
e., brittle and ductile deformation, metamorphism, and metasomatism)
(e.g., Petford et al., 2000). After the pioneering experimental work of
Tuttle and Bowen (1958) on the haplogranite system Qz-Ab-Or-H2O,
experimental melting of upper crustal rocks and crystallization of
granite became very popular and was carried out at a wide range of
physicochemical conditions. This includes low (1–2 kbar; e.g., Clemens
et al., 1986; Rusak et al., 2021) to high (10–15 kbar and even up to 40
kbar; e.g., Green and Lambert, 1965; Huang and Wyllie, 1975) pressures
and from granite solidus (500–800 ◦C; e.g., Johannes, 1984; Shchekina
et al., 2020; Bartoli and Carvalho, 2021) to high (1400 ◦C; e.g., Clemens
et al., 1986) temperatures, in runs that span from few hours (e.g., Green
and Lambert, 1965) to several weeks or months (e.g., Maaløe and Wyllie,
1975). Such experiments have also shown that equating peraluminous
felsic melts to a crustal (S-type) origin is flawed, as medium-pressure
(1.2–0.7 GPa) fractionation of metaluminous mafic melts may lead to
peraluminous derivative liquids (Alonso-Perez et al., 2009). The origin
of granitic rocks by partial melting of the continental crust was also
addressed in the models of Clemens and Vielzeuf (1987) that showed
that the wide range of melting temperatures at which a given melt can be
produced is a function of the composition of the rocks that are being
melted. For example, the presence of micas and amphiboles is known to
partially drive, through their high temperature breakdown, the amount
of melt that is segregated at a given temperature (Clemens et al., 1986;
Petford et al., 2000; Gao et al., 2016 and the references thereof). This
fact explains, in turn, the wide range of temperature needed to produce a

given melt fraction during fluid-absent melting, depending on the rock
type (e.g., Petford, 1995; Petford et al., 2000). For further information,
the reader is referred to the experimental results on melt origin,
composition, and formation conditions of Clemens et al. (1986) on the
anorogenic, alkaline A-type Watergums Granite in southeastern
Australia, Clemens and Wall (1988) on the influence of
pressure-temperature conditions, volatile fugacity and melt chemistry
on the mineral assemblages of S-type granites with original melt
chemistry, and the reviews of Castro (2014, 2020) on I-type granites
from active continental margins (Cordilleran I-type) and intra-
continental orogens (Caledonian I-type). Numerically, the computer
programs and calculation packages Perplex (Connolly, 1990), Thermo-
calc (Andersson et al., 2002), RCrust (Mayne et al., 2016), and Melts
(Ghiorso and Sack, 1995) are also commonly used for calculating
granitic melt volumes and/or compositions.

Other relevant studies addressing the origin of granitic magmas are
those focused on melt segregation in migmatitic terrains (e.g., Vigner-
esse et al., 1996; Vigneresse and Burg, 2000; Leitch and Weinberg, 2002;
Bons et al., 2004; Cruden and Weinberg, 2018), which are thought to be
the main sources of crustal magmas. Segregation is understood as a melt
transport mechanism but, unlike magma ascent and emplacement (see
below), it operates at the small scale (centimetres to decimetres) and
mostly within the magma source region. The structures that indicate
melt segregation are diverse in size and morphology, and can be formed
by processes operating from ~10 μm to form initial melt pockets up to
several decimetres to develop granitic patches, layers, pods, or veinlets
in a metamorphic host (Brown et al., 1995; Clemens and Petford, 1999;
Rosenberg and Handy, 2005; Brown, 2013). Numerous experiments
have attempted to replicate melt segregation in migmatitic terrains
under both hydrostatic conditions (e.g., Laporte, 1994) or during pure
shear (Butler, 2010 and references therein) and simple shear (Katz et al.,
2006 and references therein) deformation. The experiments that were
carried out until the mid-1990s are exceptionally well summarized in
the review of Rushmer (1996). From that moment on, however, many
other works have provided insights into this issue (e.g., Bagdassarov
et al., 1996; Pickering and Johnston, 1998; Rosenberg and Handy, 2005;
Druguet and Carreras, 2006). For further reviews on this topic, readers
with a strong background in experimental petrology are referred to the
works of Brown (2001), Clemens and Stevens (2016), and Collins et al.
(2020).

