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Abstract
In this paper, we give analytic proofs of the existence of transversal homoclinic points
for a family of non-globally smooth diffeomorphisms having the origin as a fixed
point which come out as a truncated map governing the local dynamics near a crit-
ical period three-cycle associated with the Secant map. Using Moser’s version of
Birkhoff–Smale’s theorem, we prove that the boundary of the basin of attraction of
the origin contains a Cantor-like invariant subset such that the restricted dynamics to
it is conjugate to the full shift of N -symbols for any integer N ≥ 2 or infinity.

Keywords Secant map · Basin of attraction · Stable and unstable manifold ·
Homoclinic connection · Periodic points · Symbolic dynamics

Mathematics Subject Classification 37D05 · 37D10 · 37C29

1 Introduction

The question of whether a dynamical system admits invariant subsets of the phase
portrait in which the dynamics is chaotic goes back to the origins of this area of
mathematics. Studying the existence, or not, of chaotic dynamics and determine the
topology and the geometry of the subsets where this happens has become a classical
problem. Nevertheless, since the question arises in so many distinct scenarios, there
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has been different approaches to this phenomena, including the use of non-equivalent
mathematical definitions in order to capture the meaning of chaos in each particular
case. Measuring chaos in high, or even infinite, dimensional Hamiltonian dynamical
systems or doing so for one-dimensional interval dynamics requires to particularize
the meaning of the word chaos to concrete mathematical definitions.

Nonetheless, once we agree on which dynamical properties characterize chaos
(density of periodic points, transitivity, dense orbits, sensibility with respect to initial
conditions, all at once,...), a common accepted approach to ensure chaotic dynamics
is to show that, in certain dynamically invariant region(s) of our phase portrait, the
dynamics is conjugate (that is, equal up to a homeomorphism) to the one of a model
for which it is somehow easy to test the properties mentioned above.

The usual toy model is the dynamical system (�N , σ ), where �N is the set of
bi-infinite (or one-side) sequences of N ≥ 2 symbols and σ is the shift map; see
(Moser 2001). One can easily check that the system (�N , σ ) captures the dynamical
properties proposed above. Since the conjugacy sends orbits of our dynamical systems
to orbits of the shift map acting on the space of symbols, this methodology is also
known as symbolic dynamics. To focus on the content of this paper and simplify the
discussion, let us assume we have a discrete dynamical system in R2 generated by the
iterates of a (smooth) map.

In any event, the difficult part to apply this strategy is to show that in some regions
of the phase portrait our dynamics is conjugate to the dynamical system (�N , σ ). A
major result in this direction goes back to the cornerstone ideas of S. Smale (Birkhoff–
Smale’s theorem) and J. Moser Moser (2001) who provide checkable (in some cases
only numerically) dynamical conditions to ensure that a given dynamical system has
a subset of the phase portrait whose dynamics is conjugated to the full-shift of an
arbitrary number of symbols (even infinitely many). Roughly speaking they showed
that if a smooth map has a transversal homoclinic intersection between the stable
and unstable invariant manifolds of a hyperbolic saddle fixed point then, there is an
invariant Cantor set whose restricted dynamics is conjugate to (�N , σ ).

Even though the results have been extremely helpful inmany different contexts (and
extended inmany different directions), we emphasize that the hypotheses include three
key ingredients: the hyperbolicity of the saddle point, the map is a global diffeomor-
phism and the transversality of the intersection of the invariant manifolds. The main
goal of this paper is to address the presence of chaotic dynamics, for a concrete family
of maps, under the lack of two of the conditions; the inverse mapwould not be globally
smooth and in a first step we only can prove (analytically) that we have an intersection
with a finite order contact.

Concretely, in this paper we consider the map

Td

(
x
y

)
=
(
y − (x + y)d

y − 2(x + y)d

)
, (1.1)

with d ≥ 3 being odd. Such map is a truncated expression of the third iterate of the
(extended) Secant map applied to a polynomial p(x) near a critical period three-cycle

(c, c) �→ (c,∞) �→ (∞, 0) �→ (c, c),
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Fig. 1 The picture (in red) of the
set A3(0). Notice that according
to Theorem 1.1 the red region is
connected, simply connected and
unbounded (Color figure online)

y

x

A3(0)

where p′(c) = 0 (but p(c) �= 0). See (Bedford and Frigge 2018; Garijo and Jarque
2019, 2022; Fontich et al. 2024) for more details. For later discussions we point out
here that Td is a global homeomorphism, but it is not a global diffeomorphism since
the inverse map, T−1

d , is not smooth over the line {y = x} (see (2.1) for its particular
expression).

One can easily check that the origin of (1.1) is a fixed point and its basin of attraction

Ad(0) = {(x, y) ∈ R
2 | T n

d (x, y) → (0, 0) as n → ∞} (1.2)

is not empty. In Fontich et al. (2024) we proved the following topological description
of Ad(0) and further information about its boundary. We denote p0 = (0, 1) and
p1 = (0,−1).

Theorem 1.1 Let d ≥ 3odd. Then,Ad(0) is anopen, simply connected, unbounded set.
Moreover, ∂Ad(0) contains the stable manifold of the hyperbolic two-cycle {p0, p1}
lying in ∂Ad(0).

The thesis of the above theorem glimpse the possible topological complexity
of ∂Ad(0) (see Fig. 1). In fact, the main goal of this paper is to provide a better
understanding of ∂Ad(0) by proving that, apart from the stable manifold of the hyper-
bolic two-cycle {p0, p1} there is a Cantor subset of ∂Ad(0) where the dynamics is
conjugated to the one of the shift of N symbols and so inhering all its chaotic dynamics.

In Fontich et al. (2024), we were able to describe and bound the shape of a piece of
the unstable manifold of p0 for T 2

d (and it was a key point in the arguments to prove
Theorem 1.1). In this paper, we mimic some of the arguments there to control the
shape of a piece of the stable manifold of p1. Using both constructions and a singular
λ-Lemma (Rayskin 2003), we can ensure the existence of homoclinic (not necessarily
linearly transversal) points for T 2

d .

Theorem A Let {p0, p1} be the hyperbolic two cycle lying in the boundary of ∂Ad(0).
Then, the stable and unstable manifolds of p1 (as well as p0), as a fixed point for T 2

d ,
intersect at a homoclinic point.
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Going back to our previous arguments, if we want to apply Birkhoff–Smale’s theo-
rem,weneed to prove the existenceof transversal homoclinic points, so thatTheoremA
is not enough. In Churchill and Rod (1980), the authors are able to conclude transver-
sal intersections under the presence of (topological) homoclinic intersections, but
their map is area preserving, is a global smooth diffeomorphism and admits, in a suf-
ficiently small neighbourhood the hyperbolic saddle, a concrete local normal form
which provides a first integral.

In our case, we have not the previously mentioned normal form and since T−1
d is

not smooth over the line {y = x} we cannot use that the globalization of the stable
manifold of the 2-cycle {p0, p1} by applying T−2

d is analytic. In any event, inspired in
the strategy proof inChurchill andRod (1980), using alternative arguments to dealwith
our weaker conditions we are able to conclude the existence of transversal homoclinic
intersections.

Theorem B Let {p0, p1} be the hyperbolic two cycle lying in the boundary of ∂Ad(0).
Then, the stable and unstable manifolds of p1 (as well as p0), as a fixed point for T 2

d ,
intersect transversally.

Although from the previous theorem, we have the existence of transversal homo-
clinic points we still cannot directly apply Birkhoff–Smale’s theorem since the inverse
map, T−1

d map is not globally smooth. However, we can overcome this difficulty and
prove the main result of this paper.

Theorem C There exists an invariant Cantor set, contained in ∂Aa,d(0), where the
dynamics of T 2

d is conjugate to the full shift of N-symbols. In particular, ∂Aa,d(0)
contains infinitely many periodic points with arbitrary high period.

We emphasize that the theorems provide analytic proofs, rather than numerical
evidence, of non-local properties of invariant manifolds for a family of maps. There
are few cases where this has been done. For instance, in Fontich (1990), there is an
analytical proof of the transversal intersection of the invariant manifolds for a wide
range of a parameter for a class of maps which include the conservative Hénon map
and the Chirikov standard map. In Gelfreich (1999), there is an analytical proof of the
transversal intersection of the invariant manifolds of the standard map when the angle
is exponentially small with respect to the parameter of the family. Also, in Delshams
and Ramírez-Ros (1996) and Martín et al. (2011) they prove transversal intersection
for the manifolds of close to integrable maps.

We organize the paper as follows. In Sect. 2, we summarize some preliminaries
from Fontich et al. (2024) that we need in the proofs of the present paper, trying to
make the present paper self-contained. In Sect. 3 we prove Theorem A, in Sect. 4 we
prove Theorem B and finally in Sect. 5 we conclude the proof Theorem C.

2 Preliminaries

In this section, we collect some preliminary results about the map Td : R2 → R
2,

introduced in (1.1), for d ≥ 3, an odd number. Everything was already introduced in
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Fontich et al. (2024), but for the sake of completeness and easier reading, we include
them here.

