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ABSTRACT

We present our search for strong lens, galaxy-scale systems in the first data release of the Dark Energy Survey (DES), based on a
color-selected parent sample of 18 745 029 luminous red galaxies (LRGs). We used a convolutional neural network (CNN) to grade
this LRG sample with values between 0 (non-lens) and 1 (lens). Our training set of mock lenses is data-driven, that is, it uses lensed
sources taken from HST-COSMOS images and lensing galaxies from DES images of our LRG sample. A total of 76 582 cutouts were
obtained with a score above 0.9, which were then visually inspected and classified into two catalogs. The first one contains 405 lens
candidates, of which 90 present clear lensing features and counterparts, while the other 315 require more evidence, such as higher
resolution imaging or spectra, to be conclusive. A total of 186 candidates are newly identified by our search, of which 16 are among
the 90 most promising (best) candidates. The second catalog includes 539 ring galaxy candidates. This catalog will be a useful false
positive sample for training future CNNs. For the 90 best lens candidates we carry out color-based deblending of the lens and source
light without fitting any analytical profile to the data. This method is shown to be very efficient in the deblending, even for very
compact objects and for objects with a complex morphology. Finally, from the 90 best lens candidates, we selected 52 systems with
one single deflector to test an automated modeling pipeline that has the capacity to successfully model 79% of the sample within an
acceptable computing runtime.
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1. Introduction

Gravitational lensing is the phenomenon by which light rays are
deflected by a gravitational field. In so-called “strong” lens sys-
tems, it is possible to observe multiple images, arcs, or rings of
a distant source around a foreground galaxy, group, or cluster.
In such cases, these systems can serve as important tools in the
study of diverse and fundamental questions about the Universe.
Some examples are the study of luminous and dark matter com-
ponents of the deflector (Kochanek & Dalal 2001; Oguri et al.
2002; Davis et al. 2003; Jiménez-Vicente et al. 2015), measur-
ing the Hubble constant H0 using time delays (Falco et al.
1997; Vuissoz et al. 2007; Bonvin et al. 2017; Wong et al. 2020;
Millon et al. 2020) and constraining the dark energy equation
of state (Biesiada et al. 2010; Collett & Auger 2014; Cao et al.
2012, 2015). However, most of these applications are limited by
the paucity of known systems, as only a few hundred such sys-
tems are confirmed. Therefore, an effort on the discovery and
confirmation of more lenses is required.

Since the serendipitous discovery of the first lensed quasar
(Walsh et al. 1979), new discovery methods have been devel-
oped on the basis of novel datasets and techniques. Recent
searches have included: algorithms based on identifying lens
? Full Tables 2 and 3 are only available at the CDS via anonymous
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features such as ArcFinder (Alard 2006), RingFinder, which
searches for blue features blended with red light (Gavazzi et al.
2014), principal component analyses (PCA) of galaxies to search
for lensed features in the residual images using machine learning
(Joseph et al. 2014; Paraficz et al. 2016), and CHITAH, which
evaluates point source configurations as possible lensed images
using lens modeling (Chan et al. 2015). In recent years, the
growing amount of available data has motivated the use of more
automated techniques such as artificial neural networks (ANNs;
Rosenblatt 1957) and, in particular, convolutional neural net-
works (CNNs; LeCun et al. 1989). These latter techniques are
based on supervised machine learning algorithms capable of
solving complex problems such as pattern recognition or image
classification when a proper training set is provided.

The biggest challenge of using CNNs for lens finding is cre-
ating a robust training set that contains diverse lens systems for
positive examples and non-lens galaxies, including some that can
be mistaken as lenses like spirals, rings, and mergers, as nega-
tive examples. We currently lack sufficient numbers of known
examples of both lens systems and common false positives. The
only solution is to then simulate them as realistically as possi-
ble. This has already been addressed in several ways: fully sim-
ulating images using analytical profiles for both the lens and
source (Jacobs et al. 2019a), using an analytical profile for the
source but a real image of the lens Petrillo et al. (2019b), and
using real data for both the deflector and background galaxy
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(Cañameras et al. 2020). The fully analytical approach has the
advantage of having full control over all parameters to create a
sample as varied as possible, but lacks the ability to mimic fea-
tures of real images like artifacts, noise, and companion galaxies.

The main differences between previous searches depend
on mock simulation methods, use of single or multi-band
data, and the architecture design. Previous searches include:
the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS;
Jacobs et al. 2017), the Kilo Degree Survey (KiDS; Petrillo et al.
2017, 2019a,b; He et al. 2020), the Dark Energy Survey (DES)
Year 3 (Jacobs et al. 2019a,b), the Dark Energy Spectroscopic
Instrument (DESI) Legacy Imaging Surveys (Huang et al. 2020,
2021), the Pan-STARRS 3π survey (Cañameras et al. 2020), and
the VST Optical Imaging of the CDFS and ES1 fields (VOICE
survey; Gentile et al. 2021). Overall, these studies have shown
that CNNs are a promising tool for listing thousands of new lens
candidates. However, these tools rely on a high degree of human
visual inspection afterwards in order to compile the final can-
didate list. Improving the training process with realistic lenses
and diverse types of galaxies is therefore of key importance
when the next generation of surveys such as Euclid Space Tele-
scope (Laureijs et al. 2011) and the Rubin Observatory Legacy
Survey of Space and Time (LSST, LSST Science Collaboration
2009; Ivezić et al. 2019) start producing data. Current lens-
finding efforts, including some performed in simulated data
(Lanusse et al. 2018; Avestruz et al. 2019), serve as important
preparation for their advent, as it is expected that over 100 000
new strong lensing systems will be discovered (Collett 2015) and
a visual inspection process is not affordable.

In this work, our main aim is to find new strong-
lensing systems. As a secondary goal, we want to char-
acterize a subset of our false positives. We perform our
search in the footprint of the Dark Energy Survey (DES;
The Dark Energy Survey Collaboration 2005). The data descrip-
tion is presented in Sect. 2. Details of the simulation procedure
of our training sets are in Sect. 3. We present the details of both
the CNN training and validation in Sect. 4. We grade the par-
ent sample using the CNN model and we select the ones with
higher score to perform a dedicated visual inspection to iden-
tify the best lens candidates and subclassify false positives. In
Sect. 5, we give our visual classification procedure for the best
graded candidates from the CNN, presenting both the best lens
candidates and a compilation of ring galaxy candidates that will
help to improve future lens finding searches. Finally, in Sect. 6,
we show the results of an automatic modeling tool on a sample
of our best candidates.

2. Data selection

We used data from DES based on the Dark Energy Camera
(DECam, Honscheid & DePoy 2008; Flaugher et al. 2015) on
the Blanco 4-m telescope at Cerro Tololo Inter-American Obser-
vatory (CTIO), Chile. In brief, DECam is a 570 Megapixel cam-
era with a field of view of 2.2 square degrees and a pixel size of
0.27′′. Observations were performed in the optical grizY bands.
The first DES Data release (DES-DR1, Abbott et al. 2018) con-
tains images taken over the first three years of operation, cov-
ering an area of 5186 deg2. The images from DR1 have been
co-added and each filter re-scaled to have a fixed zero point of
30 mag.

We used the NOAO Data Lab (Fitzpatrick et al. 2016) ser-
vice to build our sample from the des_dr1.galaxies catalog
and selected a sample of luminous red galaxies (LRGs) in order
to maximize the lensing cross-section (e.g., Turner et al. 1984).
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Fig. 1. Color-color diagram of our parent sample of ∼19 million galax-
ies. The plot displays where most galaxies in our selection are located.
The green shaded area shows the density of galaxies from the parent
LRG sample. The green solid lines shows the 1, 2, 3, and 6σ contours.
The lens candidates and contaminants from this work are shown in over-
lay: Sure Lens (purple stars), Maybe Lens (open red triangles), and ring
galaxies (open cyan circles). See Sect. 5.3 for details.

To do so, we applied the following cuts in color and magnitude:
1.8 < g− i < 5, 0.6 < g− r < 3, 18 < r < 22.5, g > 20, i > 18.2,
where the magnitude used is the mag_auto column reported in
the DES data release. Our color selection is summarized in Fig. 1
and is similar to the one adopted by Jacobs et al. (2019b). How-
ever, we slightly widened the g − i range and adopted a brighter
magnitude limit in the r-band. This selection allows us to bet-
ter account for the contamination of the lens light by the bluer
color of any putative lensed source, but also increases the prob-
ability that other types of galaxies (e.g., mergers, spirals, or ring
galaxies) can be selected in the sample. The result is a sample
of 18 745 029 galaxies located in 10 388 coadded tiles from DES
DR1, which we refer to as the parent sample in this work. We
downloaded all the g, r, and i bands of these tiles, and generated
cutouts around the galaxies of 50 × 50 pixels, corresponding to
∼13 × 13′′. When a point spread function (PSF) is required for
the simulation process and modeling, PSFEx (Bertin 2011) is run
on the relevant coadd tile, extracting a model of the PSF from the
FITS image, allowing us to retrieve a PSF at any position on the
tile.

3. Simulated galaxy-scale lenses

Since our search for galaxy-scale strong lenses is based on a
CNN, we required a training set that mimics as closely as pos-
sible both the lenses we want to find and also the common
non-lensed systems. When simulating lenses, we adopted an
approach where the training set is data-driven, in the sense that
both the images of the lenses and the background sources are
obtained from real data. The outline of our procedure is as fol-
lows. First, we selected a sample of high-redshift background
galaxies with available high-resolution imaging and accurately
measured colors (Sect. 3.1). Then, we selected a sample of LRGs
that will act as deflectors and matched them to the background
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sources to create pairs of lens-source suitable for simulations
(Sect. 3.2). Finally, we lensed the source light using the lens
equation, whose parameters (deflection angles) are defined by
the lens, to produce a simulated image of a lens system that com-
bines images from both samples (Sect. 3.3).

3.1. Background galaxies selection

Our aim is to obtain realistic source galaxies, imaged at HST-
resolution, with color information and a high signal-to-noise
ratio (S/N). Such a catalog of background sources has already
been compiled by Cañameras et al. (2020). The galaxies in this
catalog were selected from the Galaxy Zoo catalog (Willett et al.
2017) and are also included in the COSMOS2015 photomet-
ric catalog (Laigle et al. 2016). All the objects categorized as
galaxies in these catalogs were picked, with no previous selec-
tion in color or magnitude, as the depth is limited by the
Galaxy Zoo selection, namely, down to F814W∼ 23.5. Stars
and artifacts were manually removed from the sample, but also
extended galaxies and galaxies with nearby companions were
removed, leaving a final sample of 52 696 objects. Spectro-
scopic redshifts were obtained from several follow-up surveys
(Lilly et al. 2007; Comparat et al. 2015; Silverman et al. 2015;
Le Fèvre et al. 2015; Tasca et al. 2017; Hasinger et al. 2018), as
well as photometric redshifts from Laigle et al. (2016) for the
ones lacking spectra.

To create high-resolution gri-images of our sources, we cre-
ated cutouts combining the morphological information from
HST/ACS F814W high-resolution images (Leauthaud et al.
2007; Scoville et al. 2007; Koekemoer et al. 2007) and the color
information from Hyper Suprime Cam (HSC) ultra-deep stack
images (Aihara et al. 2018). The detailed procedure to com-
bine the information from these two surveys is described in
Cañameras et al. (2020), who followed the steps described in
Griffith et al. (2012). In summary, HST/ACS F814W images
were aligned and rescaled as if they were observed in the HSC
i-band. These HSC images were then resampled to the resolu-
tion of the HST/ACS F814W images and were multiplied by
an illumination map obtained by dividing the HST/ACS F814W
image by the HSC i-band image. Each galaxy stamp has a size
of 10 × 10′′ and a pixel size of 0.03′′, that is, the HST resolution
and PSF but with the HSC observed colors. The morphology of
the source is the same in each band. Since the HST PSF is much
sharper than that of the ground-based DES images we do not
deconvolve our stamps from the HST PSF, which would intro-
duce noise and possible artifacts.

3.2. Lens-source association

Ideally, we would want spectroscopic redshift and velocity dis-
persions for each member of our LRG sample but the vast major-
ity are lacking this information. To cope with this limitation,
we performed a prediction of those parameters using a simple
K-nearest-neighbors (KNN) algorithm, assuming that other
galaxies with similar gri magnitudes will also have similar red-
shifts and velocity dispersions. For a reference data set where
colors, redshifts and velocity dispersions are available, the KNN
algorithm provides a match between the gri magnitudes and the
redshift and velocity dispersion of the galaxies. It then predicts
the redshift and velocity dispersions for new data based on the
K-objects with the most similar colors. We trained the algorithm
with 1 400 000 SDSS galaxies that match the color-magnitude
cuts of the parent sample and have redshift and velocity disper-
sion measurements available. We tested the model on another set
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Fig. 2. Redshifts and velocity dispersion distributions used for simula-
tions. Top panel: redshift distributions of the lenses (red) and sources
(blue) in the simulated training set. Bottom panel: lens velocity-
dispersion distribution, predicted from the K-nearest neighbor algo-
rithm (red) and shifted to match the criteria of pairing lenses and sources
(orange), as described in Sect. 3.2. We note that the actual lens velocity
dispersions used in the simulations are shifted to higher values, so that
lensing features can be seen even at the DES resolution.

of 99 382 spectroscopically-confirmed SDSS galaxies, obtaining
the predictions for the parameters from the ten nearest neighbors
in the gri color space of the training set. We found that the rms
scatter in the predictions was σz = 0.06 for the redshift, and
σvel = 69 km s−1 for the velocity dispersion. Finally, we used this
model to predict the most likely redshift and velocity dispersion
for each of our galaxies in the parent sample. The distributions
of the predicted redshifts and velocity dispersions are shown in
Fig. 2.

