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1 TITLE: A NOVEL TRUNCATING GERMLINE VARIANT REINFORCES TINF2 AS A 

2 SUSCEPTIBILITY GENE FOR FAMILIAL NON-MEDULLARY THYROID CANCER. 

3
4 Authors: Josep Oriola, Orland Díez, Mireia Mora, Irene Halperin, Sandra Martínez, Miriam 

5 Masas,  Anna Tenes,  Ana Bernal, Rafael Duran,  Aida Orois

6
7 Abstract:

8 Background: It has long been observed that there are families in which non-medullary thyroid 

9 cancer (NMTC) occurs, but few syndromes and genes have been described to date.  Proteins in 

10 shelterin complex have been implied in cancer. Here, we have studied shelterin genes in 

11 families affected by NMTC (FNMTC).

12 Methods: We performed whole-exome sequencing (WES) in 10 affected individuals from four 

13 families with at least three affected members. PCR and Sanger sequencing were performed to 

14 search for variants in the TINF2 gene in 40 FNMTC families. TINF2 transcripts and loss of 

15 heterozygosity (LOH) were studied in several affected patients of one family.

16 Results: We found the c.507G>T variant in heterozygosis in the TINF2 gene in one family, co-

17 segregating in all five affected members. This variant affects the normal splicing. LOH was not 

18 observed.

19 Conclusions: Our results reinforce TINF2 gene as a susceptibility cause of FNMTC suggesting 

20 the importance of location of frameshift variants in TINF2. According to our data and previous 

21 literature, TINF2 pathogenic variants appear to be a significant risk factor for development of 

22 NMTC and/or melanoma.

23 Keywords: familial non-medullary thyroid cancer, TINF2, thyroid cancer, melanoma, shelterin, 

24 telomere, germline variant.
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33 INTRODUCTION:

34 Thyroid cancer is the most common endocrine cancer, accounting for 1% of all cancers. Thyroid 

35 cancer comprises two entities, medullary thyroid carcinoma (MTC) and non-medullary thyroid 

36 carcinoma (NMTC). Familial NMTC (FNMTC) represents 3–9% of all NMTC and is classified as 

37 either syndromic or nonsyndromic. Susceptibility genes involved in syndromic FNMTC are well 

38 known1. On the contrary, no clear causative genes of nonsyndromic FNMTC have been 

39 established so far.

40
41 Nonsyndromic FNMTC accounts for more than 95% of all FNMTC cases and is defined by the 

42 presence of differentiated thyroid cancer of follicular cell origin in two or more first-degree 

43 relatives, and in the absence of other predisposition or environmental causes (radiation 

44 exposure or iodine deficiency) with no other syndromic features2. In spite of the high prevalence 

45 of thyroid cancer in the general population, if there are three affected cases, the probability of 

46 being truly hereditary increases to 96%3.

47 For years the search for genes implied in nonsyndromic FNMTC has been discouraging. Some 

48 genes and variants have been proposed to be causative, but results have not been replicated 

49 so far in other affected families, perhaps because most of these variations are specific to 

50 particular families.

51 In the last few years, some reports show that telomere abnormalities are related with 

52 susceptibility to FNMTC. Many authors have searched for alterations in genes involved in 

53 telomeric regulation, both in telomerase and in the shelterin complex genes4,5,6. The shelterin 

54 complex is a group of six proteins (POT1, TPP1, TINF2, TERF1, TERF2 and RAP1) that play a 

55 critical role in protecting the telomeres. This group of genes would be potential candidates 

56 involved in the development of FNMTC for several reasons. Firstly, it is well known that somatic 

57 pathogenic variants in TERT (Telomerase Reverse Transcriptase) gene promoter are involved 

58 in the development of NMTC, and, in fact, it is one of the main markers of poor prognosis7. 

59 Furthermore, the non-proper functioning of telomeres has been shown to be of vital importance 

60 in some oncological processes such as melanoma, with which NMTC seems to have ties in 

61 common. Patients with papillary thyroid carcinoma (PTC) have more risk of developing 

62 cutaneous malignant melanoma (1.8-fold) than healthy subjects, and patients with melanoma 

63 have 2.3-fold increased risk of PTC8. In addition, other genes such as BRAF or the 

64 aforementioned TERT play key roles in both diseases9.

