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a b s t r a c t

We find sufficient conditions for the existence of an exact uniform modulus continuity
for the class of q-isotropic Gaussian random fields introduced in Hinojosa-Calleja and
Sanz-Solé (2021). We apply the result to a d-dimensional version of the Bγ Gaussian
processes defined in Mocioalca and Viens (2005).
© 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A gauge function is a strictly increasing continuous function q : [0, T ] → R+, T > 0 satisfying q(0) = 0. Fix K a
ompact set of Rd and assume that X = {X(x), x ∈ K } is a real valued Gaussian random field. We say that X is q-isotropic
on K if there exists a gauge function q and positive finite constants c, C that

cq(|x − x̄|) ≤ dx,x̄ ≤ Cq(|x − x̄|), x, x̄ ∈ K , (1)

where dx,x̄ := ∥X(x) − X(x̄)∥L2(Ω) is the canonical metric of X . If X only satisfies the upper bound in (1) we say that it is
q̂-isotropic. The simplest form of a gauge function q is

q(τ ) = τ ν, τ , ν ∈ (0, 1]. (2)

If X is a q-isotropic Gaussian random field with q as in (2) it is referred as isotropic.
It is said that X is anisotropic on K if on (1) we replace q(|x − x̄|) by

ρ(x, x̄) =

d∑
l=1

|xl − x̄l|νj , (ν1, . . . , νd) ∈ [0, 1]d.

Theorem 4.1 in Meerschaert et al. (2013) establishes general criteria for Gaussian anisotropic processes to have an exact
uniform modulus of continuity. This result or similar approaches has been applied to the study of several Gaussian
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rocesses, e.g. the fractional Brownian sheet (Ayache and Xiao, 2005), the stochastic heat equation (Tudor and Xiao, 2017)
nd the stochastic wave equation (Lee and Xiao, 2019).
Recently in the literature, a variety of q-isotropic Gaussian random fields that are not simply isotropic (i.e. with q

different from (2)) has arisen (Herrell et al., 2020; Hinojosa-Calleja, 2022; Hinojosa-Calleja and Sanz-Solé, 2021, 2022;
Sanz-Solé and Viles, 2018). This paper provides a first approach for studying sample path continuity properties of such
kinds of processes.

In Section 2 we establish sufficient conditions for the existence of the exact uniform modulus continuity of q-isotropic
Gaussian random fields. In Section 3 we apply such results to a d-dimensional version of the Bγ Gaussian processes
introduced in Mocioalca and Viens (2005). We finish this work by suggesting open problems related to the study of
solutions to stochastic partial differential equations.

2. Exact global modulus of continuity

This section aims to prove Theorem 2.1 which provides conditions on a centered q̂-isotropic Gaussian random field,
from now referred as q̂-Gaussian random field, for having an exact global modulus of continuity.

Let X be a centered q̂-Gaussian random field on a compact set K of Rd. Without loss of generality we assume that the
upper bound for the canonical metric of X in (1) is valid for C = 1. Theorem 1.3.5 in Adler and Taylor (2007) implies that
there exists a universal constant C0 and positive random variable η such that

sup
x,x̄∈K ,
dx,x̄≤ε

|X(x) − X(x̄)| ≤ C0

∫ ε

0
dρ

√
log
(

�K

q−1(ρ)

)
, ε ∈ (0, η), (3)

where �K := supx,x̄∈K |x − x̄| is the Euclidean diameter of K .

Remark 2.1. Assume that

q(τ ) ≤

[
log
(
2�K

τ

)]−γ

, τ ∈ [0, T ],

or some γ > 1/2. Then the integral on the r.h.s. of (3) is finite and X has a modification with a.s. continuous sample
aths.
This continuity criteria is sharp. According to Corollary 1.5.5 in Adler and Taylor (2007), if X is a centered, stationary

-Gaussian random field with

q(τ ) =

[
log
(
2�K

τ

)]−γ

, τ ∈ [0, T ],

for some ν ∈ (0, 1/2), then X has a.s. discontinuous sample paths.

