
1 

 

Post print version corresponding to: “Castillo J, Jodar M, Oliva R. The 
contribution of human sperm proteins to the development and epigenome of the 
preimplantation embryo.Hum Reprod Update. 2018 Sep 1;24(5):535-555. doi: 
10.1093/humupd/dmy017.” 

 

The contribution of human sperm proteins to the development and epigenome of 

the pre-implantational embryo  

 

Running title: Sperm proteome, fertilization and the early embryo 

Judit Castillo1, Meritxell Jodar1* and Rafael Oliva1,2* 

1Molecular Biology of Reproduction and Development Group, Institut d’Investigacions 

Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca 

Biomèdica, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 

Barcelona, Spain 

2Biochemistry and Molecular Genetics Service, Hospital Clínic, Villarroel 170, 08036 

Barcelona, Spain 

*Corresponding authors: roliva@ub.edu ORCID iD 0000-0003-4876-2410 (R Oliva) 

and meritxell.jodar@ub.edu ORCID iD 0000-0002-3272-0163 (M Jodar) 

mailto:roliva@ub.edu
mailto:meritxell.jodar@ub.edu


2 

 

Table of contents: 

Introduction 

Methods 

Involvement of the sperm proteome at oocyte fecundation and beyond 

  Sperm proteins and fertilization  

  Sperm proteins and the pre-implantational embryo development 

Sperm proteins and the hypothesis of the epigenetic inheritance of 

acquired traits 

Integrated analysis of the pre-implantational proteomes: deciphering the 

potential parental origin of the early embryo proteins 

The putative extra-testicular origin of a subset of human sperm proteins and the 

soma to embryo transmission hypothesis 

Discussion and future directions 



3 

 

Abstract  

Background: The knowledge of the proteomic composition of the gametes is 

essential to understand the reproductive function. Most of the sperm proteins are related 

to spermatogenesis and sperm function, but less abundant protein groups with potential 

post-fertilization roles are also detected. The current data is challenging our 

understanding of the sperm biology and functionality, demanding an integrated analysis 

of the proteomic and RNA-seq datasets available for the spermatozoa, oocyte and the 

early embryo, in order to unravel the impact of the male gamete on the generation of the 

new individual. 

Objective and rationale: The aim of this review is to identify, infer the origin, and 

discuss the relevance of human sperm proteins during oocyte fecundation, pre-

implantational embryogenesis, and epigenetic inheritance. 

Search methods: The scientific literature was comprehensively searched for 

proteomic studies on the human sperm, oocyte, embryo, and additional reproductive 

cells and fluids. Proteins were compiled and functionally classified according to Gene 

Ontology annotations, and the mouse phenotypes integrated into the Mouse Genome 

Informatics database. High-throughput RNA datasets were used to decipher the origin 

of embryo proteins. The tissue origin of the sperm proteins was inferred on the basis of 

RNA-seq and protein data available in the Human Protein Atlas database. 

Outcomes: So far, 6871 proteins have been identified and reported in the sperm, 

1376 in the oocyte, and 1300 in the blastocyst. With a deeper analysis of the sperm 

proteome, 103 proteins with known roles in the processes of fertilization and 93 in early 

embryo development have been identified. Additionally, 560 sperm proteins have been 

found to be involved in modulating gene expression by the regulation of transcription, 
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DNA methylation, histone post-translational modifications, and non-coding RNA 

biogenesis. Some of these proteins may be critical for gene expression regulation after 

embryo genome activation and, therefore, be potentially involved in the epigenetic 

inheritance of acquired traits. Furthermore, the integrative analysis of the sperm, oocyte 

and embryo proteomes and transcriptomes revealed a set of embryo proteins with an 

exclusive paternal origin, being some of them crucial for correct embryogenesis, and 

most likely for the modulation of the offspring phenotype. The analysis of the 

expression of sperm proteins, at both RNA and protein levels, in tissues not only from 

the male reproductive tract but also from peripheral organs, has predicted a putative 

extra-testicular origin for some sperm proteins. This suggests that these proteins might 

be imported into sperm from the accessory sex glands and other tissues, most likely 

through exosomes.  

Wider implications: The integrative proteome and transcriptome analyses 

focused on specific groups of proteins, rather than in enriched pathways, identified 

important sperm proteins involved in early embryogenesis and provides further 

evidence to support the hypothesis of the epigenetic inheritance of specific acquired 

traits. The putative extra-testicular origin of some sperm proteins suggests not only the 

involvement of accessory sex glands in fertilization, and epigenetic information 

transmission, but also that some proteins from additional organs may contribute 

information to the offspring phenotype. These findings should stimulate further research 

in the field.  

 

Keywords: sperm, proteomics, embryo development, fertilization, epigenetic 

inheritance, RNA, extra-testicular.  
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Introduction 

Classically, the role and the relative contribution of the sperm cell to the embryo 

has not been fully appreciated, and nearly minimized only to the contribution of the 

paternal DNA (Miescher, 1874; Sutton, 1903; Baccetti and Afzelius, 1976; Dahm, 

2005; Maruyama and Singson, 2006). However, taking the advantage of the current 

high-throughput “omic” technologies, growing evidence supports the idea that the male 

gamete is much more than a vehicle to deliver half of the DNA to the new individual. In 

fact, the sperm cell provides DNA containing different epigenetic marks, such as the 

DNA methylation (Hammoud et al., 2010; Siklenka et al., 2015), the post-translational 

modifications (PTMs) of histones and protamines (Carrell et al., 2008; Brykczynska et 

al., 2010; Brunner et al., 2014; Castillo et al., 2015; Siklenka et al., 2015), and a 

differential distribution of genes within the nucleohistone and the nucleoprotamine 

chromatin domains (Arpanahi et al., 2009; Hammoud et al., 2009,  2011; Erkek et al., 

2013; Castillo et al., 2014a) to the zygote. All those epigenetic marks are also combined 

with a complex population of sperm RNAs and proteins (de Mateo et al., 2011; Jodar et 

al., 2013,  2015; Amaral et al., 2014a; Castillo et al., 2014a,  2014b), some of which 

seem to be crucial for early embryogenesis and the future health of the offspring and 

further generations (Krawetz, 2005; Carrell, 2012; Rando, 2012; Castillo et al., 2015; 

Chen et al., 2016b). 

Focusing on the sperm proteomic contribution to the zygote, the application of 

strategies based on liquid chromatography (LC) coupled to tandem mass spectrometry 

(MS/MS) has resulted in the high-confidence identification of thousands of sperm 

proteins (Baker et al., 2013; Wang et al., 2013; Amaral et al., 2014a; Vandenbrouck et 

al., 2016; Jodar et al., 2017). However, in order to fully understand the impact of the 
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sperm proteome to the developing embryo, it is important to also consider the different 

steps taking place in the biogenesis of both male and female gametes, as well as the 

initial proteomic changes on the pre-implantational embryo development. The sperm 

cell is the end cellular product of spermatogenesis, a highly complex process of 

differentiation that involves very marked genetic, chromatin, biochemical, structural, 

and cellular changes (Figure 1) (Davies and Mann, 1947; Fawcett and Chemes, 1979; 

Mezquita, 1985; Poccia, 1986; Oliva and Dixon, 1991; Green et al., 1994; de Kretser et 

al., 1998; Kimmins and Sassone-Corsi, 2005; Sutovsky and Manandhar, 2006; Oliva, 

2006; Carrell et al., 2016). Once released by the testis, the spermatozoa travel through 

the epididymis, and all along the male reproductive tract, coming into intimate contact 

with secretions from the different accessory sex glands. This contributes to the 

acquisition of the potential for sperm motility, and the ability to fertilize the oocyte 

(Saez et al., 2003; Sullivan et al., 2005; Dacheux and Dacheux, 2014; Sullivan and 

Mieusset, 2016). In contrast, the oogenesis results in one oocyte accumulating most of 

the cytoplasm and  small polar bodies, which receive little more than a haploid nucleus 

(Mattson and Albertini, 1990; Bukovsky et al., 2005; Zuccotti et al., 2011; Coticchio et 

al., 2015; Conti and Franciosi, 2018) (Figure 1). Interestingly, and similarly to the 

sperm development, the interactions among the oocyte and its surroundings (granulosa 

cells and the follicular fluid) are also crucial for the correct oocyte maturation (Gilula et 

al., 1978; Eppig, 1985; Driancourt and Thuel, 1998; Salustri et al., 2003; Chang et al., 

2016; Richani and Gilchrist, 2018) (Figure 1). Although most of the proteins present in 

the mature sperm and oocyte are synthesized during spermatogenesis and oogenesis, 

respectively, it is important to note that some proteins may be imported from the 

surroundings and supporting reproductive fluids and cells to the male and female 

gametes (Salustri et al., 2003; Gilchrist et al., 2008; Baker et al., 2012; Intasqui et al., 
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2013; Ambekar et al., 2015; Zamah et al., 2015; Johnson et al., 2015; Martin-DeLeon, 

2015; Saez and Sullivan, 2016; Sullivan and Mieusset, 2016; Chang et al., 2016; 

Machtinger et al., 2016; Hamad, 2017; Jodar et al., 2017). In fact, emerging evidences 

show the existence of an active communication and transference of proteins and other 

components between gametes and fluids, most probably through the exosome pathway 

(Johnson et al., 2015; Jodar et al., 2016; Machtinger et al., 2016; Hamad et al., 2017).  