65 It has been proposed that germline pathogenic variants in telomere-related genes, such as 

66 POT1, described in familial melanoma, might also predispose individuals to thyroid cancer10. 

67 We ourselves searched for pathogenic variants in POT1 in our NMTC families but found no 

68 evidence11. No differences have been observed in the number of copies or in the expression of 

69 various genes of the shelterin complex in six families with FNMTC either4.
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70 Although it seems that genes of the shelterin complex could be somehow involved in the 

71 development of FNMTC, until now results in the literature are scarce. Our aim was to assess if 

72 our FNMTC families presented variants in the genes of the shelterin complex that could explain 

73 predisposition to develop NMTC.

74

75  MATERIAL AND METHODS
76
77 Study Subjects
78 We designed a multicentric study in Spain to collect blood specimens, and clinical data from 

79 families with at least two members with NMTC, confirmed by histology, without history of other 

80 malignancies, and without clinical characteristics suggestive of syndromic FNMTC. We recruited 

81 40 FNMTC families (33 with two affected members and 7 with three or more affected members) 

82 from 17 hospitals in Spain. 

83
84 We performed whole-exome sequencing (WES) in 10 affected individuals from four families with 

85 at least three affected members. These data were previously published by our group12 along 

86 with the methods described in detail. Nowadays, we have reviewed our WES data, but 

87 focussing on the shelterin complex genes (POT1, TPP1, TINF2, TERF1, TERF2, and RAP1). 

88 Moreover, we studied the TINF2 gene in the index cases of 40 FNMTC-recruited families.

89
90 This project was approved by the Ethics Committee of the Hospital Clínic of Barcelona, Spain 

91 (Reg. HCB/2016/0200) and was conducted in accordance with the Declaration of Helsinki. 

92 Patients gave written informed consent before undergoing evaluation and testing.

93
94 DNA Extraction and TINF2 Sanger gene Sequencing.
95 Genomic DNA was extracted from peripheral blood samples. The whole (5′UTR region, exons 

96 from 1 to 6, and intronic regions) TINF2 gene (NM_012461.3) was studied in lymphocyte DNA 

97 from the index cases of our 40 families. PCR, followed by Sanger sequencing, was performed 

98 using the following primers (Sigma–Aldrich, Saint Louis, MO, USA): 5’UTR and exons 1-2, 

99 forward 5’TTAAAGCTGAGCGACCCAGT3’ and reverse 5’AATCCACAGGAGCCTCTGAC3’, 

100 exons 3-5: forward 5'TTCCGCGAGTACTGGAGTTT3', and reverse 5'CGGAGCCCATGGAA 

101 CTATT3', and exon 6 forward 5'CTGGGGCAAAACATGTAAGG3' and reverse 5’CTGTTGAT 

102 CCAATCCTGACTCA3’. Touchdown PCR conditions were as follows: denaturation at 95°C for 5 

103 min, 10 cycles (95°C for 1 min, 65–60°C for 1 min, 72°C for 1 min), followed by 25 cycles (95°C 

104 for 1 min, 55 °C for 1 min, 72°C for 1 min). PCR products were purified using Pure-IT ExoZAP® 

105 PCR Cleanup (Ampliqon) and bidirectionally sequenced using BigDye Terminator v3.1 Cycle 

106 Sequencing Kit (Applied Biosystems). Sequenced products were run in an ABI3500xl Genetic 

107 Analyzer (Applied Biosystems) and analyzed using Sequencing Analysis v6.0 software (Applied 

108 Biosystems).

109
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110 Transcript Analysis:
111 Total RNA from affected individuals II.3 and II.4 (figure 1A) and 5 healthy controls were isolated 

112 from 10ml of peripheral blood using Trisure TM reagent (Meridian Bioscience) and chloroform 

113 extraction. RNA was cleaned‐up using RNeasy Mini Kit (QIAGEN), following the manufacturer’s 

114 protocol with an additional step of DNase digestion using RNase‐Free DNase Set (QIAGEN). A 

115 total of 300–500ng of RNA was retrotranscribed using PrimeScript RT reagent kit (Takara), 

116 combining random and oligo‐dT primers. PCR primers located on exon 2 forward 

117 5’TTGGGCCCAAGTCCTGAAAG3’ and exon 6 reverse 5’ATCGCATGTTCTTCCTTGCT3’ were 

118 used to amplify a whole exon upstream and downstream from the exon containing the variant 

119 c.507G>T of interest. PCR assays were performed in 25 ul reaction volume containing 100 ng 

120 of cDNA as template, using TaKaRa Taq DNA Polymerase (Takara). Samples were denatured 

121 at 95ºC for 5 min, followed by 35 cycles consisting of 98ºC for 10sec, 60ºC for 30sec, and 72ºC 

122 for 1.5 min; and a final extension step at 72ºC for 10 min. PCR products were sequenced and 

123 analyzed as described above. Reference transcript NM_012461.3 was used for sequence 

124 alignment and transcript annotation.

