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Contributions of the subcortical auditory system to 
predictive coding and the neural encoding of speech 
Carles Escera1,2,3,*   

Prevalent views in cognitive neuroscience have highlighted the 
auditory cortex (AC) as the major neuroanatomical site for 
auditory cognition. Yet, this view suffers from ‘cortical myopia’ 
as it neglects the intricate functional architecture of the 
subcortical auditory pathway. Here, I will review evidence 
indicating that key anatomical structures in the auditory 
hierarchy, such as the inferior colliculus and the medial 
geniculate body, play major roles in statistical learning and 
predictive processing, thus contributing to auditory perception. 
Furthermore, mounting evidence supports these subcortical 
structures as involved in the neural encoding of speech sounds, 
including categorical perception, and in early language 
acquisition when the AC is still immature. I will argue that a brain 
potential known as frequency-following response provides a 
methodological tool to map high-level cognitive operations to 
the human subcortical auditory system. Future studies should 
emphasize the precise interplay between cortical and 
subcortical structures in supporting auditory cognition. 
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Introduction 
Deciphering the neural mechanisms of high-level audi
tory cognition is key to understand speech, to explain 
the joy of music and its role in organizing many aspects 
of our social behaviors, and to alleviate developmental 

disorders such as specific language impairment or dys
lexia. For several historical reasons, epistemological as
sumptions, and methodological limitations [1,2], the 
prevalent cognitive neuroscience view has attributed 
these functions to the auditory cortex (AC) [2]. Yet, this 
view suffers from ‘cortical myopia’ [1], as it neglects the 
complex functional architecture of the subcortical audi
tory pathway. Compared with other sensory systems, the 
auditory pathway entails an intricate network of neurons 
arranged in five synaptic relays before reaching the 
cortex, which feature ipsilateral, contralateral, recurrent, 
feedforward, and feedback projections [3]. Among these, 
the inferior colliculus (IC) of the auditory midbrain, 
because of its sophisticated anatomical connectivity [4], 
is considered the analog to the primary visual cortex [5], 
and has been shown to play a major role in encoding 
statistical regularities from the acoustic input [6,7], in 
gating speech sounds by experience-dependent plasti
city [8••], and in reading skills [9]. In turn, the medial 
geniculate body (MGB) in the thalamus has been im
plicated — through its anatomical connections to the 
amygdala — in voice identification and emotion content 
recognition in speech [10], and also in predictive coding  
[11] and reading disorders [12]. 

For their central role in driving complex computations 
on the acoustic input before it reaches the cortex, this 
review focusses on the contributions of the IC and the 
MGB to two prolific areas of research that involve the 
subcortical auditory system in high-level cognition: 
predictive perception and the neural encoding of speech. 
I highlight that a brain potential known as the fre
quency-following response (FFR), generated in the as
cending auditory system, provides a proxy of subcortical 
auditory function in humans. I further suggest that the 
FFR can be used to test cognitive auditory function in 
developing individuals (i.e. neonates and infants), before 
the AC reaches full maturation. Several other subcortical 
structures have been implicated in auditory cognition, 
such as the cerebellum [13,14] and the basal ganglia [15], 
among others [2], but these are beyond the scope of this 
review. 

Predictive coding in the subcortical auditory 
system 
Current views of perception posit that sensory systems rely 
both on prior experience and contextual factors to adaptively 
engage with the dynamic external environment, so that 
neural populations modulate their responses to sound based 

]]]] 
]]]]]] 

www.sciencedirect.com Current Opinion in Behavioral Sciences 2023, 54:101324 

http://www.sciencedirect.com/science/journal/23521546
mailto:cescera@ub.edu
https://twitter.com/@carles_escera
https://twitter.com/@Brainlab_UB
https://twitter.com/@UBneuroscience
https://www.sciencedirect.com/journal/current-opinion-in-behavioral-sciences/special-issue/1027MZ1ZCCV
https://doi.org/10.1016/j.cobeha.2023.101324
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2023.101324&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2023.101324&domain=pdf