The experimental and numerical modelling approaches of granitic
magma ascent and/or emplacement dynamics have been central for
perhaps the most controversial debate involving granites during the last
decades: dykes vs. diapirs as the main magma ascent mechanism. This
debate is summarized in the work of Petford and Clemens (2000): “How
are granite magmas transported from their source regions in the deep crust,
through 10–40 km of overlying solid rock and emplaced close to the Earth’s
surface?” Before the 1990s, the widely accepted mechanism for magma
ascent from melt extraction and segregation zones was diapirism (see
review by Cruden and Weinberg, 2018). This process was believed to be
driven by the density difference between a melt volume and its sur-
rounding country rocks and, for decades, represented a feasible expla-
nation for the shape, size, and deformation of both granite batholiths
themselves and surrounding rocks. Pioneering investigations on
modelling the magma ascent through diapirism were those of Grout
(1945). Using a glass tank containing viscous material as analogue for
magma, and soft wet clays, corn syrup, or syrup diluted with water as
analogue of the surrounding rocks, Grout (1945) showed the diverse
shape of the rising masses and deformation structures in the surrounding
material were related to the amount, type, and temperature of analogue
materials. Subsequently, numerous experiments were undertaken to
investigate the diapiric ascent of granitic magmas (Berner et al., 1972;
Ramberg, 1972; Cruden, 1988, 1990; Weinberg, 1992; Weinberg and
Podladchikov, 1994), establishing diapirism as a plausible mechanism
for the ascent and emplacement of granitic magmas (see the reviews by
Weinberg, 1996; Cruden and Weinberg, 2018). Noteworthy, this diapir-
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driven ascent paradigm fostered the publication of several works where
granites were drawn in cross-sections as large, downwards-extending or
balloon-shaped masses at different depths of the crust. In some cases,
granites are nowadays still illustrated like this (Peng et al., 2015; Gamal
El Dien et al., 2019; Xie et al., 2019; Salih and Rahman, 2021; de Lira
Santos et al., 2022; He et al., 2023). However, several problems related
to this type of graphical representation of granites had already been
pointed out by Lane (1931) and further debated until recent times (e.g.,
Clemens and Mawer, 1992; Hutton, 1992; Petford, 1996; Cruden, 1998;
Vigneresse and Clemens, 2000). In fact, numerous works have suggested
that magmatic ascent by diapirism cannot overcome the high effective
viscosity of the crust (which would need to be at least one order of
magnitude lower than that predicted; Miller et al., 1988; Cruden and
Weinberg, 2018), nor the crustal brittle-ductile transition (~10–20 km
depending on the temperature of the crust). These arguments thus
restricted diapirism, if present, to the lower crust (Barnichon et al.,
1999; Vigneresse, 2004). However, it is worth noting that diapir-driven
ascent dynamics are still invoked nowadays for the exhumation of UHP
eclogite rocks to the surface of deep-seated subduction zones (e.g., Little
et al., 2011; Chatterjee and Jagoutz, 2015; Massonne and Fockenberg,
2022).

