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ABSTRACT
Artificial intelligence (AI) is transforming rheumatology 
research, with a myriad of studies aiming to improve 
diagnosis, prognosis and treatment prediction, while also 
showing potential capability to optimise the research 
workflow, improve drug discovery and clinical trials. 
Machine learning, a key element of discriminative AI, 
has demonstrated the ability of accurately classifying 
rheumatic diseases and predicting therapeutic outcomes 
by using diverse data types, including structured 
databases, imaging and text. In parallel, generative AI, 
driven by large language models, is becoming a powerful 
tool for optimising the research workflow by supporting 
with content generation, literature review automation and 
clinical decision support. This review explores the current 
applications and future potential of both discriminative 
and generative AI in rheumatology. It also highlights 
the challenges posed by these technologies, such as 
ethical concerns and the need for rigorous validation and 
regulatory oversight. The integration of AI in rheumatology 
promises substantial advancements but requires a 
balanced approach to optimise benefits and minimise 
potential possible downsides.

INTRODUCTION
Artificial intelligence (AI) has emerged as 
a transformative technology in medicine, 
providing rheumatology with innovative 
tools for research. AI, known as the capability 
of computational systems to perform tasks 
that typically require human intelligence, 
include learning patterns from prior data, 
understanding natural language, perception, 
reasoning, problem- solving.1 The impact of 
this technology in health sciences research 
is increasingly evident, with multiple applica-
tions gradually being integrated into the field 
of rheumatology.1 2 Indeed, different algo-
rithms have led to the development of models 
for the diagnosis, evaluation, prognosis and 
prediction of disease.3 As AI has evolved, it 
has become increasingly important to differ-
entiate between discriminative AI, widely 
used for studies on disease classification and 
prediction, and the more recently emer-
gent generative AI, which holds promise for 
novel applications in research like hypothesis 

generation, clinical trial design, drug devel-
opment, literature synthesis and writing 
support. Discriminative and generative AI 
differ in how they process data and apply 
their learning algorithms. While discrimina-
tive models focus on finding decision limits 
to predict labels, generative models analyse 
the underlying data distribution aiming to 
generate new data. Figure 1 summarises the 
main models used by these technologies and 
applications for research that we will explore 
in this review.

Discriminative AI includes a wide range of 
capabilities, such as distinguishing data to 
make classifications or predictions, as well as 
performing tasks like outlier detection and 
clustering. Radiology exemplifies the signifi-
cant impact of discriminative AI.4 As a matter 
of fact, 723 of the 950 (76%) AI/ML (machine 
learning)- enabled medical devices approved 
by the Food and Drug Administration (FDA) 
as of August 2024 are related to this specialty.5 
Other notable examples can be found in 
ophthalmology, where algorithms have 
shown the ability not only to diagnose ocular 
pathologies with greater accuracy than expert 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Discriminative artificial intelligence (AI) is advancing 
rheumatology with machine learning models that 
enhance disease diagnosis and prediction by ana-
lysing structured data, imaging data and text.

WHAT THIS STUDY ADDS
 ⇒ Generative AI, using large language models, may 
significantly support research by assisting the pro-
cess and refining study development via general 
and specialised chatbots, although its application in 
rheumatology is still in early development.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ To fully harness AI’s potential in rheumatology re-
search, it is crucial to balance innovation with re-
sponsibility, ensuring robust methodologies and the 
preservation of research integrity.
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ophthalmologists but also to predict cardiovascular risk 
factors undetectable by fundus examination.6 Discrimi-
native AI models have proven effective beyond image 
analysis, extending to fields like linguistics and other data 
types. For instance, a model used voice recordings and 
demographic data to predict dementia onset in patients 
with mild cognitive impairment, achieving around 80% 
accuracy.7 Although no FDA- approved AI/ML applica-
tions currently exist in rheumatology,5 numerous prom-
ising studies within the field of discriminative AI will be 
discussed in further detail.

Generative AI has recently transformed the AI land-
scape, particularly following the release of the chatbot 
ChatGPT in 2022, which has made AI more accessible to 
the general public.8 Generative AI can create new content 
based on existing data from various sources, including 
text generation, image or video creation. The tools based 
on this technology have shown promising applications 
in medicine, including demonstrating clinical knowl-
edge by successfully achieving high accuracy in stan-
dardised examinations.9 Beyond knowledge- based tasks, 
ChatGPT’s responses to patient questions were shown to 
be often preferred to those by doctors for their quality 
and empathy.10 These results are remarkable given that 
the ChatGPT model is general- purpose and not specifi-
cally designed for medicine. The accuracy and reasoning 
skills of large language models (LLMs) have also been 

demonstrated in clinical examinations. Research has led 
to the development of specialised medical models like 
Med- Pathways Language Model (PaLM2), which achieved 
an accuracy similar to clinician answers (both exceeding 
90%) in answering medical questions after being trained 
on six medical question- answering datasets.11

Rheumatology is a rapidly evolving specialty, thanks to 
the advent of advanced therapies and new technologies. 
Focusing on the management of chronic diseases with 
potential systemic involvement, it is a field rich in data 
and complex decision- making. Therefore, the use of AI 
tools holds the promise to transform clinical practice, 
leading to more informed decision making. Beyond the 
diagnostic level, there are promising predictive capabili-
ties. In this regard, AI can assess disease activity, predict 
flares, determine optimal treatment dosages and antici-
pate patient responses based on clinical and serological 
biomarkers.12 Moreover, generative AI can function as a 
clinical decision support system, assist with administrative 
tasks, and enhance the quality of patient information and 
education.

