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GATA2 is a master regulator of hematopoiesis. In humans,
heterozygous germline GATA2 mutations lead to an autosomal
dominant disorder known as GATA2 deficiency [1]. The clinical
phenotype can vary significantly among GATA2 carriers, including
in those of the same family. Patients may present with various
hematological manifestations, including predisposition to myeloid
neoplasms (most commonly myelodysplastic neoplasm (MDS),
followed by acute myeloid leukemia and chronic myelomonocytic
leukemia), bone marrow failure, immunodeficiency, neutropenia,
and cytopenia, as well as non-hematological features like
lymphedema, pulmonary and genitourinary alterations, deafness,
and neurological disorders [1]. The median age for development
of GATA2-related myeloid neoplasms is estimated around 20 years
[2]. Myeloid malignant transformation is often accompanied by
cytogenetic alterations, like monosomy 7 or trisomy 8, and
acquired somatic mutations in SETBP1, ASXL1, and STAG2 [2, 3].
The clinical phenotype and cytogenetics of GATA2 deficiency are
well-described, but penetrance and genotype-phenotype correla-
tions remain unclear, particularly why some family members with
the same GATA2 mutation remain asymptomatic [2]. Recently, it
has been reported that epigenetic aberrant signatures, at early
disease stage, could be potentially used as predictors of disease
evolution [3]. Therefore, studies based on familial cohorts are
crucial to understanding disease progression. Here we describe a
familial case of GATA2 deficiency spanning three generations,
involving four individuals carrying the c.1163T>C mutation
(p.M388T) and exhibiting marked phenotypic variability (Fig. 1A).
The p.M388T mutation in zinc finger domain 2 of GATA2 seems to
impair protein function by reducing DNA-protein binding [4].
Patient #1 (P1) is a 75-year-old male without clinical features of

GATA2 deficiency. Patient #2 (P2) is a 45-year-old male with
deafness but no hematological manifestations. Patient #3 (P3) is a
female diagnosed with pancytopenia at age 29 (Table S1). Her
medical history includes Mycobacterium avium infection, throm-
bocytopenia, obstetric complications, and an arterial aneurysm. At
age 31, she was diagnosed with MonoMac syndrome. Blood

counts showed alterations in the myeloid (monocytosis, throm-
bocytopenia, and anemia) and lymphoid (inverted CD4:CD8 ratio,
increased δγ lymphocytes, and lack of NK cells) lineages. Bone
marrow (BM) analysis revealed MDS with multilineage dysplasia
(MDS-MLD) and trisomy 8 (Table S1). The same year, she
underwent allogeneic hematopoietic stem cell transplantation
(HSCT) using an unrelated HLA-matched donor (10/10) after
myeloablative conditioning. To date, she has maintained normal
blood counts. Unfortunately, data on somatic mutations prior to
transplantation are lacking. Finally, Patient #4 (P4) is a male who
was identified as an asymptomatic GATA2 carrier at the age of 6,
following the diagnosis of P3. At that time, P4 (P4.1) exhibited
normocellular BM and normal blood counts (Table S1). At age of 8
(P4.2), BM analysis revealed hypocellularity with multilineage
dysplasia affecting granulocytes, megakaryocytes, and erythro-
cytes, but without the presence of blasts; blood counts remained
within normal parameters (Table S1). A follow-up 3 months later
revealed peripheral blood (PB) neutropenia and thrombocytope-
nia (P4.3). He was subsequently diagnosed with myelodysplastic
neoplasm with multilineage dysplasia (MDS-MLD), characterized
by the acquisition of monosomy 7 and 0.3% blasts in the BM
(Table S1). Whole-exome sequencing analysis on BM and PB cells
of all P4 time-points, did not reveal additional somatic mutations.
The same year, the patient underwent a successful allogenic HSCT
(9/10). To date, at age 11, P4 exhibits 100% chimerism from an
unrelated donor.
To identify potential epigenomic factors that could promote the