We then paired the LRGs with source galaxies, requiring that
our simulations have a uniform distribution in Einstein radii span-
ning 1.2′′ < θE < 3.0′′. We chose a conservative lower limit on θE
because we noticed that, given the average seeing in the gri bands
of 1.12′′, 0.97′′, and 0.88′′ respectively (Abbott et al. 2018), sim-
ulations with θE < 1.2 create lensing features that are too close
or blended with the lens galaxy, and can easily be mistaken as
non-lenses, that is, galaxies with extended disks. To evaluate θE
we use the redshift of the source galaxy, the redshift of the lens,
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and the velocity dispersion of the lens. To match a source to each
LRG, we first take a random lens galaxy from the parent sample
and compute the Einstein radii for all source galaxies. We then
formed lens-source pairs that produce Einstein radii falling only
within our desired bounds and filling bins that produce an uni-
form distribution. In case where no lens-source pairs satisfied the
θE conditions, we artificially increased the velocity dispersion of
the lens galaxy up to 1.5 times its original value. If still no pair sat-
isfied our criteria, we discarded the LRG. We note, as illustrated
in Fig. 2, that this results in a high bias of the velocity dispersion
distribution of the lenses. Although this procedure tends to pro-
duce lenses with dark matter halos larger than the predicted from
the actual galaxy velocity dispersion, this ensures that the lensing
features are clearly noticeable to the CNN.

Finally, we enforce the final Einstein radii distribution to be
uniform. In other words, our training set is not representative of
the true distribution of Einstein radii on the sky, but gives equal
probability to all possible values, allowing for more discriminat-
ing power in our trained CNN.

3.3. Lensing simulation

We then combined these components to create realistic images
of lenses. We adopted the singular isothermal ellipsoid (SIE)
as our lensing mass model, which is defined by the Einstein
radius (θE), the position angle (PA), and axis ratio converted
into a complex ellipticity (e1, e2), and the central position (x1,
x2). As mentioned before, the Einstein radius follows a uni-
form distribution, while the other parameters are acquired indi-
vidually according to the light distribution of each lens galaxy.
Our simulation toolbox uses the Python package Lenstronomy1

(Birrer et al. 2015; Birrer & Amara 2018). The first step is to
determine a simple but realistic representation for the mass of
the lensing object. The Einstein radius is calculated using the
lens and source redshifts as well as the lens velocity dispersion
of the lens derived in Sect. 3.2. The ellipticity parameters and
mass centroid are estimated by fitting an elliptical Sérsic pro-
file to the DES r-band image of the LRG. We optimized the fit-
ting procedure using 50 iterations of particle swarm optimization
(PSO; Kennedy & Eberhart 1995), with 50 particles. This simple
model provides us with parameters for a mass distribution that
broadly follows the light distribution of the brightest object in
the image. We note that limiting to 50 iterations results in ellip-
ticity parameters that are not perfect and that naturally mimic
the effect of deviations of the dark matter profile with respect to
the light, without introducing extra complexity in the simulation
pipeline. Even though it could produce a few lenses with exotic
properties, for instance, very elliptical mass profiles or unusually
large dark matter halos, it was found to be adequate for our goal
of building realistic simulations in the vast majority of the cases.

The second step is to deflect the light rays from the source
according to the lensing mass model. To ensure we can distin-
guish the final lensed source features against the lens galaxy
light, we first increased the original source brightness by one
magnitude. To decide where in the source plane our background
galaxy is located, we selected a random position inside a square
that encloses the caustic curves (curves that mark the location of
the maximum magnification and delimit the region inside which
a source will be multiply-imaged). Then, we performed a ray-
tracing simulation to map the source image onto the image plane
and we further convolved the resulting lensed source with the
relevant stamp PSF. To convert this image into the DES charac-

1 https://github.com/sibirrer/lenstronomy

Fig. 3. Examples of cutouts used to train the neural network Top: exam-
ples of simulated lenses based on real DES images. Stamps are ordered
by increasing Einstein radii (top-left to bottom-right). The top row cor-
responds to θE = 1.2–1.8′′, the middle row to θE = 1.8–2.4′′, and the
bottom row to θE = 2.4–3.0′′. Bottom: examples of LRGs used either as
non-lenses during the training of the CNNs (see Sect. 4.1) or as objects
onto which we inject a lensed source to build simulated lens systems,
as shown in the top panel. All the cutouts are 50 pixels on-a-side, cor-
responding to 13′′..

teristic pixel resolution, we down-sampled the pixels from 0.03′′
(HST) to 0.27′′ (DES), and re-scaled the flux to match the DES
zero points in each filter. As a last step, we added the convolved,
resized, and flux-normalized image of the lensed source to the
original image of the LRG lens. The latter has, by construction,
the right DES PSF and noise properties. Thus, our simulations
preserve the characteristics of the original image, such as back-
ground noise, seeing, the presence of artifacts, and neighbouring
galaxies or stars in the field of view.

To build the multi-band gri simulations, we used the same
mass model for all bands, with its parameters derived only from
the r-band, and lensed the source image in each band according
to this model. We then added the lensed source in each band to
the corresponding image of the lens taken from the DES images
in the g, r, and i bands. Our final set of simulated galaxy-scale
lenses consists of 100 000 systems with a uniformly distributed
Einstein radius in the range 1.2′′ < θE < 3.0′′. Examples of these
stamps are shown in Fig. 3, along with the non-lensed objects.

4. Lens finding using CNN

Artificial neural networks (ANNs; Rosenblatt 1957) consist of
an interconnected group of nodes which are typically organized
into the so-called input, hidden, and output layers. In particu-
lar, CNNs (LeCun et al. 1989) – which are especially good at
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solving image classification problems (He et al. 2015) – have
hidden layers that are of key importance, as they highlight the
patterns in the data using a series of convolutional, pooling, nor-
malization, and fully connected layers. The level of abstraction
in the pattern features increases with the depth of the convolu-
tional layers, assisting in the classification of objects into dif-
ferent classes. Here, we train a CNN to recognize strong lens
systems against isolated red galaxies.

4.1. CNN training

The training set, consisting of 50 × 50 pixel cutouts in each of
the gri-bands, is composed of two equal subsets: the first being
100 000 simulated lens cutouts from Sect. 3, and the other con-
taining LRGs that were not used in the simulation process. We
labeled our data with: 1 for lenses and 0 for non-lenses. We kept
20% of each sample as a validation set. Before training the CNN,
we pre-processed our data by normalizing each image brightness
to range between 0 and 1. We also augmented our sample by flip-
ping each image horizontally and vertically. Data augmentation
increases the probability that the network correctly classifies dif-
ferent orientations of the same image, but it does not transform
the CNN into a rotationally invariant one. To achieve this, a dif-
ferent architecture must be used that is not explored in this work.
The training process is performed using the Keras Deep Learn-
ing framework2.

Our CNN uses a model from the EfficientNet family
(Tan & Le 2020), which has been designed to achieve better per-
formance than other CNNs. The network of this model uses a
compound coefficient to scale the depth, width, and resolution,
which are key parameters for obtaining better accuracy and effi-
ciency. In particular, the EfficientNet implementation in Keras
counts with 8 different variants B0-B7, whose depth, width, and
resolution parameters have been carefully selected and tested
to produce good results. The complexity and requirements of
the models increase as we move from B0 to B7. As running a
more complex model also implies the use of more computational
resources, we decided to use an EfficientNet-B0, whose archi-
tecture is described in Tan & Le (2020), and is sufficient for our
classification task and the characteristics of our data. After this
CNN model, we added a sequence of fully connected hidden lay-
ers. The network has a total of 4 182 205 trainable parameters.

During training, the neural network learned how to grade
images of galaxies and distinguish between lenses and non-
lenses. At each iteration the network analyzed subsets of
32 images. When all iterations are completed through the entire
training set, it is counted as one epoch. Within each epoch, the
accuracy and loss of the model is monitored using the valida-
tion set. The next step is to minimize a binary cross-entropy loss
function using a stochastic gradient descent optimizer (Adam)
with a learning rate of 0.0001, and stop the training if either the
loss value does not improve by more than 0.0001 over 10 epochs
– or when 100 epochs are reached.

4.2. Evaluation of the CNN performance

The network provides a score, S CNN, between 0 and 1, for each
processed image. This means that those images classified as
lenses obtain S CNN ∼ 1 while non-lenses obtain S CNN ∼ 0.
The training process was performed in a single GPU Nvidia GTX
1080 Ti in about 8 hours. It converged, within our criteria above,
after 57 epochs and achieved a 99.9 (99.8) percent accuracy in

2 https://keras.io
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Fig. 4. Learning curves for the accuracy (top) and loss (bottom) for the
training (blue) and validation (red) sets, as a function of epoch. In the
case of loss, we crop the y-axis, but the initial training set loss is 0.76.

the training (validation) sets and a loss of 0.01 (0.02). This near-
perfect accuracy achieved in the training set might be understood
as overfitting, thus, to evaluate this possibility we compared the
loss and accuracy learning curves for the training and valida-
tion sets (Fig. 4). For both loss and accuracy we see that after
ten epochs the training set reaches a stable point with minimal
changes, while the validation set follows the same trend with a
small gap showing less accuracy and more loss than the training
set, as is expected. The lack of overfitting signs, that is, the training
loss continues decreasing or the validation loss starts increasing
again after several epochs, leading us to the conclusion that our
model is able to learn and generalize this classification problem.

In order to evaluate the performance of the CNN, we built
two test sets. The first one contains 40 000 cutouts with the same
characteristics as the training set, namely, half made up of simu-
lated lenses and half of LRGs. The latter has 636 cutouts where
half are known lenses or lens candidates (visually selected to
have noticeable lensing features) and half are LRGs not seen
by the CNN during training. The known lenses are taken from
the Master Lens Database3 and the candidates from Jacobs et al.
(2019a,b). The purpose of this second test set is to have a more
realistic idea of the performance of the CNN in grading real
strong lens systems instead of simulations. The distribution of
S CNN for both test sets (Fig. 5) shows that objects labeled as
lenses are concentrated around S CNN > 0.9 and non-lenses
around S CNN < 0.1, as expected.

To evaluate the number of lenses correctly identified, we
used a receiver operating characteristic (ROC) curve, (Fig. 6)
which shows the true positive rate (TPR) against the false posi-
tive rate (FPR), naturally both functions of the decision thresh-
old applied to the score. It illustrates the performance of a binary
classifier in discriminating between the two classes as the deci-
sion threshold is varied. The first test set shows a very good
performance reaching an accuracy of 99.7% and a loss of 0.02.
From the ROC curve we see that choosing S CNN = 0.5(0.9) gives
a TPR = 99.8% (99.4%) and a FPR = 0.21% (0.12%). On the
other hand, in the second test set the performance of the net-
work decreases obtaining an accuracy of 89.6%, and a loss of
0.44, with TPR = 76.1% (65.7%) and FPR= 0.31% (>0.01%)

3 http://admin.masterlens.org/index.php
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Fig. 5. CNN score (S CNN) distribution for the different datasets. Top
panel: S CNN distribution of both test sets: lens simulations (dashed line)
and real confirmed and candidate lenses (solid line). Both datasets con-
tain images labeled as lenses (purple lines) and real LRGs labeled as
non-lenses (red lines). The two test-sets are normalized to their corre-
sponding maximum value in the distribution. We shifted the x-axis of
the second test set distribution by 0.02 for clarity. Bottom panel: S CNN
distribution for the objects in the parent sample with scores above 0.5.
We crop the x-axis for visualization as 99% of the sample is below 0.5.

for S CNN = 0.5(0.9). Thus, while the accuracy in the second test
set is still high and the network did not grade any LRG above
0.9, the loss and TPR are significantly worse than for the dataset
with similar characteristics to the training set. We think that this
decrease in the performance of the CNN is because it was trained
to recognize lens simulations and (despite having been created
in a fully data-driven way) lacks the diversity and uniqueness of
some strong lens systems (e.g., multiple deflectors, distortions
produced by substructures or external sources, etc.). For exam-
ple, most of the false negatives in this second test set are compact
lens systems or have lensing features that are too faint to be prop-
erly recognized. Nevertheless, we found that our model is able
to generalize and accomplish the goal of successfully classifying
a high percentage of strong lens systems, although we are aware
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Fig. 6. ROC curve for the test set containing simulations (test set 1 in
red) along with the confirmed and candidate lenses (test set 2 in blue);
both datasets contain real LRGs as non-lensed examples. The FPR is
plotted on a logarithmic scale to aid visualization. The TPR and FPR
for S CNN = 0.5 (green) and S CNN = 0.9 (black) are also shown for each
set.

that in a realistic scenario we misclassify more objects compared
to the simulations (as Figs. 5 and 6 show).

When we applied the CNN to our parent sample, we found
that 98.6% of cutouts obtained S CNN ≤ 0.1, 133 322 obtained
S CNN ≥ 0.5 (Fig. 5, bottom panel), and 76 582 cutouts obtained
S CNN ≥ 0.9. The choice of S CNN ≥ 0.9 is driven both by the
ROC shown in Fig. 6, and also the resulting number of candi-
dates being reasonable for human inspection.

5. Visual inspection

The 76 582 cutouts scored above S CNN = 0.9 by the CNN were
visually inspected by seven of the authors of this work (K.R.,
E.S., B.C., F.C., C.L., J.C., and G.V.).