The map Td : R2 → R
2 is a polynomial and a homeomorphism and its inverse

map is real analytic in R
2 \ {x = y}, but not differentiable on the line {x = y}. Its

inverse is given by

T−1
d (x, y) =

(
−2x + y + (x − y)1/d , 2x − y

)
. (2.1)

Observe that T−1
d (x, x) = (−x, x) for all x ∈ R. One can easily check that Td has a

unique two-cycle {p0 = (0, 1), p1 = (0,−1)}, i.e. p1 = Td(p0) and p0 = Td(p1).
This two-cycle will play a fundamental role in the dynamics of Td . Moreover, we have
that

DT 2
d (p0) = DT 2

d (p1) = DTd(p0)DTd(p1) =
(
3d2 − 2d 3d2 − 4d + 1
6d2 − 2d 6d2 − 6d + 1

)
. (2.2)

A direct computation shows that the characteristic equation of DT 2
d (p0) is

p(λ) = λ2 − (1 − 8d + 9d2)λ + d2 = 0

and the eigenvalues and eigenvectors are given by

λ±
d = 1

2

(
9d2 − 8d + 1 ± (3d − 1)

√
9d2 − 10d + 1

)
(2.3)

and

(1,m±
d ) =

(
1,

4d

1 − d ± √
9d2 − 10d + 1

)
, (2.4)

respectively.
On the one hand, it is easy to check that both eigenvalues are strictly positive.

Moreover, λ−
d is strictly decreasing and λ+

d is strictly increasing, with respect to the
parameter d. We also have

lim
d→∞ λ−

d = 1/9 and 1/9 < λ−
d ≤ λ−

3 = 29 − 8
√
13 ≈ 0.1556

lim
d→∞ λ+

d = ∞ and λ+
d ≥ λ+

3 = 29 + 8
√
13 ≈ 57.8444.

On the other hand, m−
d is negative and strictly increasing while m+

d is positive and
strictly decreasing (both with respect to the parameter d). We also have

lim
d→∞m−

d = −1 and −1.3028 ≈ −6
1+√

13
= m−

3 ≤ m−
d < −1,

lim
d→∞m+

d = 2 and 2 < m+
d ≤ m+

3 = 6√
13−1

≈ 2.3028.
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Therefore, the two cycle {p0, p1} is hyperbolic of saddle type.We denoteWs
p j
,Wu

pj

the stable and the unstable manifolds of the fixed points p j for the map T 2
d , j = 0, 1.

Similarly we denote by Ws
loc, p j

, Wu
loc, p j

the corresponding local stable and unstable
manifolds of some size δ that we do not make explicit in the notation. Actually, given
some size δ > 0,

Ws
loc, p j

= {z ∈ R
2 | T 2k

d (z) ∈ Bδ(p j ) for all k ≥ 0},

where Bδ(p j ) denotes the open ball centred at p j with radius δ > 0, for j = 0, 1. We
define analogously Wu

loc, p j
for T−2k

d .
We also denote

Ws := Ws{p0,p1} and Wu := Wu{p0,p1}

the global stable and unstable manifolds of the periodic orbit {p0, p1}, respectively.
Since Td is analytic onR2 and T−1

d is analytic onR2\{y = x} the local versions of the
invariant manifolds are analytic. Moreover, the (global) unstable manifold, obtained
iterating by Td the local one, is analytic and the (global) stable manifold, obtained
iterating by T−1

d , is analytic except at the preimages of the intersections of Ws with
{y = x}.

When there is no confusion we use the simplified notation λ± := λ±
d and m± :=

m±
d .

The triangleD and its images: Td(D) and T−1
d (D).

In Fontich et al. (2024, Section 5) we considered the triangle D of vertices

p1 = (0,−1),

(
1

m+ + 1
,

−1

m+ + 1

)
and

(
1

m� + 1
,

−1

m� + 1

)
,

where m� = 7/2, or equivalently,

D = {(t,−1 + mt) |t ∈ [0, 1/(m + 1)],m ∈ [m+,m�]}.

We also considered the sets Td(D) and T−1
d (D). We showed that the set Td(D) is

bounded by the images of the sides of D given by the curves γm+(t), γm� (t) where

γm(t)=Td(t,−1 + mt) = (mt − 1 − ((m + 1)t − 1)d ,mt − 1−2((m+1)t − 1)d),

(2.5)

for 0 ≤ t ≤ 1
m+1 , and

∂Td(D) ∩ {y = x} =
{
(t, t) | −1

m+ + 1
≤ t ≤ −1

m� + 1

}
.
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y = 1

y = −1

p0

p1

Fig. 2 This picture corresponds to d = 3. In red we plot the attracting basin A3(0). In blue (respectively,
yellow)we draw the stable (respectively, unstable)manifold of the two cycle {p0, p1}. The picture illustrates
(numerically) the transversal intersections described in Theorem B. According to Theorem C, ∂Ad (0)
contains the stable manifold of the two cycle (in blue) and a Cantor-set like with chaotic dynamics (Color
figure online)

Finally, we claim that there is a (connected) piece of Wu
p0 ∩ {y ≤ 1}, tangent to the

line y = 1 + m+x at p0, contained in Td(D) joining the point p0 with some point in
∂Td(D) ∩ {y = x}. We call left and right boundaries of Td(D) the curves γm+(t) and
γm� (t), respectively. See Fig. 3 (left). We do not include here the arguments used in
Fontich et al. (2024, Lemma 5.4) to prove the claim but in the next section we mimic,
including all computations, the ideas used in Fontich et al. (2024) for the case of D̂,
Td(D̂) and T−1

d (D̂).

3 Proof of Theorem A

To prove Theorem A, we first show the existence of an heteroclinic intersection for
the map Td . More precisely, we have the following statement.

Proposition 3.1 Let {p0, p1} be the hyperbolic two-cycle lying in the boundary of
∂Ad(0) (see Theorem 1.1). Then, the unstable manifold of p0 and the stable manifold
of p1 intersect in a heteroclinic point.

The idea is to show that Td(D) (Fig. 3, left) and T−1
d (D̂) ((Fig. 3, right) intersect in

a suitable manner that forces the intersection of the invariant manifolds (Fig. 4). Since
the proof of this proposition is quite long, we split it into several lemmas. We assume
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Td(D)

D

y = x

y = x

y = −x

y = −x

γm�

γm+

p0

p1

p0

p1

m−m̂�

̂D

y = m−x − 1

y = m−x − 1

y = −(2 − m̂�)1/dx − 1

x = −(1/(2 − m))1/d

Td( ̂D)

T−1
d ( ̂D)

W s
p1

Fig. 3 Left: The triangle D, its image Td (D) and (dashed, red) a piece of Wu
p0 attached to p0. Right: The

triangle D̂, its images Td (D) and T−1
d (D̂), and (dashed, blue) a piece of Ws

p1 attached to p1. We also add
the relevant objects appearing in the proof of Proposition 3.1 and Theorem A (Color figure online)

all notation introduced in Sect. 2. In particular, we have described the construction
provided in Fontich et al. (2024, Lemma 5.4) to localize the piece of the unstable
manifold attached to p0 inside Td(D). The first step is to make a similar construction
to localize a piece of the stable manifold of p1. Let

− 3

2
≤ m̂� = m̂�

d := −1 − 1

d − 1
= −d

d − 1
< m− < −1, (3.1)

where the inequalities follow from direct computations. We introduce the triangle D̂
with vertices

p0 = (0, 1),

( −1

m− + 1
,

−1

m− + 1

)
and

( −1

m̂� + 1
,

−1

m̂� + 1

)
,

or equivalently,

D̂ = {(t, 1 + mt) | t ∈ [0, 1/(1 − m)], m ∈ [m̂�,m−]}.

Aswe didwith the setD in Fontich et al. (2024, Lemma 5.3), we study the geometry
of the sets Td(D̂) and T−1

d (D̂). From the properties of these sets, we will prove that
there is a piece of Ws

p1 ∩ {y ≥ −1} that is contained in T−1
d (D̂). Moreover, this piece

joints p1 with a point in T
−1
d (D̂)∩{y = −x}. See the right picture in Fig. 3. Then, using

the geometry of the intersection of Td(D) and T−1
d (D̂)wewill prove thatWu

p0 andW
s
p1

have to cross (topologically) in a heteroclinic intersection, proving Proposition 3.1.
From this heteroclinic intersection, wewill obtain a homoclinic intersection as claimed
in Theorem A.
The preimage T−1

d (D̂). We denote by 	̂m(t) the image by T−1
d of the segment {(t, 1+

mt) | t ∈ [0, 1/(1 − m)]}. Thus,

	̂m(t) = T−1
d (t, 1 + mt) =: (̂αm(t), β̂m(t)), (3.2)
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where

α̂m(t) = (m − 2)t + 1 + ((1 − m)t − 1)1/d and β̂m(t) = (2 − m)t − 1.

We are interested in 	̂m(t) for m ∈ [m̂�,m−]. Note that the point on D̂ ∩ {y = x}
corresponds to t = 1/(1−m) and is mapped by T−1

d to (−1/(1−m), 1/(1−m)) on
the line {y = −x}. Taking derivatives, we have that

α̂′
m(t) = m − 2 + 1 − m

d
((1 − m)t − 1)(1−d)/d , β̂ ′

m(t) = 2 − m > 0, α̂′′
m(t) > 0 and β̂ ′′

m(t) = 0.

A direct computation shows that α̂′
m(t) = 0 if and only if t = t±, where

t± = 1

1 − m

(
1 ±

(
1 − m

d(2 − m)

)d/(d−1)
)

and 0 < t− < 1
1−m < t+, since, as m < 0, we have 0 < 1−m

d(2−m)
< 1. It follows

from these computations that α̂m(t), m ∈ [m̂�,m−], has a unique minimum (in its
domain) at t− ∈ (0, 1

1−m ). Finally, α̂′
m( 1

1−m ) = ∞ which means that when 	̂m(t)
meets {y = −x}, its tangent line is horizontal. See the right picture in Fig. 3. In other
words the vectors 	̂′

m( 1
1−m ) and 	̂′

m(t−) are parallel to the lines y = 0 and x = 0,
respectively.