Another plausible mechanism of “bulk” ascent of granitic magmas
through the crust is the magmatic stoping (Daly, 1912). This mechanism
has been suggested to operate at all crustal levels and to be mainly
controlled by thermal fracturing, and involves the incorporation of
blocks of country rock into the magma and the development of irregular
contacts. Some of these blocks may remain within the molten material as
stoped blocks and xenoliths, whereas others may be assimilated by the
magma, changing its geochemical composition (e.g., Dumond et al.,
2005; Žák et al., 2006; Pignotta and Paterson, 2007; Clarke and Erd-
mann, 2008). However, theoretical work by Marsh (1982, 1984, 2007)
has shown that large-scale magma transport cannot be achieved through
magmatic stoping because of the rapid cooling and freezing of granite
magma, restricting magmatic stoping to a more local heat and mass
transfer mechanism (e.g., Cruden and Weinberg, 2018). It has also been
argued that the interplay between multiple space-making mechanisms
could provide a solution for the room problem, including magmatic
stoping, ductile shortening of host rocks, and downward return flow
(Paterson and Miller, 1998a, 1998b; Paterson et al., 2008). From the
1990s, experimental and numerical modelling of granitic magma ascent
in igneous-volcanic plumbing systems shifted the paradigm to dyke-
driven, channelled magma ascent dynamics (see the reviews of Pet-
ford, 1996; Petford et al., 2000; Petford and Clemens, 2000; Vigneresse
and Clemens, 2000; Menand, 2011). Emplacement of granitic magma
that ascends through dykes is nowadays attributed to dyke arresting and
sill-like horizontal propagation followed by vertical inflation of the
pluton (Cruden, 1998; Cruden and Weinberg, 2018; Galland et al.,
2018). Under this paradigm, debate has also been raised on the interplay
between the steps of initial melt formation, segregation, accumulation,
and its final emplacement. The assumption of complex fracture networks
where small, tributary fractures feed larger ones, known as the ‘rivulets-
feeding-rivers’ model, has been perhaps the dominant theory (Brown
and Solar, 1998; Weinberg, 1999), although some theoretical arguments
and field evidence speak against it (e.g., Bons et al., 2009). For example,
the connected melt networks expected for the ‘rivulets-feeding-rivers’
model (e.g., the classical Port Navalo migmatites, France) have been
suggested to more likely represent different generations of melt-filled
veins and dykes (Bons et al., 2009). Within this framework, the
discontinuous connectivity of melt-filled fractures in a stepwise accu-
mulation model (Maaløe, 1987; Bons and van Milligen, 2001; Bons et al.,
2001) has more explanatory power in terms of spatial and temporal
scales involving the formation of a granitic pluton. For further reviews
that address the origin and propagation of granitic magmas through
dykes or dyke-diapir interaction, the reader is referred to the work of
Clemens (1998), Bons et al. (2009), Cao et al. (2016), Cruden and
Weinberg (2018) and references therein. Moreover, given the bountiful

literature on the topic and the multiple possible explanations for the
ascent of granitic magmas through the crust, we think it is appropriate to
ask here: has the room problem been resolved?

Investigations on the physical and chemical processes acting during
the post-magmatic evolution of granites are generally focused on
metamorphism, deformation, and hydrothermal and metasomatic
alteration, as well as on the interplay and/or overprinting of these
processes. These phenomena, although unrelated to granite genesis, are
important because they control the final aspect and geochemical
composition that geologists find while studying or sampling granites (e.
g., Elburg et al., 2001). Among others, the metamorphic, metasomatic,
hydrothermal, and tectonic post-magmatic evolution of a given granite
at subsolidus conditions are included in this scope. Since granites are an
important rock type being considered to host nuclear waste storage fa-
cilities (e.g., Mccarthy et al., 1978; Metz et al., 2005) and can act as
reservoir storage rocks in geothermal and petroleum systems (Landes
et al., 1960; Zheng et al., 2021), a significant number of experiments on
fracture initiation and propagation have been conducted in granites (see
a review in Zhuang and Zang, 2021). Moreover, other experimental
studies on the post-magmatic evolution of granites are those focused on
hydrothermal alteration and metasomatic reactions. Hydrothermal
alteration in granitic rocks can occur as a result of either the interaction
with magmatic fluids exsolved during crystallization processes (e.g.,
Berni et al., 2020), or with hydrothermal fluids of metamorphic or
meteoric origin (e.g., Savage et al., 1987). Significant knowledge of the
interplay between ore genesis, element mobility, and hydrothermal fluid
flow has been gained from experimental studies on granite-hosted ore
deposits such as, among others, tungsten (Wang et al., 2021) and gold
(Pokrovski et al., 2014) (see a review in Candela, 1992). Furthermore, of
significant interest for potential application in geo-energy are the ex-
periments of Truche et al. (2021), where it is demonstrated that the
production of molecular hydrogen (H2) during the alteration of per-
alkaline granites can be similar to, if not faster than, those formerly
suggested during the serpentinization of ultramafic rocks.

