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In [1] it is shown that the Bloch space B in the unit disc has the 
following radicality property: if an analytic function g satisfies 
that gn ∈ B, then gm ∈ B, for all m ≤ n. Since B coincides 
with the space T (Ap

α) of analytic symbols g such that the 
Volterra-type operator Tgf(z) =

∫ z

0 f(ζ)g′(ζ) dζ is bounded 
on the classical weighted Bergman space Ap

α, the radicality 
property was used to study the composition of paraproducts 
Tg and Sgf = Tfg on Ap

α. Motivated by this fact, we prove 
that T (Ap

ω) also has the radicality property, for any radial 
weight ω. Unlike the classical case, the lack of a precise 
description of T (Ap

ω) for a general radial weight, induces us 
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Weighted Bergman spaces
Bloch space

to prove the radicality property for Ap
ω from precise norm-

operator results for compositions of analytic paraproducts.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC license (http://
creativecommons .org /licenses /by -nc /4 .0/).

1. Introduction

Let H(D) denote the algebra of all analytic functions in the unit disc D of the complex 
plane C. A function ω : D → [0, ∞), integrable over D, is called a weight. For 0 < p < ∞
and a weight ω, the weighted Bergman space Ap

ω consists of those f ∈ H(D) for which

‖f‖p
Ap

ω
=

∫
D

|f(z)|pω(z) dA(z) < ∞,

where dA(z) = dx dy
π is the normalized Lebesgue area measure on D. A weight is radial

if ω(z) = ω(|z|), for all z ∈ D, 
∫ 1
0 ω(s) ds < ∞ and ω̂(r) =

∫ 1
r
ω(s) ds > 0, for any 

r ∈ [0, 1). If the last hypothesis does not hold, then Ap
ω = H(D). As usual, we write Ap

α

for the Bergman space induced by the standard weight ω(z) = (α+1)(1 −|z|2)α, α > −1. 
Throughout the manuscript the space of bounded linear operators on Ap

ω is denoted by 
B(Ap

ω), and for any linear map L : H(D) → H(D) we write ‖L‖Ap
ω

:= sup{‖Lf‖Ap
ω

:
‖f‖Ap

ω
= 1}. We refer to this quantity as the operator norm of L on Ap

ω, despite Ap
ω is 

not a normed space for 0 < p < 1.
For any g ∈ H(D), we consider the Volterra-type operator

Tgf(z) :=
z∫

0

f(ζ)g′(ζ) dζ (f ∈ H(D), z ∈ D).

In this paper we are interested in the spaces of analytic functions

T (Ap
ω) := {g ∈ H(D) : Tg ∈ B(Ap

ω)} with the seminorm ‖g‖T (Ap
ω) := ‖Tg‖Ap

ω
.

It is well-known that T (Ap
α) = B, the Bloch space, and recently the conformally invari-

ance of the Garsia’s seminorm |||g|||B := supa∈D ‖g ◦ φa − g(a)‖A2 , φa(z) := a−z
1−az , has 

been strongly used to prove the following meaningful property of the Bloch space [1, 
Section 2].

Theorem A. Let m, n ∈ N, m < n, and g ∈ H(D). If gn ∈ B, then gm ∈ B and

|||gm|||1/mB ≤ |||gn|||1/nB .

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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It is worth noticing that Theorem A is a pivotal result within the theory of composition 
of analytic paraproducts on classical Bergman and Hardy spaces [1,2]. Let us recall the 
reader that for any g ∈ H(D), besides Tg, the operators

Mgf := fg and Sgf(z) :=
z∫

0

f ′(ζ)g(ζ) dζ

are called g-analytic paraproducts.
Theorem A leads us to introduce the following concept: A space X of analytic functions 

in D has the radicality property if for any g ∈ H(D) and n ∈ N such that gn ∈ X, then 
gm ∈ X for all m ∈ N such that m < n. This definition is inspired by the ideal theory in 
Commutative Algebra. Consequently, T (Ap

α) = B satisfies the radicality property and 
the next natural question arises:

Given 0 < p < ∞, which are the weights such that T (Ap
ω) has the radicality property?

Of course, by Theorem A the answer is obvious for any radial weight ω for which 
T (Ap

ω) = B. We remark that, besides standard weights, Bekollé-Bonami weights and 
radial doubling weights [4,12] satisfy that T (Ap

ω) = B, for any p ∈ (0, ∞). In general, 
the situation is much more difficult because the existing literature does not provide a 
description of T (Ap

ω), even in the case when ω is radial. In addition, it is worth recalling 
the existence of classes of weights ω such that a handy description of T (Ap

ω) is known 
but T (Ap

ω) is not conformally invariant, so despite having a characterization of T (Ap
ω)

tackling the question above may require different techniques to those employed in the 
proof of Theorem A. For instance, this happens if ω belongs to the class of rapidly 
decreasing weights W and may happen if ω belongs to the class D̂ of all radial weights 
v such that sup0≤r<1

v̂(r)
v̂( 1+r

2 ) < ∞. In fact, if ω ∈ D̂ then g ∈ T (Ap
ω) if and only if

sup
S

∫
S
|g′(z)|2(1 − |z|2)ω̂(z) dA(z)

ω (S) < ∞,

where the supremum runs over all the Carleson squares S [12, Section 6]. Observe that 
this a BMOA-type seminorm which is not easy to deal with.

Operator theory on weighted Bergman spaces Ap
ω induced by weights in D̂ or W has 

attracted a lot of attention in the last decade, see Section 6 below for the definition of 
the class W and further details about a description of T (Ap

ω) when ω ∈ W or ω ∈ D̂. 
Our main result is the following.

Theorem 1.1. Let ω be a radial weight and 0 < p < ∞. Then T (Ap
ω) satisfies the radicality 

property. Moreover, if m, n ∈ N, m < n, then

‖gm‖
1
m

p � ‖gn‖
1
n

p (g ∈ H(D)).
T (Aω) T (Aω)
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As usual, A � B (B � A) for nonnegative functions A, B means that A ≤ C B, for 
some positive constant C independent of the variables involved. Furthermore, we write 
A � B when A � B and A � B. In particular, throughout the paper the constants 
involved in any inequality do not depend on g but may depend on p and ω and other 
parameters.

Before providing some words on the proof of Theorem 1.1, it is worth noticing that 
we do not know the existence of a non-radial weight ω such that T (Ap

ω) does not have 
the radicality property. In fact, the action of the Volterra-type operator Tg on weighted 
Bergman spaces induced by non-radial weights is not well-understood and there are very 
few papers on the topic (see [15] and the references therein). One heuristic reason could 
be the lack of standard tools to tackle this problem even if natural geometric conditions 
are imposed on the weight. For instance, it is not known if the norm convergence in 
Ap

ω implies the uniform convergence on compacta. Moreover, some basic and primordial 
techniques that are employed in this paper for weighted Bergman spaces induced by 
radial weights do not remain true even for Bergman spaces induced by Bekollé-Bonami 
weights. For example, the dilation operators Qλf(z) = f(λz), λ ∈ D, are not bounded 
on Ap

ω when ω is a Bekollé-Bonami weight. Nevertheless, in this case one can deduce that 
T (Ap

ω) has the radicality property simply because it coincides with the Bloch space.
On the other hand, we point out that there are Banach spaces X of analytic functions 

on D so that the radicality property does not hold for T (X). Indeed, for 0 < s < 1 let 
us consider the space of s-Hölder analytic functions

Lips = {f ∈ H(D) : supz∈D(1 − |z|)1−s|f ′(z)| < ∞}.

Bearing in mind that Lips ⊂ H∞, it is not difficult to prove that T (Lips) = Lips. 
Therefore T (Lips) does not satisfy the radicality property because the function g(z) =
(1 − z)s/2 does not belong to Lips, while g2(z) = (1 − z)s does.

The proof of Theorem 1.1 is strongly based on the theory on composition of analytic 
paraproducts. Therefore to give a brief explanation of its proof we will remind some basic 
definitions of that theory and state some results which are of interest in themselves. A 
g-word is a composition (product) of g-analytic paraproducts. Namely, an N -letter g-
word is an operator of the form L = L1 · · ·LN , where each Lj is either Mg, Sg or Tg. 
By convention, the identity mapping I on H(D) is the only 0-letter g-word. Moreover, 
a g-operator is a linear combination of g-words, which may have different number of 
letters. The algebra Ag is the set of all g-operators.

The formula Lg = LgΠ0 + (Lg1)δ0, where Π0f := f − f(0), together with the ST -
representation of each g-operator Lg proved in [1, §3.2] gives that

Lg =
N∑

Sk
gTgPk(Tg)Π0 + SgPN+1(Sg) + PN+2(g − g(0), g(0)) δ0, (1.1)
k=0
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where N ∈ N0 := N ∪{0}, all the Pk’s, k = 0, · · · , N +1 are polynomials of one variable 
and PN+2 is a polynomial of two variables such that Lg1 = PN+2(g − g(0), g(0)).

When Pk = 0, for k = 0, . . . , N + 1, we will say that Lg is a trivial g-operator. The 
norm of these one-rank operators are given by

‖Lg‖Ap
ω

= ‖PN+2(g − g(0), g(0))‖Ap
ω
‖δ0‖Ap

ω
.