Since β̂m(t) is invertible (linear), for anym we can represent the curve 	̂m(t) as the
graph of a function x = g(y), y ∈ [−1, 1/(1−m)] (remember that 1/(1−m) > 0),
by taking g(y) = α̂m ◦ β̂−1

m (y). Since β̂ ′′
m(t) = 0, we have that

dg

dy
(y) =

[
dα̂m

dt

(
dβ̂m

dt

)−1
]

◦ β̂−1
m (y) and

d2 g

dy2
(y) = d2α̂m

dt2

(
dβ̂m

dt

)−2

◦ β̂−1
m (y) > 0.

The convexity of g implies that the image of 	̂m(t) is above its tangent line at p1 =
(0,−1). In case m = m−, this tangent line has slope m− and it is the minimum slope
for all m ∈ [m̂�,m−]. Therefore, T−1

d (D̂) is above the line y = m−x − 1.
Also, g has a uniqueminimum at y− = β̂m(t−).Moreover, 	̂m(t) intersects {y = 0}

when t = 1/(2 − m) at the point (x, y) = (̂αm(1/(2 − m)), 0) with

α̂m(1/(2 − m)) = −
(

1

2 − m

)1/d

.

Again, the convexity of the function g implies that its graph intersected with {y ≤ 0}
is below the line

y = −(2 − m)1/d x − 1
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and, in particular (see Fig. 3), taking m = m� we conclude that T−1
d (D̂) ∩ {y ≤ 0} is

below

y = −(2 − m̂�)1/d x − 1 = −
(
3d − 2

d − 1

)1/d

x − 1. (3.3)

The image Td(D̂). We notice that since {p0, p1} is a two-cycle we have Td(p0) =
T−1
d (p0) = p1, so that Td(D̂) is attached to p1 as it was the case of T

−1
d (D̂).

Wedenote by γ̂m(t) the imagebyTd of the segment {(t, 1+mt) | t ∈ [0, 1/(1−m)]},
with m ∈ [m̂�,m−]. Hence, γ̂m(t) = Td(t, 1 + mt) =: (̂xm(t), ŷm(t)) where

x̂m(t) = mt + 1 − ((m + 1)t + 1)d , ŷm(t) = mt + 1 − 2((m + 1)t + 1)d .

(3.4)

To simplify notation, we write x(t) := x̂m(t) and y(t) := ŷm(t) and γ (t) = γ̂m(t)
unless it is strictly necessary to show the dependence in m. The derivatives are given
by

x ′(t) = m − d(m + 1)((m + 1)t + 1)d−1, y′(t) = m − 2d(m + 1)((m + 1)t + 1)d−1,

x ′′(t) = −d(d − 1)(m + 1)2((m + 1)t + 1)d−2, y′′(t) = −2d(d − 1)(m + 1)2((m + 1)t + 1)d−2.

Since t ∈ [0, 1/(1 − m)] and m < −1, we have the inequalities

0 <
2

1 − m
= m + 1

1 − m
+ 1 < (m + 1)t + 1 ≤ 1.

Then, for d ≥ 3 (odd), we have

x ′′(t) < 0 and y′′(t) < 0.

Next lemma provides basic estimates on the parametrization γ (t).

Lemma 3.2 Let m ∈ [m̂�,m−] and t ∈ [0, 1/(1−m)]. The following conditions hold.
(a) x(0) = 0, x( 1

1−m ) < 1
1−m [1 − 2√

e
] < 0, x(t) < 0 for t �= 0, and y(t) < 0.

(b) x ′(t) ≤ 0 with x ′(t) = 0 if and only if t = 0 and m = m̂�.
(c) y′(t) > 0 for m = m�.

Proof Theproof of the items follows fromsomecomputations based on the expressions
of x(t), y(t) and their derivatives above.

Easily x(0) = 0. On the one hand, we have

x

(
1

1 − m

)
= 1

1 − m
−
(

2

1 − m

)d
= 1

1 − m

⎡
⎣1 − 2

[(
1 + 1

2(d − 1)

)2(d−1)
]−1/2

⎤
⎦

<
1

1 − m

[
1 − 2√

e

]
< 0.
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On the other hand, x ′(0) = m−d(m+1) ≤ (−1− 1
d−1 )(1−d)−d = 0 where the

equality only holds for m = m̂� and x ′′(t) < 0 (see (3.1)). Hence, x ′(t) < 0 (unless
t = 0 and m = m̂� where x ′

m� (0) = 0) and so x(t) is decreasing (and negative unless
t = 0). Finally, we have y(t) = x(t) − ((m + 1)t + 1)d < 0. All together implies (a)
and (b).

If m = m̂�, using (3.1) we have

y′
m� (t) = m� − 2d(m� + 1)((m� + 1)t + 1)d−1 ≥ d

d − 1

[
−1 + 2

( −1

d − 1
t + 1

)d−1
]

≥ d

d − 1

[
−1 + 2

(
1 − 1

2d − 1

)d−1
]

= d

d − 1

[
−1 + 2

(
1 + 1

2(d − 1)

)1−d
]

>
d

d − 1

[
−1 + 2√

e

]
> 0

that proves (c). ��
Since x ′(t) < 0, the function x(t) is invertible. If t = t(x) is the inverse map

of x(t), then (the image of) γ (t) can be represented as the graph of the function
h(x) := hm(x) := y ◦ t(x). From its definition, the function h is smooth.

Lemma 3.3 We have that h(x) = y ◦ t(x) is concave.

Proof Taking derivatives we have

h′(x) = y′

x ′ ◦ t(x) and h′′(x) = 1

(x ′)2

[
y′′ − x ′′ y′

x ′

]
◦ t(x).

From the expressions of x and y and their derivatives (see (3.4) and the derivatives
below), we have y′(t) = x ′(t) − d(m + 1)((m + 1)t + 1)d−1 and y′′(t) = 2x ′′(t).
Therefore

h′′(x) = x ′′

(x ′)2

[
2 − y′

x ′

]
◦ t(x) and 2 − y′

x ′ = 1 + d(m + 1)((m + 1)t + 1)d−1

x ′ > 1,

concluding h′′(x) < 0 and hence h is concave (remember that the result is valid for
all values of m in the range). ��

Now we fix m = m̂�. We claim that (the image of) γ̂m̂� belongs to {x ≤ 0, y ≤ 0}
and it is above T−1

d (D̂). To check the claim, accordingly to the previous study of
T−1
d (D̂) it is sufficient to check that γ̂m̂� is above the line y = −(2 − m̂�)1/d x − 1

introduced in (3.3). Moreover, since (the image of) γ̂m̂� is the graph of a concave
function it is enough to check that

ym̂�

(
1

1 − m̂�

)
> −(2 − m̂�)1/d xm̂�

(
1

1 − m̂�

)
− 1.
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This is equivalent to

1

1 − m̂�
− 2

(
2

1 − m̂�

)d

+ (2 − m̂�)1/d

[
1

1 − m̂�
−
(

2

1 − m̂�

)d
]

+ 1 > 0.

If we substitute m̂� = −1 − 1
d−1 , the above inequality writes as

1 −
(

2

2 + 1/(d − 1)

)d
+
[

1

2 + 1/(d − 1)
−
(

2

2 + 1/(d − 1)

)d
]

×
[
1 +

(
3 + 1

d − 1

)1/d
]

> 0. (3.5)

On the one hand we have that

(
2

2 + 1/(d − 1)

)d
<

(
1

1 + 1/(2d)

)d
≤
(
6

7

)3

.

On the other hand we have that

1

2 + 1/(d − 1)
−
(

2

2 + 1/(d − 1)

)d

= 1

2 + 1/(d − 1)

⎡
⎣1 − 2

[(
1 + 1

2(d − 1)

)2(d−1)
]−1/2

⎤
⎦

≥ 1

2 + 1/(d − 1)

[
1 − 2

(
1 + 1

4

)−2
]

≥ −7

50
,

and

0 < 1 +
(
3 + 1

d − 1

)1/d

< 1 +
(
3 + 1

2

)1/3

= 1 + (7/2)1/3.

Hence, to prove (3.5) it is enough to check that

1 −
(
6

7

)3

− 7

50

(
1 +

(
7

2

)1/3
)

≈ 0.02 > 0.

Moreover, we also claim that γ̂m− is below T−1
d (D̂). This easily follows from the

fact that, by the description of the preimage T−1
d (D̂), the left boundary of T−1

d (D̂) is
the graph of a convex function x = g(y) while γ̂m− is the graph of a concave function
y = hm−(x) and both graphs are tangent at p1.
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It follows from lemmas above that we have a deep control on the left and right
boundaries of Td(D̂), and their relative position with respect to the set T−1

d (D̂). See
the right picture of Fig. 3. Now we close the argument by controlling the image of
∂D̂ ∩ {y = x}.
Lemma 3.4 The upper piece of the boundary of Td(D̂) is the image by Td of the piece

of the boundary
{
(t, t) | 1

1−m̂� ≤ t ≤ 1
1−m−

}
of D̂. It can be represented as the graph

of an increasing function and is contained in {x < 0, y < 0}.
Proof We introduce

Td(t, t) = (t − (2t)d , t − 2(2t)d) =: (ξ(t), η(t)), (1 − m̂�)−1 ≤ t ≤ (1 − m−)−1.

Taking first and second derivatives, we have

ξ ′(t) = 1 − 2d(2t)d−1, η′(t) = 1 − 4d(2t)d−1,

ξ ′′(t) = −4d(d − 1)(2t)d−2 and η′′(t) = 2ξ ′′(t).