progression of GATA2 deficiency in P4, we analyzed the genomic
methylation profiles of PB mononuclear cells at three-time points
for P4 and compared with P1, P2, P3, and three healthy donor
(HD). This analysis was performed using the Infinium Human
Methylation EPIC 850 K platform (Illumina). Principal component
analysis (PCA) revealed that asymptomatic carrier P1 and deaf
carrier P2 clustered with HD, correlating with the absence of
hematological manifestations, while P3 formed a distinct cluster
(Fig. 1B). Most interestingly all-time points of P4, from the
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asymptomatic stage (P4.1) to MDS-MLD (P4.3) clustered together
and separately from HD and P3 (Fig. 1B). We first identified a total
of 64,618 differentially methylated positions (DMPs) associated to
18,283 genes by performing pairwise comparison of DNA
methylation between all samples. Then we compared each
patient individually to the HD group. Interestingly, P1 and P2
had less than 500 DMPs, with only 33–40% of them being
hypermethylated. In contrast, P3 and P4 showed over 13,000
DMPs, revealing a hypermethylated profile when compared with
HD (Fig. 1C). A descriptive analysis of the DMPs distribution was
performed using as a reference the probe distribution of the

Infinium MethylEPIC array from distal to proximal CpG island
regions. The data revealed that the majority of DMPs were
enriched in distal promoter regions, particularly in P3 and P4
(Fig. S1A). Furthermore, DMP distribution using the neighboring
gene as reference showed an enrichment in intergenic and
intronic regions with similar percentages in all patients (Fig. S1B).
Unsupervised analysis of DMPs revealed a shared DNA

hypermethylation pattern (29,297 DMPs, cluster A) between P3
and all P4 time points, along with a unique subcluster of
hypomethylated DMPs (16,310 DMPs, cluster B) in P4 (Fig. 1D).
In contrast, P1 and P2 exhibited a DNA methylation profile similar
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Fig. 1 Characterization of a GATA2-mutant pedigree with variable disease manifestations. A Genogram of the GATA2-mutated pedigree.
Squares denote males and circles denote females. This three-generation GATA2 family presented four members with identical germline GATA2
mutations (p. Met388Thr; c.1163T>C) and variable clinical manifestations. B Principal Component Analysis (PCA) showing the distribution of
GATA2 carriers (P#) and healthy donors (HD), based on DNA methylation profile of peripheral blood samples. C Number and percentage of
hypomethylated and hypermethylated differentially methylated positions (DMPs) of each patient compared to the HD group. D) Heatmap of
DMPs of peripheral blood. The hypermethylated DMP cluster in P3 and P4 samples is squared in red (Cluster A). The hypomethylated DMP
cluster only in P4 samples is squared in blue (Cluster B). Scale β-values from -3 (blue/hypomethylated) to +3 (red/hypermethylated). Raw reads
were processed using ShinyEpico (v1.14.0) package in R (v4.2.0). β-values are used to calculate the differences between groups. Δβ-value was
considered significant when ≥0.225 and p-adj ≤ 0.05. P-value was calculated using the empirical Bayes moderated two-sided t-test. P-value is
then adjusted using the Benjamini-Hochberg (FDR) method.
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to that of HD (Fig. 1D). After DMP annotation, we identified 11,762
genes associated with 29,297 hypermethylated DMPs and 7942
genes linked to 16,310 hypomethylated DMPs. Enrichment
analysis revealed that cluster A is enriched in inflammatory
response and myeloid-related genes, while cluster B in T-cell-
related genes (Fig. S1C and D). These data suggest a defect in the