From now on, we will use the following notations:

H0(D) := {f ∈ H(D) : f(0) = 0} and Ap
ω(0) := Ap

ω ∩H0(D).

Theorem 1.2. Let ω be a radial weight, g ∈ H(D), and 0 < p < ∞. If a non-trivial 
g-operator Lg is bounded on Ap

ω(0), then Tg is bounded on Ap
ω.

We point out that the technical hypothesis “Lg is bounded on Ap
ω(0)” in the statement 

of Theorem 1.2 instead of the natural hypothesis “Lg is bounded on Ap
ω” allows us to 

simplify a good number of proofs throughout the paper.
Theorem 1.2 is known for standard weights [1], and it is a crucial result to get a 

description of the symbols g such that Lg ∈ B(Ap
α) for a large subclass of operators 

Lg ∈ Ag [1,2]. As for the proof of Theorem 1.2, the Littlewood-Paley formula ‖f‖Ap
α
�

|f(0)| + ‖f ′‖Ap
α+p

may be employed when ω is a standard weight, however for each p �= 2
there are radial weights ω (indeed ω ∈ D̂) such that a Littlewood-Paley formula of type

‖f‖p
Ap

ω
� |f(0)|p +

∫
D

|f ′(z)|pϕ(|z|)pω(z) dA(z), (f ∈ H(D)) (1.2)

is not valid for any radial function ϕ, see [13, Proposition 4.3] or [12, Proposition 3.7]. 
Consequently, it will be useful for our purposes to deal with a Calderón type formula 
which involves analytic tent spaces and gives an equivalent norm to ‖f‖Ap

ω
defined in 

terms of f ′ (see Proposition 2.5 below for further details). On the other hand, an applica-
tion of Theorem 1.2 to the operators Lg = Sn−1

g Tg = 1
nTgn , n ∈ N, gives that g ∈ T (Ap

ω)
whenever gn ∈ T (Ap

ω). Aiming to complete a proof of Theorem 1.1 for m ≥ 2, we focus 
our attention in the following classes of g-operators. Firstly, we consider the g-operators 
Lg such that

Lg = Sm
g Tn

g +
m∑
j=1

Sm−j
g TgPj(Tg) on H0(D), (1.3)

where m, n ∈ N0, m + n ≥ 1 and each Pj is a polynomial. Here and on the following, 
the sum in the right equals zero if m = 0. Secondly, we consider the class of g-operators 
Lg such that
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Lg = Sm
g Tn

g +
m∑
j=1

cjS
m−j
g Tn+j

g on H0(D). (1.4)

Note that this is a subclass of the g-operators Lg satisfying (1.3). Moreover, for notational 
purposes, if 	, m, n ∈ N0 and N = 	 +m +n ≥ 1, we define the set Wg(	, m, n) of N -letter 
g-words L of the form

L = L1 · · ·LN ,

with #{j : Lj = Mg} = 	, #{j : Lj = Sg} = m, and #{j : Lj = Tg} = n. For simplicity, 
we write Wg(0, m, n) = Wg(m, n). We recall that (1.4) holds for any Lg ∈ Wg(	, m, n)
replacing m by m + 	 (see §2.1 below).

Theorem 1.3. Let ω be a radial weight, 0 < p < ∞, g ∈ H(D), and let Lg be a g-operator.
a) If Lg satisfies (1.3), then ‖Tg‖Ap

ω
� ‖Lg‖1/(m+n)

Ap
ω(0) .

b) If Lg satisfies (1.4) and n = 0, then ‖Lg‖Ap
ω
� ‖Sg‖mAp

ω
� ‖g‖m∞.

c) Assume that Lg satisfies (1.4) and n ≥ 1. If k ∈ N0 and k ≤ m
n , then Sk

gTg ∈ B(Ap
ω)

and ‖Sk
gTg‖Ap

ω
� ‖Lg‖

k+1
m+n

Ap
ω(0).

In Theorem 1.3 a)-b)-c), and in what follows the constants depend on n, m and k
but not on g. A more general result than Theorem 1.3, which in particular characterizes 
the boundedness of N -letter g-words for any N ∈ N, is proved for standard weights in 
[2]. There, it is used a good number of results of the developed operator and function 
theory on standard weighted Bergman spaces, which are unknown for Bergman spaces 
Ap

ω induced by general radial weights ω. Consequently, we are forced to employ new 
ideas in the proof of Theorem 1.3. Among them, we point out a handy representation of 
operators of the form (1.4) (see §2.1 below).

Now, observe that applying Theorem 1.3 c) to Lg = Sn−1
g Tg = 1

nTgn , where n ∈ N, 
we obtain Theorem 1.1. That is, if Lg = Sn−1

g Tg = 1
nTgn ∈ B(Ap

ω), then, for any m ∈ N, 
m < n, Sm−1

g Tg = 1
mTgm ∈ B(Ap

ω) and ‖Tgm‖
1
m

Ap
ω
� ‖Tgn‖

1
n

Ap
ω
.

Finally, as a byproduct of Theorem 1.3, we characterize the boundedness of the g-
operators Lg satisfying (1.4) when n divides m.

Theorem 1.4. Let ω be a radial weight and let Lg be a g-operator.

a) If Lg satisfies (1.4) and n divides m, then ‖Lg‖Ap
ω
� ‖S

m
n
g Tg‖nAp

ω
.

b) If Lg ∈ Wg(	, m, n) and n ≥ 1 divides 	 + m, then ‖Lg‖Ap
ω
� ‖S

�+m
n

g Tg‖nAp
ω
.

The paper is organized as follows. In Section 2 we prove some preliminary results to 
obtain our main results. Namely, we state some decomposition formulas for g-operators, 
a basic operator approximation result, and a Calderón type formula for Ap

ω. Section 3
is devoted to the proof of Theorem 1.2. Section 4 deals with the proofs of Theorems 1.3
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and 1.4. In Section 5 we give a characterization of the boundedness of single analytic 
paraproducts, which for the case of Tg is described in terms of pointwise multipliers. As 
a consequence of the previous results, we also obtain an embedding result for spaces of 
pointwise multipliers.

In the last section, we particularize our results for Ap
ω when either ω is a radial 

doubling weight or ω is a radial rapidly decreasing weight.

2. Preliminary results

2.1. Algebraic results for operators in the algebra Ag

We begin this section recalling some algebraic results in Ag (see [1] and [2]) from 
which we obtain new algebraic formulas which will be used in the proof of Theorem 1.3.

Let Lg ∈ W (	, m, n). By using the identities Mg = Tg + Sg on H0(D), we can replace 
the operators Mg in the expression of Lg by Tg + Sg to obtain that Lg =

∑�
j=0 cjQj

on H0(D), where Qj ∈ Wg(m + 	 − j, n + j) and c0 = 1. Next, using the identity 
TgSg = SgTg − T 2

g on H0(D), we can reorder the operators Sg and Tg to obtain that

Lg = S�+m
g Tn

g +
�+m∑
j=1

cjS
�+m−j
g Tn+j

g on H0(D), (2.1)

where the cj ’s are complex numbers (see [2, Theorem 3.1] for the details of the proof). 
In particular, any Lg ∈ Wg(	, m, n) satisfies (2.1). Observe that the set of all operators 
satisfying (2.1) coincides with the set of all operators which satisfy (1.4)

Using this fact, we are going to show that we may replace Sm−jTn+j
g by any Lj ∈

Wg(m − j, n + j) in (1.4). Indeed, we prove a more general algebraic result, which is not 
included in [1] nor in [2], that will be useful to prove Theorem 1.3 c).

Proposition 2.1. Let Lj ∈ Wg(m − j, n + j), j = 0, · · · , m, and let Lg be a g-operator 
satisfying

Lg = L0 +
m∑
j=1

Lj on H0(D),

where L0 ∈ Wg(m, n) and Lj ∈ spanWg(m − j, n + j), for j = 1, . . . , m. Then Lg =
L0 +

∑m
i=1 ajLj on H0(D), where the aj’s are complex numbers, which do not depend 

on g.

Proof. We proceed by complete induction on m. For m = 0, Lg = L0 = Tn
g = L0, and 

there is nothing to prove. Assume that m > 0. Since L0, L0 ∈ Wg(m, n), both L0 and L0
satisfy (1.4), so L0 = L0 +

∑m
j=1 bjS

m−j
g Tn+j

g on H0(D), where bj ∈ C, and therefore 
we have that
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Lg = L0 +
m∑
j=1

L̃j on H0(D),

where L̃j ∈ spanWg(m − j, n + j), for j = 1, . . . , m. Now, for j = 1, . . . , m, L̃j is a 
linear combination of g-words in Wg(m − j, n + j), and so, taking into account that 
Lj+k ∈ Wg((m − j) − k, (n + j) + k), for k = 0, . . . , m − j, we may apply the induction 
hypothesis to any of those g-words and get that

L̃j =
m−j∑
k=0

aj,kLj+k, on H0(D),

where aj,k ∈ C. Then it is clear that Lg = L0 +
∑m

j=1 ajLj on H0(D), where aj ∈ C, 
and that ends the proof. �

A particular choice of operators Lj ∈ Wg(m − j, n + j) in Proposition 2.1 will be 
particularly useful for our purpose. Namely,

Corollary 2.2. Let Lg be a g-operator satisfying

Lg = L0 +
m∑
j=1

Lj on H0(D),

where L0 ∈ Wg(m, n), m, n ∈ N and Lj ∈ spanWg(m − j, n + j), for j = 1, . . . , m. For 
j = 0, . . . , m, define

Lm,n,j :=
(
Sqj+1
g Tg

)dj
(
Sqj
g Tg

)n+j−dj
,

where qj = qj(m, n) and dj = dj(m, n) are the quotient and the remainder of the entire 
division of m − j by n + j, respectively, that is, qj =

[
m−j
n+j

]
and dj = m − j − (n + j)qj. 