First we check that, in the corresponding domain, ξ ′(t) < 0 and η′(t) < 0. This
follows from ξ ′′(t) < 0, η′′(t) < 0 and

ξ ′
(

1

1 − m̂�

)
= 1 − 2d

(
2

1 − m̂�

)d−1

= 1 − 2d
1(

1 + 1
2(d−1)

)d−1 < 1 − 2d√
e

< 0,

and

η′
(

1

1 − m̂�

)
= ξ ′

(
1

1 − m̂�

)
− 2d

(
2

1 − m̂�

)d−1

< 0.

The condition ξ ′(t) < 0 implies that ξ(t) is invertible. Let t = t(ξ) be its inverse
function and η = f (ξ) := η ◦ t(ξ). The curve Td(t, t) is the graph of f and

f ′ = η′

ξ ′ ◦ t(x) > 0.

Moreover, since

ξ

(
1

1 − m̂�

)
= 1

1 − m̂�

(
1 − 2

(
2

1 − m̂�

)d−1
)

= 1

1 − m̂�

(
1 − 2

1

(1+ 1
2(d−1) )

d−1

)

<
1

1 − m̂�

(
1 − 2√

e

)
< 0,

we have ξ(t) < 0 and η(t) = ξ(t) − (2t)d < 0. ��
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Up to this point, we have completed the study of the geometry and relative positions
of Td(D̂) and T−1

d (D̂) (see the right picture of Fig. 3). Next two lemmas show that
there is a piece of Ws

p1 attached to p1, being tangent to y = m−x − 1 at p1, included

in T−1
d (D̂) and connecting p1 with a point in ∂T−1

d (D̂) ∩ {y = −x}, x < 0.
Let (x0, y0) ∈ T−1

d (D̂). Then, we write (x2k, y2k) := T 2k
d (x0, y0). The first lemma

characterize the dynamics of points in T−1
d (D̂) whose all iterates under T 2

d remain in
T−1
d (D̂).

Lemma 3.5 If (x0, y0) ∈ T−1
d (D̂) and (x2k, y2k) ∈ T−1

d (D̂) for all k ≥ 0 then we
have that (x2k, y2k) → p1 = (0,−1) as k → ∞.

Proof First we note that y2 < 0. Indeed, (x2, y2) ∈ Td(D̂) and by Lemma 3.4

sup

{
η(t) | 1

1 − m̂�
≤ t ≤ 1

1 − m−

}
= η

(
1

1 − m̂�

)
< 0.

Moreover, the right boundary of Td(D̂) is given by γ̂m̂� (t) = (̂xm(t), ŷm(t)) and, by
Lemma 3.2(a), ŷm̂� (t) < ŷm̂� ( 1

1−m̂� ) = η( 1
1−m̂� ) < 0.

Now, let (x0, y0) as in the statement with y0 < 0. Using that T−1
d (D̂) ∩ {y ≤ 0} is

below the line y = −(2 − m̂�)1/d x − 1 we have that

x0 <
y0 + 1

−(2 − m̂�)1/d
. (3.6)

First, we compute

(x1, y1) = Td(x0, y0) = (y0 − (x0 + y0)
d , y0 − 2(x0 + y0)

d).

We observe that (x1, y1) belongs to the line y = 2x − y0.
By the definition of D̂, we have that x1 is less than the first coordinate of the

intersection {y = 2x − y0}∩ {y = m−x + 1}, i.e. x1 <
1+y0
2−m− . Moreover, using (3.6),

0 ≤ x1 <
−(2 − m̂�)1/d

2 − m− x0.

Next we bound

∣∣∣∣−(2 − m̂�)1/d

2 − m−

∣∣∣∣ < (3 + 1
d−1 )

1/d

3
≤ 1

3

(
7

2

)1/3

.

Now we deal with the next iterate (x2, y2) = (y1 − (x1 + y1)d , y1 − 2(x1 + y1)d).
Since (x1, y1) ∈ D̂, 0 < x1 + y1 ≤ 1 and y1 ≥ m̂�x1 + 1 we conclude that

0 ≥ x2 = y1 − (x1 + y1)
d ≥ y1 − 1 ≥ m̂�x1.
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Consequently,

|x2| ≤ |m̂�|x1 ≤ 3

2

1

3

(
7

2

)1/3

|x0| ≤ 4

5
|x0|.

Recursively, we obtain that |x2k | ≤ ( 45 )
k |x0| and this implies x2k → 0, Since, by

hypothesis, (x2k, y2k) ∈ T−1
d (D̂) for all k ≥ 0 we conclude that y2k → −1. ��

Lemma 3.6 The set T−1
d (D̂) contains a piece of Ws

p1 joining the point p1 with a point

in T−1
d (D̂) ∩ {y = −x}.

Proof We will use the same argument we have used in Fontich et al. (2024). Take I0
any segment joining the right and left boundaries of T−1

d (D̂). By the previous lemmas,
T 2
d (I0) is a curve contained in Td(D̂) joining its right and left boundaries which are

outside T−1
d (D̂), thus it has to cross the right and left boundaries of T−1

d (D̂).
We define I1 = T−2

d (T 2
d (I0) ∩ T−1

d (D̂)) ⊂ I0 and, in general,

In = T−2n
d (T 2n

d (In−1) ∩ T−1
d (D̂)) ⊂ In−1, n ≥ 1.

Then, {In}n≥1 is a sequence of nested compact sets and I∞ := ⋂
n≥1 In �= ∅. This

set has the property that all points in I∞ are such that all their iterates stay in T−1
d (D̂)

and, by Lemma 3.5, converge to p1. Therefore, I∞ = Ws
p1 ∩ T−1

d (D̂) ∩ I0. ��
Proof of Proposition 3.1 Wewill see that the above description of the relative positions
of Td(D) and T−1

d (D̂) (neighbourhoods of pieces of Wu
p0 and Ws

p1 , respectively)
implies a heteroclinic intersection between the stable manifold of p1 and the unstable
manifold of p0. Unless it is necessary, we drop the dependence on the parameter m.

On the one hand, in Fontich et al. (2024, Lemma 5.4) it is proven that there is a
connected piece of Wu

p0 contained in Td(D) joining p0 with some point in ∂Td(D) ∩
{y = x}. On the other hand, the above lemmas show that there is a piece of Ws

p1

contained in T−1
d (D̂) which joints p1 = (0,−1) with a point in T−1

d (D̂) ∩ {y = −x}.
We claim that the line L given by {y = m−x − 1}, tangent to the left boundary of

T−1
d (D̂) at (0,−1), intersects in two points the right boundary of Td(D)which is given

by the curve γm(t) in (2.5) with m = m� = 7/2. If we write γm� (t) = (X(t),Y (t))
we have

X(t) = m�t − 1 − ((m� + 1)t − 1)d ,

Y (t) = m�t − 1 − 2((m� + 1)t − 1)d , t ∈
[
0,

1

m� + 1

]
.

See Fig. 4. To check the claim, recall that −6√
13+1

≤ m− < −1. We consider the
auxiliary function

φ(t) = Y (t) − m−X(t) + 1
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= (2 − m−)[(1 − (m� + 1)t)d + m�t − 1] − m�t + 2, t ∈
[
0,

1

m� + 1

]
,

which measures whether γm� (t) is below, above or on the line L . We have

φ(0) = 2 > 0, φ(
1

m� + 1
) = m− + m�

m� + 1
>, and

φ′′(t) = (2 − m−)d(d − 1)(m� + 1)2(1 − (m� + 1)t)d−2 > 0, t ∈
[
0,

1

m� + 1

]
.

Accordingly, in order to see that φ has two zeros in its domain it is enough to show
that there is a point t1 in (0, 1

1+m� ) such that φ(t1) < 0. We take t1 = 1/8 and, using
that m− > −4/3, we have

φ(1/8) = (2 − m−)

((
7

16

)d

− 9

16

)
+ 25

16
<

10

3

(
73

163
− 9

16

)
+ 25

16
< 0.

Therefore, Wu
p0 has to cross L .

Next we claim that T−1
d (D̂)∩{y = 0} is a segment [a−, a+]×{0}with a+ < −3/5.

To see this claimwe look for the intersection of the right and left boundaries of T−1
d (D̂),

given by 	m̂� (t) = (̂αm̂� (t), β̂m̂� (t)) and 	m−(t) = (̂αm−(t), β̂m−(t)), respectively,
with {y = 0}. We recall that m̂� = −1 − 1/(d − 1) and

α̂m̂� (t) = (m̂� − 2)t + 1 + ((1 − m̂�)t − 1)1/d ,

β̂m̂� (t) = (2 − m̂�)t − 1, t ∈
[
0,

1

1 − m̂�

]
.

The value t = t2 such that β̂m̂� (t) = 0 is t2 = 1
2−m̂� ∈

[
0, 1

1−m̂�

]
, and

a+ = α̂m̂� (t2) = −
(

1

2 − m̂�

)1/d

= −
(

1

3 + 1/(d − 1)

)1/d
≤ −

(
2

7

)1/3

< −3

5
.

In the same way, denoting t3 the value such that β̂m−(t3) = 0, we obtain a− =
− (2 − m̂�)−1/d < a+

Putting together the information of the two previous claims we get that when y = 0,
Wu

p0 is to the right of Ws
p1 and that there exists some y = y0 < 0 for which γm� is to

the left of L and thereforeWu
p0 has to be at the left ofW

s
p1 . This finish the proof of the

proposition. See Fig. 4. ��
Proof of TheoremA Since d is odd, the map Td is symmetric with respect to (x, y) �→
(−x,−y). Proposition 3.1 provides a (maybe non-transversal) heteroclinic point q in
T−1
d (D̂) ∩ Td(D). In any case at this point the manifolds cross each other. Therefore

q = −q is also a heteroclinic point. By symmetry, at the point q the unstable manifold
of p1 intersects the stable manifold of p0. We know that the unstable manifold is
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analytic. The stablemanifold is analytic in a neighbourhoodofq since the globalization
of the local manifold has not meet {y = x} yet. Since the manifolds do not coincide,
they have a finite order contact.