The protein profile of the human male gamete has been extensively studied 

during the past years, and up to 6238 different proteins had been previously compiled 

(Amaral et al., 2014a; Jodar et al., 2017). However, it remains to be elucidated whether 

some sperm proteins are required for early embryogenesis, or only represent 

spermatogenic leftovers required for spermatogenesis, sperm maturation, or sperm 

functions such as sperm motility. In the present review, the large amount of information 

and datasets currently available on the proteomic knowledge of gametes, pre-

implantational embryo, and related reproductive fluids and supporting cells have been 

compiled, curated, integrated, and analyzed. This information has been combined with 

the corresponding RNA-seq datasets, in order to identify, infer the origin, discuss, and 

provide further evidences of the proteomic paternal contribution to the pre-

implantational embryogenesis, and add additional support to the hypothesis of the 

epigenetic inheritance of some acquired traits through the paternal line.   

  Because of the large amount of data available, this review is mainly focused on 

the human model. However, and since very relevant data in different animal model 

systems are also available, the reader is referred to original articles and excellent 

reviews which are complementary to the subject (Wasbrough et al., 2010; Skerget et al., 
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2013,  2015; Kwon et al., 2015; Zhou et al., 2015; Baker, 2016; Holt and Fazeli, 2016; 

McDonough et al., 2016; Ntostis et al., 2017; Swegen et al., 2017).  

 

Methods 

The cellular and the fluid proteomes, corresponding to human sperm, oocyte, 

blastocyst, cumulus cells, mid-secretory endometrium, and follicular fluid, were 

compiled after an exhaustive literature search using the Web of Science database. Only 

proteomic articles published in English and available online until the end of September 

2017 were included in the search. Subsequently, and in order to reduce as much as 

possible potential protein false-positive identifications, we selected only those 

proteomic studies whose protein detection relied on mass spectrometry (MS) 

approaches, and whose protein identification criteria included at least two peptides per 

protein with a false discovery rate (FDR) ≤ 5% for each peptide, which corresponds to 

an estimated FDR ≤ 0.25% per protein (Table 1). Only proteins with a known gene 

name were included.  

For the generation of the human sperm proteome, proteomic profiles were 

acquired from: 1) original articles (de Mateo et al., 2011; Amaral et al., 2013; Baker et 

al., 2013; Wang et al., 2013; among others, see the complete list of references in Table 

1) already compiled in the comprehensive reviews previously published by our group 

(Amaral et al., 2014a; Jodar et al., 2017), and 2) additional recently published sperm 

proteomic catalogues (Zhu et al., 2013; Intasqui et al., 2013; Azpiazu et al., 2014; 

Frapsauce et al., 2014; Sun et al., 2014; Wang et al., 2015,  2016; Yu et al., 2015; 

Jumeau et al., 2015; Liu et al., 2015; Hetherington et al., 2016; Vandenbrouck et al., 
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2016; Carapito et al., 2017; Saraswat et al., 2017). Only those original articles in which 

specific methods were referenced to ensure the proper elimination of potentially 

contaminating cells were considered. In total, 46 published proteomic studies performed 

using purified ejaculated human sperm were included in the analysis reported herein, 

which are enlisted in Table 1. However, it must be noted that some specific 

characteristics of the males from which the sperm samples were obtained, such as their 

fertility, age, body mass index (BMI), life style, or exposure to toxins, were not always 

specified in the sperm proteomic studies included in this analysis. Thus, it is possible 

that some of the proteins detailed in the current dataset could reflect an altered 

phenotypic state. Additionally, in order to further reduce the chance of any false-

positive identifications, just those proteins with identified unique peptides were 

integrated in the final list. This compilation resulted in high-confidence identification of 

6871 non-redundant proteins in human spermatozoa (reported in Supplementary Table 

1).  

Two different strategies were used to infer the functional involvement of the 

sperm proteins at oocyte fecundation and consecutive processes of human reproduction. 

The first one was according to their association to the Gene Ontology (GO) Biological 

Process annotations enclosed in the Gene Ontology Consortium Database 

(http://www.geneontology.org/;  (Ashburner et al., 2000; The Gene Ontology 

Consortium, 2017)). The second one was according to their association to the 

Phenotypes & Mutant Alleles data from the Mouse Genome Informatics (MGI) 

database (http://www.informatics.jax.org/phenotypes.shtml). In particular, gene lists 

associated to GO terms related to fertilization, formation of the zygote and the 

blastocyst, and implantation were retrieved from de Gene Ontology Consortium 
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database (Release date 2016-12-07). The GO-derived list of genes was subsequently 

compared to the human sperm proteome dataset. Similarly, those sperm proteins 

functionally involved in epigenetic processes were predicted by retrieving gene lists 

associated to the GO terms related to the processes of epigenetics, transcription, DNA 

methylation, histone PTMs, and small non-coding RNA biogenesis from the Gene 

Ontology Consortium database (Release date 2016-12-07). The complete list of GO 

terms included in these analyses is described in Supplementary Table 2. However, it 

cannot be assumed that all the known protein-related functions revealed from the GO 

data analyses are executed in all the tissues where the proteins are expressed. For that 

reason, additional tools were complementary used, such as the analysis of published 

data obtained after the targeted protein depletion in mice. In fact, the animal model data 

become especially valuable to predict protein functions, due to the ethical limitations 

associated to the conduction of functional studies in humans. Therefore, sperm proteins 

whose corresponding gene-disrupted mice resulted in “embryonic lethality before 

implantation” phenotype, according to the MGI database, were identified and classified 

according to the developmental stage in which the impairment takes place (first 

divisions, morula or blastocyst; Figure 2). Additionally, knock-out data related to the 

“male infertility” phenotype from the MGI database, and GO terms associated to 

different stages of spermatogenesis and sperm maturation were also retrieved, in order 

to discriminate those proteins that might represent spermatogenesis leftovers with no 

further function in subsequent stages (Supplementary Table 2). 

In order to allow a high-confident identification of pre-implantational embryo 

proteins with a potential sperm-specific origin, the proteome of the human oocyte and 

pre-implantational embryo were also compiled and compared to the human sperm 
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proteome. The human oocyte proteomic profile was obtained from a single study on 

mature oocytes without granulosa cells (Virant-Klun et al., 2016), and the human pre-

implantational blastocyst proteome profile was compiled from proteomic reports using 

6-days embryos (blastocyst stage; Table 1) (Jensen et al., 2013; Kaihola et al., 2016). 

Those proteins identified exclusively in treated groups or culture media, and those that 

did not fit the same MS identification criteria indicated above for the sperm proteome 

were discarded for the current analysis. In total, 1376 and 1300 non-redundant proteins 

were compiled for the oocyte and the blastocyst, respectively (Supplementary Table 1).  