For any x ∈ K , we denote by K (x−) = {x̄ ∈ K : x̄l ≤ xl, l = 1, . . . , d} the set of points in K that are at the left of x. We
will make use of the following local nondeterminism condition on X:

(LND) There exists a gauge function q and a positive constant c1 such that for all integers n ≥ 1, and all x ∈ K ,
x1, . . . , xn ∈ K (x−),

Var(X(x) | X(x1), . . . , X(xn)) ≥ c1
d∑

l=1

n⋀
j=1

q(xl − xjl)
2.

Different versions of strong local nondeterminism conditions has been applied for the study of Gaussian random fields
sample paths properties in the past. We refer the reader to Section 1 in Xiao (2007) for a review of the history and
applications of this concept.

Remark 2.2. Since X has second order finite moments, by Durrett (2019)[Thm. 4.1.15],

Var(X(x) | X(x1), . . . , X(xn)) = min
a∈Rn

E

⎛⎜⎝
⎡⎣X(x) −

n∑
j=1

ajX(xj)

⎤⎦2
⎞⎟⎠ . (4)

We introduce a set of conditions for the gauge function q:

(q1) The map τ ↦→ q(τ )
√

| log τ | is non decreasing on a neighborhood of zero.
(q2) lim q(τ )

√
| log τ | = 0.
τ↓0

2
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(q3) There exists a positive constant C1 such that for any τ ∈ (0, T ],∫ τ

0
dρq(ρ)

[
ρ

√
log
(
T
ρ

)]−1

≤ C1q(τ )

√
log
(
T
τ

)
.

Example 2.1. We analyze the conditions above for some examples of gauge functions.

1. q(τ ) = τ ν, τ , ν > 0. It is not hard to prove that conditions (q1) and (q2) are valid. We have that for any T > 0

lim
τ↓0

∫ τ

0 dρq(ρ)
[
ρ

√
log
(

T
ρ

)]−1

q(τ )
√
log
( T

τ

) = 0, (5)

implying (q3).
2. q(τ ) = | log τ |

γ τ ν, τ ∈ [0, e−
γ
ν ], ν, γ > 0. It is not hard to check conditions (q1) and (q2) are valid. Similarly to (5),

by applying l’Hôpital’s rule, one can prove (q3).
3. q(τ ) = | log τ |

−γ , τ ∈ [0, T ] ⊂ [0, 1), γ > 0. Conditions (q1) and (q2) are valid for γ ≥
1
2 and γ > 1

2 , respectively.
By elemental computations∫ τ

0
dρq(ρ)

[
ρ

√
log
(
T
ρ

)]−1

= γ −1q(τ ), τ ∈ [0, 1),

implying the validity of (q3).

We are ready to state and prove the main result of this section. We follow a similar method than the proof of Theorem
4.1 in Meerschaert et al. (2013) (see also Lee and Xiao, 2019[Thm. 3.1]).

Theorem 2.1. Let q be a gauge function satisfying (q1), (q2), and (q3) with T = �K . Let X be a centered q̂-Gaussian random
field on a compact box K = [a, b], a, b ∈ Rd with positive Lebesgue measure and satisfying (LND). Then, there exists a finite
positive constant C that

lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|X(x) − X(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) = C a.s. (6)

Remark 2.3. Although Theorem 2.1 is stated in terms of a q̂-Gaussian random field, any q̂-Gaussian random field satisfying
(LND) is q-isotropic (see (4)).

Remark 2.4. In Example 2.1 we proved that the gauge function q(τ ) = | log τ |
−γ satisfies conditions (q1), (q2) and (q3)

f γ > 1/2, this coincides with the continuity criteria of Remark 2.1.

roof. Since X is q̂-Gaussian random field on K its covariance function is continuous on K 2. Then, due to Marcus and
osen (2006)[Thm. 5.3.2] X has a version given by

X̃(x) =

∞∑
j=0

ϕj(x)ξj, x ∈ K (7)

where (ϕj)j∈N are continuous functions on K , (ξj)j∈N is an i.i.d. standard normal random variables sequence, and the sum
in (7) converges to X̃ in L2(Ω).

Let

X̃n(x) =

∞∑
j=n

ϕj(x)ξj, x ∈ K .

We claim that for any n ∈ N,

L := lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|X̃(x) − X̃(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) = lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|X̃n(x) − X̃n(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) .

he claim implies that L is measurable with respect to the tail sigma field of (ξj)j∈N and thus a.s. constant. This fact together
ith Propositions 2.1 and 2.2 below implies the theorem.
3
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Indeed, by (7)

d2x,x̄ =

∞∑
j=0

(ϕj(x) − ϕj(x̄))2, x, x̄ ∈ K .