125
126 Loss of Heterozygosity Analysis: 
127 To explore a possible loss of heterozygosity (LOH), we studied four paraffin-embedded tumor 

128 samples from patients II.3, II.4, II.5 and III.1 (figure 1A). We isolated DNA from tumors as 

129 previously described13 and thereafter, we amplified the region where the c.507G>T variant is 

130 present, using primers forward 5’CCTGGCCACTAACCCACTT3’ and reverse 

131 5’CCCACACTCTGCCCTTACAT3’ to obtain a product of 189bp. We then sequenced the 

132 fragment by Sanger sequencing.

133
134 RESULTS:
135 We re-evaluated genetic variants in exomes obtained in 10 affected individuals from four 

136 families with at least three affected members, focusing on all the genes implied in the shelterin 

137 complex. In one family (figure 1A), with five NMTC-affected members, we found a heterozygous 

138 variant c.507G>T in TINF2. This variant was confirmed by PCR and Sanger sequencing in all 

139 five affected members of the family. This change is not described in GnomAD or cancer 

140 databases. After this finding, we analyzed the whole TINF2 gene in the index cases of the rest 

141 of our 40 families, without detecting other suspected TINF2 pathogenic variants in any of them. 

142 Neither have we found variants suspected of pathogenicity in the rest of genes of the shelterin 

143 complex.

144 Therefore, to test if the c.507G>T variant could affect the splicing, we evaluated this variant in 

145 SpliceAI (0.66) and Pangolin (0.81), both predicting a deleterious effect (donor loss). 

146 Afterwards, we analyzed RNA obtained from II.3 and II.4 affected patients. After sequencing, we 

147 observed three transcripts: a) the full-length transcript, b) the minor alternative transcript variant 

148 lacking exons 4 and 5 (4&5) previously described14, and c) a new alternative transcript lacking 

149 exon 4 (4) (figure 1B). The minor alternative transcript was not detected in any of the controls. 
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150 Deletion of exons 4&5 variant predicts a p.(Glu134SerfsTer8) truncated protein and the skipping 

151 of exon 4 predicts the preservation of the reading frame p.(Glu134_Gln169del) but loss all 36 

152 amino acids of exon 4 (figure 1C). As shown in figure 1B, all these three transcripts seem to be 

153 present in approximately equal proportions.

154 LOH was not observed in any of four tumor samples from four different patients.

155
156 DISCUSSION

157 Our RNA data show c.507G>T variant increases the amount of the 4&5 alternative transcript, 

158 predicting a truncated protein p.(Glu134SerfsTer8). Additionally, variant c.507G>T produces a 

159 new in-frame deletion, predicting the p.(Glu134_Gln169del) change in the TINF2 protein. 

160 Schmutz I. et al.14 reported the c.604G>C variant in the TINF2 gene in three families affected by 

161 NMTC and/or melanoma. Curiously, both changes (c.507G>T and c.604G>C) are located in the 

162 last nucleotide of the exon, c.507G>T in exon 4 and c.604G>C in exon 5, both producing 

163 splicing effects (table 1). 

164 At present, there are five different frameshift/nonsense variants described in the TINF2 gene, 

165 found in twelve families (table 1). Twelve patients are affected only by NMTC, nine only by 

166 melanoma, four by both; one is affected by cancer but not NMTC/melanoma and one not 

167 affected by cancer. According to the current data, only NMTC and melanoma appear recurrently 

168 among these families. Other malignancies, such as breast or colon cancer are difficult to 

169 categorize as part of the syndrome or only phenocopies.