 Since the human oocyte and blastocyst proteomes are less covered than the 

sperm proteome, and due to the fact that these cells are in close contact with their 

surroundings, the protein catalogues of additional oocyte and pre-implantational embryo 

interacting cells, tissues and fluids were also compiled (Table 1, Supplementary Table 

1). Specifically, the literature was searched for proteins identified in human cumulus 

cells (179 proteins) (McReynolds et al., 2012; Braga et al., 2016), human follicular 

fluid (1394 proteins) (Lee et al., 2005; Angelucci et al., 2006; Kim et al., 2006; Liu et 

al., 2007; Hanrieder et al., 2008,  2009; Estes et al., 2009; Lo Turco et al., 2010,  2013; 

Jarkovska et al., 2010; Kushnir et al., 2012; Twigt et al., 2012; Ambekar et al., 2013,  

2015; Severino et al., 2013; Bianchi et al., 2013; Hashemitabar et al., 2014; Regiani et 

al., 2015; Wu et al., 2015; Zamah et al., 2015; Lewandowska et al., 2017; Lim et al., 

2017; Oh et al., 2017), and human endometrium (tissue and fluid) on mid-secretory and 

decidualization  phases (2082 proteins) (Zhang et al., 2006; Fowler et al., 2007; Chen et 

al., 2009,  2015; Domínguez et al., 2009; Parmar et al., 2009; Scotchie et al., 2009; 

Hannan et al., 2010; Paule et al., 2010; Stephens et al., 2010; Garrido-Gomez et al., 

2011). Although individual characteristics such as BMI, life style, and exposition to 
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toxins were not possible to control, only those proteins identified in healthy, fertile or 

donor women, younger than 40 years old were included in the respective protein 

profiles (Supplementary Table 1). Furthermore, published RNA data from human sperm 

(Johnson et al., 2015), oocyte, and pre-implantational embryo (Dang et al., 2016) have 

been used as an additional tool to predict the gamete-origin of the blastocyst proteins.  

 Lastly, the tissue expression data enclosed in The Human Protein Atlas database 

(Uhlén et al., 2005; Uhlen et al., 2015) was retrieved (Release date 2017-06-08) and 

compared to the comprehensive human sperm proteome, in order to identify the 

potential tissue origin of each sperm gene product. In particular, sperm proteins were 

predicted to be acquired in extra-testicular stages of sperm maturation, when fitting the 

following criteria: RNA levels in testis < 25 transcripts per million (TPM), and no 

protein expression in testicular seminiferous tubules. Antibody detection on testis 

sections enclosed in Human Protein Atlas database were individually checked for all 

those sperm proteins fitting the criteria mentioned above, in order to ensure the lack of 

antibody staining and discard false-positive matches. The functional involvement of this 

subset of sperm proteins was predicted by enrichment analyses on GO annotations 

related to biological processes, by using the tools from the Gene Ontology Consortium 

database. The significance of the enrichment analyses was calculated by a Fisher Exact 

Test. P-values <0.05 adjusted for multiple-comparisons with the Bonferroni correction 

were considered significant. 
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Involvement of the sperm proteome at oocyte fecundation and beyond 

The first generation of a compiled proteome profile of the sperm cell was 

published in 2014, and included 6198 non-redundant proteins from 30 different studies 

(Amaral et al., 2014a). Since then, many additional proteomic reports focused on the 

male gamete have been published (Table 1) (Amaral et al., 2014b; Azpiazu et al., 2014; 

Jumeau et al., 2015; Wang et al., 2015,  2016; Hetherington et al., 2016; Vandenbrouck 

et al., 2016; Carapito et al., 2017; Jodar et al., 2017). In this review we have updated 

the sperm protein profile while following strict inclusion criteria, in order to minimize 

as much as possible potential false-positive protein identifications (see Methods). By 

doing this, the sperm protein list has risen to 6871 proteins, and represents the most 

complete and reliable catalogue of human sperm proteins to date (Supplementary Table 

1). 

The in-depth analyses and data mining of the sperm molecular composition are 

contributing to increase our knowledge about sperm function. Previous enrichment 

analyses, focused on the identification of those biological pathways likely to be the 

most active in human sperm, had revealed metabolism (including protein and RNA 

metabolism), membrane trafficking, apoptosis, cell cycle, hemostasis, and meiosis as 

the most significant pathways in the whole male gamete (Amaral et al., 2014a). 

However, there is growing evidence showing the role of the spermatozoon in 

embryogenesis and transmission of epigenetic marks important for early and future 

events of the offspring (Hammoud et al., 2009; Brykczynska et al., 2010; Vavouri and 

Lehner, 2011; Castillo et al., 2014a,  2015; Wei et al., 2014b; Fullston et al., 2015), 

which are functions that are not revealed when enrichment analyses are performed using 

the whole set of sperm proteins (Castillo et al., 2014b).  Therefore, in the present review 
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we have focused our study of the sperm proteome on specific GO terms, rather than on 

the basis of enrichment analyses. Interestingly, a remarkable number of sperm proteins 

functionally related to different stages of fertilization, early embryogenesis, and gene 

expression modulation have been predicted (Supplementary Tables 3 and 4). This 

analysis provides valuable information that contributes to enhance the current 

understanding of the role of the male gamete in the generation of the new individual. 

 

Sperm proteins and fertilization  

Fertilization is a complex multistep process that relies in tight regulated events 

taking place in both gametes, the sperm cell and the oocyte. Of relevance, our analysis 

of the sperm proteome based on the use of public GO annotations revealed the presence 

of 103 sperm proteins that might be functionally related to different steps of the 

fertilization process, such as sperm capacitation, sperm acrosome reaction, sperm 

penetration, and sperm-egg fusion  (Figure 2; Supplementary Table 3) (Brucker and 

Lipford, 1995; Visconti et al., 1998; Bedford, 2004; De Jonge, 2005; Krawetz, 2005; 

Sutovsky and Manandhar, 2006; Visconti, 2009; Amaral et al., 2014a; Dacheux and 

Dacheux, 2014; Cuasnicú et al., 2016; Sullivan and Mieusset, 2016; Torabi et al., 

2017).   

In particular, this subset of sperm proteins includes components with well-

known roles in the acquisition of sperm motility and the hyperactivation occurring 

during sperm capacitation, such as the A-kinase anchor proteins 3 and 4 (AKAP3 and 

AKAP4), and the sperm specific cation channels CATSPERs (Ficarro et al., 2003; 

Singh and Rajender, 2015; Williams et al., 2015) (Supplementary Table 3). Also, the 



15 

 

male gamete contains proteins known to be indispensable for fertilization once it 

reaches the oocyte, such as the Izumo sperm-egg fusion protein 1 (IZUMO1; Figure 2), 

which directs sperm-egg fusion by binding its complementary oocyte protein Juno 

(Inoue et al., 2005; Sutovsky, 2009; Bianchi et al., 2014), and the sperm protein 

PLCzeta (PLCZ1), which induces the Ca2+ oscillations in the oocyte that are required 

for egg activation, the formation of the maternal pronucleus, and the initiation of 

embryogenesis (Yoon and Fissore, 2007) (Figure 2).   

Interestingly, published data from targeted gene deletions in mice support the 

essential role that have been predicted for some of the human sperm proteins associated 

to fertilization-related GO terms in this study.  For instance, it has been shown that the 

acrosomal sperm protein Proprotein convertase subtilisin/kexin type 4 (PCSK4) null 

mice produce mutant sperm lacking the ability to proteolytically process the acrosin 

binding protein (ACRBP), impairing thus the capability of the sperm to bind to the zona 

pellucida, and to fertilize eggs (Gyamera-Acheampong et al., 2006; Tardif et al., 2012). 

Similarly, deficient mice of sperm acrosomal equatorial segment proteins, such as the 

equatorin (EQTN) and the sperm equatorial segment protein 1 (SPESP1; Figure 2), also 

produce sperm with reduced fertilizing capacity (Toshimori et al., 1998; Wolkowicz et 

al., 2003,  2008; Fujihara et al., 2010; Hao et al., 2014). In fact, the lack of SPESP1 also 

affects the correct amount and localization of several other sperm proteins involved in 

gamete fusion, such as the A Disintegrin And Metalloproteinase proteins (ADAMs), the 

EQTN, and the IZUMO1 (Cuasnicú et al., 2016). Also remarkable is the identification 

of the sperm protein cysteine-rich secretory protein 1 (CRISP1), which is an epididymal 

androgen-regulated glycoprotein imported to sperm during sperm maturation that is 

involved in sperm motility, sperm penetration, and sperm-egg fusion (Cameo and 
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Blaquier, 1976; Krätzschmar et al., 1996; Maldera et al., 2014; Ernesto et al., 2015) 

(Figure 2). Of relevance, CRISP1 interacts with egg complementary sites, such as the 

glycoprotein ZP3 and, in fact, CRISP1-deficient sperm are not able to penetrate into the 

oocyte (Da Ros et al., 2015).  