Since we do not know if the intersection is transversal, we cannot apply the λ-
Lemma of Palis in Palis (1969). However, we can apply the singular λ-Lemma in
Rayskin (2003). In the two dimensional case, it asserts that the iteration of a disc in
the unstable manifold accumulates in a C1 manner to the unstable manifold of p0,
except for an arbitrarily small neighbourhood of p0.

Now consider a piece of the connected component of the unstable manifold of p0
in T−1

d (D̂) ∩ T (D) joining two points of the upper and lower boundaries of T−1(D̂),
respectively. Then, by the singular λ-Lemma, the unstable manifold of p1 will have
discs arbitrary C1-close to the unstable manifold of p0 and therefore the discs will be
in T−1

d (D̂) ∩ Td(D).
Finally, using the same argument as in the end of the proof of the first part of

Theorem A these discs should have an intersection with the stable manifold of p1,
thus providing the desired homoclinic point. ��

4 Proof of Theorem B

In the previous section, we have proven the existence of homoclinic points associated
with the stable and unstable of the cycle {p0, p1}. Using this fact, in this section we
demonstrate that stable and the unstable manifolds of p1 intersect in a transverse
homoclinic point. Our approach is inspired in the work of Churchill and Rod (1980).
However, there is an important difference. In Churchill and Rod (1980) the authors
deal with analytic area preserving maps and can use tools as the Birkhoff normal form,
while our map is not area preserving and it is not an analytic diffeomorphism. Our
presentation uses the special structure of the map and the fact that we can linearize
the map T 2

d around p1 which a C∞ conjugation.
For the point p1 = (0,−1), we will denote by

Ws
loc := Ws

loc,p1 , Wu
loc := Wu

loc,p1 , Ws := Ws
p1 and Wu := Wu

p1

the local stable, local unstable, global stable and global unstable manifolds associated
with p1 for the map T 2

d , respectively. The size of the local manifolds will be as small
as we need.

We split the proof of Theorem B into several lemmas. Given z ∈ R
2 we let Bε(z)

be the open ball centred at z and radius ε > 0.

Lemma 4.1 Let ε > 0 be small enough. Then, there exist two points qs and qu in
Bε(p1) such that

qs ∈ Ws
loc ∩ Wu and qu ∈ Wu

loc ∩ Ws .

Moreover, there exist analytic local parametrizations of Ws around qu and of Wu

around qs given by {φs(u) | u ∈ (−δ, δ)} with φs(0) = qu and {φu(u) | u ∈ (−δ, δ)}
with φu(0) = qs for some δ > 0 small.
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Since the manifolds do not coincide, the above intersections (at the points qs and
qu) have finite order contact.

Fix ε1 > 0 small enough such that Bε1(qs) ⊂ Bε(p1) and Bε1(qu) ⊂ Bε(p1). We
denote by Ŵ u the piece of Wu ⊂ Bε1(qs) and by W̃ s the piece of Ws ⊂ Bε1(qu).

Proof Fix ε > 0 small enough and consider local manifolds Ws
loc, Wu

loc contained
in Bε(p1). Let q ∈ Ws ∩ Wu be the point determined by the topological transversal
intersection of the stable and the unstable manifolds of p1 for the map T 2

d given by
Theorem A. By iterating forward this point by T 2

d and (T 2
d )−1 we obtain the existence

of qs and qu in Bε(p1), respectively. Moreover, since Ws
loc and Wu are analytic we

have thatWs
loc∩Wu intersect with finite order contact (otherwise theywould coincide).

Then, there exists φu as claimed. By construction, there exists n0 > 0 such that

T−n0
d (qs) = qu .

According to the previous arguments if

T− j
d (qs) ∩ {y = x} = ∅, j = 1, . . . , n0 − 1, (4.1)

then Wu
loc ∩ Ws intersect at qu , Ws is analytic in a neighbourhood of qu and the

intersection has a finite order contact and the lemma follows.Now,we consider the case
that there exists a finite sequence of natural numbers 0 < j1 < j2 < · · · < j� < n0,
1 ≤ � < n0, such that

T− jk
d (qs) ∩ {y = x} =: rk ∈ R

2, k = 1, . . . , �. (4.2)

Note that rk = (rk, rk), rk ∈ R, and hence, T−1
d (rk, rk) = (−rk, rk). First, we deal

with r1, the first time the globalization of Ws
loc meets {y = x} so that Ws is analytic

from p1 to this point. Thus, near r1 the stable manifold Ws , is analytic and can be
parametrized as

φ(t) = (r1 + tα1 (a1 + f1(t)) , r1 + tβ1 (b1 + g1(t))
)
, |t | < δ1,

where α1, β1 ∈ N, a1, b1 ∈ R\{0}, f1(t), g1(t) are analytic, satisfy f1(0) = 0 and
g1(0) = 0 and δ1 > 0 is small enough. Since Ws �⊂ {y = x} we have

tα1 (a1 + f1(t)) − tβ1 (b1 + g1(t)) �≡ 0.

Using the expression of T−1
d (see Eq.2.1) we have

T−1
d (φ(t)) =

(−r1 − 2tα1 (a1 + f1(t)) + tβ1 (b1 + g1(t)) + tγ1/d (1 + O(t))1/d

r1 + 2tα1 (a1 + f1(t)) − tβ1 (b1 + g1(t))

)
,
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where γ1 ≥ min{α1, β1}. Since d is odd we can reparametrize the curve φ(t) using
the new parameter u = t1/d to obtain φ̂(u) = φ(ud) analytic and

T−1
d

(
φ̂(u)

) = T−1
d

(
φ(ud)

)
=
(−r1 + O(uα̂1)

r1 + O(uβ̂1)

)
,

with α̂1, β̂1 ∈ N.
We conclude thus thatWs admits an analytic parametrization in a sufficiently small

neighbourhood of T−1
d (r1, r1) = (−r1, r1). Repeating the same procedure a finite

number of times it is clear thatWs intersectsWu
loc with finite order contact at the point

qu . ��
The translation

T : (̂x, ŷ) �→ (x, y) = (̂x, ŷ − 1)

moves p1 to the origin. For simplicity, we write the new coordinates again as (x, y).
Observe that (in the new coordinates) T 2

d (0, 0) = (0, 0) and that

DT 2
d (0, 0) =

(
3d2 − 2d 3d2 − 4d + 1
6d2 − 2d 6d2 − 6d + 1

)
. (4.3)

The eigenvalues and eigenvectors are given in (2.3) and (2.4), respectively.
We will denote

λ := λ+
d > 1, μ := λ−

d < 1, mλ := m+
d and mμ := m−

d (4.4)

(we drop the dependence on d unless it is strictly necessary). We recall from Sect. 2
that

λ > 57, 1/9 < μ < 0.1556, 2 < mλ < 2.3028 and − 1.3027 < mμ < −1.(4.5)

We parametrize the local stable and unstable manifolds associated with the origin
by the x-variable so that the expressions can be written as y = �s(x) and y = �u(x),
respectively. We obviously have

d�s

dx
(x)|x=0 = mμ and

d�u

dx
(x)|x=0 = mλ. (4.6)

Next step is to introduce local analytic coordinates (̂ξ , η̂) around (0, 0) so that the
expression of the local stable and unstable manifolds would be η̂ = 0 and ξ̂ = 0,
respectively.

Lemma 4.2 We consider the local change of variables

(x, y) �→ (̂ξ , η̂) = �(x, y) := (y − �u(x), y − �s(x)).

123



102 Page 20 of 32 Journal of Nonlinear Science (2024) 34 :102

W s
p1

W u
p0

γm�

L

a−1/m− a+ −1/2

−1/3

T−1
d ( ̂D)

Td(D)

Fig. 4 Sketch of the arguments providing the (topological, not necessarily transversal as it is shown in the
picture) intersection of the stable and unstable manifold of the hyperbolic two-cycle {p0, p1} (Theorem A).
The green dots indicates the two intersections between γm� (t) and the line L := {y = m−x − 1} (Color
figure online)

Then, for ε > 0 small enough the local expression of T 2
d in Bε(0, 0) is given by

F (̂ξ , η̂) = L(̂ξ , η̂) + N (̂ξ , η̂),

where

L(̂ξ , η̂) = (λ̂ξ , μη̂), N (0, 0) = (0, 0) and DN (0, 0) = 0.

Moreover, the local change of coordinates, (̂ξ , η̂) = �(x, y), is analytic.

Proof We claim that the new variables define a local change of coordinates around the
origin. Indeed, since �s(x) and �u(x) are analytic, by the inverse function theorem
we only need to check that

D�(0, 0) =
⎛
⎝− ∂�u

∂x (x)|x=0 1

− ∂�s

∂x (x)|x=0 1

⎞
⎠ =

⎛
⎝−mμ 1

−mλ 1

⎞
⎠

is non-singular and this is a direct consequence of (4.5). Clearly � is a local analytic
diffeomorphism. See Fig. 5. ��
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We will see next that F is C∞-conjugate to its linear part L. For this, we will apply
Sternberg’s Theorem Sternberg (1958, Theorem 1). The following lemma checks a
key hypothesis of that theorem.

Lemma 4.3 The eigenvalues λ = λ+
d > 1 and μ = λ−

d < 1 of the linear part L of F
at (0, 0) given in (4.4) and (2.3) are non-resonant.