170 On the other hand, loss-of-function (mainly missense but also nonsense and frameshift) 

171 variants in TINF2 are widely known to cause dyskeratosis congenita (DC)15,16. All these loss-of-

172 function variants appear exclusively in a short stretch called DC patch (codons 269 to 298) 

173 towards the C-terminal part of the protein. By contrast, the TINF2 variants described until now in 

174 families with NMTC and/or melanoma, including c.507G>T (table 1), are all located before 

175 codon 269 (figure 1D). Localization of TINF2 in telomeres is mainly determined by its interaction 

176 with TERF117. Schmutz I. et al14. and He H. et al18. showed truncating TINF2 protein variants 

177 found in FNMTC had lost the ability to bind to TERF1. If TERF1 interaction is lost, telomere 

178 protection is not compromised, but TINF2 is not accumulated at telomeres, giving rise to long 

179 telomeres19, impairing the telomere tumor suppressor pathway14, 18, 20,. TINF2 as well as TERF1 

180 and POT1 are negative regulators of telomere length. 

181 Results altogether suggest that if TERF1-binding site is somehow maintained, patients will only 

182 present DC features, but the weaker the ability of TINF2 and TERF1 to interact, the greater the 

183 likelihood that patients will develop some type of cancer, especially NMTC and/or melanoma.

184 LOH was not observed in our studies in consistency to others14 suggesting a mechanism of 

185 haploinsufficiency.

186 Though we have not performed a functional study of the altered protein, given that the change 

187 is very similar to the one previously described and the alteration by RNA splicing is confirmed, 

188 we consider that protein functionality resulting from c.507G>T variant is highly impaired.
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189 We cannot completely exclude the possibility that some other structural, copy number, non-

190 coding gene regulative variants, etc., might also explain the phenotype in the family 

191 investigated.

192
193 CONCLUSION
194 According to our data and in agreement with what was observed in other reported families, we 

195 suggest that frameshift/nonsense variants in TINF2 before codon 269 predispose to two types 

196 of cancer: differentiated thyroid cancer and melanoma in an autosomal dominant manner. 

197 TINF2 variants do not seem frequent, but as they have been found in non-related families, we 

198 encourage the study of TINF2 gene in all cases of NMTC and/or melanoma with a suspected 

199 familial background. Results will improve our knowledge of its penetrance and our 

200 understanding of the genotype-phenotype relationship.
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306 gene from exon 3 to exon 6. Location of the c.507G>T variant at the end of exon 4. Full-length 
307 transcript (lines in green). Alternative transcript variant lacking exons 4 and 5, enhanced by the 
308 c.507G>T variant (lines in red) and the new alternative transcript lacking exon 4 also produced 
309 by the c.507G>T variant (lines in blue). (D) Location of frameshift and nonsense variants in 
310 TINF2 described in families with differentiated thyroid cancer and/or melanoma. DC: 
311 Dyskeratosis Congenita patch. The numbers in parenthesis indicate codons.
312
313
314 Table1: TINF2 frameshift and nonsense variants described in families with thyroid cancer 
315 and/or melanoma. 
316
317
318
319
320
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Table 1

germline variant predicted effect observed effect phenotype reference

c.507G>T p.(Gln169His) p.(Glu134SerfsTer8) and 
p.(Glu134_Gln169del)

Five affected members. Only
papillary thyroid carcinoma 

(PTC)
this report

c.557del p.(Ser186PhefsTer24)
p.(Ser186PhefsTer24)

Family 2: one patient affected
by follicular thyroid cancer +

melanoma+ breast cancer
Schmutz I. et al. 

2020

c.591del p.(Trp198GlyfsTer12)
p.(Trp198GlyfsTer12)

Eight affected members: only 
PTC:    n=4; PTC+ 

melanoma:n=2;only 
melanoma: n=2)

He H. et al. 2020

c.604G>C p.(Glu202Gln) p.(Leu170ValfsTer12) and 
p.(Glu202ArgfsTer14)

Family 1: two affected 
patients by PTC (proband 

and his mother). His mother 
also with colon cancer

Schmutz I. et al. 
2020

c.604G>C p.(Glu202Gln) p.(Leu170ValfsTer12) and
p.(Glu202ArgfsTer14)

Family 3: one patient with 
melanoma (13y) + diffuse 

astrocytoma (17y) and one 
person with no cancer (adult)

Schmutz I. et al. 
2020

c.604G>C p.(Glu202Gln)
p.(Leu170ValfsTer12) and 

p.(Glu202ArgfsTer14)

Family 4: one patient with 
rectal (65y) and breast (65y) 

cancer. One patient with 
thyroid cancer but   not tested 

for the familial
variant.

Schmutz I. et al. 
2020

c.793C>T p.(Arg265Ter)
Not tested

6 kindreds: six patients 
with melanoma, one 

patient with PTC and one 
patient with both.

Jensen M.R. et al. 
2023
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