Then

Lg = L0 +
m∑
j=1

ajLm,n,j on H0(D),

where a1, . . . , am ∈ C. In particular, when n divides m, we have that q0 ∈ N, qj < q0, 
for j = 1, ..., m, and

L = (Sq0
g Tg)n +

∑
1≤j≤m
qj=q0−1

cjLm,n,j +
∑

1≤j≤m
qj<q0−1

cjLm,n,j on H0(D).

Moreover, if qj = q0 − 1, for some j = 1, . . . , m, then 0 ≤ dj = n − jq0 < n.
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2.2. An approximation result by dilated operators

In this section we state a pivotal operator approximation result which will be a key tool 
for the proof of our main theorems. But before doing that we need to recall some basic 
properties of Bergman spaces induced by radial weights whose proofs will be sketched 
for the sake of completeness.

For h ∈ H(D) and λ ∈ D, let us consider the dilated functions

hλ(z) := h(λz) (z ∈ D).

Then we have the following result on approximation by dilated functions, which is 
straightforward.

Proposition 2.3. Let ω be a radial weight and 0 < p < ∞. Then:
a) We have the estimate

sup
|z|≤r

|f(z)|p �
‖f‖p

Ap
ω

(1 − r) ω̂
( 1+r

2
) (f ∈ H(D), 0 < r < 1), (2.2)

where ω̂(r) :=
∫ 1
r
ω(s) ds. As a consequence, the convergence in Ap

ω implies the uni-
form convergence on compacta, and so Ap

ω is a complete space.
b) If f ∈ Ap

ω then fλ ∈ Ap
ω, for any λ ∈ D, ‖fλ‖Ap

ω
≤ ‖f‖Ap

ω
, if λ ∈ D, and ‖fλ‖Ap

ω
=

‖f‖Ap
ω
, if λ ∈ T . In addition,

lim
D�λ→ζ

‖fλ − fζ‖Ap
ω

= 0, for every ζ ∈ T and f ∈ Ap
ω. (2.3)

As a consequence, the polynomials are dense in Ap
ω.

Proof. Let Mp
p (s, f) := 1

2π
∫ π

−π
|f(seit)|p dt, for f ∈ H(D) and 0 < s < 1. Then, since 

|f |p is subharmonic, we have the estimate

|f(z)|p �
Mp

p

(
1+|z|

2 , f
)

1 − |z| ≤
∫ 1

1+|z|
2

2Mp
p (s, f)sω(s) ds

(1 − |z|) ω̂
(

1+|z|
2

) ≤
‖f‖p

Ap
ω

(1 − |z|) ω̂
(

1+|z|
2

) ,
from which (2.2) directly follows, and so a) holds.

Next we prove b). Let f ∈ H(D), λ ∈ D, Ur = {z ∈ D : r < |z| < 1}, and U c
r = D \Ur, 

for 0 ≤ r < 1. Then we have that

‖fλ‖pLp
ω(Ur) =

1∫
2Mp

p (|λ|s, f)sω(s) ds ≤
1∫
2Mp

p (s, f)sω(s) ds = ‖f‖p
Lp

ω(Ur),
r r
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with equality when λ ∈ T , and that for r = 0 we obtain the first part of b). Moreover,

‖fλ − fζ‖pAp
ω

= ‖fλ − fζ‖pLp
ω(Ur) + ‖fλ − fζ‖pLp

ω(Uc
r )

≤ 2max(p−1,0)(‖fλ‖pLp
ω(Ur) + ‖fζ‖pLp

ω(Ur)
)

+ ‖fλ − fζ‖pLp
ω(Uc

r )

≤ 2max(p,1)‖f‖p
Lp

ω(Ur) + Cω ‖fλ − fζ‖pL∞(Uc
r ),

for any f ∈ Ap
ω, λ ∈ D, ζ ∈ T and 0 < r < 1, where Cω =

∫
D ω dA. Then (2.3)

follows because limr↗1 ‖f‖pLp
ω(Ur) = 0 (by the dominated convergence theorem) and 

limD�λ→ζ ‖fλ − fζ‖pL∞(Uc
r ) = 0 (since f is uniformly continuous on U c

r ). Hence the proof 
is complete. �

It is clear that

(Mgf)λ = Mgλfλ (Sgf)λ = Sgλfλ (Tgf)λ = Tgλfλ,

and a repeated application of these identities shows that

Lgλfλ = (Lgf)λ (Lg ∈ Ag).

The operators Lgλ are called the dilated operators of Lg.
Now, bearing in mind Proposition 2.3 and following the lines of the proof of [1, Propo-

sition 4.3] we obtain the next result on approximation by dilated operators, which allows 
us to replace symbols in H(D) by holomorphic symbols in a neighborhood of D.

Proposition 2.4. Let ω be a radial weight, 0 < p < ∞, g ∈ H(D) and Lg ∈ Ag. If 
Lg ∈ B(Ap

ω) then Lgλ ∈ B(Ap
ω) and ‖Lgλ‖Ap

ω
� ‖Lg‖Ap

ω
, for any λ ∈ D. Moreover, if 

lim
r↗1

‖Lgr‖Ap
ω
< ∞, then Lg ∈ B(Ap

ω) and ‖Lg‖Ap
ω
� lim

r↗1
‖Lgr‖Ap

ω
.

2.3. Analytic tent spaces and Calderón formula

Let Γ(ζ) be the Stolz region with vertex at ζ ∈ T given by

Γ(ζ) := {z ∈ D : |z − ζ| < 2(1 − |z|)},

and define Γ(ζ) := |ζ|Γ( ζ
|ζ| ) = {z ∈ D : |z − ζ| < 2(|ζ| − |z|)}, for ζ ∈ D \ {0}. Then 

AT p
2 (ω) is the analytic tent space of all functions f ∈ H(D) such that

‖f‖p
ATp

2 (ω) :=
∫
D

( ∫
Γ(ζ)

|f |2dA
) p

2

ω(ζ) dA(ζ) < ∞,

and AT p
2 (ω, 0) := AT p

2 (ω) ∩ H0(D). On the other hand, the non-tangential maximal 
function of ψ : D → C is defined by
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Mψ(ζ) := sup
z∈Γ(ζ)

|ψ(z)| (ζ ∈ D \ {0}).

The next result describes the properties of the analytic tent spaces that we need to prove 
our results.

Proposition 2.5. Let ω be a radial weight and 0 < p < ∞. Then
a) The following Calderón type formula holds

‖f‖p
Ap

ω
� ‖f ′‖p

ATp
2 (ω) + |f(0)|p (f ∈ H(D)), (2.4)

where the corresponding constants depend only on p and ω.
b) The non-tangential maximal operator M is bounded from Ap

ω to Lp
ω(D).

c) For any 0 < r < 1, we have the estimate

sup
|z|≤r

|f(z)| � ‖f‖ATp
2 (ω) (f ∈ H(D)). (2.5)

As a consequence, the convergence in AT p
2 (ω) implies the uniform convergence on 

compacta, and so AT p
2 (ω) is a complete space.

d) The operator Mz is a topological isomorphism from Ap
ω onto Ap

ω(0) and from AT p
2 (ω)

onto AT p
2 (ω, 0).

e) The following estimate holds

‖h1h
′
2‖AT

p/2
2 (ω) � ‖h1‖Ap

ω
‖h2‖Ap

ω
(h1, h2 ∈ H(D)).

Proof. Part a) follows easily by applying the classical Calderón formula (see [6, Thm. 3]
or [11, Thm. 7.4] with q = 2) to the dilated functions fr, for 0 < r < 1, and integrating 
the resulting estimate against rω(r) dr along the unit interval (0, 1), see also [13, The-
orem 4.2] for a detailed proof. Part b) is proved similarly using the boundedness of M
from Hp to Lp(T ) (see [9, Thm. II.3.1]).

Now let us prove c). First note that (2.4) shows that

‖f‖ATp
2 (ω) � ‖F‖Ap

ω
(f ∈ H(D)), (2.6)

where F (z) =
∫ z

0 f(ζ) dζ. This estimate together with Cauchy’s formula, (2.2) and (2.6)
proves (2.5) as follows:

sup
|z|≤r

|f(z)| � sup
|z|= 1+r

2

|F (z)| � ‖f‖ATp
2 (ω) (f ∈ H(D)).

We next prove d). Let X be either Ap
ω or AT p

2 (ω). Let X(0) = Ap
ω(0), in the first case, 

and X(0) = AT p
2 (ω, 0), in the second case. Recall that Mz is an algebraic isomorphism 

from H(D) onto H0(D), and
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(M−1
z h0)(z) = h0(z)

z
=

1∫
0

h′
0(tz) dt (h0 ∈ H0(D)).