Proof We first note that λμ = d2 (the determinant of DT 2
d (0, 0)). It is easy to check

by induction that

λk = ak + bk
√

� and μk = ak − bk
√

�, k ≥ 1,

and

λ−k = 1

gk

(
a′
k − b′

k

√
�
)

and μ−k = 1

gk

(
a′
k + b′

k

√
�
)

, k ≥ 1,

where ak, bk, a′
k, b

′
k ∈ N, g = 12d2(6d2 − 4d + 1) ∈ N and � = 9d2 − 10d + 1 is

not a perfect square. This means that λk, μk ∈ R\Q for all k �= 0.
There are two possible types of resonances:

λ = λnμm with n,m ≥ 0 and n + m ≥ 2, (4.7)

and

μ = λnμm with n,m ≥ 0 and n + m ≥ 2. (4.8)

We deal with (4.7). We rewrite it as

1 = λn−m−1(λμ)m = λn−m−1d2m . (4.9)

We distinguish two cases: (a) n �= m + 1 and (b) n = m + 1.
In case (a), since λn−m−1 ∈ R\Q and d ∈ N the previous equality is impossible.

In case (b), m cannot be 0. Then, (λμ)m = d2m ≥ 9 so that (4.9) is also impossible.
Concerning resonances of the form (4.8) the argument is completely analogous. ��
Theorem 1 in Sternberg (1958) provides a C∞ local change of coordinates

conjugatingF to its linear partL. From itwewill obtain a near the identity conjugation.

Lemma 4.4 There is a conjugacy from F to its linear part L at the origin of the form

(ξ, η) := �(̂ξ, η̂) =
(

ξ̂ (1 + φ1(̂ξ , η̂))

η̂(1 + φ2(̂ξ , η̂))

)
, (4.10)

where φ j (̂ξ , η̂), j = 1, 2, are C∞ functions defined in a sufficiently small
neighbourhood of the origin with φ j (0, 0) = (0, 0), j = 1, 2.
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Proof Let �̂(̂ξ , η̂) be the C∞ local conjugacy given by Sternberg’s Theorem. Conse-
quently, �̂ should send the stable and unstable manifolds of F to the corresponding
ones of L, which in this case means that it preserves the axes. Writing �̂ = (�̂1, �̂2),
this is translated into the conditions �̂1(0, η̂) = 0 and �̂2(̂ξ , 0) = 0. Then,

�̂1(̂ξ , η̂) = �̂1(0, η̂) +
∫ 1

0
∂ξ �̂1(t ξ̂ , η̂) ξ dt = ξ̂ (α + φ̂1(̂ξ , η̂))

with φ̂1(0, 0) = 0, and analogously �̂2(̂ξ , η̂) = η̂(β + φ̂2(̂ξ , η̂)) with φ2(0, 0) = 0.

Since �̂ is a diffeomorphism, αβ �= 0. We write A =
(

α 0
0 β

)
. We claim that � :=

A−1�̂ is also a conjugation from F to L. Indeed, since A commutes with L,

�F = A−1�̂F = A−1L�̂ = LA−1�̂ = L�.

Moreover, � is of the form given in (4.10). See Fig. 5. ��
In Lemma 4.1, we have proven the existence of the points

qs ∈ Ws
loc ∩ Ŵ u and qu ∈ Wu

loc ∩ W̃ s .

Then, we can use the changes of coordinates introduced in the previous lemmas to
transport those curves to a neighbourhood of the origin. Denote by γ1(t) and γ2(t) the
parametrizations of (� ◦ � ◦ T )(Ŵ u) and (� ◦ � ◦ T )(W̃ s), respectively. We focus
on the pieces of γ1(t) and γ2(t) in the first quadrant. Without loss of generality we
can assume that these pieces are parametrized by t ≥ 0.

Lemma 4.5 The curves γ1(t) and γ2(t) intersect the coordinate axes {ξ = 0} and
{η = 0} at points q̂s = (0, η0) and q̂u = (ξ0, 0) and have a finite order contact there,
respectively. Moreover, for t small enough we have that γ j (t), j = 1, 2, admit the
following parametrization

γ1(t) = (t�1(a1 + g1(t)), η0 + t),

γ2(t) = (ξ0 + t�2(a2 + g2(t)), t
�3(a3 + g3(t))),

(4.11)

where � j ≥ 1 for j = 1, 2, 3, a1a2a3 �= 0, ξ0, η0 > 0, and g j (t) are C∞ functions
with g j (0) = 0, for j = 1, 2, 3. See Fig.6.

Proof The lemma follows from the fact that qs and qu are points of finite order contact
between the stable and the unstable manifolds of p1 and the change of coordinates we
have used is C∞. ��

Wewant to show that, for k large enough,γ2(t) andLk(γ1(t)) intersect transversally.
This framework is quite close to the one in Churchill and Rod (1980, Theorem 1.1)
but in their case the linear map admits the function H(x, y) = xy as a first integral,
which is not our case. Then, we provide a proof in our case to get the same conclusion.
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W u
locW s

loc

W u W s

qs qu

p1

B(p1)

ΦΘ
̂ξ

η̂

ξ

η

Fig. 5 The changes of coordinates corresponding to Lemma 4.2 and Lemma 4.4. In fact � in this figure
includes a primer change of coordinates to move p1 to the origin (Color figure online)

Given λ > 1 and 0 < μ < 1 introduced in (4.4) and (2.3) and we consider the
auxiliary interpolation map

Lτ (ξ, η) =
(

λτ 0
0 μτ

)(
ξ

η

)
, τ > 0.

We also consider the first quadrant Q = {(ξ, η) | ξ ≥ 0, η ≥ 0} and H : Q → Q
defined by

H(ξ, η) = ξ logμ−1
ηlog λ. (4.12)

It is continuous and real analytic in the interior of Q.

Lemma 4.6 The function H is a first integral of Lτ , τ > 0, in Q.

Proof To prove the lemma, we compute

H
(
Lτ (ξ, η)

) = H
(
λτ ξ, μτη

) = λτ logμ−1
μτ log λξ logμ−1

ηlog λ = H(ξ, η).

��
Next step is to show that there exist reparametrizations t = σ j (s), j = 1, 2, of the

curves γ j (t), j = 1, 2, which have a useful property.

Lemma 4.7 There exist continuous reparametrizations γ̃ j (s) = γ j (σ j (s)), s ∈ [0, s0),
of the curves γ j (t) given by t = σ j (s), j = 1, 2, that are C∞ in (0, s0) and they satisfy

H
(
γ̃ j (s)

) = s, s ∈ (0, s0)

for some s0 > 0 small enough.

Proof For j = 1 we impose the condition H (γ1(t)) = s to obtain t := σ1(s). Using
(4.11) and (4.12) we have

H (γ1(t)) = s ⇐⇒ t�1 logμ−1
(a1 + g1(t))

logμ−1
(η0 + t)log λ = s

⇐⇒ G1(t) := t(a1 + g1(t))
1/�1 (η0 + t)log λ/(�1 logμ−1)

= s1/
(
�1 logμ−1

)
.

(4.13)
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We have G1(0) = 0, c1 := G ′
1(0) = a1/�11 η

log λ/(�1 logμ−1)

0 �= 0.
Consequently, by the inverse function theorem, G1 is locally invertible and we can

write

t = σ1(s) := G−1
1 (s1/(�1 logμ−1)) (4.14)

for |s| < s0 for some s0 > 0 small.
For j = 2, arguing as above, we have

H (γ2(t)) = s ⇐⇒ G2(t) := t(a3 + g3(t))
1/�3

(
ξ0 + t�2 (a2 + g2(t))

)logμ−1/(�3 log λ) = s1/(�3 log λ).

Analogous computations imply that c2 := G ′
2(0) = a1/�33 ξ

logμ−1/(�3 log λ)

0 �= 0 and

t = σ2(s) := G−1
2 (s1/(�3 log λ)). (4.15)

��
The following lemma establishes a relation between Lτ (γ̃1(s)) and γ̃2(s).

Lemma 4.8 Let s0 > 0 be small enough. Then, there exists a C∞ function τ(s), s ∈
(0, s0), such that

Lτ(s) (γ̃1(s)) = γ̃2(s), s ∈ (0, s0).

Moreover

lim
s→0+ τ(s) = ∞. (4.16)

In particular, there exist k0 in N and a sequence of positive values {sk}k≥k0 , such that
sk → 0 and τ(sk) = k for every k ≥ k0.

Proof Let s0 > 0 be as in Lemma 4.7. We use the following notation

γ̃1(s) = (̃ξ1(s), η̃1(s)) and γ̃2(s) = (̃ξ2(s), η̃2(s)).

We define

τ(s) := 1

log λ
log

ξ̃2(s)

ξ̃1(s)
, s ∈ (0, s0)

and therefore

λτ(s )̃ξ1(s)

ξ̃2(s)
= 1. (4.17)
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Clearly, τ(s) is C∞ in (0, s0). Next, we will check that λτ(s)η̃1(s) = η̃2(s). Using that
H is a first integral and Lemma 4.7 we have that

H(λτ ξ̃1(s), μ
τ η̃1(s)) = H (̃ξ1(s), η̃1(s)) = s = H (̃ξ2(s), η̃2(s))

from which we deduce that

(
λτ ξ̃1(s)

ξ̃2(s)

)logμ−1

=
(

η̃2(s)

μτ η̃1(s)

)log λ

.