on stimulus statistics. This is observed as suppressed or at
tenuated responses to repeated stimuli, whereas unexpected 
stimuli generate a prediction error signal [16]. According to 
this view, the brain is a Bayesian inference machine that 
computes the likelihood of sensory stimuli to occur based on 
previous history (i.e. predictions), with neural responses re
presenting the mismatch between the expected event and 
the actual sensory input (i.e. the prediction error) [16]. In the 
auditory modality, evidence supporting predictive coding 
comes through the investigation of mismatch responses in 
neuronal activity in animal models and brain potentials in 
human studies [17,18], research that has focused mostly on 
cortical responses [19,20]. However, single-unit recordings 
in the rat have identified a subset of neurons located in 
nonlemniscal IC that adapted rapidly to stimulus repetition 
but displayed strong responses to unexpected stimulus 
changes [21]. Evidence supporting statistical inference in 
the IC was subsequently found in humans using functional 
magnetic resonance imaging (fMRI) [7] and brainstem 
evoked potentials elicited to speech [6]. Further studies 
extended these findings to the MGB [7,11], and demon
strated that IC/MGB neurons can encode more complex 
regularities than simple stimulus repetition (i.e. a violation in 
a tone-alternation pattern [22] or abstract rules [23]), and 
that prediction error emerges gradually along the auditory 
hierarchy, from the IC to the AC [24••] (Figure 1, see [25] 
for converging results in marmoset monkeys using fMRI 
and electrocorticography). Compelling evidence supporting 
that IC neurons encode for sensory predictions comes from 
a recent study showing neuronal responses to auditory sti
muli that were actually not presented but highly predicted 
(i.e. omission responses) [26•]. 

A critical aspect in elucidating the role of the IC and 
MGB in auditory cognition is whether predictive re
sponses and prediction errors are computed in these 
subcortical structures or otherwise inherited from the AC 
via the corticofugal pathway, according to the predictive 
coding view positing top-down propagation of predic
tions [16]. The corticofugal pathway is a major bundle of 
descending fibers that project from several auditory 
cortical areas to distinct portions of the MGB and IC [4], 
and hence may play a role in driving predictions sub
cortically in a top-down manner. Existing evidence is 
inconclusive, though. Cryogenic reversible inactivation 
of the AC revealed that prediction errors, at least for 
simple stimulus statistics (i.e. mere stimulus repetition), 
remained intact in both the IC [27] and the MGB [28]. 
However, a recent study using a similar design to [24] 
and optogenetic inactivation of the cortico-collicular 
bundle in awake mice challenged these findings [29••]. 
Specifically, it was found that inhibiting AC feedback 
decreased prediction error in IC, whereas repetition 
suppression remained unaffected. The results of this 
study align with comprehensive theoretical views sug
gesting that predictions in the auditory system would be 
generated in the AC and propagated as a cascade of 

generative models to the subcortical pathways via the 
corticofugal system [30•,31]. However, these results are 
in contrast with others showing statistical learning of 
sound patterns in IC independent of corticofugal mod
ulation [32]. Furthermore, methodological differences 
(animal species vs. human participants, arousal 
status, and active vs. passive listening) as well as the 
complexity of the implicit statistics in the acoustic en
vironment investigated, may explain these dis
crepancies. A recent promising approach entailing the 
use of two concurrent independent generative models 
(one based on local statistics, one driven by the task at 
hand) and computational modeling, suggested that both 
locally generated and top-down- propagated predictions 
modulate human neural responses (fMRI) at each level 
of the auditory hierarchy (IC, MGB, and AC) [33]. Yet, 
future research is granted to disentangle the interplay 
between the different levels along the auditory hierarchy 
in subserving predictive auditory perception. 

Neural encoding of speech 
Another area of research that has highlighted a major role 
of the subcortical auditory system to auditory cognition 
relates to the neural encoding of speech sounds, and its 
contributions to the thorough analysis of the speech 
signal, as well as to human communication in a broad 
sense. A few studies using ultra-high-field fMRI have 
implicated the left MGB in speech recognition, both in 
quiet [34] and in noisy acoustic backgrounds [35], even 
in specific thalamic subdivisions (i.e. the tonotopically 
organized primary ventral MGB) [36], as well as in 
reading disorders [12]. The wealth of the evidence 
comes, however, from studies of the human speech–
brainstem response [37], albeit the anatomical precision 
of these studies is limited by the intrinsic spatial re
solution of the electroencephalography (EEG) approach 
(see the next section for a thorough discussion on the 
neural generators of these responses). These studies 
have shown the (upper) auditory brainstem to be in
volved in extracting pitch-relevant information [38], in 
mediating improved auditory discrimination in difficult 
listening conditions (speech in noise) [39,40], in defi
cient speech encoding on a number of developmental 
disorders, such as dyslexia [41] and autism [42], and in 
boosting speech processing by experience-dependent 
plasticity, particularly by music training [43,44] and bi
lingualism [45]. Of particular relevance are the studies 
that highlighted abnormal brainstem encoding of speech 
as predictors of future literacy skills [9,46]. Overall, these 
studies have emphasized the role of the collective au
ditory experiences along the lifespan [47], as well as the 
involvement of a cognitive–sensorimotor–reward cir
cuitry in driving top-down plasticity within a distributed 
but integrated subcortico-cortical network [8••]. Given 
the anatomical limitations mentioned above, an open 
question for future research remains whether these 
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plastic changes pertain to the entire network or are im
plemented at specific levels (i.e. IC, MGB), and whether 
different experiences impact on different network levels 
and/or on the encoding of different speech attributes. 