5.1. Visualization tools and guidelines

We created two visualization tools4: one to quickly select lens
candidates from many objects displayed simultaneously in a
mosaic configuration and one to visually inspect each individual
object in more detail and classify them into specific categories.

The mosaic tool simultaneously displays 100 color cutouts,
each of which the user can mark for selection. The user can
choose a random seed for displaying the images in a random
fashion on the grid, to avoid all users seeing each object at the
same location in the grid. This has the objective of preventing
any possible bias from the position of the object on the mosaic
coupled with the different level of concentration when looking
at many mosaics in a row. This turned out to be very efficient, as
illustrated by the “heat-map” of user grid selections displayed in
Fig. 7, which are fairly flat, with a small bias towards selecting
more objects from the top, bottom, and left row for this particu-
lar example. With the mosaic tool, we classified our sample into
only two categories, namely, objects that we determined to be
displaying potential strong-lensing features and the rest that we
discarded from any following step of the visual inspection.

4 https://github.com/esavary/Visualisation-tool
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Fig. 7. Heat-map for the normalized mean number of times that each
cell in the mosaic was clicked on, among all seven visual inspectors
during phase 1 of the visual inspection. The values in each cell were
obtained by calculating the mean of the total number of clicks per-
cell among the seven users; we normalized these values by a factor of
24.78 that represents the mean number of clicks in a cell for this specific
classification.

The second visualization tool allows us to inspect one by one
all lens candidates selected with the mosaic tool. In doing so, we
display the gri color stamps, which allow the user to change the
display scale and color map. With this tool, we can classify each
object into one of four categories: 1- sure lens, 2- maybe lens,
3- single arc, and 4- non-lens. In addition, we can define five sub-
categories for objects classified as non-lens: 1- ring, 2- spiral,
3- elliptical, 4- disk, and 5- merger.

In order to achieve a more consistent classification among
users, we all agreed to follow the same guidelines for the four
main categories. “Sure lens” is selected when the cutout shows
a clear strong lensing configuration without the help of a higher
resolution image. This means that several clear multiple images
can be identified or that there are signs of a counter-image.
“Maybe lens” is chosen if the object shows a promising lensing-
like configuration but a clear identification of multiple images
is not possible visually. This category also includes cases where
several objects or a single arc-like object lie on one side of the
central galaxy but no clear counter-image can be distinguished
on the other side. In this case, high-resolution imaging or spec-
troscopy will be required to decide whether it is a false positive
or a genuine lens. When there is a single image object or a single
arc far away from the central galaxy with signs of tangential dis-
tortion, the cutout goes to the category of “single arc”. Finally,
everything else that does not fit these categories is classified as
“non-lens”.

5.2. Visual selection procedure

We used both tools in four different phases to ensure that we
have a clean sample of not only potential lens candidates but also
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Fig. 8. Number of objects classified by a certain number of visual
inspectors in phase 1 (top panel: to select lenses and ring galaxies) and
phase 2 (bottom panel: to select only the ring galaxies from phase 1).
Objects selected by the seven visual inspectors represent a 100% in
agreement among users, while the sum along the different bins give us
the union, namely, the number of objects selected by at least one user.
The exact number in each bin is shown at the top of each bar.

a sub-sample of contaminants, such as ring galaxies, which are
a source of confusion for CNNs and a matter of debate among
visual inspectors. The different steps carried out to perform the
visual inspection are described below.

First, for the lens and ring galaxy selection we used the
mosaic tool. We selected from among the 76 582 cutouts all
objects that presented signs of lensing features or looked like
ring galaxies in one category and we discarded the rest. An aver-
age of 2478 cutouts were selected per visual inspector, the nor-
malized mean distribution of clicks per cell are shown in Fig. 7.
A total of 9210 objects was selected by at least one user, while
89 of them were selected by all the users unanimously (see
Fig. 8, top panel).

Second, for the ring galaxies selection we used the mosaic
tool to select only ring galaxies from the 9210 objects. A mean
of 230 cutouts were selected per visual inspector, but only
71 were classified by all seven, while a total of 1445 were
selected by at least one (see Fig. 8, bottom panel).

Next for the lens systems classification we visually inspected
all the 9210 objects selected in phase 1 using the one by one
visualization tool, looking specifically for lens systems. Here,
we showed again the classified ring galaxies from the previous
step as a consistency check (users should re-classify them as
rings, or at least not classify them as lenses). We classified each
object into: “sure lens”, “maybe lens”, “single arc”, and “non-
lens”. Optionally, if a non-lens was clearly identified by the user
as a spiral, merger or ring galaxy, the object was sub-classified
into the corresponding category. From this visual inspection,
we obtained a total of 275 “sure lens”, 2666 “maybe lens”,
2602 “single arc”, and 9125 “non-lens”, classified at least by
one visual inspector. In a unanimous agreement among the seven
visual inspectors, we counted only 6 “sure lenses”, 1 “maybe
lens”, 1 “single arc”, and 4716 “non-lens”. On the other hand,
K.R., E.S., B.C., F.C., and J.C. sub-classified 359 ring galaxies,
22 mergers, and 49 spirals with an agreement of 50% among
the visual inspectors. In Table 1, we summarize the individual
classification by category and subcategory of each user and in
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Table 1. Classification and sub-classification details per visual inspector during phase 3.

Classification User 1 User 2 User 3 User 4 User 5 User 6 User 7

Sure Lens 116 41 79 146 120 19 90
Maybe Lens 612 1355 492 691 849 203 141
Single Arc 654 1421 540 300 812 473 26
Non Lens 7828 6393 8099 8073 7429 8515 8953
Sub-classification
Spiral 33 100 651 59 – 35 –
Ring 713 111 393 364 – 563 –
Merger 112 9 246 70 – 15 –
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Fig. 9. Example of objects classified as “maybe lens” (ML) or “single arc” (SA) and sub-classified as part of the “ring galaxy”, “spiral”, or
“merger”, or “sure lens” category is shown in Fig. B.1. At the top of each image is the name of each system, while at the bottom, we show the
CNN score (S CNN) and visual inspection score (VIS) obtained in the corresponding category.

Fig. 9 we show examples of objects classified in each category
and sub-category, with the exception of “sure lens”.

Finally we implemented a group visual inspection. This last
step was included due to the lack of agreement among users for
the main classification categories (sure lens and maybe lens), as
Fig. 10 shows. In this figure, we can see, for example, that user 2
classified 1396 objects in both categories; this user stands as the
one that classified more cutouts as candidates, but the overlap

with other users is not higher than 321 (along with user 4 and
user 5). This step was performed by K.R., E.S., B.C., F.C., J.C,
and G.V. altogether. Using the one-by-one visualization tool, we
revised 2690 objects selected as “sure” or “maybe” lens (or both)
by at least one visual inspector. The aim was to obtain a final
selection of potential candidates that can be suitable for follow-
up high-resolution imaging and spectroscopic confirmation and
to avoid spending telescope time on false positives. We classified
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Fig. 10. Correlation among different classifiers for the categories “sure
lens” and “maybe lens” after phase 3. The values in the diagonal repre-
sent the total number of objects classified into both categories for each
user, while in the adjacent rows and columns the number of objects that
both users classified into the same category.

them into the two main categories as follows: 81 sure lenses
and 296 maybe lenses. This represents 0.5% of the sample with
S CNN ≥ 0.9 and 0.002% of the initial LRG selection sample.

An extra visual inspection step was performed for the cutouts
classified by the CNN with scores between 0.8 < S CNN < 0.9
(hereafter referred to as bin80) by K.R., E.S, and B.C. with
the purpose of quantifying how many objects we could have
missed by selecting only those with S CNN > 0.9. Similarly
to the previous analysis, we first used the mosaic visualization
tool to inspect the 17 779 cutouts, selecting 190 potential lens
candidates, which were then inspected one by one. A set of
24 objects were classified as lenses by at least one visual inspec-
tor and 115 as maybe lenses. Finally, K.R., E.S., B.C, F.C, J.C,
and G.V. conducted a group visual inspection of the 190 initially
selected candidates to compile a final sample with 9 sure lenses
and 19 maybe lenses that were then added to our candidate list.
In total, only 0.2% of the data visually inspected in the bin80
was considered as a lens candidate, while for all the objects with
S CNN ≥ 0.9 we selected 0.5% of the cutouts in the categories of
“sure” or “maybe” lenses. Furthermore, taking into account that
the amount of cutouts classified in the bin80 is about four times
smaller than those with S CNN ≥ 0.9, we concluded that the num-
ber of expected candidates with 0.8 < S CNN < 0.9 was very low,
showing that we reached a point of diminishing returns which
would make the additional human visual inspection of images
classified with S CNN < 0.8 ineffective.

5.3. Final catalogs

As a final product, we present two main catalogs: one containing
lens candidates and one containing ring galaxy candidates. We
assigned a visual inspection score (VIS) to each candidate, com-
puted using the percentage of visual inspectors that classified it
into a certain category. In the case of lens candidates, we used
the percentage of users that classified a system as either a “sure”
or a “maybe” lens. We summed up these percentages to obtain a
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Fig. 11. CNN score (S CNN) against the visual inspection score (VISL),
with their respective distributions for the final catalog of lens candidates
containing 405 systems. The distribution of the category “sure lens” is
in purple and “maybe lens” is in red, while in the scatter plot “sure lens”
systems are represented by stars and “maybe lens” systems by triangles.

“strong lensing percentage”. Then, we considered this percent-
age as the final visual inspection score for lens systems (VISL).
In the case of ring galaxies, we had candidates from step 2 (using
the mosaic tool) or step 3 (or both), based on the one-by-one
method). We averaged the percentage of users who classified
each object as a ring in each step and we present this as the final
visual inspection score for Rings (VISR). If the candidate was
selected only by one of the tools, the final score obtained is the
one corresponding to that classification (i.e. not the average).

The ultimate catalog of lens systems can be split in two cat-
egories, “sure lens” (SL) with 90 systems (Fig. B.1) that display
prominent lensing features and counterpart images and “maybe
lens” (ML) with 315 systems that show promising lensing fea-
tures but for which more evidence, such as higher resolution
imaging and spectra, is needed (see Fig. 9 for examples). From
the figures, we can conclude that a large portion of our candi-
dates are group- and cluster-scale lenses. This is mostly because
to be able to identify them in ground-based data, most of them
should have an Einstein radius above 1′′.

The CNN and visual inspection scores of both the SL and
ML candidates is shown in Fig. 11. Here, we clearly see that
most SL systems are clustered towards the upper right corner,
indicating that in general they obtained a high score from both
methods, while very few of them had either CNN scores below
0.95 or visual inspection scores below 0.5. On the other hand, a
large majority of ML objects did not receive a high visual inspec-
tion score, including two that originally were rejected by visual
inspectors, but upgraded after the group visual inspection. Sev-
eral of the ML objects still got very high scores from the CNN,
indicating that the visual inspection step is needed to refine the
final catalog.

In order to identify lens candidates that were not previ-
ously published, we cross-matched our final catalog with avail-
able astronomical databases such as Vizier (Ochsenbein et al.
2000), Simbad (Wenger et al. 2000), the Master Lens database,
and other lens-finding works, including Wong et al. (2018),
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Table 2. Excerpt of the ML.

Candidate RA Dec S CNN VISL
(a) References

DES J034130−513044 55.378331 −51.512411 1.00 1.00 [7] [10]
DES J034744−245431 56.935562 −24.908741 1.00 1.00 [9] [10]
DES J044408−655430 71.034707 −65.908598 1.00 1.00 This work
DES J010548−372542 16.450174 −37.428457 1.00 1.00 [10]
DES J015138−242628 27.909990 −24.441314 1.00 1.00 [18]
DES J024301−281642 40.754315 −28.278515 1.00 1.00 This work
DES J025052−552411 42.717809 −55.403251 1.00 1.00 [10]
DES J014358−470037 25.995764 −47.010469 1.00 1.00 This work
DES J001718+015818 4.325557 1.971828 1.00 1.00 [10]
DES J040349−352601 60.955780 −35.433763 0.99 1.00 This work
DES J225146−441220 342.943254 −44.205688 0.99 1.00 [7]
DES J002056−594016 5.236669 −59.671225 0.99 1.00 This work
DES J011758−052717 19.494766 −5.454924 0.98 1.00 [10] [13]
DES J015904−345009 29.767747 −34.835994 0.98 1.00 This work
DES J015009−030438 27.537943 −3.077297 0.98 1.00 [9] [10]

Notes. The catalog is available at the CDS. (a)Visual inspection score for strong lens systems.
References. [7] Diehl et al. (2017), [9] Jacobs et al. (2019b), [10] Jacobs et al. (2019a), [13] Huang et al. (2020), [18] Huang et al. (2021).

Jacobs et al. (2019a,b), Petrillo et al. (2019b), Cañameras et al.
(2020), Jaelani et al. (2020), Huang et al. (2020, 2021). As a
result, we found that our catalog contains 219 previously
identified candidates (74 SL, 145 ML), including at least
5 spectroscopically-confirmed systems and 186 new candidates
(16 SL, 170 ML). The detailed information for these systems can
be found in Table 2, available at the CDS.