Thus, since Mz is bounded on X, we only have to prove that M−1
z is bounded on X(0), 

that is,

‖h‖X � ‖h0‖X (h0 ∈ H0(D)), (2.7)

where h = M−1
z h0. First observe that

|h(z)| = |h0(z)|
|z| ≤ 2|h0(z)| (1

2 ≤ |z| < 1).

On the other hand, Cauchy’s formula and either (2.2) or (2.5) give that

sup
|z|< 1

2

|h(z)| � sup
|z|< 1

2

|h′
0(z)| � sup

|z|= 3
4

|h0(z)| � ‖h0‖X (h0 ∈ H0(D)).

Therefore

|h| � ‖h0‖X1D(0, 12 ) + |h0|1D\D(0, 12 ) (h0 ∈ H0(D)),

where D(0, 12 ) = {z ∈ D : |z| < 1
2} and 1A denotes the indicator or characteristic 

function of the set A. Hence (2.7) directly follows from this estimate.
Finally, e) is proved using Schwarz inequality, b) and (2.4) as follows:

‖h1h
′
2‖AT

p/2
2 (ω) ≤

{∫
D

( ∫
Γ(ζ)

|h′
2|2dA

) p
4

(Mh1(ζ))
p
2ω(ζ) dA(ζ)

} 2
p

≤ ‖Mh1‖Lp
ω
‖h′

2‖ATp
2 (ω) � ‖h1‖Ap

ω
‖h2‖Ap

ω
. �

3. Proof of Theorem 1.2

In order to prove Theorem 1.2 we need the following proposition.

Proposition 3.1. Let ω be a radial weight. Then:
a) If Tg ∈ B(Ap

ω), we have that ‖Tn
g ‖Ap

ω
� ‖Tg‖nAp

ω
, for any n ∈ N.

b) For any n ∈ N, ‖Tn
g ‖Ap

ω
� ‖Tn

g ‖Ap
ω(0).

c) If P (Tg) ∈ B(Ap
ω(0)), for some polynomial P of positive degree, then Tg ∈ B(Ap

ω).

The following lemma will be used in the proof of Proposition 3.1.



C. Cascante et al. / Journal of Functional Analysis 287 (2024) 110658 13
Lemma 3.2. Let ω be a radial weight, 0 < p < ∞, and n ∈ N. Then

‖Tn
g f‖2

Ap
ω
� ‖Tn+1

g f‖Ap
ω
‖Tn−1

g f‖Ap
ω

(f, g ∈ H(D)). (3.1)

Moreover, when Tg ∈ B(Ap
ω) we have that

‖Tn
g f‖

1
n

Ap
ω
� ‖Tn+1

g f‖
1

n+1
Ap

ω
(g, f ∈ H(D), ‖f‖Ap

ω
= 1). (3.2)

Here, as usual, T 0
g f = f , for g, f ∈ H(D).

Proof. By (2.4),

‖Tn
g f‖2

Ap
ω

= ‖(Tn
g f)2‖

A
p/2
ω

� ‖[(Tn
g f)2]′‖

AT
p/2
2 (ω).

Since [(Tn
g f)2]′ = 2(Tn−1

g f)
(
Tn+1
g f

)′, estimate (3.1) follows from Proposition 2.5 e).
The proof of (3.2) is done by induction on n. For n = 1 it is equivalent to (3.1). Now 

let n > 1. Then the induction hypothesis gives that

‖Tn−1
g f‖Ap

ω
� ‖Tn

g f‖
n−1
n

Ap
ω

(g, f ∈ H(D), ‖f‖Ap
ω

= 1).

This estimate and (3.1) show that

‖Tn
g f‖2

Ap
ω
� ‖Tn+1

g f‖Ap
ω
‖Tn

g f‖
n−1
n

Ap
ω

(g, f ∈ H(D), ‖f‖Ap
ω

= 1),

which is equivalent to (3.2) since Tg ∈ B(Ap
ω), and the proof is complete. �

Proof of Proposition 3.1. By (3.2) ‖Tgr‖Ap
ω
� ‖Tn

gr‖
1
n

Ap
ω
. Then, by Proposition 2.4 it fol-

lows part a).
Next we prove part b) of Proposition 3.1. Since ‖Tn

g ‖Ap
ω(0) ≤ ‖Tn

g ‖Ap
ω
, we only have to 

prove that ‖Tn
g ‖Ap

ω
� ‖Tn

g ‖Ap
ω(0) and we may assume, as usual, that g ∈ H(D). Since the 

pointwise evaluations are bounded on Ap
ω (by Proposition 2.3 a)), Π0f = f−f(0) defines 

a bounded operator on Ap
ω, and so f0 = Π0f ∈ Ap

ω(0) satisfies that ‖f0‖Ap
ω
� ‖f‖Ap

ω
. 

Therefore

‖Tn
g f‖Ap

ω
� (‖Tn

g f0‖Ap
ω

+ |f(0)| ‖Tn
g 1‖Ap

ω
)

� (‖Tn
g ‖Ap

ω(0) ‖f0‖Ap
ω

+ ‖Tn
g 1‖Ap

ω
‖f‖Ap

ω
)

� (‖Tn
g ‖Ap

ω(0) + ‖Tn
g 1‖Ap

ω
) ‖f‖Ap

ω
,

and hence ‖Tn
g ‖Ap

ω
� (‖Tn

g ‖Ap
ω(0) + ‖Tn

g 1‖Ap
ω
).

Now we want to estimate ‖Tn
g 1‖Ap

ω
by ‖Tn

g ‖Ap
ω(0). Since Tn

g 1 = gn
0
n! and Tn

g g0 = gn+1
0

(n+1)! , 
where g0 = Π0g (see [2, Lemma 3.12]), Hölder’s inequality shows that
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‖Tn
g 1‖Ap

ω
� ‖gn0 ‖Ap

ω
� ‖gn+1

0 ‖n/(n+1)
Ap

ω
� ‖Tn

g g0‖n/(n+1)
Ap

ω
.

Since g ∈ H(D), it is clear that g0 ∈ Ap
ω(0) and we get that

‖Tn
g 1‖Ap

ω
� ‖Tn

g ‖
n/(n+1)
Ap

ω(0) ‖g0‖n/(n+1)
Ap

ω
.

By Hölder’s inequality, ‖g0‖n+1
Ap

ω
� ‖gn+1

0 ‖Ap
ω
� ‖Tn

g g0‖Ap
ω
≤ ‖Tn

g ‖Ap
ω(0)‖g0‖Ap

ω
, which 

implies that ‖g0‖nAp
ω
� ‖Tn

g ‖Ap
ω(0). And that ends the proof of part b).

Finally, we prove part c) of Proposition 3.1. Let P (z) =
∑N

k=0 akz
k, where N > 0 and 

aN �= 0. Then parts a) and b) and Proposition 2.4 give that

c |aN |‖Tgr‖NAp
ω(0) −

N−1∑
k=0

|ak|‖Tgr‖kAp
ω(0) ≤ ‖P (Tgr)‖Ap

ω(0) � ‖P (Tg)‖Ap
ω(0),

where c is a positive constant depending on N but not on r or g. Therefore 
supr ‖Tgr‖Ap

ω(0) < ∞, and using again Proposition 2.4 and parts a) and b) we conclude 
that Tg ∈ B(Ap

ω). �
Proof of Theorem 1.2. It follows the ideas of the proof of [1, Theorem 1.1 (b)]. Let Lg be 
a non-trivial g-operator which is bounded on Ap

ω(0). Then the ST -representation (1.1)
allow us to write Lg as

Lg =
n∑

k=0

Sk
gPk(Tg) on H0(D),

where P0, . . . , Pn are one variable polynomials, and Pn �= 0 has degree m. Moreover, if 
n = 0 then P0 has positive degree. In this case, Lg = P0(Tg) on H0(D), so P0(Tg) ∈
B(Ap

ω(0)), and therefore Proposition 3.1 c) gives that Tg ∈ B(Ap
ω). In order to deal with 

the case n > 0, we will use iterated commutators and their main properties as stated in 
[1, Section 4]. Since Pk(Tgr) commute with Tgr , we have

[Lgr , Tgr ]n = n!T 2n
gr Pn(Tgr) = Qn(Tgr) on H0(D),

where Qn is a one variable polynomial of degree N = 2n + m > n, so Proposition 2.4
and the binomial formula for iterated commutators implies that

‖Qn(Tgr)‖Ap
ω(0) = ‖[Lgr , Tgr ]n‖Ap

ω(0) � ‖Lg‖Ap
ω(0)‖Tgr‖nAp

ω(0).

On the other hand, since Qn(z) =
∑N

k=0 akz
k, where ak ∈ C, taking into account 

Proposition 3.1 a)-b), we have

c |aN |‖Tgr‖NAp
ω(0) −

N−1∑
|ak|‖Tgr‖kAp

ω(0) ≤ ‖Qn(Tgr)‖Ap
ω(0),
k=0
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where c is a positive constant depending on N but not on r or g. It follows that 
supr ‖Tgr‖Ap

ω(0) < ∞, and so Proposition 2.4 and Proposition 3.1 b) show that Tg ∈
B(Ap

ω). �
Observe that, if Tg is bounded on Ap

ω, then n! Tn
g 1 = (g − g(0))n ∈ Ap

ω(0), for any 
n ∈ N, so the operator PN+2(g − g(0), g(0))δ0, which appears in (1.1), is bounded on 
Ap

ω. This observation together with Theorem 1.2 implies the following

Corollary 3.3. Any non-trivial g-operator Lg is bounded on Ap
ω if and only if it is bounded 

on Ap
ω(0).