The presence of this body of experimental evidence showing the role of this 

subset of sperm proteins in fertilization is remarkable since it is validating the results 

from the GO annotations-based data analysis designed and underwent in the present 

review. Therefore, it supports the application of this strategy in the exploration of other 

potential functions of the sperm cell. 

 

Sperm proteins and the pre-implantational embryo development 

 The analysis of the human sperm proteome profile has also allowed us to 

identify and highlight a subset of 93 proteins that may be functionally related to the 

formation of the zygote and following stages of embryo development prior 

implantation, which in humans takes place approximately at day 7 of development  

(Niakan et al., 2012) (Supplementary Table 3). Early embryogenesis is characterized by 

dramatic changes in chromatin organization, including the replacement of paternal 

protamines by maternal histones (Oliva and Dixon, 1991; Wright, 1999; Oliva, 2006; 

Inoue et al., 2011; Kong et al., 2018), and the extensive epigenetic reprogramming of 

maternal and paternal genomes, which  returns the zygote to a genetic state able to 

generate any cell type in the body (Reik and Walter, 2001; Reik et al., 2001). This is 

exemplified by the post-fertilization DNA demethylation wave observed first in paternal 

and subsequently in maternal genome, except for both parental methylation imprinting 
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marks (Mayer et al., 2000; Wei et al., 2014a) (Figure 2). However, it is not until the 

third day of development, within the 4- and 8-cell stages (Figure 2), when the main 

embryonic genome activation (EGA) takes place (Niakan et al., 2012), although a minor 

wave of transcription has been observed earlier, at the 2-cell stage (Vassena et al., 2011) 

(Figure 2). Interestingly, the rapidly demethylation occurred in the paternal genome 

could enable this first minor wave of transcription (Santos and Dean, 2004). Afterwards, 

the embryo begins to synthesize proteins on its own moving towards the stages of 

morula and blastocyst, prior its subsequently implantation (Figure 2).  

It is important to note that, due to the fact that the sperm cell is the result of 

complex series of cellular and molecular modifications, it becomes a challenge to 

distinguish proteins that are players in the process of early embryo development, from 

those that, in contrast, simply represent spermatogenesis leftovers with no relevant 

function in further stages. Although further research and novel approaches are 

demanded to decipher the functionality of the sperm proteins in humans, the studies 

already performed with animal models are contributing to shed light into this specific 

question. For that reason, we have added to our analysis the valuable phenotypic data 

contained in the MGI database (see Methods) as a tool to predict the potential function 

of these proteins in the human early embryogenesis (Figure 2; Supplementary Table 3). 

We found that the human sperm cell contains 59 different proteins whose depletion in 

mice through knock-out studies resulted in very marked impairments at different stages 

of the pre-implantational embryo development (Figure 2; Supplementary Table 3). 

Specifically, the male gamete delivers to the zygote 11 proteins related to embryo 

lethality during the first divisions from zygote to 8-cell stage, such as the 

transmembrane glycoprotein desmocollin 3 (DSC3) (Figure 2). Interestingly, the crucial 
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impact of DSC3 on the correct development of the embryo might be conducted by its 

function on the regulation of cell adhesion, which is necessary for the formation of 

blastomeres, occurring around day 1 of development in humans (Den et al., 2006; 

Garrod and Chidgey, 2008) (Figure 2). Therefore, this developmental function could be 

attributed to the sperm-derived DSC3, since it may take place before the activation of 

the embryonic genome (around day 2 of development in humans; Figure 2). Similarly, 

the human spermatozoon also contains 29 proteins whose deficiencies induce 

impairments at the morula stage, and 19 proteins at the blastocyst formation (Figure 2; 

Supplementary Table 3). This is the case of the proteins lactosylceramide 1,3-N-acetyl-

beta-D-glucosaminyltransferase (B3GNT5) and choline-phosphate cytidylyltransferase 

A (PCYT1A), which are both related to the formation of lipid membranes. Specifically, 

B3GNT5 catalyzes the biosynthesis of the lactoseries of glycosphingolipids (Henion et 

al., 2001), and its depletion results in embryo lethality at morula stage due to alterations 

in cell adhesion and signaling processes (Biellmann et al., 2008).  PCYT1A, in contrast, 

is involved in the initiation of the synthesis of phosphatidylcholine, the most abundant 

phospholipid in mammalian cellular membranes (Vance and Vance, 2004). Remarkably, 

PCYT1A-null mice embryos were found to fail in the formation of blastocyst capable to 

achieve implantation (Wang et al., 2005). This information might be extrapolated to 

humans, although it is important to take into account that the transcription of embryonic 

genes is already active at morula and subsequent stages. Therefore, further experimental 

evidences are necessary to confirm that these proteins and the rest of sperm proteins 

belonging to this group are also functional during human pre-implantational 

embryogenesis, as well as its potential specific paternal origin. 
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Sperm proteins and the hypothesis of the epigenetic inheritance of acquired 

traits 

Previous studies on the impact of parental health on the offspring have been 

mainly focused on the female partner, and especially during the pregnancy period. This 

is due to the fact that several poor health offspring outcomes have been demonstrated 

from harmful maternal exposures or life style, either prior or during pregnancy 

(reviewed in Brion et al., 2008; Feng et al., 2014). However, recent findings have 

shown how the paternal life-history experiences have a greater influence on the future 

health of the offspring than previously thought. Some remarkable evidences supporting 

this hypothesis have been found in animal models, such as the detection of metabolism 

alterations on rodent offspring caused by the paternal diet (including caloric restrictions, 

low protein diets, or high fat diets) (Anderson et al., 2006; Carone et al., 2010; Ng et 

al., 2010; de Castro Barbosa et al., 2016). Other examples are the observation of a 

decreased fear response and the appearance of depressive symptoms in the offspring 

from traumatized male mice (Dietz et al., 2011; Rodgers et al., 2013; Gapp et al., 

2014), as well as the presence of cognitive impairments, and of higher levels of anxiety 

and aggressiveness in the offspring from males with postnatal exposures to nicotine and 

heroin, respectively (Farah Naquiah et al., 2016; Renaud and Fountain, 2016). 

Interestingly, in some cases those harmful phenotypes could be found not only in the 

offspring (F1), which is due to intergenerational inheritance, but also in further 

generations, what is known as transgenerational inheritance.  

Similar observational data as the indicated above for animal models has been 

generated in humans, also suggesting the existence of intergenerational and 



20 

 

transgenerational effects as a consequence of paternal life-history experiences (reviewed 

in Pembrey et al., 2014). This is exemplified by the observed correlation between 

paternal overfeeding during mid-childhood (from 9 to 11 years old) and the lower 

longevity of sons and grandsons, due to an increased risk to suffer diabetes (Bygren et 

al., 2001; Kaati et al., 2002). Also, it has been observed an association between early 

paternal smoking habits and a higher BMI in the male progeny at 9 years old (Pembrey 

et al., 2006).  

Currently, several groups are working to elucidate the molecular mechanisms 

that could explain the above evidences, supporting the hypothesis of the transmission of 

some acquired traits through the paternal line (Sharma and Rando, 2017). Potential 

candidates have been proposed to provide the basis for this epigenetic inheritance, such 

as the sperm DNA methylation (de Castro Barbosa et al., 2016; Donkin et al., 2016; 

Soubry et al., 2016), sperm histone marks including both the PTMs and the 

nucleohistone-nucleoprotamine pattern (Zeybel et al., 2012; Vassoler et al., 2013; 

Castillo et al., 2015; Siklenka et al., 2015), and the set of sperm small non-coding 

RNAs (sncRNAs) (Rassoulzadegan et al., 2006; Grandjean et al., 2015; Chen et al., 

2016a; Sharma et al., 2016). Interestingly, all those epigenetic marks are maintained in 

the mature spermatozoa and, thus, they are able to escape from the epigenetic 

reprogramming occurring in the zygote (Borgel et al., 2010; Chen et al., 2016b), and 

could act as scaffold for the establishment of new epigenetic signatures in the embryo 

genome (Brunner et al., 2014; Castillo et al., 2014a,  2014b,  2015). In any case, those 

sperm epigenetic marks might be probably regulating gene expression at either 

transcriptional or post-transcriptional levels in the early embryo. For instance, it has 

been demonstrated that the translational RNAs (tRNAs) fragments altered in founder 
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males under a low protein diet are able to modulate the abundance of a subset of genes 

known to be expressed in pre-implantational embryos (Sharma et al., 2016). Therefore, 

the altered phenotype observed in the offspring might be caused by an altered gene 

expression during early embryo development induced by changes in the sperm 

epigenetic profile.  