Taking τ = τ(s), from (4.17)) we conclude

μτ(s)η̃1(s) = η̃2(s), (4.18)

i.e. Lτ (γ̃1(s)) = γ̃2(s) as desired. Of course,

lim
s→0+ τ(s) = 1

log λ
log lim

s→0+
ξ̃2(s)

ξ̃1(s)
= ∞, (4.19)

since lims→0+ ξ̃2(s) = ξ0 > and lims→0+ ξ̃1(s) = 0. Using and the fact that τ(s) is
a C∞ function in its domain we get from Bolzano’s theorem that there exist k0 such
that for every k ≥ k0 there exists sk such that t(sk) = k, and the lemma follows. ��

The lemma above shows that the curves Lk (γ̃1(s)) and γ̃2(s) intersect at the values
s = sk . Next lemma shows that these intersections, for k large enough, are transversal.

Lemma 4.9 Let k be large enough. The following limits hold.

lim
s→0+

λk
d̃ξ1
ds (s)

d̃ξ2
ds (s)

= ∞ and lim
s→0+

μk dη̃1
ds (s)

dη̃2
ds (s)

= 0. (4.20)

In particular, for k large enough, the curves Lk (γ̃1(s)) and γ̃2(s) intersect transver-
sally at the values s = sk .

Proof To prove the lemma we first make some computations. From the proof of
Lemma 4.7, and equations (4.14) and (4.15), we deduce the following asymptotic
behaviours (as s → 0)

σ1(s)= c−1
1 s1/(�1 logμ−1) + . . . , σ ′

1(s)= c−1
1

1
�1 logμ−1 s

1/(�1 logμ−1)s−1 + . . . ,

σ2(s)= c−1
2 s1/(�3 log λ) + . . . , σ ′

2(s)= c−1
2

1
�3 log λ

s1/(�3 log λ)s−1 + . . . ,

(4.21)

where

c1 = a1/�11 η
log λ/(�1 logμ−1)

0 and c2 = a1/�33 ξ
logμ−1/(�3 log λ)

0
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are nonzero. Hence, using (4.11), we can compute the following expressions for some
of the terms of the numerator and denominator in (4.20). On the one hand, we have

d̃ξ1
ds

(s) = d(ξ1 ◦ σ1)

ds
(s) = σ

�1−1
1 (s)

[
�1(a1 + g1(σ1(s))) + σ1(s)g

′
1(σ1(s))

]
σ ′
1(s)

= �1a1σ
�1−1
1 (s)σ ′

1(s) + · · · = a1

c�1
1 logμ−1

s1/ logμ−1
s−1 + . . . ,

d̃ξ2
ds

(s) = d(ξ2 ◦ σ2)

ds
(s) = σ

�2−1
2 (s)

[
�2(a2 + g2(σ2(s))) + σ2(s)g

′
2(σ2(s))

]
σ ′
2(s)

= �2a2σ
�2−1
2 (s)σ ′

2(s) + · · · = �2a2

�3c
�2
2 log λ

s�2/(�3 log λ)s−1 + . . . .

On the other hand, we have

dη̃1
ds

(s) = d(η1 ◦ σ1)

ds
(s) = σ ′

1(s) = c−1
1

1

�1 logμ−1 s
1/
(
�1 logμ−1

)
s−1 + . . . ,

dη̃2
ds

(s) = d(η2 ◦ σ2)

ds
(s) = σ

�3−1
2 (s)

[
�3(a3 + g3(σ2(s))) + σ2(s)g

′
3(σ2(s))

]
σ ′
2(s)

= �3a3σ
�3−1
2 (s)σ ′

2(s) + · · · = a3

c�3
2 log λ

s1/ log λs−1 + . . . .

From (4.17) to (4.18) evaluated at the values of s = sk corresponding to τ(sk) = k,
we can also conclude that

λk = ξ2(σ2(sk))

ξ1(σ1(sk))
= ξ0

a1
σ

−�1
1 (sk) + · · · = ξ0c

�1
1

a1
s−1/ logμ−1 + . . .

and

μk = η2(σ2(sk))

η1(σ1(sk))
= a3

η0
σ

�3
2 (sk) + · · · = a3c

−�3
2

η0
s1/ log λ

k + . . . .

All together allows us to compute the limits of the statement

lim
s→0+ λk

d̃ξ1
ds (s)
d̃ξ2
ds (s)

= lim
s→0+

ξ0�3 log λ

�2a2c
−1
2 r�2−1

2 logμ−1
s−�2/(�3 log λ) = ∞

lim
s→0+ μk

dη̃1
ds (s)
dη̃2
ds (s)

= lim
s→0+

c−1
1 log λ

η0�1 logμ−1 s
1/(�1 logμ−1) = 0.

��
Proof (End of the proof of Theorem B) Let k ≥ k0 satisfy the conditions of the
previous lemmas. We consider the sequence of points

{
γ̃ j (sk) = (̃ξ j (sk), η̃ j (sk)

)}
k≥k0

, j = 1, 2. (4.22)
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Fig. 6 Sketch of the situation
described in Lemma 4.5 (Color
figure online)

γ1(t)

η0

η

Ln(γ1(t))

γ2(t)
ξ0 ξ

FromLemma 4.9,Lk (γ̃1(sk)) and γ̃2(sk) intersect transversally. It follows from (4.11)
and the lemmas above than

γ̃1(sk) → (0, η0) and γ̃2(sk) → (ξ0, 0). (4.23)

We introduce the following notation

ẑk :=
(
T −1 ◦ �−1 ◦ �−1

)
(γ̃1(sk)) ∈ Ŵ u and

z̃k :=
(
T −1 ◦ �−1 ◦ �−1

)
(γ̃2(sk)) ∈ W̃ s, (4.24)

and note that Lemma 4.8 implies that

z̃k = T 2k
d (̂zk) , k ≥ k0. (4.25)

To conclude the proof ofTheoremB,we argue as follows.Weknow that {̂zk }k≥k0 ∈ Wu

and {̃zk}k≥k0 ∈ Ws . Also the stable and unstable manifolds are invariant sets for
the map T 2

d . Finally, Lemma 4.9, definition (4.24) and equation (4.25) imply that
{̂zk}k≥k0 and {̃zk}k≥k0 correspond to transversal intersections of the stable and unstable
manifolds of p1 accumulating to the points qs and qu , respectively. See Fig. 7. ��

5 Proof of Theorem C

The proof of Theorem C is based on Moser’s version of Birkhoff–Smale theorem;
concretely we will apply Theorem 3.7 in Moser (2001) in our setup. The key difficulty
comes from the fact that, in our case, T−1

d is not differentiable on the line {y = x}.
Therefore, we need to make sure that the construction in Moser (2001) can be made
so that we only have to deal with our map and its inverse in a domain that does not
meet the line {y = x}. However, notice that both the stable and the unstable manifolds
of the two-cycle {p0, p1} cross the line y = x . See Fig. 2.
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p1

qs qu

˜W s
̂W u

W u

W s

ẑk

z̃kT 2k
d

W u

W s
loc W u

loc

0
ξ

η

(0, η0)

(ξ0, 0)

Lk

γ̃1(s)
γ̃1(sk)

γ̃2(s)

Lk(γ̃1(sk)) = γ̃2(s)

Lk(γ̃1(s))

Fig. 7 Sketch of the proof of Theorem B with the points ẑk and z̃k being transversal intersections of the
stable and unstable manifolds of p1 (for T 2

d ) (Color figure online)

Remark 5.1 It follows from Lemma 4.1 that Ws as well as Wu intersect the line
{y = x} at isolated points. In other words, finite length pieces of Ws and Wu only
contain finitely many intersections with {y = x}.

Let U be a neighbourhood of p1 as in Lemma 4.4 where we can take local coordi-
nates forwhich p1 is located at (0, 0) and the stable and the unstablemanifolds of (0, 0)
are the vertical and horizontal axes, respectively. Assume also that U ∩ {y = x} = ∅.

In the following items, we summarize notation and facts of the constructions we
have made in the previous section that will be important in the proof of Theorem C.
See Fig. 8.

(a) Let q be the homoclinic point given in Theorem A and qs = T 2α
d (q) ∈ Ws

loc ∩Wu

and qu = T−2β
d (q) ∈ Wu

loc ∩ Ws , α, β ∈ N, be the points given in Lemma 4.1.
Let Ŵ u ⊂ Wu and W̃ s ⊂ Ws introduced after the statement of Lemma 4.1. Then,
qs ∈ Ws

loc ∩ Ŵ u and qu ∈ Wu
loc ∩ W̃ s . Moreover, taking n0 = α + β we have that

T 2n0
d (qu) = qs .

(b) Let ẑk ∈ Ŵ u and z̃k ∈ W̃ s be the points introduced in (4.24). We have that z̃k and
ẑk are transversal homoclinic points,

lim
k→∞ ẑk = qs and lim

k→∞ z̃k = qu .

and

T 2k
d (̂zk) = z̃k, T 2 j

d (̂zk) ∈ U for all j = 1, . . . , k.

(c) Let Ŵ s = T 2n0
d (W̃ s) and W̃ u = T−2n0

d (Ŵ u).
(d) We consider the points

ŵk := T 2n0
d (̃zk) ∈ Ŵ s ∩ Ws

loc ∩ Wu and w̃k := T−2n0
d (̂zk) ∈ W̃ u ∩ Wu

loc ∩ Ws .
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y = x̂W u

ẑk

ŵk

̂W s

qs

Uqs

ws

˜R

R

p1

U

T 2j
d (Uu)

j = 1, . . . , n0 − 1

W s
loc

W u
loc

wu

w̃k

˜Wu

qu

T−2n0
d (Uu)

z̃k

2mu

2n0

2n0

2�k

2ms

k(ξ)

Fig. 8 The illustration of all items a–f (Color figure online)

As a consequence of the previous items, we have

T 2n0+2k+2n0
d (w̃k) = ŵk .