4. Proofs of Theorems 1.3 and 1.4

4.1. Proof of Theorem 1.3 a)

Assume that Lg ∈ B(Ap
ω(0)). Then, by Theorem 1.2, Tg ∈ B(Ap

ω). Since [Lg, Tg]m =
m! TN

g on H0(D), where N = 2m + n, it follows from Proposition 3.1 a) that

‖Tg‖NAp
ω(0) � ‖[Lg, Tg]m‖Ap

ω(0) � ‖Lg‖Ap
ω(0)‖Tg‖mAp

ω(0),

so ‖Tg‖n+m
Ap

ω(0) � ‖Lg‖Ap
ω(0). If Lg ∈ B(Ap

ω) then the above estimate together with Theo-
rem 1.2 and Proposition 3.1 b) give

‖Tg‖n+m
Ap

ω
� ‖Tg‖n+m

Ap
ω(0) � ‖Lg‖Ap

ω(0) ≤ ‖Lg‖Ap
ω
.

4.2. Proof of Theorem 1.3 b)

We need the following simple lemma.

Lemma 4.1. Let ω be a radial weight and 0 < p < ∞. Then:
a) Mg ∈ B(Ap

ω) if and only if g ∈ H∞, and ‖Mg‖Ap
ω
� ‖g‖H∞ .

b) Sg ∈ B(Ap
ω) if and only if g ∈ H∞, and ‖Sg‖Ap

ω
� ‖g‖H∞ .

In particular, if g ∈ H∞ then Tg ∈ B(Ap
ω) and ‖Tg‖Ap

ω
� ‖g‖H∞ .

Proof. By Proposition 2.3 a), the space of pointwise evaluations are bounded of Ap
ω, 

therefore the space of pointwise multipliers of Ap
ω coincides with H∞ by [8, Lemma 11]

and ‖Mg‖Ap
ω
� ‖g‖H∞ .

On the other hand, by Proposition 2.5 a), Sg ∈ B(Ap
ω) means that g is a multiplier on 

AT p
2 (ω), so, bearing in mind Proposition 2.5 c), an analogous argument to the previous 

one gives that ‖Sg‖Ap
ω
� ‖g‖H∞ .

Finally, if g ∈ H∞ then Mg, Sg ∈ B(Ap
ω), so Tg = Mg − Sg − g(0)δ0 is also bounded 

on Ap
ω, by Proposition 2.3 a), and ‖Tg‖Ap

ω
� ‖g‖H∞ . �
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If g ∈ H∞, then Lemma 4.1 gives that

‖Sm−j
g T j

g ‖Ap
ω
≤ ‖Sg‖m−j

Ap
ω

‖Tg‖jAp
ω
� ‖g‖mH∞ , for 0 ≤ j ≤ m,

so ‖Lg‖Ap
ω
� ‖g‖mH∞ .

Now we want to prove the estimate ‖g‖mH∞ � ‖Lg‖Ap
ω
, or equivalently sup0<r<1 ‖gr‖mH∞

� ‖Lg‖Ap
ω
, where gr(z) = g(rz). Assume that Lg ∈ B(Ap

α).
By Lemma 4.1, Proposition 2.4 and Theorem 1.3 a), we have that

‖gr‖mH∞ � ‖Sm
gr‖Ap

ω
� ‖Lgr‖Ap

ω
+

m∑
j=1

‖Sgr‖m−j
Ap

ω
‖Tgr‖jAp

ω

� ‖Lg‖Ap
ω

+ ‖Tg‖Ap
ω

m∑
j=1

‖Sgr‖m−j
Ap

ω
‖Tgr‖j−1

Ap
ω

� ‖Lg‖Ap
ω

+ ‖Lg‖
1
m

Ap
ω
‖gr‖m−1

H∞ .

The above estimate means that the function φ(g, r) := ‖gr‖m
H∞

‖Lg‖A
p
ω

satisfies

φ(g, r) � 1 + φ(g, r)
m−1
m .

Since m−1
m < 1, φ(g, r) must be bounded in g and r·. Hence we conclude that 

sup0<r<1 ‖gr‖mH∞ � ‖Lg‖Ap
ω
, and we are done.

4.3. Proof of Theorem 1.3 c)

We may assume that g is not constant, otherwise the result is clear. We proceed by 
complete induction on k. If k = 0, the estimate ‖Tg‖Ap

ω
� ‖Lg‖1/(m+n)

Ap
ω(0) follows from 

Theorem 1.3 a). In particular, this estimate shows that 0 < ‖Lg‖Ap
ω(0) < ∞. Now 

assume that ‖Sj
gTg‖Ap

ω
� ‖Lg‖(j+1)/(m+n)

Ap
ω(0) , for j = 0, ..., k − 1, and we will prove that 

‖Sk
gTg‖Ap

ω
� ‖Lg‖(k+1)/(m+n)

Ap
ω(0) . By Theorem 1.3 a), Qg = Lk

gT
m−nk
g satisfies that

‖Qg‖Ap
ω(0) ≤ ‖Lg‖kAp

ω(0)‖Tg‖m−nk
Ap

ω(0) ≤ ‖Lg‖k+(m−nk)/(m+n)
Ap

ω(0) = ‖Lg‖m(k+1)/(m+n)
Ap

ω(0) .

Since

Qg = L0 +
km∑
j=1

Lj on H0(D),

where L0 ∈ Wg(km, m), m, n ∈ N and Lj ∈ spanWg(km − j, m + j), for j = 1, . . . , m, 
we may apply Corollary 2.2 to Qg and obtain that
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Qg = (Sk
gTg)m +

km∑
j=1

cjLkm,m,j on H0(D),

where cj ∈ C. Then, by Proposition 3.1 a)-b) and the identity Sk
gTg = 1

k+1Tgk+1 , we 
have that

‖Sk
gTg‖mAp

ω
� ‖(Sk

gTg)m‖Ap
ω(0)

≤ ‖Qg‖Ap
ω(0) +

{ ∑
1≤j≤km

qj(km,m)=k−1

+
∑

1≤j≤km
qj(km,m)<k−1

}
|cj |‖Lkm,m,j‖Ap

ω(0).

If qj := qj(km, m) = k − 1, for some 1 ≤ j ≤ km, then dj := dj(km, m) < m. In this 
case,

‖Lkm,m,j‖Ap
ω(0) ≤ ‖Sk

gTg‖dj

Ap
ω(0)‖S

k−1
g Tg‖m+j−dj

Ap
ω(0)

� ‖Sk
gTg‖dj

Ap
ω(0)‖Lg‖k(m+j−dj)/(m+n)

Ap
ω(0) ,

with

k(m + j − dj) = (k − 1)(m + j) + dj + m + j − (k + 1)dj
= km− j + m + j − (k + 1)dj = m(k + 1) − (k + 1)dj ,

so ‖Lkm,m,j‖Ap
ω(0) � ‖Sk

gTg‖dj

Ap
ω(0)‖Lg‖(m(k+1)−(k+1)dj)/(m+n)

Ap
ω(0) .

If qj < k − 1, then

‖Lkm,m,j‖Ap
ω(0) � ‖Sqj+1

g Tg‖dj

Ap
ω(0)‖S

qj
g Tg‖m+j−dj

Ap
ω(0)

� ‖Lg‖{(qj+2)dj+(qj+1)(m+j−dj)}/(m+n)
Ap

ω(0)

= ‖Lg‖m(k+1)/(m+n)
Ap

ω(0) ,

From all these estimates, we have
⎛
⎝ ‖Sk

gTg‖Ap
ω

‖Lg‖(k+1)/(m+n)
Ap

ω(0)

⎞
⎠

m

� 1 +
∑

1≤j≤km
qj=k−1

⎛
⎝ ‖Sk

gTg‖Ap
ω

‖Lg‖(k+1)/(m+n)
Ap

ω(0)

⎞
⎠

dj

.

Finally, since dj < m, we obtain that ‖Sk
gTg‖ � ‖Lg‖(k+1)/(m+n), which ends the proof.

4.4. Proof of Theorem 1.4

By Theorem 1.3 c),

‖Sm/n
g Tg‖Ap

ω
� ‖Lg‖(m/n+1)/(m+n)

p = ‖Lg‖1/n
p .
Aω Aω
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In order to show the opposite estimate, by Corollary 2.2, it is enough to prove that, for 
j = 1, . . . , m, we have that ‖Lj‖Ap

ω
� ‖Sm/n

g Tg‖nAp
ω
. This estimate is a consequence of 

Theorem 1.1. Indeed, since qj < q0 = m/n, applying twice Theorem 1.1 we get that

‖Sqj+1
g Tg‖Ap

ω
� ‖Sm/n

g Tg‖(qj+2)/(m/n+1)
Ap

ω
and

‖Sqj
g Tg‖Ap

ω
� ‖Sm/n

g Tg‖(qj+1)/(m/n+1)
Ap

ω
,

so we obtain that

‖Lj‖Ap
ω
≤ ‖Sqj+1

g Tg‖dj

Ap
ω
‖Sqj

g Tg‖n+j−dj

Ap
ω

� ‖Sm/n
g Tg‖αAp

ω
,

with

α =
(
(qj + 2)dj + (qj + 1)(n + j − dj)

) 1
m
n + 1

= (qj(n + j) + dj + n + j) n
m+n = (m− j + n + j) n

m+n = n.