Our second catalog is composed of ring galaxy candidates
classified during two different steps of the visual inspection
process. We identified 1445 ring galaxy candidates during the
second visual inspection step using the mosaic tool, while
985 galaxies were classified into this category by at least one
visual inspector using the one by one tool in the third step. A
cross-match between these two selections gave an intersection
of 854 galaxies for a total of 1 576 ring galaxies selected by at
least one user using either of the two methods. The final catalog
was built by selecting the objects picked by at least 50% of the
visual inspectors using the mosaic or the one by one tool, result-
ing in 539 ring galaxy candidates. In Fig. 9 we present the six
top-graded candidates and in Table 3, available at the CDS, we
detail the information for the full sample.

Finally a catalog using the classification “single arc” (SA)
will be created after a more detailed analysis of these objects, but
this is beyond the scope of the current work. We expect that this
catalog could serve as a probe for such works as Birrer (2021).

5.4. Lens-source decomposition

For ground-based observations of most strong lensing systems,
the light from the source and lens galaxies are blended. In order
to better visualize our 90 lens candidates in the SL catalog, we
designed a prototypical automated procedure for deblending the
light from lens and source galaxies based primarily on their
colors.

Due to the complexity of the light profile of the lensed
sources we chose to represent them in a non-parametric way
using undecimated isotropic wavelets (starlets, Starck et al.
2007), as implemented in the Multi-band morpho-Spectral Com-
ponent Analysis Deblending Tool MuSCADeT5 (Joseph et al.

5 https://github.com/herjy/MuSCADeT

2016). Starlets are a family of functions that allow free-form
modelling of images at various spatial scales and present advan-
tages for modelling smooth galaxy profiles as discussed in the
MuSCADeT paper. Estimating both color and morphology of
sources requires a large number of parameters, larger than the
number of pixels in the starlet-decomposed image, making it a
degenerate problem. To overcome this we use a combination of
the scarlet6 (Melchior et al. 2018) and MuSCADeT algorithms.
In both methods, multi-band images are modeled as sums of
factorised components, where each object, i, in an image has
a 2D surface brightness, S i, with as many pixels as there are in
the image bands, and a spectrum, Ai, with as many entries as
there are bands (see details in Melchior et al. 2018; Joseph et al.
2016), such that:

Y =
∑
i<o

AiS i + N, (1)

where Y is a multi-band cube of images, o is the number of
objects in the scene, and N is the noise map.

The strategy implemented in MuSCADeT only allows for
crude estimates of source colors, based on principal compo-
nent analysis of pixel fluxes. Instead, the scarlet software is
able to estimate the colors of each source in the field provided
that the morphology is constrained to be a monotonic profile.
Monotonicity of galaxy profiles from the center out does not suit
the description of complex lensed sources, hence the need for
MuSCADeT to model strongly lensed galaxies in a non-parametric
way coupled with sparse regularization. In short, MuSCADeT is
used to model the 2D profile of galaxy images, including a com-
plex lensed source, while scarlet recovers the colour of the
objects.
Scarlet requires detection of the brightest pixel of each

source to model, which is a challenging and ill-defined problem
in the case of strongly lensed galaxies, where lensed features
are often multi-modal and strongly blended with the deflector’s
light. In order to circumvent this issue and make sure we capture
(lensed) sources with a bluer spectrum than the central LRGs,
we allow scarlet to model one source with Starlets, initialized
with a “blue” spectrum. This allows scarlet to capture blue

6 https://github.com/pmelchior/scarlet
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Table 3. Excerpt of the ring galaxy candidates catalog is available at the CDS.

Candidate RA Dec S CNN VISR
(a)

DES J013040−160110 22.666806 −16.019599 1.00 1.00
DES J012733−151618 21.888203 −15.271692 1.00 1.00
DES J010723−151315 16.847733 −15.221047 1.00 1.00
DES J004346−304929 10.942121 −30.824795 1.00 1.00
DES J033913−260914 54.805084 −26.154158 1.00 1.00
DES J045112−262143 72.804088 −26.362060 1.00 1.00
DES J012542−231630 21.427496 −23.275137 1.00 1.00
DES J003809−224742 9.537798 −22.795153 1.00 1.00
DES J012843−350926 22.183211 −35.157252 0.99 1.00
DES J041502−404547 63.762073 −40.763330 0.99 1.00
DES J010902−450634 17.258607 −45.109657 0.98 1.00
DES J012746−444820 21.942424 −44.805651 0.98 1.00
DES J004837−330630 12.156848 −33.108576 0.98 1.00
DES J024746−243851 41.941910 −24.647757 0.97 1.00
DES J021101−315721 32.757447 −31.956016 0.97 1.00

Notes. (a)Visual inspection score for ring galaxy candidates.

features with complex morphologies that might not have been
detected due to blending, while limiting degeneracies with other
sources. The blue normalised spectra used for initialisation are
empirically set to [0.4, 0.4, 0.2], where each of the three values
reflect the relative contributions to g, r, and i bands respectively.
Other non-lensed sources are detected using the sep7 pack-
age (Bertin & Arnouts 1996). We thus run sep on a filtered
version of the images. The filtering is done by computing the
starlet decomposition of an image and setting to zero the coef-
ficients that contribute to low frequencies before reconstructing
the image. This amounts to a high pass filtering that favours peak
detection. The position of the brightest pixels of objects detected
by sep are fed as entries to scarlet. For each object detected
with sep, then scarlet estimates a spectrum (flux in each
band). From these spectra obtained with scarlet, we select the
bluest and reddest spectra by finding those that maximize the
scalar product between the normalized spectra [0.667, 0.333, 0]
(for blue) and [0, 0.333, 0.667] (for red). This ensures that
two components with different colors are extracted, with the
expectation that the red component features the morphology
of the LRG and its neighbours, while the blue component
extracts the morphology of the lensed star-forming background
galaxies.

The summary of the procedure for deblending strong gravi-
tational lens candidates is as follows:

The detection of sources in the image is done using the
source extraction package, sep (Bertin & Arnouts 1996) on a
starlet-filtered version of the image where only the first two lev-
els of the starlet decomposition are used. We set the detection
threshold to 1 noise standard deviation of the noise upon run-
ning sep. This may seem aggressive and as if it would poten-
tially lead to a shredding of the objects upon deblending, but
the smoothness of the images imposed by the PSF prevents
such an effect. Furthermore, shredding is not an issue as we
only intend to capture the spectra of the reddest and bluest
objects.

The initialization of scarlet sources takes one extended
source per detected object plus one starlet component with
blue spectra. Scarlet uses a target PSF of Gaussian pro-
file with a standard deviation of 0.5 pixel. This is the

7 https://github.com/kbarbary/sep

target resolution to which all bands are uniformly deconvolved
to.

The next step is to run Scarlet for up to 200 iterations and
extract spectra for each source in the field of view by simply
measuring the flux in each source. Then we identify the bluest
and reddest sources through scalar product with predefined red
and blue spectra. We run MuSCADeTwith the red and blue spectra
for 200 iterations. The threshold for starlet reconstruction is set
to 5 sigma of the standard deviation of the noise. This means
that the model reconstructs features that are 5 sigma above noise
levels.

Finally, we extract red and blue components by computing
the difference between the multi-band images and the model for
each MuSCADeT component. The details of the processing can be
found in the notebook that was used to generate these images:
Lens-Deblend.

The results for our best lens candidates are shown in Fig. B.1
and display for each system the red residuals, namely, the data
from which the blue model has been subtracted, and the blue
residuals, namely, the data from which the red model has been
subtracted. In the following, we refer to these as Rr and Rb,
respectively, defined as:

Rb, j∈{g,r,i} = Y j − Ar, jS r, j, (2)
Rr, j∈{g,r,i} = Y − Ab, jS b, j, (3)

where Ar, jS r, j and Ab, jS b, j are the models for the red and blue
components in each band j.

The results in Fig. B.1 show that the lens and source light
can be deblended efficiently without fitting any analytical profile.
The effectiveness of the method to deblend the profiles comes
mostly from the spectral decomposition of the objects and on
their representation on an array of pixels to which we apply
sparse regularization with wavelets (starlets). This procedure is
well suited to automated use in a pipeline but assumes that lensed
sources are significantly bluer than the lens light. This is the
case for most of our lenses as by construction our lens finding
method is based on a preselection of objects that favors such a
configuration. Still, we do have objects where the lens-source
color contrast deviates significantly from our assumption. In this
case the deblending works less efficiently and we see leakage of
flux between the lens and source. Another case of leakage, lead-
ing to sub-optimal deblending can be observed in systems where
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the image contains sources with colors different from those of
the lenses or sources. In this case, since the whole image is
modeled as two fields of light, the spectra of the color com-
ponents tends to offset towards an average spectrum that bet-
ter matches all the colors in the patch. This can be observed
in systems DES J013522-423223, DES J024911+004848, and
DES J010826-262019, where the blue components contain light
from the lens galaxies and contain objects with colors different
from that of the main deflector. These shortcomings are moti-
vation enough for further refinement of our deblending, in par-
ticular with focus on using scarlet to better model individ-
ual, non-lensed sources, which is beyond the scope of this paper.
Finally, it is important to emphasize that our light deblending
confirms our visual grading and does not discard any of our best
candidates.

6. Model

We developed an automated modeling pipeline in order to fur-
ther explore the highest rated lens candidates obtained from the
visual inspection. Our candidate sample is very heterogeneous,
containing galaxy, group, and cluster scale systems. Thus, in
order to perform this automatic modeling we split the sample and
selected through visual inspection only the images in which there
appeared to be a single lens galaxy as a deflector. The 52 images
selected for modeling are labeled with an “M” in the mosaics
of Fig. B.1. This pipeline allows us to efficiently model large
samples of lens candidates acquired in current and future lens
finding efforts and to explore the model parameter distributions
in search of meaningful trends.

6.1. Automated modeling pipeline

We modeled the images using single elliptical Sérsic profiles for
the light distributions of both the deflector and the source. For the
mass distribution of the deflector, we used a singular isothermal
ellipsoid profile (SIE), along with an additional external shear
component (γext). The simplicity of these profiles allows us to
model many lens candidates efficiently, while still fitting most
images well enough for us to observe large-scale trends in the
properties of the sample. The pipeline supports multi-band fit-
ting, so we fit the DES lens candidates using images in the g,
r, and i bands. We used a separate elliptical Sérsic profile for
each of the three photometric bands when fitting the deflector
and source light components, although we fixed the center posi-
tions between bands and we added priors to bound the semi-
minor and semi-major axes. The deflector mass profile is shared
across all bands.

The modeling pipeline is entirely written in Python and
it makes use of the Lenstronomy lens modeling package
(Birrer et al. 2015; Birrer & Amara 2018). For the param-
eter optimization, we used a particle swarm optimization
(PSO; Kennedy & Eberhart 1995), and to estimate the vari-
ances in the sample we used a Markov chain Monte Carlo
(MCMC) sampler. For each image, the pipeline first performed
a chain of pre-sampling PSOs before running the sampling
with the MCMC. The MCMC is performed using an affine-
invariant MCMC ensemble sampler (Goodman & Weare 2010;
Foreman-Mackey et al. 2013), which was implemented using the
emcee8 Python package.

In order to obtain realistic results on the parameters, we
introduced priors that punitively discourage extremes in some

8 https://github.com/dfm/emcee
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Fig. 12. Prior distributions for the effective radius (Reff) and the Sérsic
index (ns) used for constraining source light parameter values.

of the model parameter values. While we cannot make any def-
inite assumptions about the position angles of the Sérsic or SIE
profiles, we can use Gaussian priors on the ratio between the
semi-minor and semi-major axes, q. The Gaussian prior was
centered on a value of q̄ = 0.8, in accordance with the distri-
butions of 138 269 galaxies from the Galaxy And Mass Assem-
bly (GAMA) database that were modeled in Kelvin et al. (2012).
This prior is applied first to the r-band, and then to allow only
small variations between bands in the light components of the
model, the Gaussian prior of the other two bands is centered on
the result obtained in the r-band. We also used a similar Gaus-
sian prior method to constrain the deflector mass eccentricity
and position angle to values close to those of the deflector light.
Lastly, we also applied a prior distribution for the effective (half-
light) radius, Reff, and Sérsic index ns parameters of the source
light. The source priors we used came from the Sérsic parame-
ter distributions of 56 062 galaxies from the COSMOS survey.
This data was used as a training set in the development of the
GalSim9 software. (Rowe et al. 2015). We show these distribu-
tions in Fig. 12.

When modeling the lens candidates, it is common for image
cutouts to contain neighboring objects in the field of view that
are unrelated to the lens system. Light contamination from
these “satellites” can be mistaken as having originated from
the lensed source if not masked properly. In the literature, this
problem is handled differently by various authors. Shajib et al.
(2020) excluded systems contaminating satellites in their sam-
ple, and modeled only isolated lenses from the SLACS survey
(Auger et al. 2009). Nightingale et al. (2018) did not pre-select
isolated lenses but, instead, these authors masked all the pixels
outside of a circular region with a fixed radius of 3.9′′.