However, in addition to the sperm DNA containing epigenetic marks, and the 

complex population of sperm sncRNAs (Krawetz et al., 2011; Jodar et al., 2013; 

Pantano et al., 2015), the sperm cell also provides the oocyte with a large number of 

zinc finger- and bromodomain-containing proteins, transcription factors, histone 

modifiers, and other DNA- and RNA-related proteins that might also be critical for the 

regulation of gene expression in the early embryo, either at transcriptional or post-

transcriptional levels (Castillo et al., 2014a,  2014b,  2015). In fact, the gene-specific 

GO annotations-based analysis undertaken in this review has revealed a total of 560 

sperm proteins with known roles in the regulation of gene expression in other cells or 

tissues (Table 2 and Supplementary Table 4). This subset of sperm proteins includes 1) 

transcription factors and transcription factor-related proteins (381 proteins), 2) 

chromatin modifiers able to modulate the DNA methylation pattern (25 proteins), 3) 

chromatin modifiers that might regulate histone PTMs (118 proteins), and 4) proteins 

that participate in the regulation of the transcription, processing, and function of non-

coding RNAs (36 proteins) (Table 2; Supplementary Table 4). However, not all those 

proteins must have these potential roles in the early embryo and, also, some of them 

could simply represent spermatogenic leftovers. For instance, 69 of those 560 sperm 

proteins have a known role during spermatogenesis or sperm maturation, according to 

either their association to a sperm-related GO annotation or the observation of infertility 
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in their respective null-mice (Supplementary Table 4). This is the case of the sperm 

protein Probable ATP-dependent RNA helicase DDX4 (DDX4), whose corresponding 

null mice are infertile due to arrest of male meiosis (Kuramochi-Miyagawa et al., 2010). 

In contrast, we found a total of 28 proteins, out of the 560 sperm proteins classified in 

this review as potentially involved in the regulation of gene expression during early 

embryogenesis. In fact, this subset of sperm proteins either showed associations to GO 

terms related to early embryogenesis or their targeted deletion in mice resulted in 

embryonic lethality before implantation (Supplementary Table 4). For instance, no 8-

cell embryos were observed after target depletion of the nuclear autoantigenic sperm 

protein (NASP), which has been suggested to participate in both nucleosome 

remodeling and maintenance of the methylation pattern during the embryo pre-

implantational epigenetic reprogramming (Mohan et al., 2011).  

To the best of our knowledge there is a lack of studies in the human sperm 

proteome contributing to explain the mechanisms implicated in the epigenetic 

inheritance of some acquired traits, although, as presented above, some sperm proteins 

might modify gene expression at the transcriptional and post-transcriptional levels in the 

early embryo (Figure 3). However, the proteomic data profiles from obese patients may 

be used to assess this hypothesis, since several authors suggested that obese males 

might transmit altered metabolic phenotypes to the offspring (Bygren et al., 2001; Ng et 

al., 2010; Rando, 2012). Of relevance, 3 sperm proteins related to the regulation of gene 

expression, according to the analysis undertaken in this review (Supplementary Table 

4), were found deregulated in a comparative proteomic analysis of spermatozoa from 

obese and lean human males: the Eukaryotic Translation Elongation Factor 1 Alpha 1 

(EEF1A), the CCR4-NOT Transcription Complex Subunit 1 (CNOT1) and the 
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Elongator Acetyltransferase Complex Subunit 3 (ELP3; Supplementary Table 4) (Liu et 

al., 2015). Interestingly, CNOT1 is a scaffolding component of the mRNA deadenylase 

complex CCR4-NOT, which participates in processes such as mRNA degradation, 

miRNA-mediated repression, translational repression, and general regulation of 

transcription. Moreover, CCR4-NOT complex represses the expression of early 

trophectoderm transcription factors in embryonic stem cells, suggestive of its critical 

role in the maintenance of the totipotency of blastomeres during early embryogenesis 

(Zheng et al., 2012). Also, ELP3 has been described as one of the responsible factors 

for paternal DNA demethylation upon oocyte fertilization (Okada et al., 2010), among 

other functions such as the modification of tRNAs (Svejstrup, 2007). It is interesting to 

note that the modifications of tRNAs fragments seem to be also crucial for the 

transmission of altered metabolic phenotypes due to paternal high fat diet (Chen et al., 

2016b). The deregulation of the proteins CNOT1 and ELP3 in sperm proteome from 

obese males and the ability of those proteins to regulate epigenetic marks suggest them 

as potential candidates to transmit obesity-related paternal environment information to 

the new individual. Altogether, our findings reinforce the hypothesis of a potential role 

of some sperm proteins in the intergenerational epigenetic inheritance of acquired traits. 

  

Integrated analysis of the pre-implantational proteomes: deciphering the 

potential parental origin of the early embryo proteins 

The integrative analysis of the human sperm, oocyte and early embryo 

proteomes has been used as a complementary approach to determine which human 

sperm proteins may be involved in early embryo development. This may be inferred by 

the detection of blastocyst proteins having an unequivocal paternal origin. However, 
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two technical issues should be taken into account in this analysis. The first one is the 

nearly complete description of the sperm proteome as compared to the limited covered 

oocyte and embryo proteomes. As observed in Figure 3A, whereas 6871 proteins have 

been described in the sperm proteome, only 1376 and 1300 were indentified in the 

oocyte and blastocyst proteomes, respectively. Those differences might be probably due 

to the relative scarcity of available biological material from human oocytes and early 

embryos, which becomes technically insufficient for the  identification of less abundant 

proteins (Jensen et al., 2013; Kaihola et al., 2016; Virant-Klun et al., 2016). In contrast, 

the spermatozoa show two main advantages: 1) it can be easily purified in large 

quantities (Martinez-Heredia et al., 2006; Oliva et al., 2008,  2009; Codina et al., 2015), 

and 2) it is a well compartmentalized cell that allows the proteomic assessment of 

different subfractions, such as the head, the chromatin, the tail, and the membranes (de 

Mateo et al., 2011; Amaral et al., 2013; Baker et al., 2013; Castillo et al., 2014a), 

allowing the identification of less abundant proteins. 

The second issue is that, to the best of our knowledge, only the human embryo 

proteome on the blastocyst stage (5-6 days) is available in the literature (Jensen et al., 

2013; Kaihola et al., 2016). As previously mentioned, the activation of the embryo 

genome occurs mainly between the 4-cell and 8-cell stage (Figure 2), implying that 

blastocyst proteins could already have an embryonic origin. However, several proteins 

have broad halve-lives ranging from 30 minutes to 8 days (Schwanhausser et al., 2011), 

which suggests that some sperm and oocyte proteins may be still present and functional 

in the blastocyst stage. Additionally, it is also important to take into account that some 

proteins detected in the blastocyst could derive from the translation of the paternal and 

maternal mRNAs provided to the zygote, using the maternal translational machinery 
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(Swann et al., 2012). In order to mitigate all these issues, we have also integrated into 

our proteome analyses the individual RNA-seq data from human sperm (Johnson et al., 

2015), oocyte, zygote, and embryos at 2-cell, 4-cell, 8-cell, morula and blastocyst stages 

(Dang et al., 2016), as a complementary tool to identify potential paternally-derived 

embryo proteins. Also, in order to minimize the possibility of false positive 

identifications, we excluded from the present analysis the proteins that have also been 

identified in the proteomes of additional reproductive cells and fluids highly related to 

the oocyte and early embryo, such as the follicular fluid, cumulus cells and 

endometrium, since they may serve as a complementary protein source to the embryo 

proteome (See Methods and Supplementary Table 1).  