This ends the proof of part a). Since any Lg ∈ Wg(	, m, n) satisfies (1.4), replacing m by 
	 + m, part b) directly follows.

As a consequence of the above theorems we obtain the following result.

Proposition 4.2. Let Lg be a g-operator such that

Lg = a2,0S
2
g + a1,0Sg + a1,1SgTg + b1,1TgSg + a0,2T

2
g + a0,1Tg on H0(D), (4.1)

where the aj,k’s are complex numbers.
a) If a2,0 �= 0, then Lg ∈ B(Ap

ω) if and only if Sg ∈ B(Ap
ω).

b) If a2,0 = 0, a1,0 �= 0 and a1,1 + b1,1 = 0, then Lg ∈ B(Ap
ω) if and only if Sg ∈ B(Ap

ω).
c) If a2,0 = a1,0 = 0 and a1,1 + b1,1 �= 0, then Lg ∈ B(Ap

ω) if and only if SgTg = 1
2Tg2 ∈

B(Ap
ω).

d) If a2,0 = a1,0 = a1,1 + b1,1 = 0, and a0,2 �= 0 or a0,1 �= 0, then Lg ∈ B(Ap
ω) if and 

only if Tg ∈ B(Ap
ω).

Remark 4.3. For a general radial weight ω, the only case where we don’t have a descrip-
tion of the boundedness on Ap

ω of the g-operator given by (4.1) is a2,0 = 0, a1,0 �= 0, and 
a1,1+b1,1 �= 0. But when ω is either a radial doubling weight (ω ∈ D̂) or a rapidly decreas-
ing weight (ω ∈ W) the remaining case can be done (see Section 6), and consequently 
we obtain a description of the bounded g-operators which are linear combinations of 1
and 2-letter g-words.
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Proof of Proposition 4.2. Since TgSg = SgTg − T 2
g on H0(D),

Lg = a2,0S
2
g + a1,0Sg + (a1,1 + b1,1)SgTg + (a0,2 − b1,1)T 2

g + a0,1Tg on H0(D),

so any of the hypothesis in the proposition implies that cLg satisfies (1.3), for some 
non-zero constant c. Therefore, by Theorem 1.2, Tg ∈ B(Ap

0) whenever Lg ∈ B(Ap
ω), and, 

in particular, d) follows. As a consequence, Lg is bounded on Ap
ω if and only if so is the 

g-operator L̃g = Lg − a0,1Tg − (a0,2 − b1,1)T 2
g . Recall that

L̃g = a2,0S
2
g + a1,0Sg + (a1,1 + b1,1)SgTg on H0(D),

and so L̃g also satisfies (1.4), up to a non-zero multiplicative constant. Then it is clear 
that b) and c) hold.

We finally prove part a). Assume that a2,0 �= 0 and Lg ∈ B(Ap
ω). Then, taking into 

account that

S2
g + 2λSg = S2

g+λ, Tg = Tg+λ, SgTg = Sg+λTg+λ − λTg+λ on H0(D),

for any λ ∈ C, we may also assume that a1,0 = 0. Then Theorem 1.3 shows that Sg ∈
B(Ap

ω). The converse is clear because Sg ∈ B(Ap
ω) implies Tg ∈ B(Ap

ω), by Lemma 4.1. 
And that ends the proof. �
Remark 4.4. As a consequence of the above results we show the full characterization of 
the boundedness on Ap

ω of any two-letter g-word.
Obviously, the formula SgTg = TgMg = 1

2Tg2 gives that SgTg = TgMg ∈ B(Ap
ω) if and 

only if Tg2 ∈ B(Ap
ω). Next, since M2

g = Mg2 and S2
g = Sg2 , Lemma 4.1 shows that any 

of the operators M2
g and S2

g is bounded on Ap
ω if and only if g ∈ H∞.

Finally, bearing in mind that

MgTg = SgTg + T 2
g and TgSg = SgTg − T 2

g on H0(D),

Proposition 4.2 shows that any of those two operators are bounded on Ap
ω if and only if 

Tg2 ∈ B(Ap
ω).

5. Boundedness of single analytic paraproducts

In this section we will give a characterization of the boundedness of Mg, Sg, and Tg, by 
using analytic tent spaces, a Calderón type formula, and spaces of pointwise multipliers.

If X, Y are Banach or quasi Banach spaces, Mult(X, Y ) denotes the space of pointwise 
multipliers from X to Y , and Mult(X) := Mult(X, X). Recall that ‖g‖Mult(X,Y ) =
‖Mg‖X→Y , for any g ∈ H(D).

Proposition 5.1. Let ω be a radial weight and 0 < p < ∞. Then:
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a) Mg ∈ B(Ap
ω) if and only if g ∈ H∞, and ‖Mg‖Ap

ω
� ‖Mg‖Ap

ω(0) � ‖g‖H∞ .
b) Sg ∈ B(Ap

ω) if and only if g ∈ H∞, and ‖Sg‖Ap
ω
� ‖Sg‖Ap

ω(0) � ‖g‖H∞ .
c) Tg ∈ B(Ap

ω) if and only if g′ ∈ Mult(Ap
ω, AT p

2 (ω)), and

‖Tg‖Ap
ω
� ‖Tg‖Ap

ω(0) � ‖g′‖Mult(Ap
ω,ATp

2 (ω)).

Moreover, if g ∈ BMOA, then Tg ∈ B(Ap
ω) and ‖Tg‖Ap

ω
� ‖g‖BMOA.

Proof. First note that Lemma 4.1 shows the estimate ‖Mg‖Ap
ω
� ‖g‖H∞ � ‖Sg‖Ap

ω
, so 

in order to complete the proofs of parts a) and b) we just have to show that ‖Mg‖Ap
ω(0) �

‖g‖H∞ � ‖Sg‖Ap
ω(0).

Since Mg(zf(z)) = Mzg(z)f , for any f, g ∈ H(D), Proposition 2.5 d) shows that 
Mg ∈ B(Ap

ω(0)) if and only if Mzg(z) ∈ B(Ap
ω), and ‖Mg‖Ap

ω(0) � ‖Mzg(z)‖Ap
ω
. Moreover, 

by Lemma 4.1, we have that Mzg(z) ∈ B(Ap
ω) if and only if zg(z) ∈ H∞, that is g ∈ H∞, 

and ‖Mzg(z)‖Ap
ω
� ‖zg(z)‖∞ � ‖g‖H∞ .

If g ∈ H∞, then we have already proved that ‖Sg‖Ap
ω(0) ≤ ‖Sg‖Ap

ω
� ‖g‖H∞ . In order 

to prove the converse recall that, by Proposition 2.3 a), Π0f := f−f(0) defines a bounded 
operator from Ap

ω to Ap
ω(0). It follows that if Sg ∈ B(Ap

ω(0)), then Sg = Sg ◦Π0 ∈ B(Ap
ω)

and ‖Sg‖Ap
ω

� ‖Sg‖Ap
ω(0), so g ∈ H∞ and ‖g‖H∞ � ‖Sg‖Ap

ω(0). Hence we have just 
proved parts a) and b).

The first part of c) follows from (2.4) and Proposition 3.1 b). Finally, assume that 
g ∈ BMOA. Then, by integrating in polar coordinates and taking into account the 
classical estimate ‖Tg‖Hp � ‖g‖BMOA (see [5] and [3]), we have

‖Tgf‖pAp
ω
�

1∫
0

r‖(Tgf)r‖pHpω(r)dr =
1∫

0

r‖Tgrfr‖pHpω(r)dr

�
1∫

0

r‖gr‖pBMOA‖fr‖
p
Hpω(r)dr

� ‖g‖pBMOA

1∫
0

r‖fr‖pHpω(r)dr � ‖g‖pBMOA‖f‖
p
Ap

ω
,

so ‖Tg‖Ap
ω
� ‖g‖BMOA. And that ends the proof. �

As a consequence of Theorem 1.1 and Proposition 5.1 c) we obtain the following result.

Corollary 5.2. If ω is a radial weight and 0 < p < ∞, then

‖(gj)′‖
1
j

p p � ‖(gk)′‖
1
k

p p (1 ≤ j ≤ k).

Mult(Aω,AT2 (ω)) Mult(Aω,AT2 (ω))
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6. Further results for some classes of radial weights

We begin this section obtaining a further result on the composition of analytic para-
products acting on a Bergman space Ap

ω which can be applied to several classes of radial 
weights.

Theorem 6.1. Let ω be a radial weight and 0 < p < ∞. Assume that there is ρ0 ∈ [0, 1)
such that for any ξ ∈ D \D(0, ρ0) there exists Kξ ∈ H(D) with the following properties:
(a) ‖Kξ‖Ap

ω
= 1.

(b) lim|ξ|→1− |Kξ(z)| = 0 uniformly on compact subsets of D.

(c) lim
ξ→ζ

∫
D\D(ζ,δ)

|Kξ|pω dA = 0, for any δ > 0 and ζ ∈ T .

Then, if Lg is a g-operator written in the form (1.1) such that PN+1 �= 0, Lg is bounded 
on Ap

ω if and only if g ∈ H∞.