A key aspect in disentangling the role of the IC/MGB to 
high-level auditory cognition is whether they implement 
complex computational capabilities supporting categorical 
speech perception. Two approaches have been undertaken. 

Figure 1  

Current Opinion in Behavioral Sciences

Emergence of prediction errors along the auditory hierarchy. (a) Schematic illustration of the experimental setup. Isolated neurons in relays along the rat auditory 
neuraxis were recorded during the presentation of pure- tone sequences. Recordings were carried out in both the lemniscal (green) and nonlemniscal (purple) 
divisions at each station. Stimulation sequences (not shown) feature oddball conditions (a higher/lower low-probability ‘deviant’ tone occurring among a 
frequently occurring ‘standard’ tone), as well as several control conditions (ascending and descending ‘cascade’ sequences, and a ‘many-standards’ 
sequence, see [24••] for details). (b) Neuronal mismatch responses (deviant vs. standard, purple arrow) to the oddball sequence were decomposed using the 
control conditions, so that the comparison standard control isolated repetition suppression (cyan arrow), whereas the comparison deviant-control yielded the 
prediction error (orange arrow). (c) Prediction error indices (orange) and repetition suppression indices (cyan) were computed, for all hierarchical levels and 
anatomical divisions, by subtracting neural responses to the control from the deviant and to the standard from control, respectively, and represented as 
upward-positive for prediction error index (iPEs) and downward-positive for repetition suppression index (iRS). Notice, however, that for ICL and MGBL, 
prediction error yielded negative values (i.e. the control response was larger than the deviant response), and this was represented as orange bars invading the 
cyan area for repetition suppression. The results unveiled a gradual emergence of prediction error in the nonprimary auditory hierarchy, from IC, to MGB, and to 
AC, as well as in lemniscal AC, suggesting predictive coding as an intrinsic functional property of the entire auditory system. 
Adapted with permission from [24••] under the Creative Commons Attribution 4.0 International License.   
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In one of such approaches, brainstem responses to speech 
tokens are compared from individuals with different lin
guistic backgrounds. For example, Mandarin speakers were 
found to have more robust responses than nontonal lan
guage speakers to prototypical pitch contours [48]. Another 
study presented a very short ambiguous acoustic cue (a 
voice-onset time of 2 ms followed by 10 ms of silent gap) 
that was perceived as a different consonant by English (/b/) 
or Spanish (/p/) native speakers, yielding a linguistic effect 
on anatomically resolved brainstem responses recorded with 
magnetoencephalography (MEG) [49]. An alternative ap
proach implements a within-subjects design in which par
ticipants are presented with acoustic tokens within the 
continuum between two vowels. Using active — but not 
passive [50] — listening in conditions biasing the perceptual 
system, provided supporting evidence [51••]. Participants 
had to classify into two phonetic categories seven different 
tokens along the vowel continuum from /u/ to /a/, presented 
in random and serial (forward, backward) order conditions. It 
was hypothesized that serial order would warp the phone
tical space, facilitating categorical encoding; accordingly, 
brainstem responses to the same identical acoustic token 
were found to be enhanced in the serial compared with the 
random order condition [51••]. 