Experimental and numerical modelling studies focused on the post-
magmatic evolution of granitoid rocks can be roughly classified in two
main research subfields that commonly appear intimately related in the
literature: structural geology and metamorphic petrology. Within the
structural geology subfield, rock mechanics testing of deformational
(micro- to macro-) structures are divided according to the temperature
and pressure conditions under which they act. Generally, at shallow
crustal levels, granites behave as a brittle material where a given stress
state can produce fractures, i.e., discrete planar discontinuities along
which cohesion and continuity are lost (Lajtai, 1998; Gudmundsson,
2011; Parisio et al., 2019). Testing fracturing processes affecting granitic
rocks is generally carried out for geo-energy applications and ore de-
posits research (Zheng et al., 2021; Chandrasekharam et al., 2022). In
this framework, numerical approaches that evaluate the brittle behav-
iour of granites under different injection flow rates and pressure and
temperature ranges in enhanced geothermal systems are common (e.g.,
Shao et al., 2015; Guo et al., 2018; Cheng et al., 2021). Furthermore,
other studies have also attempted to simulate the influence of the
orientation, geometry, aperture, and roughness of natural fracture sys-
tems on the fluid flow and heat transfer mechanisms in natural granitic
geothermal reservoirs (e.g., Liu et al., 2020; Chabani et al., 2021).
Within the ore deposits field, artificial (i.e., human-induced) hydro-
fracturing is often used in mining operations as a rock preconditioning
method aimed at the fragmentation of ore bodies (Katsaga et al., 2015;
He et al., 2016; Bons et al., 2022), and natural fractures are furthermore
key structures because they exert a critical control on hydrothermal fluid
flow and the formation of orebodies. Mineral precipitates that fill frac-
tures in granites, forming veins, thus constitute very important ore
sources of, among others, key elements for the energy transition such as
antimony, tungsten, lithium, or cobalt (Alderton et al., 1980; Li et al.,
2018; Chauvet, 2019; Slack et al., 2022). For a comprehensive review of
the structural controls on ore deposits related to granitoid rocks from a
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numerical modelling approach, the reader is referred to Zhang et al.
(2011).

At deep crustal levels, where temperature and lithostatic pressure are
higher than those related to the brittle behaviour, ductile flow controls
deformation processes affecting most rock types, including granitic
rocks (e.g., Gomez-Rivas et al., 2020 and references therein). Numerical
modelling of ductile structures has provided meaningful insights to
unravel whether granite microstructures reflect igneous histories, post-
magmatic deformations, or a combination of both (e.g., Paterson et al.,
1989; Holness et al., 2018). Within this framework, numerical modelling
platforms such as ELLE (Jessell et al., 2001; Bons et al., 2008) and other
computational approaches (e.g., Bäckström et al., 2008; Zhang et al.,
2019) have contributed to the understanding of tectonic structures and
microstructures commonly found in granites (e.g., Griera et al., 2011;
Llorens et al., 2013). Moreover, Finch et al. (2020) simulated the
development of C′ shear bands, which dip in the direction of shear at an
angle of 15–35◦ to the shear zone boundary, and described how changes
in the proportions of the weak phase influence the formation of S–C
fabrics, C′ and C″ shear bands. Finch et al. (2022) also modelled and
described the wide range of interference patterns that can be developed
when co-planar shearing overprints ductile simple shear in the opposite
direction, providing insights into strain accommodation during the
formation of these hybrid structures in granitic rocks.

In the metamorphic petrology subfield, numerical modelling of post-
magmatic processes affecting granitic rocks is mainly related to the
theoretical determinations of pressure-temperature-deformation-time
(P-T-D-t) paths. Metamorphism is commonly recorded in granites that,
after undergoing this process, become named metagranites or orthog-
neisses (Bucher and Frey, 2002; Schmid et al., 2004; Fettes and Des-
mons, 2011) and are often present as gneiss-dome systems or
metamorphic core complexes (see reviews in Teyssier and Whitney,
2002; Yin, 2004). P-T-D-t estimations on metagranites allow relating the
spatial and temporal evolution of pressure and temperature with a given
number of deformation phases. Although the temperature and pressure
may be estimated from observational (e.g., mineral assemblages and
reaction textures; Eskola, 1920; Okrusch and Frimmel, 2020) and
analytical approaches (e.g., geothermometry and geobarometry;
Anderson et al., 2008), numerical modelling is required for the calcu-
lation of pseudosections and thermal modelling. However, these ap-
proaches are outside the scope of the present work since they are not
different from the P-T-D-t paths of other rock types. For examples of P-T-
D-t determinations using pseudosection and thermal modelling in met-
agranites, the interested reader is referred to the recent works of Mas-
sonne (2015), Jung et al. (2019) and Schorn (2022). Mineral
transformations, grain coarsening, and grain recrystallization are also
common textural re-equilibration processes that may take place during
the cooling or metamorphism of granitic rocks. Although these processes
may not alter the geochemical composition of rocks, they cause
important textural changes that could be confused with primary
magmatic features (see reviews by Higgins, 2011; Holness and Vernon,
2015).