The aim of this review is to highlight the current and 
future applications of AI in rheumatology, examine 
the mechanisms of AI, analyse state- of- the- art investi-
gations and explore its integration into daily research 
practice. To achieve this, we conducted a narrative 
review including an electronic search in Medline and 

Figure 1 Main artificial intelligence (AI) models for rheumatology research.
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Embase for English- language sources from inception to 
September 2024. We employed a range of free- text terms 
including, but not limited to: “Artificial intelligence AND 
rheumatology”, “Machine learning AND rheumatology”, 
“Deep learning AND rheumatology”, “(Machine learning 
OR Deep learning) AND (rheumatoid arthritis OR spon-
dyloarthritis OR psoriatic arthritis OR osteoarthritis OR 
lupus OR Sjogren)”, “Large language models”, “Natural 
language processing”, “(Predictive modeling OR Elec-
tronic medical records OR Risk stratification) AND 
rheumatology”, “(Large language models OR Natural 
language processing) AND rheumatology”, “ChatGPT 
AND rheumatology”. Furthermore, we conducted a 
manual search by examining the references cited in 
the included studies and technical computer science 
books. Priority was given to seminal references or those 
published within the last 2 years.

KEY AI CONCEPTS FOR RHEUMATOLOGY RESEARCH
The integration of AI into rheumatology research is 
becoming increasingly relevant, as the availability of 
complex datasets and advanced computation redefine 
how we approach and conduct scientific investigations.13 
Given its capacity for use in research, AI- related concepts 
can help rheumatologists to effectively use these technol-
ogies in their work. Table 1 summarises the core princi-
ples in the most widely used AI algorithms, as well as their 
application in rheumatology.

An AI algorithm is a computational model designed 
to perform tasks by learning from data and identifying 
patterns, rather than relying solely on a predefined set 
of rules or instructions. These algorithms may improve 
their performance over time through experience, which 
is gained through an iterative process. These algorithms 
are typically used for classification or predictive purposes, 
such as diagnostic or prescriptive applications in medi-
cine. This can be achieved by analysing large datasets, 
identifying relevant features and applying learnt patterns 
to new, unseen data.13

ML is a branch of AI that operates by feeding an algo-
rithm with input data that reflects past observations, 
enabling it to construct a model to assess new, previously 
unseen observations. ML algorithms can be classified 
into four main types according to their training: super-
vised, unsupervised, self- supervised and reinforcement 
learning.13 Supervised algorithms are trained on a dataset 
where the output results are known and are used to label 
the outcomes. These have been the most used for clin-
ical research. Unsupervised algorithms work with unla-
belled data to identify patterns or clusters within datasets, 
making them useful for exploratory data analysis. There 
are two main types: clustering, which groups similar data 
points (eg, K- means, DBSCAN, hierarchical clustering), 
and dimensionality reduction, which simplifies data by 
reducing the number of features while preserving essen-
tial information (eg, PCA, t- SNE). These methods help 
uncover hidden structures without the need for labelled 

examples.14 Self- supervised learning creates internal 
labels within an unlabelled dataset, allowing models to 
learn without external annotation and guidance.15 Rein-
forcement learning adapts dynamically using reward- 
based feedback to maximise the performance of the 
algorithm.13

Deep learning (DL) is a subtype of ML that involves neural 
networks. A neural network is a particular ML algorithm 
based on successive layers of data transformation, inspired 
by the neural connections in the human brain. Neural 
networks are particularly effective with large volumes of 
data and demand significant processing power, which 
can be provided by processing units working in parallel. 
DL uses a high number of neuron layers, allowing for 
multiple levels of abstraction and has achieved note-
worthy results in various applications, including text 
and image recognition.16 Transfer learning enables the 
adaptation of a DL model to specific imaging tasks (eg, 
rheumatological imaging classification) by leveraging 
pre- existing knowledge from extensive, non- specialised 
image datasets, enhancing model performance and 
reducing the need for large, specialised training data-
sets. Applications of DL include image recognition and 
natural language processing (NLP), which use images 
and text as input data, respectively.17 Indeed, one type 
of deep neural network algorithm gave birth to trans-
former technology.11 18 Transformers have revolutionised 
NLP with the so- called self- attention mechanism, which 
allows for capturing relations between words, allowing 
for efficient and accurate text generation. The seminal 
paper on this technology has garnered 140 000 citations 
by November 2024, reflecting the significant impact of 
language models on society.18