In our case, we designed the pipeline to be flexible in han-
dling a large variety of lens system configurations and sizes.
The steps of our masking procedure are illustrated in Fig. 13,
and begins with applying filters in order to identify the bright-
est regions in the image as well as their centroid locations. We
first applied a Laplacian of Gaussian (LoG) filter to detect areas
with rapid changes in flux. Next, we took all remaining pixels
with flux less than a threshold of six times the rms background
and set them to zero. This results in a final filtered image with
only the areas of the image containing the most light. We find
the centroid locations of these areas by finding the local max-
ima, or peaks, in the final filtered image. For our masking algo-
rithm we made use of both these peak locations as well as the
pixel values – these are labeled with black and red markings in
the bottom left panel of Fig. 13, respectively. The peak locations

9 https://github.com/GalSim-developers/GalSim
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Fig. 13. Illustration of the automated masking procedure using an exam-
ple DES image. In the upper row, we show (from left to right) the orig-
inal image, the image after applying an LoG filter, and the result of
setting pixels with flux below the threshold to zero. In the bottom row
we show in the leftmost frame the original image annotated with the
remaining pixels from the filtering step (red “+” marks), along with the
detected peaks (black “x” marks). In the middle we show the estimated
size of the lens system with a black circle, as well as the detected bright
pixels that are considered contaminant light. These pixels are then used
for the mask, and we show the areas covered in the rightmost panel by
setting the corresponding pixels to a large constant value.

are used first for determining the center of the lens system, that
is, the position of the deflector galaxy, and assume that this is
the peak detected object nearest to the image center. Because
the deflector is assumed to be an LRG, we use the reddest avail-
able band (i-band) for this step. Next, we take the detected peaks
in the bluest band (i.e., the g-band) to estimate the lens system
size. This is because the source galaxies in lens systems are usu-
ally younger and more active galaxies, meaning that the lensed
source light will be more prominent in the bluest image band.
We assume that the second closest detected peak to the center
is the first of the lensed images of the source. We also assume
that the furthest lensed image from the deflector is not more than
1.5′′ further out than the nearest one. Therefore, our estimated
lens system radius is the distance from the deflector to the clos-
est lensed source object plus 1.5′′. We show this estimation as a
black circle enclosing the lens system in the bottom middle panel
of Fig. 13.

Using the estimated size of the lens system from the g-band
image and the location of the deflector obtained from the i-band,
we create a circular mask for each band that is centered on the
deflector location and only covers detected bright pixels out-
side of the circular region with our determined size. The mask
itself is a boolean array with the same shape as the original data,
and has the value of zero at any pixel that is to be ignored in
Lenstronomy computations and ones everywhere else. In the
bottom right panel we illustrate the coverage of the mask by set-
ting all of the “ignored” pixels of the original image to a large
constant value.

On average, our pipeline took 4.3 hours to model a gri DES
system. This includes reading data, the masking process, and
performing the modeling sequence to find the best parameters
that describe the lens candidate.

6.2. Modeling Results

Using our automated pipeline, we modeled 52 of the systems
in the SL catalog that appeared to have only a single galaxy as a
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Fig. 14. Model best-fit parameter distributions for the lens mass, lens
light, and source light profiles. Results for which reduced χ2 ≤ 1.5 are
shown in green and those with reduced χ2 > 1.5 are displayed in red.
Top left: Einstein radii in arcseconds. Top right: External shear strength,
γext. Middle left: Sérsic half-light radii of the lens light. Middle right:
Sérsic indices of the lens light. Bottom left: Sérsic half-light radii of the
source light. Bottom right: Sérsic indices of the source light.

deflector. We show in Fig. B.2 a sequence of images for visualiz-
ing the modeling results in the r-band, including the correspond-
ing image, a reconstructed image, normalized residuals, conver-
gence map, and the reconstructed source light. In Table B.2, we
present the best model parameters obtained for each system, and
we show the obtained distributions for the Einstein Radii, the
external shear, and the effective radius and Sérsic index for the
lens and source light, in the histograms in Fig. 14.

We obtained acceptable fits for 41 systems, which represent
79% of the sample, and we observed 11 failures in the fitting,
which we define as fits with mean reduced χ2 per pixel above
χ2 = 1.5. In the lens mass components, we observed Einstein
Radii, RE, distributed between ∼1′′ and ∼3.5′′. For the external
shear strengths, we observed γext . 0.47 for all lenses, except for
one in which the fit failed. The distribution of the values have a
peak at 0.14 , these are typical shear values for strong lens sys-
tems (Keeton et al. 1997). For the effective radii, Reff and Sérsic
indices, ns, of the lens light profiles in the r-band, we observed
peaks at Reff ∼ 2′′ and ns ∼ 5, respectively. Because the CNN
searches selected lens systems from a catalogue of LRGs, we
expect to obtain deflector light parameters that are typical for
LRGs, and that is indeed what we recover. For the parameter dis-
tributions of the source light, we observe the effective radii and
Sérsic indices peaking at Reff ∼ 0.2′′ and ns ∼ 1, respectively.
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This is also the expected behavior for smaller, low-mass
galaxies that are usually dominating the lensed galaxy source
population.

When modeling these lenses, the primary source of failures
lies in the masking procedure. For example, the estimated size
for the lens system is either slightly too small or too large,
resulting in parts of the lensed source light being masked or
neighboring contaminants not being masked and instead treated
as lens features. This has happened for four systems with
failed models (DES J060653−585843, DES J015216−583842,
DES J032216−523440, and DES J051047−263222) and
for two considered to be characterized by acceptable fits
(DES J034713−453506 and DES J040822−532714). Since it is
common for images to contain companion objects very close to
the lens systems, there is a small margin for error in determin-
ing the lens system size. For the system, DES J012042−514353,
the contaminant is actually residing among the lensed images
of the source, a situation which cannot simply be handled
with a more precise measurement of the lens size. A method
would be needed for better untangling the contaminant light
from the lens features. Finally, there are two lens systems
(DES J010553−053419, DES J041809−545735) in which the
contaminant light distributions were spread out enough that the
mask failed to adequately cover all this light. In general, we need
to improve our masking procedure to avoid these problems dur-
ing an automatic fitting of the lens. In the meantime, for all of
the systems for which the masking algorithm did not perform
well, we recreated masks by hand and performed the modeling a
second time. These results are shown in the rows directly below
the original results for the specific system and both sets of results
are enclosed in a red dashed box in Fig. B.2. Each time, we see
a significant improvement in the residuals after using the better
mask. On the other hand, the rest of the models that are consid-
ered as failures (DES J010659−443201, DES J021159−595624,
DES J024803−061606, and DES J202855−523118) do not show
an obvious reason for it, but are likely due to the compactness of
the system, faint lens features, or the complexity in the shape
of the source. For these cases we need further investigation to
find a general solution to improve their models in the automatic
pipeline.

7. Conclusions

We used DES-DR1 to search for galaxy-scale strong lensing sys-
tems using a CNN that carries out a binary classification of opti-
cal images in the g, r, and i bands. In doing so, we targeted mas-
sive galaxies, that is, LRGs, which were selected using a wide
color-magnitude cut accounting for realistic color contamination
by the putative background star-forming blue galaxies.

The design of our training set was data-driven in the sense
that real DES images of LRGs were used to mock the light distri-
bution of the lens plane. Real images of galaxies from the COS-
MOS HST were used to mock lensed sources. This helps ensure
diversity in colors and morphologies for the sources and lenses,
but also preserves the sky background characteristics, galaxies,
or stars acting as companions, as well as any artifacts in the
images.

We used these data-driven simulations as positive examples
to train a CNN while using a portion of the LRG sample as neg-
ative examples, despite some previous searches that included as
negative examples other types of galaxies. After analyzing the
results from the visual inspection, we determined that the lack
of representation of other types of galaxies was not important,
as these were not the most relevant source of false positives. In

fact, LRGs with bluish satellites near the line-of-sight are our
most important contaminants. The CNN was trained and vali-
dated using a total of 200 000 images, half of them being mocked
lens systems labeled as 1 and the other half being LRGs labeled
as 0. Evaluating our model on a test set built from images with
the same characteristics of the training set gave us an accuracy
of 99.7%. On the other hand, a small test set built with 300 lens
candidates and the same proportion of LRGs gives us a more
realistic evaluation reaching an accuracy of 89.6%.

Applied to the 18 745 029 LRGs drawn from our color-
magnitude selection, we obtained 76 582 images with CNN
scores above or equal to 0.9, that several authors visually
inspected. To do so, we created guidelines to separate them into
different categories: “sure lens” (SL), “maybe lens” (ML), “sin-
gle arc” (SA), “non-lens” (NL), and subcategories: “ring galaxy,”
“spiral galaxy,” and “merger” for objects falling in the “non-
lens” category. To perform the classification, we used a mosaic
visualization tool displaying 100 images at once, as well as a
one-by-one visualization tool that displayed the color compos-
ite image and each band for one object at a time. We classified
0.5% of the 76 582 images as lens candidates, with 81 falling
in the SL category and 296 in the ML category. Additionally,
we inspected the 17 779 cutouts with a CNN score in the range
0.8 < S CNN < 0.9, with only 0.2% of the images classified as
lens candidates, that is, 9 SL objects and 19 ML. The visual
inspection of these low-score lenses allowed us to conclude that
the reward for inspecting images with scores below 0.9 was very
poor compared with the amount of work. We therefore did not
consider systems with even lower scores at all.

From our visual inspection, we created two main catalogs:
a lens candidates catalog and a ring galaxy candidates cata-
log, the latter being our main source of contaminants. The first
catalog contains a total of 405 lens candidate systems: 90 SL
and 315 ML. Out of these, 186 were totally new systems and
219 were identified (but not necessarily confirmed) in previous
searches. We deblended the lens and source light for our 90 SL
systems using the MuSCADeT software, which does not involve
any profile fitting, but uses the color contrast between the lens
and source together with sparse regularization. This was success-
ful in deblending most of the cases, where there were clear dif-
ferences in the colors of the lens and source. The second catalog
contains 539 ring galaxy candidates. We expect to use this ring
catalog in the future to improve the training of machine learning
algorithms in the recognition between lenses and ring galaxies.
Still, 539 objects is not a sufficient sample for training CNNs
and, thus, furthers work with, for instance, generative adversar-
ial networks, is likely to be needed.

Finally, we selected, from the SL category, the 52 systems
that apparently had one well-defined galaxy as a deflector to test
an automated modeling pipeline. The relatively simple SIE +
γext and elliptical Sérsic profiles used in the modeling appear
to be sufficient in describing these lens systems, and additional
complexity is not necessary for the purposes of this automated
modeling pipeline, at least with the image quality of DES-DR1.
We successfully modeled 41 of these systems, while the other 11
failed mainly due to problems in the masking algorithm, espe-
cially in the estimation of the lens system size. To address these
failures, we plan improvements in a future version of the pipeline
including the use of the decomposed images from MuSCADeT to
initialize the code and find the correct position and size of the
system.

The outcomes of this lens finding work in DES-DR1 include
a catalog with 405 meticulously selected lens candidates that can
serve as a start for spectroscopic confirmation. In our selection,
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we did our best to privilege quality of the candidates over their
quantity. The methods and tools studied, developed, and pre-
sented here do have room for improvement, but they serve as
a preview of what can soon be achieved for the future genera-
tion of surveys, such as LSST, Roman telescope, and the Euclid
mission.
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Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111
Jacobs, C., Glazebrook, K., Collett, T., More, A., & McCarthy, C. 2017,

MNRAS, 471, 167
Jacobs, C., Collett, T., Glazebrook, K., et al. 2019a, ApJS, 243, 17
Jacobs, C., Collett, T., Glazebrook, K., et al. 2019b, MNRAS, 484, 5330
Jaelani, A. T., More, A., Oguri, M., et al. 2020, MNRAS, 495, 1291
Jiménez-Vicente, J., Mediavilla, E., Kochanek, C. S., & Muñoz, J. A. 2015, ApJ,

806, 251
Joseph, R., Courbin, F., Metcalf, R. B., et al. 2014, A&A, 566, A63
Joseph, R., Courbin, F., & Starck, J. L. 2016, A&A, 589, A2
Keeton, C. R., Kochanek, C. S., & Seljak, U. 1997, ApJ, 482, 604
Kelvin, L. S., Driver, S. P., Robotham, A. S. G., et al. 2012, MNRAS, 421, 1007
Kennedy, J., & Eberhart, R. 1995, in Proceedings of ICNN’95 - International

Conference on Neural Networks, 4, 1942
Kochanek, C. S., & Dalal, N. 2001, arXiv e-prints [arXiv:astro-ph/0111401]
Koekemoer, A. M., Aussel, H., Calzetti, D., et al. 2007, ApJS, 172, 196
Laigle, C., McCracken, H. J., Ilbert, O., et al. 2016, ApJS, 224, 24
Lanusse, F., Ma, Q., Li, N., et al. 2018, MNRAS, 473, 3895
Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv e-prints

[arXiv:1110.3193]
Le Fèvre, O., Tasca, L. A. M., Cassata, P., et al. 2015, A&A, 576, A79
Leauthaud, A., Massey, R., Kneib, J.-P., et al. 2007, ApJS, 172, 219
LeCun, Y., Boser, B., Denker, J. S., et al. 1989, Neural Comput., 1, 541
Lemon, C., Auger, M. W., McMahon, R., et al. 2020, MNRAS, 494, 3491
Li, R., Napolitano, N. R., Tortora, C., et al. 2020, ApJ, 899, 30
Lilly, S. J., Le Fèvre, O., Renzini, A., et al. 2007, ApJS, 172, 70
Limousin, M., Cabanac, R., Gavazzi, R., et al. 2009, A&A, 502, 445
LSST Science Collaboration (Abell, P. A., et al.) 2009, arXiv e-prints