6.4. Research on granites during the Digital Age

The aforementioned observational, analytical, experimental, and
numerical modelling approaches for the study of granitic rocks have
greatly benefited during the past few years from Open Access, FAIR
(Findable, Accessible, Interoperable, Reusable) initiatives for data
management (Wilkinson et al., 2016; Stall et al., 2019). However, until
recently, geochemical data of granitic rocks were typically published
with non-standardized approaches and, in some cases, lack of sample
metadata. This has significantly reduced the data value and longevity in
large areas of Australia, Europe, South America, and easternmost Asia
(Figs. 6, 7) (e.g., Chamberlain et al., 2021).

These FAIR geochemical initiatives, which offer to the end user a
standardized template for data download, can be roughly divided among

geographically constrained compilations and worldwide-focused data-
bases (Fig. 6; Table 3). Examples of the regional compilations are the
North American Volcanic and Intrusive Rock Database (NAVDAT, http
://www.navdat.org/; Walker et al., 2006), the Finnish Lith-
ogeochemical Rock Geochemistry Database (RGDB; Rasilainen et al.,
2007), and the Geochemical Database of Japanese Islands for Basement
Rocks (DODAI; Haraguchi et al., 2018) (Fig. 7; Table 3). Worldwide-
focused geochemical databases offer a user-friendly search engine
through which users can filter data by sample location, chemical
composition, or tectonic setting. Among others, the Geochemistry of
Rocks of the Oceans and Continents database (GEOROC; Georg-August-
Universität Göttingen, http://georoc.eu) and the community-driven
Petrological Database (PetDB; EarthChem; www.earthchem.
org/petdb) are data-rich examples (Figs. 6, 7; Table 3). An excellent
compilation of the aforementioned databases was carried out by Gard
et al. (2019), which has allowed to graphically represent the worldwide
distribution and the geochemical composition of more than 25,000
whole-rock analyses on fresh granitoid samples (Figs. 6, 7; Table 3) in a
user-friendly, Geographical Information System (GIS)-based resource;
the Global Granite Geochemistry and Outcrop Database (GGGOD;
González-Esvertit et al., 2024). This tool allows the visualization, plot-
ting, and spatial analysis of all granitoid compositions available Open
Access.

When comparing the GGGOD Database with the global distribution
of granitic rocks (modified from the Open Access Global Lithological
Map, GLIM, Universität Hamburg; Hartmann and Moosdorf, 2012)
(Figs. 6, 7; Table 3), high granite sample concentrations stand out in
northern Canada and Alaska (Fig. 7a) and Japan (Fig. 7e). In contrast,
Mainland Australia (Fig. 7b), Europe (Fig. 7c), South America (Fig. 7d),
and easternmost Asia (Fig. 7e) show limited data. Most (if not all) the
granitic rocks cropping out in these areas have, however, already been
studied, analyzed, and/or interpreted in the literature. Therefore, the
efforts for sample collection and analysis of these granites can be
considered as futile in terms of their subsequent reusability in later in-
vestigations, such as the present and other potential review works on
granitic rocks (e.g., Piwowar et al., 2007).