LLMs are advanced neural networks based on the 
transformer architecture.18 They are pretrained on 
vast amounts of unlabelled text data, typically sourced 
from the web, using self- supervised learning. This self- 
supervised learning involves predicting the next word in 
a sentence given the previous words (context), for which 
the model uses the surrounding context as the signal 
to learn and improve.17 These models are fine- tuned 
for specific tasks like question- answering and named 
entity recognition, showing their versatility and effective-
ness in language understanding and generation. When 
models are able to process and integrate multiple types 
of data such as text, images and audio, this is known as 
multimodality.

Validation is a process that ensures a model’s general-
isability and reliability by assessing its performance on 
unseen data before it is deployed in real- world appli-
cations.19 Evaluating discriminative AI models involves 
metrics familiar to rheumatologists, such as sensitivity 
(also known as recall in the field of ML) and specificity, 
which assess the ability to correctly identify true positives 
and true negatives.19 Precision, similar to positive predic-
tive value (PPV), measures the proportion of true posi-
tives among all positive predictions, while the F1 score 
combines precision and recall into a single measure. 
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Accuracy, which represents the overall correctness of 
the model’s predictions, reflects the proportion of true 
results (both true positives and true negatives) among 
the total cases. The area under the receiver operating 
characteristic curve (AUC- ROC) offers a visual summary 
of the model’s performance across thresholds, with the 

area reflecting the ability of the model to distinguish 
between classes.19

In evaluating generative AI models, additional metrics 
provide an understanding of model performance besides 
accuracy.20 Perplexity measures the model’s ability to 
predict the next word in a sequence, with lower scores 

Table 1 Applications of artificial intelligence models in rheumatology

AI model Description Examples of use in research Studies in the field of rheumatology

Logistic regression Uses a logistic function to model binary 
dependent variables

 ► Disease diagnosis
 ► Outcome prediction

Prediction of relapses in RA45

Diagnosis of SpA51

Diagnosis of systemic autoimmune 
diseases58

Prediction of hospitalisations in SLE25

Prediction of mortality in systemic sclerosis34

Linear regression Analyses the relationship between a 
dependent variable and one or more 
independent continuous variables

 ► Outcome prediction
 ► Decision support
 ► Risk factor analysis

Prediction of response to methotrexate in 
RA30

Prediction of response to bDMARDs in RA32

Support vector 
machine

Analyses data for classification and 
regression analysis by finding the 
hyperplane that best divides a dataset into 
classes

 ► Treatment optimisation
 ► Outcome prediction
 ► Image segmentation and 
anomalies detection

Fatigue prediction in RA through brain MRI42

Prediction of complications during pregnancy 
prediction in SLE26

Decision tree Employs a tree- structured approach for 
decision- making, representing decisions 
and their possible outcomes, including 
chance events

 ► Decision support
 ► Outcome prediction

Diagnose and prediction of D2T RA23

Prediction of response to bDMARDs in RA32

Prediction of complications during pregnancy 
in SLE26

Random forest Implements an ensemble learning method 
for classification, regression and other 
tasks, using multiple decision trees to 
improve predictive accuracy

 ► Disease prediction
 ► Risk factor identification
 ► Outcome prediction
 ► Data imputation

Prediction of response to DMARDs in RA31

Prediction of hospital readmission in SLE33

Prediction of mortality in systemic sclerosis34

Prediction of response to methotrexate in 
RA30

Naive Bayes Applies probabilistic classification 
based on Bayes’ theorem, assuming 
independence between features

 ► Disease diagnosis
 ► Patient stratification
 ► Outcome prediction

Systemic sclerosis mortality prediction34

Predict hospitalisations in SLE patients25

Diagnosis of RA50

K- nearest neighbour Uses a non- parametric method for 
classification and regression, basing 
predictions on the k closest examples in 
the feature space

 ► Classification/clustering
 ► Pattern recognition

Prediction of complications during pregnancy 
in SLE26

Diagnose and prediction of OA with MRI44

Diagnosis of RA with thermography49

K- means Clusters unsupervised data based on 
partitioning a dataset into a specified 
number (K) of distinct clusters based on 
the similarity of data points

 ► Risk stratification
 ► Treatment patterns
 ► Image analysis
 ► Clinical trial design

Classification of clusters in SpA24

XGBoost Gradient boosting algorithm that 
combines sequential decision trees to 
improve accuracy, optimised for efficient 
classification and regression on large 
datasets

 ► Disease diagnosis
 ► Outcome prediction
 ► Biomarker identification

Prediction of relapses in RA45

Prediction of response to bDMARDs in RA32

Diagnosis and prediction of D2T RA23

Recurrent neural 
networks

Processes sequential data by maintaining 
a temporal memory of past inputs. They 
use recurrent connections to propagate 
information from previous time steps, 
allowing them to capture dependencies in 
sequences