Following these strict criteria, we managed to unequivocally classify 173 from 

the 1300 blastocyst proteins, according to their embryonic (18 proteins), maternal (47 

proteins), and paternal (108 proteins) origin (Supplementary Table 5). As observed in 

Figure 3B, the transcriptional pattern of some blastocyst proteins classified as Group 1 

(18 proteins) clearly reflects an embryonic origin by de novo transcription after the 

activation of the embryo genome (EGA). Specifically, those blastocyst proteins have 

not been detected in any of the cellular and fluid protein profiles of sperm, oocyte, 

follicular fluid, cumulus cells and mid-secretory endometrium (Supplementary Tables 1 

and 5), and their corresponding RNAs were absent in the sperm, oocyte, and the stages 

of embryogenesis previous to the EGA (Supplementary Table 5). In contrast, we 

identified 155 blastocyst proteins with a potential maternal (47 proteins) or paternal 

(108 proteins) origin, either as proteins already present in the gametes and maintained 

intact until the blastocyst stage, or as the result of the potential translation of sperm and 

oocyte RNAs during the first stages of embryogenesis by the maternal translational 
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machinery (Supplementary Table 5). From the subset of blastocyst proteins predicted as 

maternally derived, 5 of them were exclusively detected in oocyte at protein level, while 

their corresponding RNAs were found absent in sperm, oocyte and all the embryo 

stages assessed. Therefore, the stability of those 5 embryo proteins during first steps of 

embryogenesis suggests their slow molecular turnover (Supplementary Table 5). In 

contrast, the remaining 42 maternal-derived blastocyst proteins identified in this review, 

follow a specific transcriptional pattern classified as Group 2 in Figure 3B. In particular, 

the RNAs encoding this subset of blastocyst proteins are found with high levels in the 

oocyte, and progressively drop during the different early embryogenesis stages, without 

any increase upon the EGA. This, together with the fact that those proteins and their 

corresponding RNAs are absent in the sperm, provides evidence for the maternal origin 

of these 42 embryo proteins (Figure 3B). 

Unexpectedly, 108 blastocyst proteins were predicted to have a paternal origin, 

by either 1) their exclusive presence in the sperm protein profile combined with the 

absence of their corresponding transcripts in sperm, oocyte and all the different early 

embryogenesis stages (82 proteins), or 2) the solely detection of the corresponding RNA 

in sperm combined with their absence at protein level in both gametes or reproductive-

associated cells or fluids (26 proteins; Group 3, Figure 3B). Interestingly, this group of 

paternal-derived blastocyst proteins were found enriched in the GO annotation 

“regulation of small GTPase mediated signal transduction” (Bonferroni corrected p-

value<0.001). Dynamic analyses of gene expression during mouse pre-implantational 

development have revealed the activation of the genes involved in small GTPases-

mediated signal transduction between the 8-cell and the morula stages (Hamatani et al., 

2004). Therefore, our results suggest that the male gamete might provide the pre-
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implantational embryo with proteins that allow ensuring the appropriate gene 

expression pattern of GTPases involved in signal transduction processes. In addition, 

some of the blastocyst proteins inferred as paternal-derived were found related to 

already known sperm components required for pre-implantational embryogenesis, such 

as the centrosomal protein 135 (CEP135), which acts as a scaffolding protein during 

early centriole biogenesis (Ohta et al., 2002). The roles of other potentially paternal-

derived proteins are less well known in mammalian early embryogenesis. It is the case 

of the Rho GTPase Activating Protein 21 (ARHGAP21), whose homologue protein in 

C. elegans is crucial for the establishment of the radial polarity in the early embryo, 

process known in mammals as compactation (Anderson et al., 2008) (Nance, 2014). 

Furthermore, some blastocyst proteins potentially derived from the sperm seem to be 

related to the regulation of epigenetic marks, such as the (A-T) mutated (ATM) kinase, 

which is involved in DNA damage response by phosphorylating numerous substrates 

including histones (Yamamoto et al., 2012), and the DGCR8 Microprocessor Complex 

Subunit (DGCR8), which is crucial for primicroRNA processing to mature miRNA 

(Wang et al., 2007).   

This integrative analysis of “omic” data from reproductive cells and fluids 

provides the first step for the identification of embryo proteins with a potential paternal 

origin. The future validation of the impact of these 108 sperm proteins to the embryo, as 

well as the assessment of their crucial roles in pre-implantational embryogenesis and the 

epigenetic inheritance may shed new light into the real contribution of the father to the 

generation of a healthy offspring. 
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The putative extra-testicular origin of a subset of human sperm proteins 

and the soma to embryo transmission hypothesis 

All human sperm proteomic studies conducted to date have been performed in 

purified ejaculated spermatozoa, and thus, in cells that have been in contact with the 

seminal fluid. The seminal fluid constitutes at least the 90% of the ejaculated volume 

and is composed by a mixture of secretions from the accessory sex glands (epididymis, 

prostate, and seminal vesicles), which are rich in lipids, glycans, oligosaccharides, 

inorganic ions, immune components, DNA, RNAs, miRNAs, proteins, and peptides, 

either free or encapsulated in extracellular vesicles (Saez et al., 2003; Jones et al., 2010; 

Ronquist et al., 2011; Aalberts et al., 2014; Drabovich et al., 2014; Vojtech et al., 2014; 

Chiasserini et al., 2015; Jodar et al., 2016,  2017). 

During the past years, the existence of a communication between the sperm cells 

and the seminal fluid has been proposed, most probably through these extracellular 

vesicles (Sullivan and Saez, 2013; Jodar et al., 2017). In fact, growing evidence is 

recently contributing to this hypothesis, such as the enrichment of RNAs from the 

seminal fluid extracellular vesicles in the peripheral membrane of mouse spermatozoa 

(Johnson et al., 2015). On the one hand, from a functional point of view, the seminal 

fluid seems to be not only a medium to carry spermatozoa through male and female 

tracts, but also a source of nutrition and components that modulate sperm function, 

motility and fertilizing capacity (Saez et al., 2003; De Jonge, 2005; Aalberts et al., 

2014). On the other hand, from the proteomic perspective, the high impact of the 

seminal fluid on the protein composition of the male gamete has also been shown. 

Specifically, both ejaculated sperm and seminal fluid were found to contain a 

remarkable number of common proteins in their respective proteome profiles (Jodar et 
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al., 2017). Interestingly, a previous integrative analysis of proteins and transcripts 

present in human sperm, extracellular vesicles, and testes provided a list of sperm 

proteins with a potential extra-testicular origin (Jodar et al., 2016). 

In this review, we have improved the prediction of the putative tissue origin of 

the human sperm proteins by integrating the RNA and protein data available in the 

Human Protein Atlas database. This analysis was based in the premise that the process 

of translation in the mature ejaculated sperm is blocked and, therefore, those sperm 

proteins not expressed in any stage of the seminiferous tubules, neither at RNA nor at 

protein level, may be acquired from extra-testicular tissues. By doing this, we were able 

to identify with high confidence 165 different sperm proteins potentially provided by 

the fluids or extracellular vesicles from epididymis, prostate or seminal vesicles 

(Supplementary Table 6).  

From a general perspective, the enrichment analysis focused on GO annotations 

related to biological processes showed that those potential accessory sex glands-derived 

sperm proteins were mainly involved on immune response, cell junction organization, 

response to stimulus, extracellular matrix disassembly, gene expression, and 

keratinization (Bonferroni corrected p-value < 0.05; Table 3). Interestingly, 7 of these 

potential extra-testicular sperm proteins have been related to the processes of 

fertilization (4 proteins) and pre-implantational embryo development (3 proteins; 

Supplementary Table 6). For instance, the beta-defensin 126 (DEFB126) is an 

epididymal protein known to be recruited to the sperm surface during the pass through 

the distal corpus and proximal cauda parts of the epididymis (Perry et al., 1999) (Figure 

4). Of note, a DEFB126 role in the efficient protection of the sperm from the female 

immune response has been reported (Yudin et al., 2005), which is in agreement with the 

GO enrichment analysis underwent in this review with the accessory sex glands-derived 
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sperm proteins (Table 3). Additional epididymal proteins recruited by sperm are the 

epididymal sperm-binding protein 1 (ELSPBP1), which is involved in the correct 

acquisition of sperm motility (Parte et al., 2012); the binder of sperm protein homolog 1 

(BSPH1), which has a role in capacitation (Plante et al., 2014); and the cysteine-rich 

secretory protein 1 (CRISP1), which has been already highlighted because of its crucial 

role in sperm penetration and sperm-egg fusion (see section 2.1; Figure 4; 

Supplementary Table 6). Also remarkable is the fact that sperm seem to carry prostatic 

proteins that might be relevant for the success of ART. This is the case of the prostatic 

acid phosphatase (ACPP) which is found deregulated in idiopathic infertile couples that 

did not achieve pregnancy after artificial insemination (Xu et al., 2012),  suggesting that 

ACPP is crucial to reach and fertilize the oocyte. Similarly, a total of 9 sperm proteins 

functionally associated to the modulation of gene expression are suggested to be 

originated in the accessory sex glands (Figure 4; Supplementary Table 6), which is in 

agreement with recent evidence showing that sperm gain specific non-coding RNAs 

involved in the epigenetic inheritance of the paternal low protein diet phenotype through 

epididymosomes (Sharma et al., 2016). In fact, the importation of sperm proteins and 

RNAs from accessory sex glands able to regulate gene expression in the embryo, once 

its genome is activated, might be a good strategy to provide environmental epigenetic 

information without the need to overcome the hemato-testicular barrier. 