The following two lemmas will be used in the proof of Theorem 6.1. We start up with 
a straightforward approximation identity type result.

Lemma 6.2. Let ω be a radial weight and 0 < p < ∞ such that the properties (a) and (c) 
of Theorem 6.1 hold. Then any continuous function F on D satisfies that

lim
ξ→ζ

∫
D

|Kξ|pFω dA = F (ζ), for every ζ ∈ T . (6.1)

Proof. For any δ > 0 and ζ ∈ T , let Dζ,δ = D ∩D(ζ, δ) and Dc
ζ,δ = D \Dζ,δ. Then, for 

any ξ ∈ D \D(0, ρ0), property (a) of Theorem 6.1 implies that

∣∣∣∣∣∣
∫
D

|Kξ|pFω dA− F (ζ)

∣∣∣∣∣∣ ≤
⎧⎪⎨
⎪⎩

∫
Dζ,δ

+
∫

Dc
ζ,δ

⎫⎪⎬
⎪⎭ |Kξ|p|F − F (ζ)|ω dA

≤ sup
z∈Dζ,δ

|F (z) − F (ζ)| + 2‖F‖∞
∫

Dc
ζ,δ

|Kξ|pω dA.

Finally, (6.1) follows from this inequality, the continuity of F at ζ, and property (c) of 
Theorem 6.1. �
Lemma 6.3. Let ω be a radial weight and 0 < p < ∞. If g′ ∈ H∞, then Tg : Ap

ω → Ap
ω is 

compact.
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Proof. Let {fj} be a bounded sequence in Ap
ω such that fj → 0 uniformly on compact 

subsets of D. By [17, Lemma 3.7], we only have to prove that limj→∞ ‖Tgfj‖Ap
ω

= 0. By 
Proposition 2.5 a)-b), for any 0 < r < 1 we have that

‖Tgfj‖pAp
ω
�

∫
D

( ∫
Γ(ζ)

|g′fj |2dA
) p

2

ω(ζ) dA(ζ)

� sup
|z|≤r

|fj(z)|p
∫
D

( ∫
Γ(ζ)∩D(0,r)

|g′|2dA
) p

2

ω(ζ) dA(ζ)

+ ‖g′‖p∞
∫
D

( ∫
Γ(ζ)\D(0,r)

|fj |2dA
) p

2

ω(ζ) dA(ζ)

� ‖g′‖p∞ sup
|z|≤r

|fj(z)|p + ‖g′‖p∞(1 − r)p/2‖Mfj‖pLp
ω

� ‖g′‖p∞
(

sup
|z|≤r

|fj(z)|p + (1 − r)p/2‖fj‖pAp
ω

)
.

Therefore, taking into account that fj → 0 uniformly on compacta and supj ‖fj‖Ap
ω
< ∞, 

the above inequality shows that limj→∞ ‖Tgfj‖Ap
ω

= 0, and that finishes the proof. �
Proof of Theorem 6.1. We will follow the lines of the proof of [1, Theorem 1.2 a)]. If 
g ∈ H∞, then Sg, Tg ∈ B(Ap

ω), by Proposition 5.1, and so Lg ∈ B(Ap
ω). Conversely, 

assume that Lg ∈ B(Ap
ω) and apply Proposition 2.4 to conclude that for r ∈ (0, 1), we 

have Lgr ∈ B(Ap
ω) with ‖Lgr‖Ap

ω
� ‖Lg‖Ap

ω
. From (1.1) we have that

Lgr =
N∑

k=0

Sk
grTgrPk(Tgr)Π0 + SgrPN+1(Sgr) + PN+2(gr − g(0), g(0)) δ0,

for any r ∈ (0, 1), and, by Lemma 6.3, we see that all the operators on the right are 
compact, except

SgrPN+1(Sgr) = SgrPN+1(gr) = MgrPN+1(gr) − TgrPN+1(gr) − (grPN+1(gr))(0)δ0.

So, by Lemma 6.3, we conclude that

Lgr = MgrPn+1(gr) + J,

where J is compact.
Now, for any ξ ∈ D \ D(0, ρ0), consider the functions Kξ of the statement. Then, 

putting together hypothesis (a) and (b), and [17, Lemma 3.7], we have ‖JKξ‖Ap
ω
→ 0. 

On the other hand, note that if Gr = grPn+1(gr) then
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‖MGr
Kξ‖pAp

ω
=

∫
D

|Kξ(z)|p |Gr(z)|pω(z) dA(z) (ξ ∈ D \D(0, ρ0)).

Thus, since |Gr| = |grPn+1(gr)| is continuous on D, by Lemma 6.2

lim
ξ→ζ

‖MgrPn+1(gr)Kξ‖pAp
ω

= |grPn+1(gr)(ζ)|p (ζ ∈ T ).

Altogether we get

|grPn+1(gr)(ζ)|p = lim
ξ→ζ

‖LgrKξ‖pAp
ω
≤ ‖Lg‖pAp

ω
lim
ξ→ζ

‖Kξ‖pAp
ω

= ‖Lg‖pAp
ω
,

for all ζ ∈ T and 0 < r < 1, which implies that gPn+1(g) ∈ H∞, and so g ∈ H∞, by [1, 
Lemma 4.5]. Thus the proof is finished. �

We remark that, in the next sections, Theorem 6.1 will allow us to complete the 
remaining open case in Proposition 4.2 (see Remark 4.3) for two classes of radial weights, 
which have drawn a lot of attention in the recent years.

6.1. Radial doubling weights

Recall that the class D̂ of radial upper doubling weights is composed of all radial 
weights ω such that ω̂(r) ≤ Cω̂(1+r

2 ), for some constant C = C(ω) > 1 and all 0 ≤ r < 1. 
On the other hand, the class Ď of radial lower doubling weights is composed of all radial 
weights ω such that ω̂(r) ≤ C

∫ r+ 1−r
K

r
ω(s) ds, for some constants K > 1 and C > 0, 

and for any 0 ≤ r < 1. The class of radial doubling weights is D = D̂ ∩ Ď. If ω is radial 
weight, the Littlewood-Paley type formula

‖f‖p
Ap

ω
� |f(0)|p +

∫
D

|f ′(z)|p(1 − |z|)pω(z) dA(z) (f ∈ H(D))

holds if and only if ω is a radial doubling weight (see [14, Theorem 5]). This result is 
a key to prove that T (Ap

ω) = B if ω ∈ D, see [12, Proposition 6.1 and Theorem 6.3]. 
Consequently, Theorem A implies that T (Ap

ω) satisfies the radicality property if ω ∈ D. 
However the situation is more involved for ω ∈ D̂ \ D, because for each p �= 2 there are 
radial upper doubling weights ω such that a Littlewood-Paley type formula (1.2) does 
not hold for any radial function ϕ (see [13, Proposition 4.3] or [12, Proposition 3.7]). 
Therefore, for such weights we have to work with the Calderón type formula (2.4) to 
obtain an equivalent norm to ‖ · ‖Ap

ω
in terms of the derivative. In order to give a 

geometric description of the space T (Ap
ω), ω ∈ D̂, we introduce the space C1(ω
) of 

g ∈ H(D) such that

‖g‖2
C1(ω�) = |g(0)|2 + sup

∫
S
|g′(z)|2ω
(z) dA(z)

< ∞,

S ω (S)
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where

ω
(z) =
1∫

|z|

sω(s) log s

|z| ds (z ∈ D \ {0})

and S runs over all Carleson squares in D. If we consider the measure dμg,ω� =
|g′(z)|2ω
(z) dA(z), a byproduct of [12, Theorem 3.3] (see also [13, Theorem 2.1]) gives 
that the identity operator Id : Ap

ω → Lp(μg,ω�) is bounded if and only if g ∈ C1(ω
), 
and ‖Id‖p

Ap
ω→Lp(μg,ω� ) � ‖g − g(0)‖2

C1(ω�), for any ω ∈ D̂. Bearing in mind this fact, [13, 
Theorem 4.1] or [12, Proposition 6.4], and a careful inspection of their proof, we get the 
following result.

Theorem B. If ω ∈ D̂, g ∈ H(D) and 0 < p < ∞, then Tg ∈ B(Ap
ω) if and only if 

g ∈ C1(ω
). Moreover, ‖Tg‖Ap
ω
� ‖g − g(0)‖C1(ω�).

If ω ∈ D̂ then C1(ω
) ⊂ B. Moreover, a calculation together with the proof of [13, 
Theorem 5.1 (B)-(C)] implies that C1(ω
) = B if and only if ω ∈ D.

Theorem 1.1 together with Theorem B gives an operator theoretical proof of the 
following result.

Corollary 6.4. Let ω ∈ D̂ and 0 < p < ∞. Then T (Ap
ω) = C1(ω
) has the radicality 

property. Moreover, if g ∈ H(D) and n ∈ N satisfy that gn ∈ C1(ω
), then gm ∈ C1(ω
)
for m ∈ N m < n, and

‖gm − gm(0)‖
1
m

C1(ω�) � ‖gn − gn(0)‖
1
n

C1(ω�).

We recall that the space C1(ω
) is not necessarily conformally invariant when ω ∈ D̂\D
(see [13, Proposition 5.4] or [12, Proposition 6.2]).