[arXiv:0912.0201]
Maturi, M., Mizera, S., & Seidel, G. 2014, A&A, 567, A111
Melchior, P., Moolekamp, F., Jerdee, M., et al. 2018, Astron. Comput., 24, 129
Millon, M., Galan, A., Courbin, F., et al. 2020, A&A, 639, A101
More, A., Cabanac, R., More, S., et al. 2012, ApJ, 749, 38
More, A., Oguri, M., Kayo, I., et al. 2016, MNRAS, 456, 1595
Nightingale, J. W., Dye, S., & Massey, R. J. 2018, MNRAS, 478, 4738
Nord, B., Buckley-Geer, E., Lin, H., et al. 2020, MNRAS, 494, 1308
Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23
Oguri, M., Taruya, A., Suto, Y., & Turner, E. L. 2002, ApJ, 568, 488
Paraficz, D., Courbin, F., Tramacere, A., et al. 2016, A&A, 592, A75
Petrillo, C. E., Tortora, C., Chatterjee, S., et al. 2017, MNRAS, 472, 1129
Petrillo, C. E., Tortora, C., Chatterjee, S., et al. 2019a, MNRAS, 482, 807
Petrillo, C. E., Tortora, C., Vernardos, G., et al. 2019b, MNRAS, 484, 3879
Rosenblatt, M. 1957, Proc. Nat. Acad. Sci., 43, 989
Rowe, B. T. P., Jarvis, M., Mandelbaum, R., et al. 2015, Astron. Comput., 10,

121
Scoville, N., Abraham, R. G., Aussel, H., et al. 2007, ApJS, 172, 38
Shajib, A. J., Treu, T., Birrer, S., & Sonnenfeld, A. 2020, MNRAS, 503, 2380
Silverman, J. D., Kashino, D., Sanders, D., et al. 2015, ApJS, 220, 12
Sonnenfeld, A., Chan, J. H. H., Shu, Y., et al. 2018, PASJ, 70, S29
Starck, J.-L., Fadili, J., & Murtagh, F. 2007, IEEE Trans. Image Process., 16,

297
Tan, M., & Le, Q. V. 2020, arXiv e-prints [arXiv:1905.11946]
Tasca, L. A. M., Le Fèvre, O., Ribeiro, B., et al. 2017, A&A, 600, A110
The Dark Energy Survey Collaboration 2005, arXiv e-prints

[arXiv:astro-ph/0510346]
Turner, E. L., Ostriker, J. P., & Gott, J. R. I. 1984, ApJ, 284, 1
van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13,

22
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261
Vuissoz, C., Courbin, F., Sluse, D., et al. 2007, A&A, 464, 845
Walsh, D., Carswell, R. F., & Weymann, R. J. 1979, Nature, 279, 381
Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9
Willett, K. W., Galloway, M. A., Bamford, S. P., et al. 2017, MNRAS, 464, 4176
Wong, K. C., Sonnenfeld, A., Chan, J. H. H., et al. 2018, ApJ, 867, 107
Wong, K. C., Suyu, S. H., Chen, G. C. F., et al. 2020, MNRAS, 498, 1420

A73, page 15 of 41

https://doi.org/10.26093/cds/vizier
https://github.com/herjy/scarlet_extensions/releases/tag/paper
https://github.com/herjy/Lens_deblend/releases/tag/prototype
http://linker.aanda.org/10.1051/0004-6361/202142119/1
http://linker.aanda.org/10.1051/0004-6361/202142119/2
https://arxiv.org/abs/astro-ph/0606757
http://linker.aanda.org/10.1051/0004-6361/202142119/4
http://linker.aanda.org/10.1051/0004-6361/202142119/5
http://linker.aanda.org/10.1051/0004-6361/202142119/6
http://linker.aanda.org/10.1051/0004-6361/202142119/7
http://linker.aanda.org/10.1051/0004-6361/202142119/8
http://linker.aanda.org/10.1051/0004-6361/202142119/9
http://linker.aanda.org/10.1051/0004-6361/202142119/10
http://linker.aanda.org/10.1051/0004-6361/202142119/11
http://linker.aanda.org/10.1051/0004-6361/202142119/12
http://linker.aanda.org/10.1051/0004-6361/202142119/13
http://linker.aanda.org/10.1051/0004-6361/202142119/14
http://linker.aanda.org/10.1051/0004-6361/202142119/15
http://linker.aanda.org/10.1051/0004-6361/202142119/16
http://linker.aanda.org/10.1051/0004-6361/202142119/17
http://linker.aanda.org/10.1051/0004-6361/202142119/17
http://linker.aanda.org/10.1051/0004-6361/202142119/18
http://linker.aanda.org/10.1051/0004-6361/202142119/18
http://linker.aanda.org/10.1051/0004-6361/202142119/19
http://linker.aanda.org/10.1051/0004-6361/202142119/20
http://linker.aanda.org/10.1051/0004-6361/202142119/21
http://linker.aanda.org/10.1051/0004-6361/202142119/22
http://linker.aanda.org/10.1051/0004-6361/202142119/23
http://linker.aanda.org/10.1051/0004-6361/202142119/24
http://linker.aanda.org/10.1051/0004-6361/202142119/25
http://linker.aanda.org/10.1051/0004-6361/202142119/26
http://linker.aanda.org/10.1051/0004-6361/202142119/26
http://linker.aanda.org/10.1051/0004-6361/202142119/27
http://linker.aanda.org/10.1051/0004-6361/202142119/28
http://linker.aanda.org/10.1051/0004-6361/202142119/28
http://linker.aanda.org/10.1051/0004-6361/202142119/29
http://linker.aanda.org/10.1051/0004-6361/202142119/30
http://linker.aanda.org/10.1051/0004-6361/202142119/31
http://linker.aanda.org/10.1051/0004-6361/202142119/32
http://linker.aanda.org/10.1051/0004-6361/202142119/33
https://arxiv.org/abs/1512.03385
http://linker.aanda.org/10.1051/0004-6361/202142119/35
https://arxiv.org/abs/0810.3600
http://linker.aanda.org/10.1051/0004-6361/202142119/37
http://linker.aanda.org/10.1051/0004-6361/202142119/38
http://linker.aanda.org/10.1051/0004-6361/202142119/39
http://linker.aanda.org/10.1051/0004-6361/202142119/40
http://linker.aanda.org/10.1051/0004-6361/202142119/41
http://linker.aanda.org/10.1051/0004-6361/202142119/42
http://linker.aanda.org/10.1051/0004-6361/202142119/43
http://linker.aanda.org/10.1051/0004-6361/202142119/44
http://linker.aanda.org/10.1051/0004-6361/202142119/45
http://linker.aanda.org/10.1051/0004-6361/202142119/45
http://linker.aanda.org/10.1051/0004-6361/202142119/46
http://linker.aanda.org/10.1051/0004-6361/202142119/47
http://linker.aanda.org/10.1051/0004-6361/202142119/48
http://linker.aanda.org/10.1051/0004-6361/202142119/49
http://linker.aanda.org/10.1051/0004-6361/202142119/50
http://linker.aanda.org/10.1051/0004-6361/202142119/50
https://arxiv.org/abs/astro-ph/0111401
http://linker.aanda.org/10.1051/0004-6361/202142119/52
http://linker.aanda.org/10.1051/0004-6361/202142119/53
http://linker.aanda.org/10.1051/0004-6361/202142119/54
https://arxiv.org/abs/1110.3193
http://linker.aanda.org/10.1051/0004-6361/202142119/56
http://linker.aanda.org/10.1051/0004-6361/202142119/57
http://linker.aanda.org/10.1051/0004-6361/202142119/58
http://linker.aanda.org/10.1051/0004-6361/202142119/59
http://linker.aanda.org/10.1051/0004-6361/202142119/60
http://linker.aanda.org/10.1051/0004-6361/202142119/61
http://linker.aanda.org/10.1051/0004-6361/202142119/62
https://arxiv.org/abs/0912.0201
http://linker.aanda.org/10.1051/0004-6361/202142119/64
http://linker.aanda.org/10.1051/0004-6361/202142119/65
http://linker.aanda.org/10.1051/0004-6361/202142119/66
http://linker.aanda.org/10.1051/0004-6361/202142119/67
http://linker.aanda.org/10.1051/0004-6361/202142119/68
http://linker.aanda.org/10.1051/0004-6361/202142119/69
http://linker.aanda.org/10.1051/0004-6361/202142119/70
http://linker.aanda.org/10.1051/0004-6361/202142119/71
http://linker.aanda.org/10.1051/0004-6361/202142119/72
http://linker.aanda.org/10.1051/0004-6361/202142119/73
http://linker.aanda.org/10.1051/0004-6361/202142119/74
http://linker.aanda.org/10.1051/0004-6361/202142119/75
http://linker.aanda.org/10.1051/0004-6361/202142119/76
http://linker.aanda.org/10.1051/0004-6361/202142119/77
http://linker.aanda.org/10.1051/0004-6361/202142119/78
http://linker.aanda.org/10.1051/0004-6361/202142119/78
http://linker.aanda.org/10.1051/0004-6361/202142119/79
http://linker.aanda.org/10.1051/0004-6361/202142119/80
http://linker.aanda.org/10.1051/0004-6361/202142119/81
http://linker.aanda.org/10.1051/0004-6361/202142119/82
http://linker.aanda.org/10.1051/0004-6361/202142119/83
http://linker.aanda.org/10.1051/0004-6361/202142119/83
https://arxiv.org/abs/1905.11946
http://linker.aanda.org/10.1051/0004-6361/202142119/85
https://arxiv.org/abs/astro-ph/0510346
http://linker.aanda.org/10.1051/0004-6361/202142119/87
http://linker.aanda.org/10.1051/0004-6361/202142119/88
http://linker.aanda.org/10.1051/0004-6361/202142119/88
http://linker.aanda.org/10.1051/0004-6361/202142119/89
http://linker.aanda.org/10.1051/0004-6361/202142119/90
http://linker.aanda.org/10.1051/0004-6361/202142119/91
http://linker.aanda.org/10.1051/0004-6361/202142119/92
http://linker.aanda.org/10.1051/0004-6361/202142119/93
http://linker.aanda.org/10.1051/0004-6361/202142119/94
http://linker.aanda.org/10.1051/0004-6361/202142119/95


A&A 668, A73 (2022)

Appendix A: Comparison with Jacobs et al.
(2019b,a)

We attempted to compare our results with (Jacobs et al. 2019b,a,
hereafter J19AB). Using DES, these two searches and obtained
a total of 1256 candidates falling in three categories defined
by the authors: “definitely,” “probably,” and “possibly” a lens.
Making a comparison with our work is more than challeng-
ing as our procedures are very different in color and magnitude
selections, cutout size, simulated training sets, CNN architec-
tures, and visual inspection. Being aware of these methodologi-
cal differences, we compared the results for the 693 candidates
in J19AB that are in our parent sample. Our CNN gave a score
above 0.8 to 262 of these objects. Among these, 39 are classi-
fied as "definitely," 98 are "probably," and 125 are "possibly"
a lens, according to the J19AB classification. After our visual
inspection we found that 50 are on our list of SL (split up into
28 "definitely," 21 "probably," and 1 "possibly" in the J19AB
classification) and 83 in our ML classification (8 "definitely," 51
"probably," 24 "possibly"). This means that 129 candidates in
the J19AB list that were also selected by our CNN did not pass

our final visual inspection criteria. These objects are shown in
Fig. A.1. Aside from a few objects in the first three rows on the
top of the figure, we still find that no other object shows sufficient
evidence of strong lensing. And indeed, J19AB graded them all
as "possibly." The main difference between our work and J19AB
for these 129 objects is that we discard them while J19AB still
include them in their list, hence leading to a list of candidates
that is more extensive than ours.

In addition, 505 candidates from J19AB obtained a score
below 0.8 from our CNN and were not visually inspected. These
are split into 6 in the "definitely" category of J19AB, 113 as
"probably," and 386 as "possibly." We display 56 examples of
these objects in Fig. A.2, noting that if we were to visually
inspect them now, very few objects would pass our criteria, for
the following reasons: 1) the bluish features are too close to the
central galaxy that could be mistaken as a star forming galaxy or
2) there is no evidence for lensing at all because the lensing fea-
tures are outside our stamp size or because of too low S/N. Deter-
mining more specific reasons why our CNN discarded these can-
didates would require a more detailed study that remains well
beyond the scope of our work.
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0.822 , A 0.883 , A 0.812 , A 0.938 , B 1.0 , B 1.0 , B 1.0 , B 0.959 , B 0.97 , B 0.972 , B

1.0 , B 0.999 , B 0.977 , B 1.0 , B 0.998 , B 0.998 , B 0.997 , B 0.997 , B 0.996 , B 0.995 , B

1.0 , B 1.0 , B 0.993 , B 0.992 , B 1.0 , B 1.0 , B 1.0 , B 0.985 , B 0.989 , B 0.999 , C

0.999 , C 0.999 , C 0.999 , C 0.998 , C 0.998 , C 0.999 , C 0.999 , C 0.999 , C 0.999 , C 0.999 , C

0.999 , C 0.999 , C 0.81 , C 1.0 , C 0.999 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C

1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C

1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C 1.0 , C

0.998 , C 0.996 , C 0.998 , C 0.959 , C 0.944 , C 0.942 , C 0.941 , C 0.935 , C 0.932 , C 0.931 , C

0.906 , C 0.905 , C 0.899 , C 0.891 , C 0.89 , C 0.887 , C 0.882 , C 0.882 , C 0.878 , C 0.877 , C

0.874 , C 0.865 , C 0.861 , C 0.857 , C 0.851 , C 0.845 , C 0.834 , C 0.833 , C 0.831 , C 0.952 , C

0.968 , C 0.997 , C 0.97 , C 0.996 , C 0.818 , C 0.996 , C 0.996 , C 0.996 , C 0.996 , C 0.995 , C

0.995 , C 0.995 , C 0.994 , C 0.993 , C 0.992 , C 0.992 , C 0.991 , C 0.988 , C 0.984 , C 0.984 , C

0.983 , C 0.981 , C 0.98 , C 0.98 , C 0.979 , C 0.979 , C 0.978 , C 0.971 , C 1.0 , C

Fig. A.1. Images for the 129 candidates in J19AB that we discarded after visual inspection. Our CNN score is indicated below each object as well
as the category allocated by J19AB, in which A stands for “definitely,” B for “probably,” and C for “possibly” a lens.
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0.0 , A 0.0 , A 0.0 , A 0.013 , A 0.287 , A 0.686 , A 0.0 , B