 ► Text analysis
 ► Time series analysis

Assessment of prevalence and disease 
management of RA- ILD54

EHR Data analysis in SpA57

EHR diagnosis in PsA52

Convolutional neural 
networks

Designed for processing high- dimensional 
data such as images by using convolutional 
layers to hierarchically extract spatial 
features from input data

 ► Medical image analysis
 ► Disease diagnosis
 ► Segmentation

Diagnosis of RA50

Detection of SpA- related lesions via MRI43

Diagnosis of GCA through US46

Transformers Use an attention mechanism to process 
entire sequences in parallel, efficiently 
capturing long- range dependencies

 ► Clinical text analysis
 ► Medical report summarisation
 ► Drug discovery

Summarising information, aiding in the 
composition of clinical notes64

Disease diagnosis support65 68

Efficiency in drug design27

ANCA, anti- neutrophil cytoplasmic antibody; bDMARDs, biological disease- modifying antirheumatic drugs; DMARDs, disease- modifying antirheumatic drugs; EHR, 
electronic health record; GCA, giant cell arteritis; ILD, interstitial lung disease; OA, osteoarthritis; PsA, psoriatic arthritis; RA, rheumatoid arthritis; SLE, systemic 
lupus erythematosus; SpA, spondyloarthritis; US, ultrasound.
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indicating more precise predictions. Bilingual Evaluation 
Understudy assesses the similarity between the model- 
generated text and a human reference by comparing 
overlapping word sequences. Recall- Oriented Under-
study for Gisting Evaluation measures the degree of 
n- gram overlap between generated and reference texts, 
emphasising recall. BERTScore further enhances eval-
uation by using Bidirectional Encoder Representations 
from Transformers (BERT) embeddings to compare 
the semantic similarity between generated and refer-
ence texts, capturing context- sensitive alignment. These 
complementary metrics allow for a comprehensive assess-
ment of generative AI in clinical applications.21

DISCRIMINATIVE AI IN RHEUMATOLOGY
Discriminative AI algorithms are focused on two main 
objectives. Classification analysis aims to evaluate previ-
ously described phenomena, attempting to describe 
features and ideally associations between risk factors 
(independent or predictor variables) and outcomes 
(dependent variables or events). On the other hand, 
predictive analysis, aims to forecast future events. Tradi-
tionally, this has been achieved using regression meth-
odologies, including linear, logistic or Cox regression.19 
Recently, AI has been employed to classify diseases and 
predict their progression using ML algorithms. These 
approaches may use various data types, including struc-
tured data, images and free- text information. Interpreting 
performances across studies is complex due to variations 
in datasets, patient cohorts and study outcomes, making 
direct comparison challenging. While metrics such as 
AUC and F1 metrics offer insights into model perfor-
mance, their practical value depends on whether these AI 
advances lead to real- world clinical benefits. Validations 
against conventional models and interventions remain 
essential to establish AI’s utility and ensure its impact on 
patient care.

The application of AI in analysing structured data 
is advancing diagnostic accuracy, risk prediction and 
patient management in rheumatic and RMDs. In rheu-
matoid arthritis (RA), for example, a neural network 
model trained on demographic and laboratory data 
(including age, sex, rheumatoid factor, anti- citrullinated 
cyclic peptide and anti- carbamylated protein) achieved 
an F1 score of 0.92 in diagnosing RA,22 demonstrating 
accuracy comparable to, or exceeding, conventional diag-
nostic approaches. In predicting difficult- to- treat (D2T) 
RA, an extreme gradient boosting (XGBoost) model 
combined structured and unstructured data from 1873 
patients, achieving an AUC- ROC of 0.88 for D2T iden-
tification and 0.73 for future D2T development predic-
tion.23 In combination with structured data, integrating 
unstructured data—such as clinical notes and imaging—
further enhances AI models’ ability to predict complex 
outcomes, as demonstrated in the previous study identi-
fying RA subsets like D2T RA. Collectively, these applica-
tions underscore AI’s potential to exceed or complement 

standard statistical approaches by improving accuracy, 
sensitivity and specificity across RMD diagnostic and 
prognostic tasks.