7. Concluding remarks

The origin and significance of granitic rocks have been two of the
most controversial and long-lived topics in the history of Earth Sciences.
Here we have reviewed the role that granitic rocks have played on our
knowledge of the behaviour of the Earth’s system for more than two
centuries, including the Neptunism, Plutonism, Uniformitarianism, Trans-
formism, and Magmatism paradigms. Consecutive stasis periods of
reductionist science, or “puzzle solving” periods, have successively led
to the accumulation of inconsistencies, or anomalies, generally related
to the field occurrence, mineralogy, geochemistry, petrology, and
geophysical imaging of granitic rocks. These anomalies have produced,
in turn, successive scientific revolutions towards new paradigms with
more explanatory power than the preceding ones. During some periods
of the history of Earth Science, two paradigms have coexisted leading to
an increase in the degree of scientific discussion and to radicalization of
the main arguments. Major innovations, such as the invention of the
petrographic microscope, the birth of geochemistry, and the develop-
ment of experimental petrology, have fostered the accumulation of
anomalies, driving research on granitic rocks towards new challenges
and settling new uncertainties. These anomalies have been mostly
derived from observational approaches, highlighting the importance of
field-based geological investigations. During the current paradigm, tens
of petrogenetic and non-petrogenetic classification schemes have been
proposed and, for the first time, a worldwide-scale approach for the
study of granites is being underpinned by the Open Access and FAIR
initiatives for sharing spatial and geochemical data. Yet today, there are
still several controversies to be resolved, which will require new
analytical methods and more complex theoretical frameworks. The role

E. González-Esvertit et al. Earth-Science Reviews 261 (2025) 105008 

19 

http://www.navdat.org/;
http://www.navdat.org/;
http://georoc.eu
http://www.earthchem.org/petdb
http://www.earthchem.org/petdb


of the schools, or the places where granite scientist have been trained,
will be important for the generation of new hypotheses as well as the
anomalies that will break them down.

Finally, it is worth noting from the references and quotations
included in this review that, as in many other areas of inquiry, granite
research has historically been dominated by wealthy, mostly male re-
searchers in high income, geopolitically stable countries from Europe
and North America. From the 20th century onwards, a diversification
trend can be observed in terms of who is involved in the research on
granites and where. However, this diversification has not succeeded in
eradicating past and present economical, geopolitical, and gender im-
balances. The evolution of the knowledge of granites reflects, in fact, the
general evolution of geoscientific knowledge. Yet today, terms as para-
chute science or helicopter research, where local communities are not

involved in the design, execution, and dissemination of research in a
given area, are a common practice to be tackled.
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Bonin, B., Janoušek, V., Moyen, J.-F., 2020. Chemical variation, modal composition and
classification of granitoids. Geol. Soc. Lond. Spec. Publ. 491, 9–51. https://doi.org/
10.1144/SP491-2019-138.

Bonney, T.G., 1888. On some results of pressure and of the intrusion of granite in
stratified palæozoic rocks near Morlaix, in Brittany. Q. J. Geol. Soc. 44, 11–19.
https://doi.org/10.1144/GSL.JGS.1888.044.01-04.04.

Bonney, T.G., 1899. The lost volume of Hutton’s theory of the Earth. Nature 60, 220.
https://doi.org/10.1038/060220a0.

Bons, P.D., van Milligen, B.P., 2001. New experiment to model self-organized critical
transport and accumulation of melt and hydrocarbons from their source rocks.
Geology 29, 919. https://doi.org/10.1130/0091-7613(2001)029<0919:
NETMSO>2.0.CO;2.

Bons, P.D., Dougherty-Page, J., Elburg, M.A., 2001. Stepwise accumulation and ascent of
magmas: accumulation and ascent of magmas. J. Metamorph. Geol. 19, 627–633.
https://doi.org/10.1046/j.0263-4929.2001.00334.x.

Bons, P.D., Arnold, J., Elburg, M.A., Kalda, J., Soesoo, A., van Milligen, B.P., 2004. Melt
extraction and accumulation from partially molten rocks. In: Lithos, Selected Papers
Presented at the Symposium: “Interaction between Mafic and Felsic Magmas in
Orogenic Suites: Dynamics of Processes, Nature of End-Members, Effects”, 78,
pp. 25–42. https://doi.org/10.1016/j.lithos.2004.04.041.

Bons, P.D.D., Koehn, D., Jessell, M.W. (Eds.), 2008. Microdynamics Simulation, Lecture
Notes in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-
3-540-44793-1.