The two approaches discussed above and the results 
reviewed herein raise two interesting questions re
garding the involvement of the subcortical auditory 
system in categorical speech perception. First, it seems 
apparent that active listening (i.e. the involvement of 
high-level cognition through cortical attention) is ne
cessary for the categorical effects to be observed sub
cortically, hence involving the corticofugal bundles. This 
is further supported by studies showing enhanced 
source-level anatomically resolved brainstem responses 
(EEG) in active versus passive listening in challenging 
listening conditions (i.e. speech in noise [52•]), and by 
modulations of the brainstem response in noise ac
cording to arousal states, as indicated by cortical alpha  
[53] (for converging evidence involving task-modulation 
in gating speech recognition at the level of the MGB, see  
[35]). Second, studies using the across-groups approach, 
comparing participants with different linguistic back
grounds, support the long-term plasticity effects dis
cussed above. In turn, studies using the within-subjects 
design raise the question whether the observed sub
cortical tuning is, in the same vein, hardwired by the 
linguistic experience of the participant, or induced or 
boosted by top-down modulation, or both. The hard
wired alternative aligns with the long-term implications 
of the cross-linguistic studies, and supports the idea that 
the brainstem performs complex computations on its 
own, thus releasing cortical resources for higher-order 
functioning. 

A further role of the subcortical auditory system may be 
in fostering early language acquisition when the entire 

auditory system is not yet fully mature. Despite the 
auditory brain being responsive to external sounds 
during the third trimester of pregnancy, the AC experi
ences a profound development during the first year of 
life [54], in parallel with the myelination of the auditory 
pathway and the acoustic radiation [55]. In these con
ditions, prenatal hearing [56] as well as early exposure to 
a rich acoustic environment right after birth may boost 
rapid induced plasticity in the subcortical auditory 
system. Recordings of speech–brainstem responses in 
neonates [57] have shown that infants are born with a 
full capacity to track voice pitch already at birth [58], 
that music exposure during pregnancy improves this 
capacity [59•], and that encoding the temporal fine 
structure of speech develops rapidly during the first 
month of life, supporting experience-dependent plasti
city through acoustic exposure [60]. Whether or not this 
plasticity depends on corticofugal influence of an im
mature AC or is generated de novo by intrinsic sub
cortical processing awaits future investigation. 

The frequency-following response as a proxy 
of subcortical auditory processing 
The majority of the studies reviewed in the preceding 
section made use of scalp recordings of brainstem re
sponses elicited to speech sounds [37]. Technically, 
these are called FFR, as they reflect phase-locked 
compound neuronal activity to the spectrotemporal 
components of the acoustic signal, while it is transcribed 
in neuronal aggregates along the auditory neuraxis. 
Hence, capital for the argumentation above is proving 
that FFRs are generated in the auditory brainstem, as 
suggested by seminal studies [61]. A recent influential 
MEG study reported a major contribution from the AC, 
with a right dominance [62], yet, source modeling of the 
scalp-recorded FFR confirmed its anatomically dis
tributed generation, including the cochlear nucleus 
(CN), the IC, and the AC, and showed that the relative 
contribution of these sources varied as a function of 
sound frequency [63], owing to the synchronization 
cutoff of the AC at ∼100 Hz [64]. Confirming evidence 
comes from a recent study from our group, which in
vestigated the sources of the FFR through MEG re
cordings elicited to low- (89 Hz) and high- (333 Hz) tone 
frequencies [65•]. The results confirmed the contribu
tion of the entire auditory hierarchy (CN, IC, MGB, and 
AC) to the generation of the FFR, with the AC being not 
significantly activated for the high-frequency tone 
(Figure 2). Current views support this multiple-gen
erator hypothesis, and posit that their relative contribu
tions may vary depending on factors such as recording 
techniques, stimulus features, and participant profiles  
[66••]. By implementing appropriate methods, such as 
brainstem-constrained inverse solutions (e.g. [52•]), 
presentation of high-frequency stimuli [65•], or ana
lyzing neuronal activity elicited at very short latencies to 
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Figure 2  

Current Opinion in Behavioral Sciences

The FFR as a proxy of subcortical auditory function. Distributed source modeling of the neural generators of the FFR as resolved with MEG shows 
neural sources along the entire auditory hierarchy, which contribute to surface responses in a frequency-dependent manner [63•]. (a) The time domain 
MEG FFR elicited to pure tones of low (89 Hz, blue) and high (333 Hz, red). The plots represent the grand-average across n = 19 participants from one 
single MEG channel; the upper inset shows the FFT transformation of the MEG recordings, displaying maximal spectral power at the eliciting tone 
frequency. (b) Regions of interest (ROIs) in the subcortical auditory system used to compute the amplitude spectrogram during the FFR time course 
(shown in blue [left] and red [right] for the low- and high-frequency tones, respectively). For statistical analysis, the peak at the frequency of interest 
was compared with that in the spectrogram of the baseline (i.e. the MEG activity that preceded the stimulus presentation in each trial). Sources were 
considered activated if the FFR peak exceeded significantly that of the baseline. (ROIs for primary AC as well as control areas are not shown). (c) The 
auditory-to-control ratio — a scalar computed to estimate the degree of activation of each source and to each frequency (see [63•] for details) — 
highlights the distribution of sources contributing to the generation of the surface FFR. (d) Of note, for the high-frequency tone (red), the cortical source 
was not engaged, suggesting that appropriate manipulations of stimulus frequency yield genuine subcortical FFRs. 
Modified with permission from [63•]. 
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continuous speech streams (<  10 ms, precluding cortical 
contribution) [67,68], I suggest that the FFR still pro
vides a valuable proxy of subcortical auditory processing. 