Define

Ỹn(x) =

n∑
j=0

ϕj(x)ξj = X̃(x) − X̃n+1(x), x ∈ K ,

and note that

|Ỹn(x) − Ỹn(x̄)| ≤

⎛⎝ n∑
j=1

|ξj|

⎞⎠ n⋁
j=0

|ϕj(x) − ϕj(x̄)| ≤

⎛⎝ n∑
j=1

|ξj|

⎞⎠ dx,x̄.

The last inequality and the fact that q is a gauge function yields to

lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|Ỹn(x) − Ỹn(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) ≤

⎛⎝ n∑
j=1

|ξj|

⎞⎠ lim
ε↓0

1√
log
(

�K
q−1(ε)

) = 0.

The claim follows from the inequality above and

lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|X̃n(x) − X̃n(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) − lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|Ỹn−1(x) − Ỹn−1(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) ≤

L ≤ lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|X̃n(x) − X̃n(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) + lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|Ỹn−1(x) − Ỹn−1(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) . □

We prove Propositions 2.1 and 2.2, which establishes conditions for a q̂-Gaussian random field to have a global modulus
f continuity with a positive upper bound, and a positive lower bound, respectively.

roposition 2.1. Let X be a centered q̂-Gaussian random field on K a compact subset of Rd, with q a gauge function satisfying
q1), (q2), and (q3) with T = �K . Then,

lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|X(x) − X(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) ≤ C0(C1 + 1) a.s., (8)

where C0 and C1 are the positive constants in (3) and (q3), respectively.

Proof. By (q2) and (q3) (see Tindel et al. (2004, (5))), for any ε > 0 small enough,∫ ε

0
dρ

√
log
(

�K

q−1(ρ)

)
= ε

√
log
(

�K

q−1(ε)

)
+

∫ q−1(ε)

0
dρq(ρ)

[
2ρ

√
log
(

�K

ρ

)]−1

≤ (C1 + 1)ε

√
log
(

�K

q−1(ε)

)
. (9)

Let εn = n−1, (q1) implies that for any n big enough,

sup
x,x̄∈K ,

εn+1≤dx,x̄≤εn

|X(x) − X(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) ≤ sup
x,x̄∈K ,

εn+1≤dx,x̄≤εn

|X(x) − X(x̄)|

εn+1

√
log
(

�K
q−1(εn+1)

) . (10)

By (3), (9), (10) and (q1) we deduce that for any n big enough

sup
x,x̄∈K ,

εn+1≤dx,x̄≤εn

|X(x) − X(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) ≤ C0(C1 + 1),

which implies (8). □
4
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roposition 2.2. Let X be a centered Gaussian random field on a compact box K = [a, b], a, b ∈ Rd with positive Lebesgue
easure and satisfying (LND) for a gauge function q. Assume that q satisfies (q1). Then, there exists a finite positive constant

2 depending on c1 and K that

lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|X(x) − X(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) ≥ c2 a.s. (11)

roof. Let γ =
⋀d

l=1(al − bl) > 0. For each n ≥ 1, let εn = q(2−nγ ) > 0. For j = 0, 1, . . . , 2n, let xn,jl = al + jγ 2−n
∈ K .

(q1) implies that

lim
ε↓0

sup
x,x̄∈K ,
dx,x̄≤ε

|X(x) − X(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) = lim
n→∞

sup
x,x̄∈K ,
dx,x̄≤εn

|X(x) − X(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

)
≥ lim inf

n→∞
Jn, (12)

or

Jn = max
1≤j≤2n

|X(xn,j) − X(xn,j−1)|

εn

√
log
(

�K
q−1(εn)

) , n ≥ 1.

et C∗ be a positive constant whose value will be determined later. Fix n and write xn,j = xj to simplify notations. By
Lemma 2.1 below

P(Jn ≤ C∗) ≤

2n∏
j=1

P

⎛⎜⎜⎝ |X(xj) − E(X(xj)|Fj)|

εn

√
log
(

�K
q−1(εn)