0.0 , B 0.0 , B 0.0 , B 0.0 , B 0.0 , B 0.0 , B 0.0 , B

0.0 , B 0.0 , B 0.0 , B 0.0 , B 0.0 , B 0.0 , B 0.0 , B

0.0 , B 0.0 , B 0.0 , B 0.0 , B 0.0 , B 0.0 , B 0.0 , B

0.0 , B 0.0 , B 0.0 , B 0.0 , C 0.0 , C 0.0 , C 0.0 , C

0.0 , C 0.0 , C 0.0 , C 0.0 , C 0.0 , C 0.0 , C 0.0 , C

0.0 , C 0.0 , C 0.0 , C 0.0 , C 0.0 , C 0.0 , C 0.0 , C

0.0 , C 0.0 , C 0.0 , C 0.0 , C 0.0 , C 0.0 , C 0.0 , C

Fig. A.2. Example of cutouts of 56 candidates in J19AB that our CNN graded below 0.8. Our CNN score is indicated below each object as well as
the category allocated by J19AB, in which A stands for “definitely,” B for “Probably,” and C for “Possibly” a lens.
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Appendix B: Additional material

Data - blue model Data - red model
DES J003727-413149

1.0, 1.0  M

Data Data - blue model Data - red model
DES J060653-585843

1.0, 1.0  M

Data

DES J042218-213245

1.0, 1.0  M

DES J045901-204506

1.0, 1.0  M

DES J020304-233802

1.0, 1.0  

DES J015216-583842

1.0, 1.0  M

DES J041809-545735

1.0, 1.0  M

DES J035649-240841

1.0, 1.0  

DES J235519-613637

1.0, 1.0  M

DES J232128-463049

1.0, 1.0  

DES J035242-382544

1.0, 1.0  M

DES J233459-640406

1.0, 1.0  M

DES J014546-354127

1.0, 1.0  

DES J012042-514353

1.0, 1.0  M

Fig. B.1. Images for the 90 lens candidates in the category Sure lens and their corresponding decomposition performed with MuSCADeT. In the
first and fourth columns we have the gri-composite image of the system, the name is on the top, while the CNN score and the visual inspection
score (VISL) are displayed at the bottom of each image. Additionally, we marked with an "M" those that we modeled in Sect. 6. Columns 2 and 5
show the subtraction of the blue model from the respective data. Columns 3 and 6 show the subtraction of the red model from the respective data,
isolating the lensing features.
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Data - blue model Data - red model
DES J053804-473513

1.0, 1.0  M

Data Data - blue model Data - red model
DES J010127-334319

1.0, 1.0  M

Data
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1.0, 1.0  M
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DES J003507-252658

1.0, 1.0  
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0.999, 1.0  
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0.999, 1.0  

DES J003104-440300

0.998, 1.0  

DES J001542-463610

0.998, 1.0  M

DES J040642-231913

0.998, 1.0  M

DES J014326-085021

0.998, 1.0  M

DES J051603-220847

0.998, 1.0  

DES J020107-155117

0.997, 1.0  M

DES J010659-443201

0.984, 1.0  M

Fig. B.1. continued.
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Data - blue model Data - red model
DES J013522-423223

0.984, 1.0  M

Data Data - blue model Data - red model
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Data

DES J013822-284407

0.951, 1.0  
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Fig. B.1. continued.
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Data - blue model Data - red model
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1.0, 0.857  M

Data Data - blue model Data - red model
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Data
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DES J222609+004142

1.0, 0.857  

DES J044805-580721
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DES J011333-381312

1.0, 0.857  M
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1.0, 0.857  

DES J201419-575701

0.999, 0.857  M

DES J024911+004848

0.999, 0.857  

DES J022148-642642

0.999, 0.857  

DES J023016-312200

0.998, 0.857  M

Fig. B.1. continued.
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Data - blue model Data - red model
DES J042234-280354

0.995, 0.857  M

Data Data - blue model Data - red model
DES J013002-374457

0.994, 0.857  

Data

DES J010158-491738

0.994, 0.857  M

DES J020505-403828

0.99, 0.857  

DES J032036-162422

0.973, 0.857  M

DES J011646-243702

0.963, 0.857  M

DES J034713-453506

1.0, 0.714  M

DES J014433-114209

1.0, 0.714  

DES J013729-103922

1.0, 0.714  M

DES J024803-061606

1.0, 0.714  M

DES J045951-304324

0.998, 0.714  

DES J044909-291816

0.994, 0.714  

DES J040155-340520

0.984, 0.714  M

DES J010553-053419

0.817, 0.667  M

DES J040205-220557

0.802, 0.667  

DES J052648-375125

1.0, 0.571  
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Data - blue model Data - red model
DES J012453-144302

1.0, 0.571  M

Data Data - blue model Data - red model
DES J034021-253330

0.999, 0.571  

Data

DES J001916-413650

0.997, 0.571  M

DES J032711-324634

0.996, 0.571  M

DES J221859-451851

0.974, 0.571  

DES J040821-284121

0.95, 0.571  M

DES J051047-263222

1.0, 0.429  M

DES J211243+000920

0.999, 0.429  M

DES J224221+001144

0.973, 0.429  M

DES J003822-255032

0.97, 0.429  M

DES J010826-262019

0.899, 0.333  

DES J045352-502234

0.999, 0.286  M
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Table B.1. SL catalog.

Candidate RA Dec SCNN VISL
a References

DES J003727-413149 9.362803 -41.530542 1.00 1.00 [2] [5]
DES J060653-585843 91.721422 -58.978786 1.00 1.00 This work
DES J042218-213245 65.575901 -21.546084 1.00 1.00 [4] [5]
DES J045901-204506 74.756099 -20.751891 1.00 1.00 [5]
DES J020304-233802 30.766707 -23.634045 1.00 1.00 [4] [5] [7]
DES J015216-583842 28.068067 -58.645086 1.00 1.00 [5]
DES J041809-545735 64.541168 -54.959729 1.00 1.00 [2] [5] [11]
DES J035649-240841 59.204383 -24.144756 1.00 1.00 [5]
DES J235519-613637 358.829823 -61.610291 1.00 1.00 [5]
DES J232128-463049 350.368208 -46.513706 1.00 1.00 [2] [5] [11]
DES J035242-382544 58.176701 -38.429152 1.00 1.00 [5]
DES J233459-640406 353.746649 -64.068597 1.00 1.00 [5]
DES J014546-354127 26.444934 -35.690931 1.00 1.00 [5]
DES J012042-514353 20.175973 -51.731411 1.00 1.00 [2] [5] [11]
DES J053804-473513 84.519228 -47.587152 1.00 1.00 [2] [5] [11]
DES J010127-334319 15.366041 -33.722010 1.00 1.00 [1] [5] [6]
DES J221912-434835 334.801660 -43.809752 1.00 1.00 [5]
DES J005834-520159 14.644654 -52.033230 1.00 1.00 [4] [5]
DES J054735-600441 86.898069 -60.078194 1.00 1.00 [2]
DES J003507-252658 8.780570 -25.449594 1.00 1.00 [5]
DES J035418-160952 58.576136 -16.164500 1.00 1.00 [4] [5]
DES J022956-311022 37.484396 -31.172971 1.00 1.00 [10] [12]
DES J043454-182443 68.728380 -18.412014 1.00 1.00 This work
DES J003104-440300 7.770341 -44.050039 1.00 1.00 [2]
DES J001542-463610 3.928313 -46.603047 1.00 1.00 [5]
DES J040642-231913 61.676960 -23.320485 1.00 1.00 [12]
DES J014326-085021 25.862225 -8.839247 1.00 1.00 [4] [5]
DES J051603-220847 79.013218 -22.146421 1.00 1.00 [5]
DES J020107-155117 30.283189 -15.854734 1.00 1.00 [5] [8]
DES J010659-443201 16.746389 -44.533731 0.98 1.00 [5]
DES J013522-423223 23.845122 -42.539867 0.98 1.00 [2] [5]
DES J030920-380545 47.335761 -38.096044 0.97 1.00 [5]
DES J013822-284407 24.595671 -28.735547 0.95 1.00 [5] [12]
DES J022310-224817 35.794564 -22.804826 0.95 1.00 [12]
DES J000451-010318 1.215541 -1.055067 0.94 1.00 [2] [9]
DES J032216-523440 50.568366 -52.577897 0.94 1.00 [2] [5] [11]
DES J035447-242014 58.697981 -24.337490 0.93 1.00 [5] [7]
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Table B.1. continued.

Candidate RA Dec SCNN VISL
a References

DES J015153-144824 27.972236 -14.806869 0.92 1.00 [8]
DES J021159-595624 32.997544 -59.940266 0.87 1.00 This work
DES J012933-150634 22.388682 -15.109614 0.85 1.00 This work
DES J005055-172032 12.730170 -17.342350 0.84 1.00 This work
DES J002510-494626 6.294459 -49.774008 0.84 1.00 This work
DES J234930-511339 357.375235 -51.227509 0.81 1.00 This work
DES J005738-295830 14.411528 -29.975133 0.81 1.00 This work
DES J233551-515217 353.966362 -51.871614 1.00 0.86 [2] [5]
DES J225403-405547 343.512608 -40.929780 1.00 0.86 [2] [5]
DES J033717-315213 54.321830 -31.870431 1.00 0.86 [5]
DES J053444-534716 83.686779 -53.787850 1.00 0.86 [5]
DES J014252-183115 25.720295 -18.521051 1.00 0.86 [4] [5]
DES J031638-223633 49.161789 -22.609246 0.99 0.86 [5]
DES J024809-395548 42.039715 -39.930079 0.99 0.86 [5]
DES J033143-612315 52.932410 -61.387599 1.00 0.86 This work
DES J040822-532714 62.094390 -53.453939 1.00 0.86 [2]
DES J222609+004142 336.538760 0.695037 1.00 0.86 [2] [5] [3] [9] [7] [12]
DES J044805-580721 72.022014 -58.122584 1.00 0.86 [2] [5]
DES J011333-381312 18.389652 -38.220203 1.00 0.86 This work
DES J202855-523118 307.232456 -52.521766 1.00 0.86 [5]
DES J013542-203335 23.928307 -20.559859 1.00 0.86 [5]
DES J201419-575701 303.580760 -57.950411 1.00 0.86 [4] [5]
DES J024911+004848 42.299530 -0.813541 1.00 0.86 [2]
DES J022148-642642 35.453087 -64.445142 1.00 0.86 This work
DES J023016-312200 37.569906 -31.366891 1.00 0.86 [5]
DES J042234-280354 65.644648 -28.065211 1.00 0.86 [12]
DES J013002-374457 22.512009 -37.749376 0.99 0.86 [5]
DES J010158-491738 15.491818 -49.293942 0.99 0.86 [4] [5]
DES J020505-403828 31.271691 -40.641381 0.99 0.86 [2] [5] [11]
DES J032036-162422 50.154139 -16.406181 0.97 0.86 [5]
DES J011646-243702 19.194939 -24.617243 0.96 0.86 [5]
DES J034713-453506 56.805347 -45.585003 1.00 0.71 [2] [5]
DES J014433-114209 26.138946 -11.702571 1.00 0.71 [5] [8]
DES J013729-103922 24.372653 -10.656303 1.00 0.71 This work
DES J024803-061606 42.013769 -6.268377 1.00 0.71 This work
DES J045951-304324 74.964225 -30.723601 1.00 0.71 [12]
DES J044909-291816 72.289665 -29.304562 0.99 0.71 [5]
DES J040155-340520 60.482094 -34.089137 0.98 0.71 This work
DES J010553-053419 16.471353 -5.571992 0.82 0.67 This work
DES J040205-220557 60.523330 -22.099437 0.80 0.67 This work
DES J052648-375125 81.702120 -37.856976 1.00 0.57 This work
DES J012453-144302 21.221090 -14.717383 1.00 0.57 [4] [5]
DES J034021-253330 55.089043 -25.558367 1.00 0.57 [5] [12]
DES J001916-413650 4.818033 -41.614051 1.00 0.57 [5]
DES J032711-324634 51.797294 -32.776155 1.00 0.57 [4] [5] [6]
DES J221859-451851 334.746758 -45.314441 0.97 0.57 This work
DES J040821-284121 62.090172 -28.689265 0.95 0.57 This work
DES J051047-263222 77.695997 -26.539526 1.00 0.43 [12]
DES J211243+000920 318.179744 0.155773 1.00 0.43 [5]
DES J224221+001144 340.589927 0.195764 0.97 0.43 [3] [9]
DES J003822-255032 9.593161 -25.842242 0.97 0.43 [4] [5]
DES J010826-262019 17.111823 -26.338700 0.90 0.33 This work
DES J045352-502234 73.470734 -50.376374 1.00 0.29 This work