Unexpectedly, the results of our integrative analysis also suggest that not only 

the tissues from accessory sex glands are contributing to the sperm protein content. In 

fact, we found a subset of 286 sperm proteins with no RNA and protein detection 

neither in the testis nor in the accessory sex glands (Supplementary Table 7). Therefore, 

it can be suggested that those proteins could derive from the peripheral tissues outside 

the male reproductive tract, and be acquired by the sperm after testicular maturation. 
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These findings go in the same lane as the results obtained by Cossetti and colleagues, 

who showed the presence of a specific RNA from human melanoma in the sperm from 

mice that were previously subcutaneously inoculated with human melanoma cells 

(Cossetti et al., 2014). Interestingly, the specific human transcript measured in 

Cossetti’s study was also detected in the extracellular fraction of blood, indicating a 

potential active transport from mice dermis to the sperm cells through the extracellular 

vesicles pathway (Cossetti et al., 2014). Our analysis revealed that some sperm proteins 

are specifically expressed at the protein level in a high variety of tissues, such as brain, 

lung, pancreas, and bone marrow and immune system, among others, but absent in 

testes and accessory sex glands at both transcript and protein level (Figure 4). From the 

functional perspective, proteins potentially derived from tissues other than testis and 

accessory sex glands were found mainly involved in keratinization, cell adhesion, 

immune response, programmed cell death, extracellular matrix organization, regulation 

of gene expression, and anion transport, among others (Bonferroni corrected p-value 

<0.05; Table 3).  

Some of the proteins identified here as potentially originated in extra-testicular 

tissues were specifically found to be potentially related to processes of fertilization (2 

proteins), early embryo development (2 proteins) and modulation of gene expression 

(12 proteins) (Supplementary Table 7). Interestingly, a remarkable number of sperm 

proteins probably originated by tissues from the immune system seem to be able to 

modulate gene expression by the regulation of the transcription and the histone 

modification pattern (Figure 4). It is the case of the protein-arginine deiminase type-4 

(PADI4) which is involved in the modification of histone 1 (H1) by the conversion of 

arginine residues to the non-coded aminoacid citrulline. This modification induces H1 

disassembly from the DNA, leading to a global chromatin decondensation. Although 
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this process was described in neutrophils during the innate immune response to 

infection (Neeli et al., 2008), it has been recently shown a role in the mice early 

embryo, in order to undergo reprogramming, and to promote pluripontency and stem 

cell maintenance (Christophorou et al., 2014).   

Additional experiments are now required in order to validate the potential origin 

of these groups of sperm proteins that seem to be incorporated into the sperm cell 

during post-testicular processes. Although the success rate of pregnancies obtained after 

testicular sperm extraction (TESE) combined with intracytoplasmic sperm injection 

(ICSI) suggest that extra-testicular sperm proteins might not be crucial for early embryo 

development, the functionality of these extra-testicular proteins in the fertilization 

processes that are overcome by ICSI, and as potential modulators of the offspring’s 

phenotype should be elucidated. This will contribute to unravel the mechanisms of the 

transmission of information within organs and generations, such as the transmission of 

parental olfactory experiences to the offspring (Dias and Ressler, 2014), which could be 

explained by the travel of epigenetic information from the peripheral tissues outside 

male reproductive tract to the sperm. 

 

Discussion and future directions 

The characterization of the sperm cell through MS-proteomic strategies 

combined with the integrative analysis of the data is providing a powerful approach to 

decipher the molecular aspects of sperm function (Amaral et al., 2014a; Carrell et al., 

2016). In fact, the analysis reported in the current review, has increased our knowledge 

into the potential contribution of the father to the generation of healthy offspring. This 

has been possible thanks to the current availability of sperm protein catalogues, 
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allowing us to generate a nearly complete protein profile of the human male gamete. In 

addition, since the functionality of a cell is also influenced by its surroundings, 

impeding the cellular proteomic data to be analyzed in isolation, we have also 

proceeded to its exhaustive examination in combination with additional “omic” data and 

evidence from related tissues, cells and fluids. Due to the limitations associated to the 

research in human samples, data from studies underwent in animal models have been 

also included as a tool to predict the potential functions of the human sperm proteins.  

In terms of the sperm function, the role of the male gamete during fertilization 

has been widely studied. In fact, our GO annotations-based analysis of the sperm 

proteome was in agreement with the many sperm proteins already known and proposed 

by others to be crucial for the different processes occurring through the sperm journey 

from the testis to the oocyte (Figure 2) (Toshimori et al., 1998; Ficarro et al., 2003; 

Inoue et al., 2005; Fujihara et al., 2010; Maldera et al., 2014; Singh and Rajender, 

2015; Cuasnicú et al., 2016). However, less information is available so far about the 

involvement of the sperm proteins in the correct initiation and early progression of 

embryogenesis. The analysis shown in the present review has revealed remarkable 

groups of proteins that might be key players in post-fertilization processes, including 

not only those taking place during first stages of the pre-implantational embryo 

development, but also those able to modulate gene expression once the embryo is 

activated (Supplementary Tables 3 and 4). This raises the possibility that a subset of the 

sperm proteome could be a potential new player contributing to explain the hypothesis 

of the epigenetic inheritance of some acquired traits. Reinforcing this idea, we have also 

observed that some blastocyst proteins revealed as required for correct early 

embryogenesis are most probably paternal-derived (Supplementary Table 5). 
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Altogether, these findings show that the sperm proteome is not only limited to the 

proteins necessary for oocyte fertilization and spermatogenic leftovers, but also to a 

cargo of additional groups of proteins that are delivered to the embryo and may have 

critical immediate and future impacts.   

Interestingly, our analyses also add further support to the idea that the protein 

composition of the mature spermatozoon is not concluded at testicular level, but it is 

only completed through the potential molecular communication between the sperm cell 

and the environment (Figure 4; Supplementary Table 6 and 7), as it has been already 

proposed (Sullivan and Saez, 2013; Jodar et al., 2017). In fact, it can be hypothesized 

that, since sperm are not able to produce proteins de novo due to the blockage of its 

transcriptional and translational machineries, the protein importation from secretions of 

accessory sex glands and other peripheral tissues could be an efficient strategy to 

maintain the sperm proteomic profile in optimal conditions for its function at 

fertilization and potential future events in early embryogenesis. Moreover, these 

imported proteins during sperm maturation might provide environmental epigenetic 

information without the need to overcome the hemato-testicular barrier. 

Overall the current data suggest that a subset of sperm proteins is crucial for the 

correct fertilization and beyond. These results should stimulate further experimental 

studies aimed to elucidate the roles of groups of specific sperm proteins in the processes 

of fertilization, embryo development, and epigenetic inheritance of acquired traits, both 

in normal and in altered conditions. 
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Figure legends 

Figure 1. Processes of spermatogenesis, oogenesis, and fertilization. The 

process of spermatogenesis takes place in the testis and is initiated with the replication 

of spermatogonia (upper left). Spermatogonia differentiate into spermatocytes which 

undergo genetic recombination at meiosis producing haploid round spermatids. Round 

spermatids experience marked chromatin and morphological changes, including a 

extreme DNA condensation, the formation of the flagella and the acrosome, the 

elimination of most of the cytoplasm, and the adoption of a hydrodynamic shape, 

differentiating first into elongating spermatid, and finally into the testicular 

spermatozoon (left). Testicular spermatozoa are released to the epididymis, where they 

initiate a maturation process that includes the acquisition of motility, and other cellular 

functions and potentials. During the process of ejaculation, the mature sperm cell enters 

into close contact with the seminal fluid, which is constituted by accessory sex glands 

fluids and extracellular vesicles (left). The process of oogenesis takes place in the ovary 