For prognostic applications, structured data analyses 
have provided insights across various RMDs. In spondy-
loarthritis (SpA), K- means clustering applied to a longi-
tudinal dataset identified two distinct disease activity 
trajectories—one with persistently high activity and 
another evolving to low activity—highlighting potential 
therapeutic approaches based on trajectory patterns.24 
Similarly, in systemic lupus erythematosus (SLE), a 
random forest (RF) model predicted hospitalisations 
with an AUC- ROC of 0.75, using clinical markers such 
as dsDNA positivity, C3 levels, blood cell counts, inflam-
matory markers and albumin.25 Additionally, in preg-
nancy outcomes for women with SLE, a pre- pregnancy 
RF model achieved an AUC- ROC of 0.92, demonstrating 
high sensitivity (0.89) and specificity (0.94) in identifying 
adverse outcomes, a notable improvement compared 
with traditional models.26

The use of structured data and their analysis through 
AI has become an important axis in drug development 
and molecule generation, mainly based on ML and 
DL algorithms.27 Some of the use cases aim to identify 
drug targets and binding sites as well as to predict chem-
ical properties (affinity, ability, lipophilicity, solubility, 
toxicity) of a compound. ML and DL algorithms may 
be used for efficacy evaluations of drugs through big 
data modelling and analysis.28 A relevant advancement 
in this regard has been conducted by AlphaFold, devel-
oped by DeepMind, in predicting structures of proteins. 
This enabled researchers to understand molecular 
targets more precisely, therefore supporting in identi-
fying binding sites, refining drug designs and predicting 
protein interactions.29 Additionally, AI may assist clin-
ical trial design and implementation by supporting 
selection of promising lead molecules based on patient- 
specific profiles, identifying suitable patient profiles and 
improving recruitment for clinical trials.

Predicting the suitability of treatments is crucial for 
improving research and clinical practice. One study used 
an ML model to predict methotrexate (MTX) response in 
RA patients using clinical data. A Least Absolute Shrinkage 
and Selection Operator algorithm, a method for fitting 
linear models, was employed in this project, achieving 
better performance than RF, with an AUC- ROC=0.79 
(vs 0.68 in RF); this effective categorisation of patients 
into good and poor responders was achieved with base-
line Disease Activity Score 28 (DAS- 28), anti- citrullinated 
protein antibody and Health Assessment Questionnaire 
as top predictors.30 Combining clinical data with genomic 
biomarkers (single- nucleotide polymorphisms) and base-
line DAS- 28 has also shown promise in predicting MTX 
response in early RA; metrics of different supervised 
ML methods showed an AUC- ROC=0.84 in the training 
cohort, and a validation cohort accuracy of 0.76.31 Simi-
larly, different ML models (linear regression, random 
forest, XGBoost and CatBoost) were evaluated for their 
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ability to predict the probability of therapeutic response 
for bDMARDs in RA in the ESPOIR cohort, predicting 
response to tumorous necrosis factor inhibitors with an 
AUC- ROC of 0.72 (0.68 to 0.73), and yielding key predic-
tors such as DAS28, lymphocytes, aspartate aminotrans-
ferase, neutrophils, age, weight and smoking status.32

Models aiming to predict the readmission risk of 
patients with RMDs after discharge, or the evolution of 
a given disease, have also been developed. By analysing 
data from electronic health records (EHRs), RF- based 
models aiming to predict patient’s return to the clinic 
achieved an AUC- ROC of 0.65, a sensitivity of 0.38 and 
a specificity of 0.79; follow- up duration, the prescription 
of DMARDs, corticosteroids, diagnosis of chronic polyar-
thritis, quality of life and patient occupation were identi-
fied as key variables.33 In the context of life- threatening 
illnesses such as systemic sclerosis, predictive modelling 
has been employed to estimate mortality rates drawing on 
clinical, demographic and spirometric data.34 The Naïve 
Bayes Classifier, a supervised ML algorithm, achieved 
an AUC- ROC=0.76 to predict 5- year mortality rates after 
internal cross- validation, which demonstrated superior 
predictive capability as compared with other algorithms, 
including RF (AUC- ROC=0.73), logistic regression (AUC- 
ROC=0.75) and Cox regression (AUC- ROC=0.724).34

Concerning imaging, studies have used various tech-
niques from simple to complex. Using X- rays, ML models 
achieved up to 90.7% accuracy in distinguishing RA 
and OA from normal hand radiographs, though accu-
racy decreased (80.6%) when classifying all three classes 
together.35 Moving on to osteoarthritis (OA), a DL model 
was trained on knee radiographs to identify patients 
with and without pain progression, as measured by the 
Western Ontario and McMaster Universities Arthritis 
Index (WOMAC) pain score.36 The DL model achieved 
an AUC- ROC=0.80 in predicting pain progression, 
significantly higher (p<0.001) than a traditional model 
trained on demographic, clinical and radiographic risk 
factors. In axial imaging, a neural network based on 
1553 pelvis X- rays evaluating the presence or absence of 
definite radiographic sacroiliitis as agreed in a central 
reading session, identified definite sacroiliitis with an 
AUC- ROC=0.94, a sensitivity of 0.92 and a specificity of 
0.81 for the test dataset.37 CT has also benefited from AI, 
where neural networks trained on CT- derived 3D joint 
shapes distinguished hand joint patterns in RA with AUC- 
ROC=75%, psoriatic arthritis (PsA) with AUC- ROC=68% 
and healthy controls with AUC- ROC=82%. These models 
additionally identified disease- specific regions prone to 
erosions and bony spurs, contributing to classifying undif-
ferentiated arthritis.38 Convolutional neural networks 
(CNNs) trained on sacroiliac joint images detected struc-
tural lesions such as erosion and ankylosis, achieving 
sensitivities of 0.95 and 0.82 and specificities of 0.85 and 
0.97.39 Additionally, in Sjögren’s syndrome, a DL model 
using 500 CT images detected salivary gland damage in 
parotid glands with 96% accuracy, comparable to diag-
nosis of experienced radiologists.40