Conclusions and future directions 
From the literature reviewed here, there is convincing evi
dence that both at the levels of midbrain and thalamus, 
complex computations occur subserving auditory cognition. 
Two independent areas of research support this view: pre
dictive coding and the encoding of speech sounds, and both 
were the focus of this review. However, it is also currently 
unclear whether these computations emerge intrinsically in 
the subcortical nuclei, or are inherited from the AC via the 
corticofugal pathways. Novel experimental designs com
bining predictions driven by local statistics and higher-order 
contingencies [33], such as those related to expectations or 
task instructions, may help clarifying the interplay between 
bottom-up and top-down contributions to these processes. 
Furthermore, the specific contributions of the IC and the 
MGB to both predictive coding and speech encoding should 
be extended, as only few studies have addressed the two 
structures simultaneously. For example, the FFR described 
above is a compound response recruiting contributions from 
the entire neuraxis, but the specific roles of the collicular 
and thalamic relays to speech encoding remain to be clar
ified. Other areas of research pertaining to auditory cognition 
were not addressed here because their previous little in
terest beyond the cortex, but may provide new perspectives. 
For example, research on statistical learning of language, 
particularly of lower-level components (such as phonemes 
and syllables), entails both the neural encoding of speech 
and a predictive coding perspective [23,69–71], and may 
hence bring novel insights. This research has focused on 
cortical activity [69], with some exceptions involving the 
hippocampus [72], and therefore invites an examination of 
the potential role of the subcortical auditory system in 
driving statistical learning of different linguistic structures. 

Several methodological developments have been put 
forward, such as the recording of anatomically resolved 
FFRs to speech [52•], the use of MEG [49,62,65•,66••], 
or brainstem recordings to continuous speech [67,68]. 
Both animal and human research addressed predictive 
coding, but animal research was scarce regarding the 
neural encoding of speech (e.g. [73]), and misses the 
complexity of linguistic processing carried by humans. 
However, animal studies have the advantage of allowing 
direct recording of activity in specific subdivisions of the 
anatomical stations of the subcortical auditory system 
(IC, MGB), while human EEG studies have poor spatial 
resolution, despite similar temporal accuracy. A potential 
overcoming for this latter limitation may come from the 
application of ultra-high-field (7 tesla or above) fMRI to 
map functional activation of resolved subregions of the 
subcortical auditory system. Although this approach has 
been used, with regard to auditory cognition, to map 

speech encoding the primary auditory thalamus [34,36], 
several studies have shown its potential to map the 
functional specialization of IC (its spatial frequency se
lectivity and tuning [74]), and MGB [75]. Furthermore, 
detailed ultra-high-field MRI 3D atlas with both acti
vation (fMRI) and connectivity (diffusion MRI) maps 
has been provided [76], which can guide future research. 
On the other hand, animal studies allow also the direct 
manipulation of neural activity, while attempts to inhibit 
the AC in humans to test genuine contributions of IC to 
speech encoding were unsuccessful [77]. 

In summary, both human and animal research im
plementing novel designs combining different gen
erative models of the sensory environment with complex 
sequences entailing linguistic statistics at different 
structural levels, appear as a promising strategy. Human 
research addresses the core of cognitive function, but the 
EEG methodology has poor spatial resolution, while 
MRI approaches miss the rich temporal dynamics in
trinsic to the acoustic environment. In contrast, animal 
research is limited about questions pertaining to cogni
tion, but may provide insights regarding the involvement 
of specific subdivisions of auditory stations, not yet 
available to human research. Together, these approaches 
will provide a comprehensive view of the intrinsic 
computations of the subcortical auditory system that 
contribute to auditory cognition. 
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