) ≤ C∗

⎞⎟⎟⎠ , (13)

here Fj = σ (X(x0), . . . , X(xj−1)).
We claim that there exists a positive constant C2 depending on c1, C∗, K such that for any n ≥ 1 and j = 1, . . . , 2n,

P

⎛⎜⎜⎝ |X(xj) − E(X(xj)|Fj)|

εn

√
log
(

�K
q−1(εn)

) ≤ C∗

⎞⎟⎟⎠ ≤ exp

⎛⎝−C2
2−

nC2∗
2

√
n

⎞⎠ . (14)

efore proving the claim, we explain why it implies the proposition. By (13) and (14),

P(Jn ≤ C∗) ≤ exp

(
−C2

2n(1−C2
∗ /2)

√
n

)
, n ≥ 1.

We can choose now C∗ to be a sufficiently small constant with 1−C2
∗
/2 > 0, implying that

∑
∞

n=1 P(Jn ≤ C∗) < ∞. Hence,
by the Borel–Cantelli lemma lim infn→∞ Jn ≥ C∗ and we deduce (11) by (12).

We proceed to the proof of the claim. Indeed, by (LND),

Var(X(xj)|Fj) ≥ c1
d∑

l=1

2n⋀
k=1

q2(x2
n

l − xk−1
l ) = c1dε2

n .

By the previous inequality,

P

⎛⎜⎜⎝ |X(xj) − E(X(xj)|Fj)|

εn

√
c1d log

(
�K

q−1(εn)

) ≤ C∗

⎞⎟⎟⎠ ≤ P

(
|Z | ≤ C∗

√
log
(

�K

q−1(εn)

))

here Z is a standard normal random variable. Using the inequalities,

P(|Z | > τ ) ≥ (
√
2πτ )−1 exp(−τ 2/2), τ ≥ 1 and 1 − τ ≤ e−τ , τ > 0,
5
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e deduce that for n large enough

P

(
|Z | ≤ C∗

√
log
(

�K

q−1(εn)

))
≤ exp

⎛⎜⎝−

⎡⎣C∗

√
2π log

(
�K

q−1(εn)

)(
�K

q−1(εn)

)C2
∗

⎤⎦−1
⎞⎟⎠ .

y writing the value of εn, we can prove that for n big enough,

P

(
|Z | ≤ C∗

√
log
(

�K

q−1(εn)

))
≤ exp

⎛⎝−C(C∗, K )
2−

nC2∗
2

√
n

⎞⎠ ,

mplying (14). □

We made use of the following lemma in the proof of Proposition 2.2:

emma 2.1. Let X = (X0, X1, . . . , Xn) be a centered Gaussian random vector. Then, for any x > 0,

P( max
j=1,...,n

|Xj − Xj−1| < x)

≤ P( max
j=1,...,n−1

|Xj − Xj−1| < x)P(|Xn − E(Xn|Fn−1)| < x),

where Fn−1 = σ (X0, . . . , Xn−1).

Proof. We use the following version of Anderson’s inequality (Anderson, 1955)[Cor. 2]: Let Y = (Y1, . . . , Yn) be a centered
Gaussian random vector and assume that A ⊂ Rd is convex and symmetric about the origin. Then,

P(Y + a ∈ A) ≤ P(Y ∈ A), a ∈ Rd.

The proof takes some ideas from Theorem 1.1 in Shao (2003). By conditioning on Fn−1,

P( max
j=1,...,n

|Xj − Xj−1| < x) = E(1({ max
j=1,...,n−1

|Xj − Xj−1| < x})P(|Xn − Xn−1| < x|Fn−1)). (15)

Anderson’s inequality implies that,

P(|Xn − Xn−1| < x|Fn−1) ≤ P(|Xn − E(Xn|Fn−1)| < x|Fn−1). (16)

The lemma follows by (15) and (16), since (Xj − Xj−1)j=1,...,n−1 and Xn − E(Xn|Fn−1) are independent. □

3. Exact global modulus of continuity for Bq Gaussian processes

Assume that q is a gauge function and q2 is of class C2 everywhere in (0, T ], and that dq2
dτ is non-increasing. Define the

-dimensional Bq Gaussian random field as

Bq(x) :=

∫
[0,x]

d∏
l=1

K(xl − yl)W (dy), x ∈ [0, T ]
d, (17)

here [0, x] =
∏d

l=1[0, xl], K =

√
dq2
dτ and W is a white noise. This Gaussian process was introduced in Mocioalca and

Viens (2005) for d = 1. As an example of an application of Theorem 2.1, this section is devoted to proof Theorem 3.1
which establishes a uniform modulus of continuity for Bq.