(e) For any mu ≥ 1 and ms ≥ 1, if we write,

wu := T−2mu
d (w̃k) ∈ Wu

loc and ws := T 2ms
d (ŵk) ∈ Ws

loc,

we have that

T 2ms+2n0+2k+2n0+2mu
d (wu)=ws or T−2ms−2n0−2k−2n0−2mu

d (ws)=wu . (5.1)

In particular, considering mu and ms as large as necessary we know that the
corresponding points wu and ws are as close as needed to the point p1, and,
by the λ-Lemma (Palis 1969) they are transverse homoclinic points with tangent
vectors close to the tangent vectors of the local manifolds.

Proof of Theorem C Let Uu ⊂ U be a neighbourhood of qu . Assume it is sufficiently
small so that Us := T 2n0

d (Uu) is contained in U . Clearly, Us is a neighbourhood of
qs . From items (b) and (d), there exists k0 > 0 such that ẑk, ŵk ∈ Us and z̃k, w̃k ∈ Uu

for all k ≥ k0.
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Let k be large enough and let V be a small neighbourhood of wu (suitable size will
be decided later on). Then, T 2mu

d (V ) is a neighbourhood of w̃k ⊂ Uu ⊂ U and, if we
denote

m0 := mu + n0 + k0 + n0 + ms,

then T 2m0
d (V ) is a neighbourhood of ws .

Let R ⊂ V be a pseudo-rectangle in the first quadrant attached to wu whose
boundaries are given by pieces of Ws and Wu and the others are just straight lines
(parallel to the tangent lines of Ws and Wu at wu).

Define

R̃ := T 2m0
d (R). (5.2)

If we iterate R̃ by T 2
d , while staying in U where the dynamics is C∞ conjugate to the

one of the linearization at p0, we eventually meet R.
Following Moser we introduce the transversal map φ̃. Given ξ ∈ R we consider

a number of iterates bigger that m0 of T 2
d . By construction T 2m0

d (ξ) ∈ R̃. Next we

consider k = k(ξ) > m0 to be the smallest integer such that T 2k
d (T 2m0

d (ξ)) ∈ R and

T 2 j
d (T 2m0

d (ξ)) ∈ U , 1 ≤ j ≤ k, if it exists. We denote byD the set of ξ ∈ R such that
k(ξ) exists and we define φ̃ : D ⊂ R → R by

φ̃(ξ) = T 2m0+2k(ξ)
d (ξ), ξ ∈ D. (5.3)

To applyMoser’s theorem,we should check that the restriction of Td to
⋃2m0

k=1 T
k
d (D)

is a C∞ diffeomorphism or equivalently that
⋃2m0

k=1 T
k
d (D) ∩ {y = x} = ∅.

That is, we should prove that, by choosing R small enough the points travelling
from R to itself would not meet the line {y = x}, where T−1

d is not smooth.
Since ξ ∈ D ⊂ R ⊂ V and V is a small neighbourhood ofwu the iterates of ξ ∈ D

will travel following the orbit of wu

wu
T 2mu
d�−−−→ w̃k

T
2n0
d�−−→ ẑk

T 2k
d�−−→ z̃k

T
2n0
d�−−→ ŵk

T 2ms
d�−−−→ ws

until they arrive to R̃. Then, by item (b), from R̃ to R the iterates will stay inU . Hence,
the only iterates of points q ∈ D ⊂ R which might fall in the line {y = x} are the
2n0 iterates needed to go from w̃k to ẑk and the 2n0 ones from z̃k to ŵk . To finish the
argument, we distinguish two cases.
Case 1. The finite set {T j

d (qu) | 0 ≤ j ≤ 2n0} does not intersect {y = x}. By
continuity there exists a sufficiently small open neighbourhoodUu of qu such that the
open set

Uu :=
2n0⋃
j=0

T j
d (Uu)
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does not intersect {y = x} either. Of course, by items (b) and (d) there are infinitely
many points of the sequences {w̃k}, {̃zk} belonging to Uu .

Choose V (the neighbourhood ofwu above) small enough and k large enough such
that T 2mu

d (V ) ⊂ Uu and such that T 2 j
d (V ) belong to U , for j = 0, . . . ,mu . Choose

R ⊂ V and define R̃ as in (5.2). By construction, the map φ̃ is well defined and C∞,
it has an inverse φ̃−1 : R ∩ φ̃(R) which is also C∞ since no iterates of Td or T−1

d in
the definition of φ̃ (see (5.3)) intersect {y = x}.
Case 2. The set {T j

d (qu) | 1 ≤ j ≤ 2n0} intersects {y = x}. Let {T � j
d (qu) | j =

1, . . . , r}, for 0 < �1 < . . . < �r < 2n0, for some r ≥ 1, be the intersection. We
recall that the stable and unstable manifolds of the point p1 have discrete intersection
with {y = x}. Again, items (b) and (d) imply that we can choose k0 large enough such
that there exist two small open neighbourhoods Us of qs and Uu of qu such that for
all k ≥ k0 we have that

{T j
d (Uu \ {qu}) | j = 0, . . . , 2n0} ∩ {y = x} = ∅ and w̃k, z̃k ∈ Uu .

We are in the same situation as in the previous case. Therefore, choosing V (the
neighbourhood ofwu above) small enough and k large enoughwe obtain the regularity
claim for φ̃ and φ̃−1.

Now, Theorem 3.7 in Moser (2001) implies that there is a Cantor set I contained in
R and a homeomorphism fromI to the space of sequences of N symbols (2 ≤ N ≤ ∞)
which conjugates φ̃ with the Bernoulli shift and, as a consequence, there is a dense
set P of periodic orbits of φ̃, and therefore of T 2

d and Td in I.
Moreover, Theorem 3.8 in Moser (2001) implies that there is a dense subset H of

homoclinic points to p1 in I. We recall from Theorem A (b) of Fontich et al. (2024)
that Ws

p1 ⊂ ∂�. Finally, since H ⊂ Ws
p1 ,

P ⊂ P = I = H ⊂ ∂� = ∂�,

that is, the boundary of� has infinitelymany periodic orbits with arbitrary high period.
��

Author Contributions The three authors of this paper contribute equally to the final document. All authors
reviewed the manuscript

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

123



102 Page 32 of 32 Journal of Nonlinear Science (2024) 34 :102

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bedford, E., Frigge, P.: The secant method for root finding, viewed as a dynamical system. Dolomites Res.
Notes Approx. 11(Special Issue Norm Levenberg), 122–129 (2018)

Churchill, R.C., Rod, D.L.: Pathology in dynamical systems. III. Analytic Hamiltonians. J. Diff. Equ. 37(1),
23–38 (1980)

Delshams, A., Ramírez-Ros, R.: Poincaré-Melnikov-Arnold method for analytic planar maps. Nonlinearity
9(1), 1–26 (1996)

Fontich, E., Garijo, A., Jarque, X.: On the basin of attraction of a critical three-cycle of a model for the
secant map. Preprint (2024), accepted for publication in Discrete and Continuous Dynamical Systems
Serie A.

Fontich, E.: Transversal homoclinic points of a class of conservative diffeomorphisms. J. Diff. Equ. 87(1),
1–27 (1990)

Gelfreich, V.G.: A proof of the exponentially small transversality of the separatrices for the standard map.
Comm. Math. Phys. 201(1), 155–216 (1999)

Garijo, A., Jarque, X.: Global dynamics of the real secant method. Nonlinearity 32(11), 4557–4578 (2019)
Garijo, A., Jarque, X.: Dynamics of the secant map near infinity. J. Diff. Equ. Appl. 28(10), 1334–1347

(2022)
JürgenM.: Stable and randommotions in dynamical systems. Princeton Landmarks inMathematics. Prince-

ton University Press, Princeton, NJ:With special emphasis on celestial mechanics, Reprint of the 1973
original. With a foreword by Philip J, Holmes (2001)

Martín, P., Sauzin, D., Seara, T.M.: Exponentially small splitting of separatrices in the perturbed McMillan
map. Discrete Contin. Dyn. Syst. 31(2), 301–372 (2011)

Palis, J.: On Morse-Smale dynamical systems. Topology 8(4), 385–404 (1969)
Victoria, R.: Multidimensional singular λ-lemma. Electron. J. Diff. Equ. 2003(38), 1–9 (2003)
Sternberg, S.: On the structure of local homeomorphisms of euclidean n-space. II. Amer. J. Math. 80,

623–631 (1958)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Ernest Fontich1,2 · Antonio Garijo3 · Xavier Jarque1,2

B Xavier Jarque
xavier.jarque@ub.edu

Ernest Fontich
fontich@ub.edu

Antonio Garijo
antonio.garijo@urv.cat

1 Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Gran Via de les
Corts Catalanes 585, 08007 Barcelona, Catalonia, Spain

2 Centre de Recerca Matemàtica (CRM), Edifici C, Campus Bellaterra, 08193 Barcelona,
Catalonia, Spain

3 Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili (URV),
Campus Sescelades, Av. Països Catalans 26, Edifici E4, 43007 Tarragona, Catalonia, Spain

123

http://creativecommons.org/licenses/by/4.0/

	Chaotic Dynamics at the Boundary of a Basin of Attraction via Non-transversal Intersections for a Non-global Smooth Diffeomorphism
	Abstract
	1 Introduction
	2 Preliminaries
	The triangle mathcalD and its images: Td(mathcalD) and Td-1(mathcalD).

	3 Proof of Theorem A
	4 Proof of Theorem B
	5 Proof of Theorem C
	References