hematopoietic homeostasis in PB, characterized by dysregulation
in the myeloid lineage, including reduced platelet formation and
altered granulocyte production, as described in Table S1. Then, to
assess whether GATA2 mutation might have a direct effect, we
crossed the hyper- and hypomethylated genes with a publicly
GATA2 chromatin immunoprecipitation sequencing (ChIP-seq)
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dataset [5]. Notably, 34% of the hypermethylated genes and 27%
of the hypomethylated genes were GATA2 targets, highlighting
the significant involvement of GATA2-regulated pathways
(Fig. S1E). Furthermore, we extend our analysis comparing P3
and P4 profiles with already published methylome data of GATA2
patients [3] (Fig. 2A and B). Of note, 52 hypermethylated and 3
hypomethylated genes were common across all conditions [3].
Remarkably, 46% of the common hypermethylated genes were
GATA2 targets (Fig. 2B). To identify potential epigenetic biomar-
kers, present already at asymptomatic stage, we performed a
longitudinal analysis of the hyper- and hypomethylated genes
across all P4 time points. As shown in Fig. 2C and D, a distinct
epigenetic signature is already established at the P4.1 stage and is
maintained in subsequent time points. Specifically, 704 hyper-
methylated and 311 hypomethylated genes are maintained across
the transition from P4.1 to P4.3. Notably, among the 704
(420 shared with P3) hypermethylated genes we observed
canonical genes critical for the normal hematopoiesis develop-
ment such as ELANE [6], CSF3R [7], GFI1 [8], ITGA2B [9]; the S100A
protein family with a prominent role in the regulation of the
immune response [10] and LMO2 [11] (Fig. 2B and D). Among the
311 (73 shared with P3) hypomethylated genes some are
oncogenes associated with hematological disorders, such as,
CD79a [12], CDH2 [13] and EGFL7 [14] (Fig. 2B and D).
Furthermore, the inactivation of DOTL1, which is a direct target
of GATA2 [5] and a methyltransferase for H3K79, in P4 might
dysregulate the expression of genes implicated in DNA damage
response, cell cycle progression and erythropoiesis [15]. Of note
DOT1L-KO in mice leads to pancytopenia and BMF, associated
with a significant decrease of BRD4 expression [15]. Interestingly
both genes are hypermethylated P4.3 (Fig. 2D). Although DOT1L
became one of the most promising therapeutic targets to combat
unfavorable gene expression in MLL-rearranged leukemia
patients, its role as epigenetic regulator in MDS and AML is
unknown. On the other hand, we observed specific epigenetic
landscape of P4.2 and P4.3 (Fig. 2D), likely associated with disease
progression.
Finally, Hypergeometric Optimization of Motif EnRich-

ment (HOMER) (Fig. S1F) analysis revealed that the hypermethy-
lated DMPs are enriched in TF motifs of the ETS family (ERG, FLI1,
ETV2, and ETV1), consistent with our previous data and known
associations with myeloid neoplasms [3]. Moreover, C/EBP and
HLF genes are key TFs for myelopoiesis. On the other hand,
hypomethylated DMPs are enriched in TF motifs of P53, HIF,
RUNX1, and IRF3 among others, suggesting a collaboration of
these TFs in the progression of the disease.
This study has several limitations. As it is a single-family study,

the generalizability of the results may be limited and further
validating studies with multiple GATA2 families are needed.
Additionally, the lack of frozen primary cells at all P4 time-points
hindered our ability to perform single-cell transcriptomic and
genomic analyses, which could have provided further insight into
the clonal evolution of the disease. Also, it is known that DNA
methylation changes rapidly during childhood, therefore an age-
matched HD for P4 would have been ideal.

Here we report an epigenetic study to unveil the complex
phenotypic variability of a GATA2 familial case. We identify DMPs
at early stage and maintained throughout the disease, which can
potential be used as predictive epigenetic biomarkers for GATA2
deficiency progression. These findings encourage further long-
itudinal epigenetic studies to enhance understanding of DNA
methylation role in predicting clinical outcomes in GATA2
patients.

DATA SHARING
All the data has already been deposited in the National Center for
Biotechnology Information’s Gene Expression Omnibus with the
following accession numbers: GSE281134 and GSE280776.
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