The next proposition is a generalization of Proposition 1 in Mocioalca and Viens (2005). We provide conditions on q
implying that Bq is a q̂-Gaussian random field.

Proposition 3.1. Let Bq the Gaussian process defined in (17),

E(
[
Bq(x) − Bq(y)

]2) ≤
[
2d+1dq2(d−1)(T )

]
q2(|x − y|), x, y ∈ [0, T ]

d. (18)

roof. By (17), the triangle inequality and Ito’s isometry,

E(
[
Bq(x) − Bq(y)

]2) ≤ 2d
d∑

l=1

l−1∏
k=1

q2(xk)E(
[
Bq
l (xl) − Bq

l (yl)
]2) d∏

k=l+1

q2(yk). (19)

ocioalca and Viens (2005)[Prop.1] implies that for l = 1, . . . , d,

E(
[
Bq
l (xl) − Bq

l (yl)
]2) ≤ 2q2(|xl − yl|). (20)

e deduce (18) by (19), (20), and the fact that q is a gauge function. □
6
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E

t

xample 3.1. We analyze the hypotheses of Proposition 3.1 for the gauge functions from Example 2.1.

1. q(τ ) = τ ν, τ , ν > 0. dq2
dτ is non-increasing in R+ if and only if ν ∈ (0, 1

2 ], otherwise it is increasing.
2. q(τ ) = | log τ |

γ τ ν, τ ∈ [0, e−
γ
ν ], ν, γ > 0. We have that

d2q2

dτ 2 (τ ) = 2τ 2(ν−1) [ν(2ν − 1)| log τ |
2γ

+ γ (1 − 4ν)| log τ |
2γ−1

+ γ (2γ − 1)| log τ |
2(γ−1)] ,

implying that dq2
dr is non-increasing in a small interval [0, T ] ⊂ [0, e−

γ
ν ) if and only if ν ∈ (0, 1

2 ], otherwise it is
increasing.

3. q(τ ) = | log τ |
−γ , τ ∈ [0, T ] ⊂ [0, 1), γ > 0. In this case,

d2q2

dτ 2 (τ ) = 2γ τ−2 [(2γ + 1)| log τ |
−2(γ+1)

− | log τ |
−(2γ+1)] ,

and dq2
dτ is decreasing in a small interval [0, T̄ ] ⊂ [0, T ).

The next proposition verifies that Bq satisfies the local nondeterminism condition (LND):

Proposition 3.2. Let Bq the q-Brownian sheet defined in (17). Fix t ∈ [0, T ], then for any x ∈ [t, T ]
d, and all x1, . . . , xn ∈

[t, T ]
d(x−),

Var(Bq(x) | Bq(x1), . . . , Bq(xn)) ≥ q2(d−1)(t)
d∑

l=1

n⋀
j=1

q2(xl − xjl). (21)

Proof. We adapt the proof of Khoshnevisan and Xiao (2007)[Prop.42]. We relax the notation by writing B instead of Bq.
First, assume that d = 1. Let x1, . . . , xn ∈ [t, T ](x−) with x ∈ [t, T ]

d. Without loss of generality we may and will assume
that x1 ≤ x2 ≤ · · · ≤ xn ≤ x. By (17), and the Ito’s isometry, for any a ∈ Rn,

E

⎛⎜⎝
⎡⎣B(x) −

n∑
j=1

ajB(xj)

⎤⎦2
⎞⎟⎠ =

∫
R+

⎡⎣1[0,x]K(x − y) −

n∑
j=1

aj1[0,xj]K(xj − y)

⎤⎦2

dy

≥

∫ x

xn
K2(x − y)dy = q2(x − xn). (22)