Regarding MRI, CNNs have also demonstrated the 
ability to differentiate between patients with RA and 
PsA based on patterns from hand MRIs, achieving AUC- 
ROC=0.75 for seropositive RA versus PsA, 0.74 for sero-
negative RA versus PsA and 0.67 for seropositive versus 
seronegative RA. Interestingly, adding demographic or 
clinical data to the networks did not provide improve clas-
sification.41 Non- articular MRI applications, such as brain 
MRI, have been used to evaluate fatigue in RA, showing 
that brain structural metrics were superior to clinical 
measures, with the highest prediction accuracy reaching 
0.67.42 In SpA, MRI models have been developed to detect 
sacroiliac joint active damage. In fact, a deep neural 
network developed to detect MRI changes in sacroiliac 
joints indicative of axial SpA (axSpA) achieved a sensi-
tivity of 0.88 and specificity of 0.71 for detecting inflam-
matory changes, and a sensitivity of 0.85 and specificity 
of 0.78 for structural changes in external validation.43 A 
multi- purpose MRI- based model using compound image 
transformations analysed knee cartilage in T2- weighted 
images to predict progression to symptomatic OA with an 
accuracy of 0.75, as defined by the WOMAC score 3 years 
post- baseline.44

Other imaging modalities, such as ultrasound, have 
demonstrated potential in predicting RA relapses and 
assessing joint conditions. A study comparing three ML 
classifiers found XGBoost to be the best- performing 
model (AUC- ROC=0.75), identifying 10 key features, 
including superb microvascular imaging scores of wrist 
and metatarsophalangeal joints.45 On vasculitis ultra-
sound, a study assessed the use of a CNN for detecting the 
halo sign in colour Doppler images for diagnosing giant 
cell arteritis, achieving an AUC- ROC=0.84 on the test set, 
with a 0.95 specificity and 0.60 sensitivity.46 For Sjögren’s 
syndrome, DL models used transfer learning to improve 
the automated segmentation of salivary gland ultrasonog-
raphy, achieving a higher Intersection- over- Union (0.85) 
compared with both inter- observer agreement (0.76) 
and intra- observer agreement (0.84), indicating superior 
accuracy and consistency.47 Thermography, combined 
with AI, can detect RA activity by analysing temperature 
changes in hand joints. An ML- based method, Ther-
moJIS, for detecting joint inflammation in RA using 
hand thermography, correlated moderately with ultra-
sound scores and demonstrated with good diagnostic 
performance (AUC- ROC=0.78).48 Building on this, the 
study developed and validated two composite disease 
activity indices, ThermoDAI and ThermoDAI- CRP, which 
showed stronger correlations with ultrasound- determined 
synovitis (GS=0.52–0.58; PD=0.56–0.61) compared with 
patient global assessment (PGA) and PGA+CRP, and 
strong correlations with clinical indices (ρ>0.81).49

In the context of text analysis, discriminative AI using 
NLP has aided the analysis of vast amounts of EHRs, 
including tasks such as disease identification and clin-
ical characteristics assessments. Several studies highlight 
NLP’s utility in rheumatology for disease detection. For 
instance, a validated ML pipeline identified RA patients 
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with high performance, with support vector machines 
(AUC- ROC=0.98, F1 score 0.83) and gradient boosting 
(AUC- ROC=0.94, F1 score 0.82) outperforming simpler 
word- matching methods.50 Other study demonstrated 
the capability to identify axSpA through an unsupervised 
algorithm, incorporating both the NLP concept and ICD 
codes, with a sensitivity of 0.78, a specificity of 0.94 and 
an AUC- ROC of 0.93.51 This has also been explored in 
PsA, in which a sensitivity of 0.79 and a PPV of 0.93 were 
achieved when NLP was combined with billing codes.52 
Further, a tool combining text mining with NLP- based 
exclusion accurately identified ANCA- associated vasculitis 
cases, achieving a PPV of 0.86 and outperforming tradi-
tional ICD- 10 coding.53 This growing body of evidence 
supports the adoption of NLP technologies in accurately 
identifying RMDs.