Bons, P.D., Becker, J.K., Elburg, M.A., Urtson, K., 2009. Granite formation: stepwise
accumulation of melt or connected networks? Earth Environ. Sci. Trans. R. Soc.
Edinb. 100, 105–115. https://doi.org/10.1017/S175569100901603X.

Bons, P.D., Bauer, C.C., Bocherens, H., de Riese, T., Drucker, D.G., Francken, M.,
Menéndez, L., Uhl, A., van Milligen, B.P., Wißing, C., 2019. Out of Africa by
spontaneous migration waves. PLoS One 14 (4), e0201998.
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Hanor, J.S., Duchač, K.C., 1990. Isovolumetric silicification of early Archean komatiites:
geochemical mass balances and constraints on origin. J. Geol. 98, 863–877. https://
doi.org/10.1086/629458.

Haraguchi, S., Ueki, K., Yoshida, K., Kuwatani, T., Mohamed, M., Horiuchi, S.,
Iwamori, H., 2018. Geochemical database of Japanese islands for basement rocks.
J. Geol. Soc. Jpn. 124, 1049–1054. https://doi.org/10.5575/geosoc.2018.0027.

Harker, A., 1896. The classification of igneous rocks. Sci. Prog. 1894-1898 (4), 469–490.
Harker, A., 1909. The Natural History of Igneous Rocks. Methuen & Company.
Harlaux, M., Kouzmanov, K., Gialli, S., Clark, A.H., Laurent, O., Corthay, G., Prado

Flores, E., Dini, A., Chauvet, A., Ulianov, A., Chiaradia, M., Menzies, A., Villón
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E. González-Esvertit et al. Earth-Science Reviews 261 (2025) 105008 

27 

https://doi.org/10.1080/01431161003645824
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1260
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1260
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1260
https://doi.org/10.1080/14786445508641924
https://doi.org/10.1144/GSL.JGS.1858.014.01-02.39
https://doi.org/10.1144/GSL.JGS.1859.015.01-02.28
https://doi.org/10.1144/GSL.JGS.1859.015.01-02.28
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1280
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1280
https://doi.org/10.1144/GSL.JGS.1864.020.01-02.18
https://doi.org/10.1144/GSL.JGS.1864.020.01-02.18
https://doi.org/10.1007/s00603-016-1075-0
https://doi.org/10.1007/s00603-016-1075-0
https://doi.org/10.3390/min13060734
https://doi.org/10.3390/min13060734
https://doi.org/10.1007/978-3-319-01715-0_15
https://doi.org/10.1007/978-3-319-01715-0_15
https://doi.org/10.1017/S0007087400027060
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1310
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1315
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1315
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1315
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1315
https://doi.org/10.1130/Petrologic.1962.599
https://doi.org/10.1130/Petrologic.1962.599
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1325
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1325
https://doi.org/10.1080/00206814.2010.496177
https://doi.org/10.1016/0191-8141(92)90053-Y
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1340
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1340
https://doi.org/10.1038/155412a0
https://doi.org/10.1038/155412a0
https://doi.org/10.1007/978-94-017-9652-1_4
https://doi.org/10.1007/978-94-017-9652-1_4
https://doi.org/10.1007/s00410-018-1488-8
https://doi.org/10.1007/s00410-018-1488-8
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1360
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1360
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1360
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1360
https://doi.org/10.1016/j.gca.2012.01.009
https://doi.org/10.1086/628165
https://doi.org/10.1086/628165
https://doi.org/10.1017/S0016756800001746
https://doi.org/10.1017/S0016756800001746
https://doi.org/10.1144/pygs.3.380
https://doi.org/10.1144/pygs.3.380
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1385
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1385
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1385
https://doi.org/10.1017/S0080456800020305
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1395
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1395
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1400
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1400
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1405
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1405
https://doi.org/10.1017/S0263593300008038
https://doi.org/10.1017/S0263593300008038
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1415
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1415
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1415
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1420
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1425
https://doi.org/10.1086/606173
https://doi.org/10.1086/606173
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1435
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1435
https://doi.org/10.1144/GSL.JGS.1896.052.01-04.38
https://doi.org/10.1144/GSL.JGS.1896.052.01-04.38
https://doi.org/10.1086/608063
https://doi.org/10.1086/608019
https://doi.org/10.1086/608019
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1455
https://doi.org/10.11456/shigenchishitsu1951.27.293
https://doi.org/10.1017/S0263593300000894
https://doi.org/10.1016/S0098-3004(00)00061-3
https://doi.org/10.1016/S0098-3004(00)00061-3
https://doi.org/10.1007/BF00373672
https://doi.org/10.1144/transed.5.3.412
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1485
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1485
https://doi.org/10.1111/jmg.12448
https://doi.org/10.1017/s001675689800836x
https://doi.org/10.1016/j.asr.2021.05.002
https://doi.org/10.1179/1743286315Y.0000000022
https://doi.org/10.1038/nature05039
https://doi.org/10.1038/nature05039
https://doi.org/10.1002/andp.18280900914
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1520
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1520
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1525
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1530
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1530
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1530
https://doi.org/10.1016/j.epsl.2004.03.009
https://doi.org/10.1017/S0263593300007847
https://doi.org/10.1017/S0263593300007847
https://doi.org/10.1144/pygs.58.1.273
https://doi.org/10.1017/S0016756800190430
https://doi.org/10.1017/S0016756800190430
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1555
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1555
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1560
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1560
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1565
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1565
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1570
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1570
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1575
http://refhub.elsevier.com/S0012-8252(24)00336-2/rf1575