(21) follows by (4) and (22).
Now, we assume that d > 1. Fix x ∈ [t, T ]

d and decompose the rectangle [0, x] in to the disjoint union

[0, t] ∪

d⋃
l=1

Dl(xl) ∪ ∆(t, x)

where Dl(x) = {y ∈ [0, x] : 0 ≤ yi ≤ t, i ̸= l, t ≤ yl ≤ xl} and ∆(t, x) is a union of 2d
− d − 1 rectangles of [0, x]. This

implies that for all x ∈ [t, T ]
d,

B(x) = B(t) +

d∑
l=1

Xl(x) + B′(t, x), (23)

for Xl(x) =
∫
Dl(x)

K(x − y)dW (dy), B′(t, x) =
∫

∆(t,x) K(x − y)dW (dy), K(x − y) =
∏d

l=1 K(xl − yl). Since all the processes on
he r.h.s. of (23) are pairwise independent, for any a ∈ Rn

E

⎛⎜⎝
⎡⎣B(x) −

n∑
j=1

ajB(xj)

⎤⎦2
⎞⎟⎠ ≥

d∑
l=1

E

⎛⎜⎝
⎡⎣Xl(xl) −

n∑
j=1

ajXl(xj)

⎤⎦2
⎞⎟⎠ (24)

The proof of (21) finishes by a similar argument than (22), using (17), (24) and that

Xl(x) = B(t, . . . , t, xl, t, . . . , t) − B(t, . . . , t). □

By Propositions 3.1 and 3.2, and Theorem 2.1 we deduce Theorem 3.1 below. Corollary 3.1 follows by Examples 2.1
and 3.1.
7
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heorem 3.1. Let Bq the q the Gaussian process defined in (17). Fix t ∈ (0, T ), assume that q2 is of class C2 in (0, T ], and
that dq2

dτ is non-increasing. If conditions (q1), (q2), and (q3) are satisfied, there exists a finite positive constant C that

lim
ε↓0

sup
x,x̄∈[t,T ]

dx,x̄≤ε

|Bq(x) − Bq(x̄)|

dx,x̄

√
log
(

�K
q−1(dx,x̄)

) = C a.s. (25)

Corollary 3.1. When q(τ ) = | log τ |
γ τ ν , ν ∈ (0, 1

2 ], γ ≥ 0 or q(τ ) = | log τ |
−γ , γ > 1

2 , B
q satisfies the limit in (25).

We end this section with some open questions for further investigation. Consider the following stochastic heat equation
studied in Herrell et al. (2020)

∂tu(t, x) = Lu(t, x) + Ḃ(t, x), u(0, x) = 0, 0 ≤ t ≤ T , x ∈ Rd,

where L is the generator of a Lévy process, and B is a fractional colored noise with Hurst index H ∈ ( 12 , 1) in the time
ariable and spatial covariance function f as in Balan and Tudor (2008).
Fix t,M > 0, according to Herrell et al. (2020)[Thm. 3.4, Rem 3.5] u = {u(t, x), x ∈ [−M,M]

d
} is a centered q-isotropic

aussian process with

q(τ ) = | log τ |
βτ 2(1∧θ ), β = 1θ=1, (26)

here θ is a positive parameter that depends on d,H , and f . Furthermore, if θ ≤ 1, u satisfies (LND) since there exist a
ositive constant such that for any x, x1, . . . , xn ∈ [−M,M]

d,

Var(u(t, x) | u(t, x1), . . . , u(t, xn)) ≥ c
n⋀

j=1

|x − xj|
2θ

. (27)

As it is mentioned in Herrell et al. (2020), an open problem is to establish optimal bounds for the conditional variance
when θ = 1, since the lower bound in (27) is smaller than the value of the gauge function q in (26) due to the appearance
of a logarithmic term. A possible way to overpass this difficulty is trying to adapt the proof of Theorem 2.1 in Xiao (2007).
The main challenge comes from the fact that the stochastic heat equation above satisfies a weaker version of hypothesis
(2.5) in Xiao (2007).

The solution to the following linear stochastic partial differential equations are q-isotropic Gaussian processes with
similar to (26): The Poisson equation driven by white noise (Sanz-Solé and Viles, 2018)[Lem. 5.5], Hinojosa-Calleja

2022)[Thm. 2.2], the bilinear heat equation driven by white noise (Hinojosa-Calleja and Sanz-Solé, 2022)[Prop. 3.2], and
he generalized fractional kinetic equation driven by time fractional-noise (Sheng and Zhou, 2022)[Prop 3.2]. It is expected
hat similar issues will arise from the study condition (LND).
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