Additional studies have focused on extracting clinical 
information beyond diagnoses from EHRs. For example, 
a recent study that included a dataset with around 
64 million EHRs focused on the demographic and clin-
ical characteristics of RA patients with interstitial lung 
disease (RA- ILD), yielding relevant information on preva-
lence, comorbidities and drug use in real life, with a high 
precision (F1 score over 0.7) for most of the assessed vari-
ables.54 Another algorithm extracted forced vital capacity 
from EHRs, strongly correlating (r=0.94) with pulmonary 
function test values.55 In RA, a study identified MTX- 
induced liver toxicity using NLP with a string- matching 
algorithm, achieving a PPV of 0.76.56 In another study, 
the analysis of structured and free- text EHR data from 
three hospitals showed limited disease activity evaluations 
in axSpA and PsA patients.57 For systemic autoimmune 
rheumatic diseases, an ML model predicted autoanti-
body testing needs and specialist referrals in systemic 
autoimmune diseases with AUC- ROC values from 0.91 
to 0.94, enabling early detection up to 5 years before 
diagnosis.58 Another example illustrating the potential of 
AI in using large- scale real- world data is EPIC Cosmos, 
a vast inter- hospital database aggregating de- identified 
EHR from millions of patients across multiple health 
systems.59 EPIC Cosmos has enabled studies in different 
fields including rheumatology, such as recent work on 
SLE where researchers used Cosmos to enhance disease 
phenotyping and diagnosis. This study applied ICD 
codes to identify SLE patients and validated data quality 
against EULAR/ACR classification criteria, highlighting 
the need for integrating clinical notes to improve data 
completeness beyond structured EHR fields. While the 
study primarily relied on structured ICD codes for SLE 
phenotyping, the authors acknowledge plans to develop 
an NLP pipeline to analyse clinical notes, aiming to 
improve data completeness.60

GENERATIVE AI IN RHEUMATOLOGY
Generative AI, the latest advancement in AI, is an 
emerging technology capable of creating new content 
in audio, image, video and text formats. It is based on 

foundation models—large- scale AI systems that acquire 
emergent capabilities across domains such as language, 
vision, robotics, reasoning and interaction. Their versa-
tility allows them to adapt to diverse tasks, from NLP 
to computer vision and robotic control, by leveraging 
unlabelled data and self- supervised learning techniques. 
Among these, text- oriented applications have shown the 
most potentialities for research. At the core of genera-
tive AI are LLMs, which use transformer architecture to 
generate human- like responses based on input data.18 
LLMs process and analyse input to generate outputs that 
mimic human reasoning based on statistical correlations, 
a capability that distinguishes them from discriminative 
AI, whose models produce a label or category based 
on the input, requiring explicit interpretation of the 
results.61 An example of interacting with these models is 
through widely recognised chatbots such as ChatGPT by 
OpenAI or Gemini by Google.62

Clinical workflow and decision-making
Generative AI has yielded some results in research on 
clinical practice use, though its applications are still in the 
early stages. Current LLMs fine- tuned on medical data 
such as Med- PalM or Meditron show promise, nearing 
expert human performance in answering medical ques-
tions, which could serve as a decision support; none-
theless, they may fall short when addressing individual 
patient circumstances.11 63 Moreover, LLMs can signif-
icantly reduce administrative burdens by summarising 
and rephrasing information, aiding in the composition 
of clinical notes and discharge reports with real- time 
suggestions.64 Future developments will likely see major 
software companies integrating LLMs into administrative 
workflows, serving as clinical decision support systems 
and automating tasks such as documenting information 
from consultations, video calls and emails.

Concerning disease diagnosis, LLMs have demon-
strated significant results. One study conducted in early 
2023 with ChatGPT- 3.5 highlighted its strong perfor-
mance across various clinical tasks, achieving an overall 
accuracy of 76.9% in making final diagnoses.65 The multi-
modal ChatGPT- 4 has shown diagnostic capabilities in 
musculoskeletal radiology, performing at a level compa-
rable to radiology residents when inputting the medical 
history and imaging findings (accuracy rates of 43% 
vs 41%) but not matching board- certified radiologists 
(53%).66 Interestingly, its text- based diagnostic perfor-
mance surpassed that of its vision- based counterpart 
(Vision ChatGPT4 version) when processing radiology 
findings rather than images.66

LLM performance has also been assessed in compar-
ison to physicians for differentiating inflammatory 
rheumatic diseases from non- inflammatory conditions, 
highlighting its capacity to generate diagnostic insights 
through pattern recognition in language. ChatGPT- 4 
correctly identified the most likely diagnosis in 35% of 
cases, closely matching rheumatologists’ 39% (p=0.30).67 
In cases of inflammatory rheumatic disease, ChatGPT- 4 
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performed better, with 71% accuracy versus 62% for 
rheumatologists. However, it was less accurate in non- 
inflammatory rheumatic cases.67 Other LLM- based 
applications, such as DxGPT, have shown relatively high 
accuracy in diagnosing rare diseases.68 This decision 
support tool revealed that models like Claude 3 Opus 
achieved 55% strict accuracy and 70% top- 5 accuracy 
using real- world datasets of rare diseases. While these 
findings highlight the capacity of AI to assist rheumatolo-
gists in diagnosing non- prevalent conditions, further vali-
dation in clinical settings is essential.68