Now we will see that Theorem 6.1 can be applied to the class D̂.

Corollary 6.5. Let ω ∈ D̂, g ∈ H(D) and 0 < p < ∞. Then, if Lg is a g-operator written 
in the form (1.1) such that PN+1 �= 0, Lg is bounded on Ap

ω if and only if g ∈ H∞.

Proof. Since ω ∈ D̂, Lemma 2.1 in [12] and its proof show that there is a constant 
β = β(ω) > 0 which satisfies

ω̂(r) �
(

1 − r

1 − t

)β

ω̂(t) (0 ≤ r ≤ t < 1) (6.2)

and ∫
ω(z) dA(z)
|1 − ξz|η+1

� ω̂(|ξ|)
(1 − |ξ|)η (ξ ∈ D), (6.3)
D
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for all η > β. Choose η > β, and, for each ξ ∈ D, consider the function

hξ(z) =
(

(1 − |ξ|)η
ω̂(|ξ|)(1 − ξz)η+1

) 1
p

(z ∈ D),

which clearly belongs to Ap
ω. We will complete the proof by checking that the functions 

Kξ = hξ/‖hξ‖Ap
ω

satisfy the hypotheses (a), (b) and (c) of Theorem 6.1. It is clear that
(a) holds. Now (6.3) shows that ‖hξ‖pAp

ω
� 1. So, by (6.2), for any 0 < r < 1 we have 

that

|Kξ(z)|p � |hξ(z)|p ≤ (1 − |ξ|)η
ω̂(|ξ|)(1 − r)η+1 � (1 − |ξ|)η−β

ω̂(0)(1 − r)η+1 (ξ ∈ D, |z| ≤ r),

which implies that {Kξ}ξ∈D satisfies (b). Next, take ζ ∈ T and δ > 0. If |z − ζ| ≥ δ and 
|ξ − ζ| < δ

2 , then |1 − ξz| ≥ δ
2 , so using again (6.2) we obtain

|Kξ(z)|p � |hξ(z)|p � (1 − |ξ|)η−β

ω̂(0) (|z − ζ| ≥ δ, |ξ − ζ| < δ
2).

Therefore
∫

D\D(ζ,δ)

|Kξ|pω dA � (1 − |ξ|)η−β

ω̂(0)

∫
D

ω dA,

and hence {Kξ}ξ∈D satisfies (c), which ends the proof. �
6.2. Rapidly decreasing radial weights

Definition 6.6. A radial weight ω is rapidly decreasing if it satisfies the following condi-
tions:
(a) ω(z) = e−ϕ(z), where ϕ ∈ C2(D) is a radial function such that Δϕ(z) ≥ Bϕ > 0 for 

some positive constant Bϕ depending only on the function ϕ. Here Δ denotes the 
standard Laplace operator.

(b) (Δϕ(z))−1/2 � τ(z), where τ(z) is a radial positive function that decreases to 0 as 
|z| → 1−, and limr→1− τ ′(r) = 0.

(c) There exists a constant C > 0 such that either τ(r)(1 − r)−C increases for r close to 
1 or

lim
r→1−

τ ′(r) log 1
τ(r) = 0.

The class of rapidly decreasing weights is denoted by W. This class does not include 
the standard weights, but it includes the exponential type weights
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wα(r) = exp
(

−c

(1 − r)α

)
, for c, α > 0,

and the double exponential type weights

w(r) = exp
(
− exp

(
c

1 − r

))
, for c > 0.

Despite Proposition 2.5 a) provides an equivalent norm to ‖ ·‖Ap
ω

in terms of a Calderón 
type formula, when we are interested in obtaining an equivalent norm in terms of the 
first derivative, it is more convenient to deal with a Littlewood-Paley type formula when 
ω ∈ W. In fact, by [7, (9.3)], for any p ∈ (0, ∞) and ω = e−ϕ ∈ W,

‖f‖p
Ap

ω
� |f(0)|p +

∫
D

|f ′(z)|pω(z)
(

1
1 + ϕ′(|z|)

)p

dA(z).

This Littlewood-Paley type formula together with the existence of δ > 0 small enough 
such that (see [7, Lemma 32(d)])

ϕ′(|z|) � ϕ′(|a|) (a ∈ D, z ∈ D
(
a, δ(Δϕ(a))−1/2)),

allows to omit the hypotheses (6) in [10, Theorem 2] and to mimick its proof to obtain 
the following result, which was already proved in [7, Section 9].

Theorem C. Let ω = e−ϕ ∈ W, g ∈ H(D) and 0 < p < ∞. Then Tg ∈ B(Ap
ω) if and only 

if ρ(g, ϕ) = supz∈D
1

1+ϕ′(|z|) |g′(z)| < ∞. Moreover, ‖Tg‖Ap
ω→Ap

ω
� ρ(g, ϕ).

If ω = e−ϕ ∈ W we write Bϕ = {g ∈ H(D) : ρ(g, ϕ) < ∞}. Then we have that 
Theorem 1.1 together with Theorem C provides a proof of the following result.

Corollary 6.7. Let be ω = e−ϕ ∈ W and 0 < p < ∞, then T (Ap
ω) = Bϕ satisfies 

the radicality property. Moreover, if g ∈ H(D) and n ∈ N satisfy that gn ∈ Bϕ, then 
gm ∈ Bϕ for m ∈ N, m < n, and

ρ(gm, ϕ) 1
m � ρ(gn, ϕ) 1

n .

Unlike BMOA or B, the space Bϕ is not conformally invariant when ω = e−ϕ ∈ W. 
Indeed, if Bϕ were conformally invariant, since the linear functional L(g) = g′(0) is 
continuous on Bϕ respect to the seminorm ρ(g, ϕ) and there is C > 0 such that |L(g)| ≤
sup{z:|z|≤ 1

2} |g(z)| for any g ∈ H(D), by [16, Theorem p. 46] Bϕ ⊂ B. However, since 
limr→1−

1
(1−r)ϕ′(r) = 0 [7, Lemma 32(a)], the classical Bloch space B is strictly contained 

in Bϕ, if ω = e−ϕ ∈ W.
We obtain the following result from Proposition 5.1 and Theorem C.
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Corollary 6.8. Let ω = e−ϕ ∈ W, g ∈ H(D), 0 < p < ∞ and

Ωp(z) = ω(z)
(

1
1 + ϕ′(|z|)

)p

.

Then Mult(Ap
ω, A

p
Ωp

) = Mult(Ap
ω, AT p

2 (ω)) = {g : G(z) =
∫ z

0 g ∈ Bϕ}.

Finally, we will apply Theorem 6.1 to the class W. With this aim, we recall the next 
result.

Theorem D ([10, Lemma 3.1 and Corollary 1]). Assume that 0 < p < ∞, n ∈ N with 
np ≥ 1 and ω ∈ W. Then there is a number ρ0 ∈ (0, 1) and a family {Fξ : ξ ∈ D, |ξ| ≥ ρ0}
of analytic functions on D satisfying the following estimates:

|Fξ(z)|p w(z) � 1 (|z − ξ| < τ(ξ)). (6.4)

|Fξ(z)|ω(z)1/p � min
(

1,
min

(
τ(ξ), τ(z)

)
|z − ξ|

)3n

(z ∈ D). (6.5)

Moreover,

‖Fξ‖pAp
ω
� τ(ξ)2 (ρ0 ≤ |ξ| < 1). (6.6)

Corollary 6.9. Let ω ∈ W, g ∈ H(D) and 0 < p < ∞. Let Lg be a g-operator written in 
the form (1.1) with PN+1 �= 0. Then Lg ∈ B(Ap

ω) if and only if g ∈ H∞.

Proof. Let n ∈ N with np ≥ 1, and let us consider the functions Fξ of Theorem D and

Kξ = Fξ

‖Fξ‖Ap
ω

(ρ0 ≤ |ξ| < 1).

Then {Kξ}ρ0≤|ξ|<1 satisfies hypothesis (a) of Theorem 6.1.
On the other hand, if |z| < r < 1 and |ξ| ≥ max{1+r

2 , ρ0}, then by (6.5)

|Fξ(z)| �
1

ω(z)
1
p

(
τ(ξ)
|z − ξ|

)3n

≤ 1
ω(r)

1
p

(
2τ(ξ)
1 − r

)3n

.

Therefore, if |z| < r < 1, by (6.6)

|Kξ(z)| �
1

ω(r)
1
p (1 − r)3n

τ(ξ)3n−2/p,

then, bearing in mind that 3n −2/p > 0 and lim|ξ|→1− τ(ξ) = 0, we get that {Kξ}ρ0≤|ξ|<1
fulfills hypothesis (b) of Theorem 6.1.
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Next, take ζ ∈ T and δ > 0. If |z − ζ| ≥ δ and |ξ − ζ| < δ
2 , then |z − ξ| ≥ δ

2 , so using 
(6.5) and (6.6),

|Kξ(z)|pω(z) � |Fξ(z)|pω(z)
τ(ξ)2 � τ(ξ)3np−2

|z − ξ|3np � τ(ξ)3np−2

δ3np .

Therefore
∫

D\D(ζ,δ)

|Kξ|pω dA � τ(ξ)3np−2

δ3np ,

and hence {Kξ}ξ∈D satisfies (c). Consequently, an application of Theorem 6.1 ends the 
proof. �
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