(upper right). Oogonia replicate and differentiate into primary oocytes, which are 

present at birth, and remain arrested at profase I of meiosis. The developing follicle 

grows and progresses in order to give rise to the vesicular follicle, which contains the 

secondary oocyte, arrested at metaphase II of meiosis until ovulation (right). The entry 

of the sperm cell into the oocyte, through the penetration of the zona pellucida and 

oocyte plasma membrane, triggers the completion of oocyte meiosis (bottom). 
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Figure 2. Sperm proteins functionally involved in the processes of 

fertilization and pre-implantational embryo development.  Examples of the subset 

of 103 sperm proteins involved in the process of fertilization, as revealed by the 

functional analyses based on gene-specific Gene Ontology annotations (left). The 

proteins indicated here are functionally related to the correct acrosome reaction, binding 

of sperm to zona pellucida, penetration of zona pellucida, fusion of sperm to egg plasma 

membrane, and egg activation (left). Upon fertilization, the pre-implantational embryo 

development starts with the fusion of male and female pronuclei in the zygote, which 

develops during approximately 6 days in order to reach the blastocyst stage (upper right; 

ICM: inner cell mass). In humans, the embryo genome activation (EGA) takes place 

between 4-cell and 8-cell embryo stages, although minor gene activation occurs before, 

between 2-cell and 4-cell embryo stages (middle right). In addition, paternal genome is 

demethylated within the first 24 h of embryo development, much faster than the 

maternal genome (middle right). The analysis of the phenotype data from gene-null 

mice enclosed in the Mouse Genome Informatics database revealed the potential critical 

role of 59 sperm proteins in different processes occurring during the first divisions of 

the embryo (up to 8-cell stage; 11 proteins), the formation of the morula (29 proteins), 

and the development of the blastocyst (19 proteins), which are indicated in boxes 

(bottom right).  

 

Figure 3. Integrative analysis of proteomic and transcriptomic profiles from 

gametes and blastocyst. A. Venn diagram of the compiled protein profiles of human 

sperm, oocyte, and blastocyst. The venn diagram analysis shows 5362, 223 and 400 

proteins exclusively detected in sperm, oocyte, and blastocyst, respectively. A total of 
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444 proteins are indentified in all three proteomes, 659 are shared between sperm and 

oocyte, 406 between blastocyst and sperm, and 50 between blastocyst and oocyte. B. 

Assessment of the potential origin of blastocyst proteins according to the corresponding 

transcriptional pattern observed in human gametes and all the cellular stages of the pre-

implantational embryo development. The RNA abundance corresponding to blastocyst 

proteins has allowed the classification in three subgroups of a subset of them, according 

to their potential embryonic, maternal, or paternal origin: 1) Group 1: blastocyst 

proteins classified as embryonically derived (n=18), since their corresponding RNA was 

absent in both gametes, and the levels only increase after embryonic genome activation 

(EGA). The RNA levels of a component of this group, the claudin-6 (CLDN6), is 

shown in green. 2) Group 2: blastocyst proteins classified as maternally derived (n=42). 

Their corresponding transcripts levels were found with low levels in sperm and high 

levels in the oocyte. Additionally, the levels of those transcripts decrease during early 

stages of embryogenesis and they do not increase after EGA. The RNA levels of a 

component of this group, the protein FAM149A (FAM149A), is shown in yellow. 3) 

Group 3: blastocyst proteins classified as paternally derived (n=26). Their 

corresponding RNA was found with low levels in oocyte but high abundance in sperm. 

Moreover, the levels of those transcripts are low during early stages of embryogenesis 

and they do not increase after EGA. The RNA levels of a component of this group, the 

HMG box transcription factor BBX (BBX), is shown in blue. 

 

Figure 4: Human sperm proteins with potential extra-testicular origin.  

Examples of the subset of sperm proteins potentially derived from extra-testicular 

tissues (165 proteins from accessory sex glands and 286 from other extra-testicular 
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tissues; see Supplementary Table 7), according to RNA-seq and protein data enclosed in 

the Human Protein Atlas database (right). Sperm proteins are classified based on their 

involvement in processes related to fertilization and pre-implantational embryo 

development (blue squares), and epigenetic regulation (grey squares), according to the 

Gene Ontology annotations data enclosed in the Gene Ontology Consortium database. 

 

Supplementary Tables legends 

Supplementary Table 1. Compiled proteomes for human sperm, oocyte, 

embryo, cumulus cells, follicular fluid and mid-secretory endometrium. Proteins 

are identified with the protein accession code from the UniProtKB/Swiss-Prot database 

and the gene identification from the Gene Cards database. A total of 6871, 1376, 1300, 

179, 1394 and 2082 proteins were compiled for human sperm, oocyte, blastocyst, 

cumulus cells, follicular fluid, and mid-secretory endometrium, respectively.  

Supplementary Table 2. Gene Ontology terms included in the analyses of 

the sperm proteome. Gene Ontology terms released from Gene Ontology Consortium 

database (Release date 2016-12-07). 

Supplementary Table 3. Human sperm proteins with roles in fertilization 

and embryo development. Predicted functional roles for sperm proteins according to 

Gene Ontology annotations (Gene Ontology Consortion database), and the phenotype 

data of gene-null mice enclosed in the Mouse Genomic Informatics (MGI) database. A 

total of 103 proteins were associated to fertilization-related GO terms. A total of 93 

proteins are functionally related to embryo development, 59 of which were found in  the 

MGI database.  
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Supplementary Table 4. Human sperm proteins potentially involved in the 

epigenetic inheritance of acquired traits. A total of 560 sperm proteins are able to 

modulate gene expression. Those proteins are classified in 4 main groups according to 

the functional roles predicted by Gene Ontology annotations (Gene Ontology 

Consortium database): 1) Gene expression regulators including transcript factors and 

gene expression-related proteins (n=381), 2) DNA methylation modulators (n=25; 9 of 

them also could modulate histone posttranslational modifications (PTMs)), 3) Histone 

PTMs modulators (n=118), and 4) Regulators of sncRNAs biogenesis (n=36; 1 of them 

also could modulate histone PTMs).  At least 69 of those 560 proteins have a known 

role in spermatogenesis whereas 28 have been related to early embryogenesis. 

Supplementary Table 5. Potential origin of blastocyst proteins. The origin of 

173 out of the 1300 proteins detected in the blastocyst was predicted according to their 

identification within the proteomes of human sperm, oocyte and blastocyst, combined to 

the published RNA levels detected in each gamete and stages of the pre-implantational 

embryo development. A total of 108 blastocyst proteins were classified as paternally 

derived due to 1) their exclusively presence in sperm proteome and the absence of the 

corresponding RNA in all the RNAseq datasets assessed (n=82), or 2) their absence in 

oocyte or embryo related cells and fluids proteomes, and their corresponding RNAs 

detected solely in sperm RNA-seq dataset (n=26). Similarly, 47 blastocyst proteins were 

classified as maternally derived due to 1) their exclusively presence in oocyte proteome 

and the absence of the corresponding RNA in all the RNAseq datasets assessed (n=5), 

or 2) their absence in sperm or embryo related cells and fluids proteomes, and their 

corresponding RNAs detected at high levels in the oocyte, which progressively drop 

during the different early embryogenesis stages, without any increase upon the 
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activation of the embryo transcription. Moreover, those RNAs were not detected in 

sperm (n=42). Finally, 18 blastocyst proteins were classified as embryonically derived 

due to their absence in any of the proteomes and RNA-seq dataset assessed, except for 

those RNA-seq data corresponding to early embryo stages in which embryo 

transcription has been activated. 

 

Supplementary Table 6. Subset of sperm proteins with putative origin in 

accessory sex glands (n=165). The functional association of the sperm proteins to 

fertilization, embryo development, and epigenetics was predicted according to gene-

specific GO annotations (Gene Ontology Consortium). The expression of the protein in 

tissues from accessory sex glands was predicted according to the RNA and protein 

levels enclosed in the Human Protein Atlas database. 

Supplementary Table 7. Subset of sperm proteins with putative origin in 

tissues outside the male reproductive tract (n=286). The functional association of the 

sperm proteins to fertilization, embryo development, and epigenetics was predicted 

according to gene-specific GO annotations (Gene Ontology Consortium). The 

expression of the protein in tissues outside the male reproductive tract was predicted 

according to the protein levels enclosed in the Human Protein Atlas database. 

( 2003;  2004;  2005;  2006;  2007;  2007;  2007;  2007;  2007;  2007;  2008;  2009;  

2009;  2009;  2010;  2010;  2010;  2011;  2011;  2011;  2011;  2011;  2012;  2012;  

2013;  2014b) 
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