Notes. aVisual inspection score for strong lens systems.
References. [1] Bettinelli et al. (2016), [2] Diehl et al. (2017), [3] Sonnenfeld et al. (2018), [4] Jacobs et al. (2019b), [5] Jacobs et al. (2019a),
[6] Petrillo et al. (2019b), [7] Cañameras et al. (2020), [8] Huang et al. (2020), [9] Jaelani et al. (2020), [10] Li et al. (2020), [11] Nord et al.
(2020), [12] Huang et al. (2021)
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DES J003727-413149 Reconstructed Residuals Convergence Source

DES J060653-585843

DES J060653-585843

DES J042218-213245

DES J045901-204506

Fig. B.2. Modeling results for the 52 lens candidates that appear to have only a single lens galaxy acting as a deflector. 1st column: Observed DES
image of the lens system in the r-band. 2nd column: Reconstructed image using best-fit model parameters. The black regions are "masked" pixels
that are ignored in the modeling as they contain light from contaminant objects in the image. The red curves are the critical lines of the lens model.
3rd column: Normalized residual map showing the difference between the best-fit model and the original data. 4th column: Convergence map of
the lens model. 5th column: Reconstructed source light profile (un-lensed). The caustic curves are shown in yellow.
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DES J015216-583842 Reconstructed Residuals Convergence Source

DES J015216-583842

DES J041809-545735

DES J041809-545735

DES J235519-613637

Fig. B.2. continued.
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DES J035242-382544 Reconstructed Residuals Convergence Source

DES J233459-640406

DES J012042-514353

DES J012042-514353

DES J053804-473513
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DES J010127-334319 Reconstructed Residuals Convergence Source

DES J221912-434835

DES J035418-160952

DES J001542-463610

DES J040642-231913
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DES J020107-155117 Reconstructed Residuals Convergence Source

DES J010659-443201

DES J013522-423223

DES J032216-523440

DES J032216-523440
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DES J032216-523440 Reconstructed Residuals Convergence Source

DES J032216-523440

DES J021159-595624

DES J005055-172032

DES J233551-515217

Fig. B.2. continued.
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DES J033717-315213 Reconstructed Residuals Convergence Source

DES J053444-534716

DES J014252-183115

DES J031638-223633

Fig. B.2. continued.
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DES J040822-532714 Reconstructed Residuals Convergence Source

DES J040822-532714

DES J044805-580721

DES J011333-381312

DES J202855-523118

Fig. B.2. continued.
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DES J201419-575701 Reconstructed Residuals Convergence Source

DES J023016-312200

DES J042234-280354

DES J010158-491738

DES J032036-162422
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DES J011646-243702 Reconstructed Residuals Convergence Source

DES J034713-453506

DES J034713-453506

DES J013729-103922

DES J024803-061606
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DES J040155-340520 Reconstructed Residuals Convergence Source

DES J010553-053419

DES J010553-053419

DES J012453-144302

DES J001916-413650
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DES J032711-324634 Reconstructed Residuals Convergence Source

DES J040821-284121

DES J051047-263222

DES J051047-263222

DES J211243+000920
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DES J224221+001144 Reconstructed Residuals Convergence Source

DES J003822-255032

DES J045352-502234

Fig. B.2. continued.
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Table B.2. Lens mass parameters obtained from automated modeling of the single galaxy scale systems; RE is the Einstein radius of the deflector’s
mass profile; qm and PAm are the axis ratio and position angle of the deflector mass, respectively. The strength and angles of the external shear are
given in the γext and PAext columns, respectively.

Candidate Reduced χ2 RE qm PAm γext φext

DES J003727-413149 1.08 2.315+0.004
−0.004 0.685+0.011

−0.013 23+2
−3 0.159+0.004

−0.004 −9+1
−1

DES J060653-585843 1.92 2.401+0.006
−0.005 0.692+0.011

−0.012 79+3
−2 0.222+0.003

−0.002 −84+1
−1

DES J060653-585843* 1.14 2.063+0.029
−0.017 0.904+0.024

−0.034 14+18
−14 0.074+0.011

−0.004 14+8
−3

DES J042218-213245 1.43 2.116+0.013
−0.012 0.732+0.019

−0.019 29+5
−5 0.103+0.008

−0.008 −85+5
−5

DES J045901-204506 1.10 1.684+0.004
−0.004 0.801+0.014

−0.015 −14+5
−5 0.213+0.004

−0.004 −21+1
−1

DES J015216-583842 2.06 2.294+0.011
−0.004 0.869+0.023

−0.011 −34+14
−6 0.393+0.003

−0.002 −10+0
−0

DES J015216-583842* 1.63 1.581+0.006
−0.006 0.820+0.019

−0.018 18+6
−6 0.178+0.006

−0.005 74+2
−2

DES J041809-545735 1.54 2.528+0.013
−0.010 0.675+0.024

−0.022 39+6
−5 0.126+0.004

−0.004 22+2
−2

DES J041809-545735* 1.05 2.007+0.017
−0.015 0.774+0.023

−0.021 −67+7
−6 0.061+0.007

−0.007 31+7
−6

DES J235519-613637 0.99 1.343+0.004
−0.004 0.527+0.008

−0.009 −18+1
−1 0.051+0.004

−0.004 −14+5
−4

DES J035242-382544 1.23 2.881+0.006
−0.006 0.899+0.013

−0.013 12+8
−8 0.117+0.004

−0.004 24+2
−2

DES J233459-640406 1.18 2.564+0.002
−0.003 0.660+0.019

−0.011 −38+3
−3 0.153+0.005

−0.003 −41+1
−1

DES J012042-514353 1.90 2.950+0.003
−0.003 0.657+0.007

−0.006 53+1
−1 0.197+0.002

−0.002 −41+0
−0

DES J012042-514353* 1.67 2.870+0.003
−0.012 0.766+0.013

−0.007 57+7
−1 0.239+0.002

−0.002 −42+0
−0

DES J053804-473513 1.29 2.448+0.013
−0.012 0.481+0.018

−0.017 33+2
−3 0.212+0.006

−0.005 18+2
−1

DES J010127-334319 1.04 2.213+0.005
−0.006 0.772+0.014

−0.014 43+4
−4 0.130+0.006

−0.006 53+2
−2

DES J221912-434835 1.17 2.424+0.021
−0.022 0.812+0.022

−0.020 −73+7
−7 0.089+0.009

−0.008 −21+6
−5

DES J035418-160952 1.28 2.517+0.003
−0.004 0.713+0.007

−0.007 −81+2
−2 0.201+0.002

−0.002 82+1
−1

DES J001542-463610 0.98 2.353+0.007
−0.007 0.721+0.018

−0.020 −79+4
−4 0.148+0.005

−0.005 12+2
−2

DES J040642-231913 1.04 2.296+0.009
−0.009 0.658+0.016

−0.016 1+3
−2 0.097+0.007

−0.007 82+4
−4

DES J014326-085021 1.12 2.615+0.005
−0.003 0.695+0.011

−0.017 −21+2
−3 0.109+0.003

−0.004 −34+3
−4

DES J020107-155117 1.13 1.920+0.007
−0.009 0.599+0.011

−0.011 77+2
−2 0.291+0.005

−0.005 65+1
−1

DES J010659-443201 1.74 1.638+0.014
−0.015 0.872+0.025

−0.025 23+12
−12 0.149+0.009

−0.009 −76+3
−3

DES J013522-423223 1.19 1.715+0.013
−0.009 0.309+0.019

−0.003 8+1
−0 0.342+0.002

−0.004 28+0
−1

DES J032216-523440 2.74 4.738+0.016
−0.013 0.868+0.055

−0.029 82+16
−11 0.209+0.004

−0.005 −89+1
−1

DES J032216-523440* 1.33 4.628+0.013
−0.012 0.799+0.021

−0.030 4+7
−7 0.197+0.004

−0.004 −35+1
−1

DES J021159-595624 1.63 1.902+0.005
−0.006 0.796+0.014

−0.018 6+4
−4 0.085+0.003

−0.003 13+2
−2

DES J005055-172032 1.35 2.714+0.017
−0.020 0.830+0.030

−0.035 68+11
−13 0.129+0.009

−0.008 −54+3
−3

DES J233551-515217 1.13 3.597+0.013
−0.013 0.746+0.015

−0.015 56+4
−4 0.027+0.007

−0.007 64+15
−15

DES J033717-315213 1.30 2.184+0.012
−0.012 0.628+0.015

−0.014 −86+3
−3 0.063+0.007

−0.008 7+6
−6

DES J053444-534716 1.26 1.633+0.003
−0.003 0.688+0.010

−0.014 1+2
−2 0.176+0.003

−0.004 −0+1
−1

DES J014252-183115 1.19 2.347+0.010
−0.009 0.729+0.019

−0.020 79+3
−4 0.079+0.007

−0.008 −15+4
−5

DES J031638-223633 1.21 3.179+0.005
−0.004 0.662+0.007

−0.007 −26+1
−1 0.104+0.003

−0.003 −40+1
−1

DES J040822-532714 1.22 3.577+0.008
−0.008 0.895+0.021

−0.019 −50+15
−13 0.099+0.006

−0.005 −16+3
−3

DES J040822-532714* 1.02 3.463+0.002
−0.049 0.881+0.009

−0.099 47+52
−4 0.038+0.007

−0.002 43+3
−22

DES J044805-580721 1.21 2.546+0.014
−0.014 0.907+0.020

−0.020 −85+13
−12 0.184+0.006

−0.006 −13+2
−2

DES J011333-381312 1.36 2.249+0.029
−0.021 0.845+0.035

−0.025 85+10
−11 0.038+0.015

−0.010 −76+16
−16

DES J202855-523118 1.51 2.522+0.017
−0.004 0.788+0.011

−0.035 −11+3
−10 0.218+0.003

−0.004 −26+1
−1

DES J201419-575701 0.96 3.085+0.014
−0.014 0.921+0.025

−0.024 −3+25
−23 0.145+0.008

−0.008 −25+3
−3

DES J023016-312200 1.22 1.411+0.015
−0.017 0.666+0.019

−0.017 −86+4
−4 0.105+0.009

−0.009 −63+5
−5
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Table B.2. continued.

Candidate Reduced χ2 RE qm PAm γext φext

DES J042234-280354 0.91 1.655+0.036
−0.036 0.650+0.022

−0.023 −41+4
−5 0.474+0.013

−0.012 −84+1
−1

DES J010158-491738 1.14 2.877+0.041
−0.031 0.765+0.032

−0.032 −48+7
−7 0.140+0.010

−0.008 −85+6
−8

DES J032036-162422 1.10 1.101+0.035
−0.039 0.767+0.032

−0.032 75+9
−9 0.238+0.018

−0.019 −53+5
−5

DES J011646-243702 1.33 2.465+0.016
−0.012 0.697+0.020

−0.021 −9+5
−6 0.052+0.009

−0.010 53+9
−11

DES J034713-453506 1.06 2.951+0.016
−0.013 0.686+0.021

−0.017 66+5
−4 0.289+0.008

−0.006 51+2
−1

DES J034713-453506* 0.96 3.269+0.009
−0.010 0.762+0.017

−0.017 85+3
−4 0.152+0.004

−0.006 −31+2
−2

DES J013729-103922 1.33 1.947+0.008
−0.013 0.907+0.020

−0.019 74+15
−12 0.041+0.009

−0.006 24+11
−8

DES J024803-061606 1.52 1.786+0.009
−0.010 0.847+0.018

−0.018 21+7
−7 0.088+0.007

−0.007 21+5
−4

DES J040155-340520 1.04 2.473+0.006
−0.007 0.824+0.018

−0.015 6+5
−5 0.118+0.005

−0.004 12+2
−2

DES J010553-053419 2.65 0.547+0.009
−0.013 0.811+0.034

−0.031 −80+13
−11 0.690+0.004

−0.004 23+0
−0

DES J010553-053419* 1.69 1.857+0.010
−0.005 0.671+0.010

−0.011 43+2
−3 0.158+0.004

−0.004 41+1
−2

DES J012453-144302 1.21 3.370+0.006
−0.006 0.868+0.012

−0.008 −64+5
−3 0.132+0.004

−0.003 −54+1
−1

DES J001916-413650 1.18 2.061+0.020
−0.021 0.827+0.019

−0.019 81+7
−7 0.053+0.008

−0.008 −50+9
−9

DES J032711-324634 1.13 2.026+0.009
−0.008 0.842+0.022

−0.020 31+9
−8 0.023+0.007

−0.007 55+20
−19

DES J040821-284121 1.06 2.033+0.034
−0.035 0.690+0.032

−0.031 −63+8
−7 0.062+0.018

−0.019 −4+14
−15

DES J051047-263222 1.57 2.879+0.015
−0.014 0.668+0.018

−0.018 −83+4
−4 0.086+0.005

−0.005 −35+3
−3

DES J051047-263222* 1.13 2.233+0.013
−0.013 0.617+0.025

−0.028 52+5
−5 0.242+0.007

−0.007 14+2
−2

DES J211243+000920 1.31 2.690+0.015
−0.015 0.925+0.019

−0.019 −28+15
−16 0.153+0.006

−0.006 77+2
−2

DES J224221+001144 1.15 2.436+0.012
−0.011 0.823+0.018

−0.018 12+6
−6 0.119+0.006

−0.007 −4+3
−3

DES J003822-255032 1.13 2.470+0.008
−0.005 0.911+0.014

−0.022 −74+9
−12 0.008+0.004

−0.006 −64+29
−50

DES J045352-502234 1.35 2.953+0.005
−0.005 0.809+0.015

−0.014 37+4
−4 0.067+0.004

−0.004 −22+4
−3

Notes. ∗Model result after manually redoing the mask.
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