California, USA). Part 1: granite pervasive alteration processes away from fracture
zones. Geosciences 11, 325. https://doi.org/10.3390/geosciences11080325.
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23,000,000. J. Wurster, Winterthur.

Maré, L.P., Thomas, R.J., 1997. Palaeomagnetism and aeromagnetic modelling of the
Mesoproterozoic Ntimbankulu pluton, Kwazulu-Natal, South Africa: mushroom-
shaped diapir? J. Afr. Earth Sci. 25, 519–537. https://doi.org/10.1016/S0899-5362
(97)00107-3.

Marmo, V., 1967a. On the granite problem. Earth Sci. Rev. 3, 7–29. https://doi.org/
10.1016/0012-8252(67)90369-8.

Marmo, V., 1967b. On Granites: A Revised Study. Geologinen tutkimuslaitos.
Marsh, B.D., 1982. On the mechanics of igneous diapirism, stoping, and zone melting.

Am. J. Sci. 282, 808–855. https://doi.org/10.2475/ajs.282.6.808.
Marsh, B.D., 1984. Mechanics and energetics of magma formation and ascension. In:

Boyd Jr., F.R. (Ed.), Studies in Geophysics. Natl. Acad. Press, Washington, DC,
pp. 67–83.

Marsh, B.D., 2007. Magmatism, Magma, and Magma Chambers, Crust and Lithosphere
Dynamics. https://doi.org/10.1016/B978-044452748-6.00106-1.

Marsili, L.F., 1717. Map of the Sulphur Mines in the Meldola, Cesena, and Sarsina
districts. To be Included in “Treatise on the Structure of the Earthy Globe”
[Unfinished, unpublished].

Martin, R.F., 2006. A-type granites of crustal origin ultimately result from open-system
fenitization-type reactions in an extensional environment. Lithos 91, 125–136.
https://doi.org/10.1016/j.lithos.2006.03.012.

Marzari-Pencati, G., 1806. Corsa Pel Bacino del Rodano e per la LIguria d’Occidente.
Paroni.

Marzari-Pencati, G., 1820. Cenni geologici e litologici sulle provincie venete e sul Tirolo,
cui seguì un complemento (Notizie sopra un granito in massa sovrapposto [sul fiume
Avisio]), in giacimento discordante, al calcare secondario. Suppl. al Nuovo
Osservatore Veneziano 118 e, 127, pp. 1–6.

Masson, F., 1776. Mr Masson’s Botanical Travels. An account of three journeys from the
Cape into the interior parts of Africa. Philos.Trans. R. Soc. Lond. 66 (1), 268–317.
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viséen moyen (groupe des granodiorites-monzogranites) de la chaîne varisque
française. CR Acad. Sci. Paris 289, 981–984.
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