Indeed, as a decision support tool, ChatGPT has proven 
useful and reliable for answering questions about some 
RMDs. In a study evaluating LLMs on MTX information 
for RA, GPT- 4 achieved 100% accuracy and completeness, 
with all 23 MTX- related responses correct and complete 
as evaluated by two reviewers. In contrast, BARD (now 
Gemini) scored 73.9% correct answers.69 In the ChatSLE 
study, ChatGPT- 4 was evaluated against leading rheuma-
tology experts, providing answers to 100 patient- related 
questions from  Lupus100. org.70 ChatGPT- 4’s responses 
were rated as high quality, with a mean quality score of 
4.55 (95% CI 4.48 to 4.62) compared with 4.31 (95% 
CI 4.23 to 4.39) for expert responses (p<0.0001). Both 
sources showed similar empathy scores, but ChatGPT- 4 
was preferred in 57% of cases (p=0.01). Additionally, 
ChatGPT- 4 provided relatively accurate patient infor-
mation, with a mean score of 8.4±0.7 on a 0–10 scale.70 
Further studies have evaluated ChatGPT’s reliability 
and utility in providing information on common RMDs. 
For instance, an assessment of ChatGPT’s responses 
regarding conditions such as RA, AS and OA on a 7- point 
Likert scale, found that ChatGPT achieved the highest 
reliability score for OA (mean±SD 5.62±1.17), indicating 
that while the model is a promising tool, clinicians should 
remain vigilant of its probability to provide misleading 
information.71

Some studies have compared the performance of 
models in rheumatology. The recent Rheum2Guide study 
compared treatment plans generated by GPT- 4 and GPT- 
3.5 with those created by a clinical rheumatology board 
using 20 fictional patient vignettes.72 GPT- 4’s plans were 
selected more frequently than GPT- 3.5’s for first- line 
treatments, indicating GPT- 4’s closer alignment with clin-
ical expectations. Although GPT- 4 and GPT- 3.5 generated 
safe and high- quality treatment plans, the rheumatology 
board’s plans were preferred in 68.8% of cases due to 
higher ratings in guideline adherence, medical appro-
priateness, completeness and overall quality.72 Another 
study evaluated the diagnostic capabilities of ChatGPT- 4 
and other LLMs like Claude 1.3, Claude 2 and Bard 
using standardised prompts in The Lancet’s Picture 
Quiz Gallery focused on rheumatic diseases—including 
the text and not images as part of the input. ChatGPT- 4 
and Claude 2 both achieved 81% accuracy, outper-
forming Claude 1.3 (72%) and Bard (66%). However, all 
models, except Claude 2, struggled with cases involving 

uncommon infectious diseases, where ChatGPT- 4’s accu-
racy dropped to 57%.73

The accuracy and reasoning skills of LLMs have also 
been demonstrated in challenging clinical examinations, 
in which could be used to aid medical education. For 
instance, ChatGPT- 4 has repeatedly demonstrated profi-
ciency in standardised tests like the US Medical Licensing 
Examination, where it provided coherent and intuitive 
responses, surpassing the performance of previous 
earlier AI systems.64 Additionally, it successfully answered 
93.7% of all rheumatology- related questions from the 
Spanish Medical Training Examination (MIR) within the 
years 2009–2023, with a median clinical reasoning score 
of 4.67 on a 5- point Likert scale, outperforming earlier 
LLM versions.74Although currently the use of AI in day- 
to- day clinical practice may represent a complement 
rather than a stand- alone solution, it has been shown that 
the clinician with AI support versus traditional methods 
does not improve the situation, but AI alone has shown 
better results than previous groups, so the potential of 
this technology will be derived based on the clinician’s 
learning to use it.75

Drug development, clinical trials and digital twins
Drug development has leveraged generative AI for mole-
cule generation and molecular property prediction. For 
instance, BERT—a transformer- based model—has been 
adapted to learn molecular representations, supporting 
drug discovery tasks. Similarly, other language models 
have been fine- tuned for molecule generation and anno-
tation, significantly enhancing efficiency and accuracy in 
drug design.27

In clinical trials, generative models can create synthetic 
data that closely mirrors real- world data, as illustrated 
with digital twins (DTs). Pretrained on patient vitals, clin-
ical trajectories, lab results and diagnoses, DTs simulate 
patient evolution over time based on treatment deci-
sions. Indeed, DT may facilitate the creation of synthetic 
control arms, which can replicate patient groups for 
comparative analyses without recruiting additional partic-
ipants. External controlled arms based clinical trials have 
been supported by both the FDA and EMA; in rheuma-
tology, these approaches have been applied to research 
in RA.76 77

Optimising the research process
AI, particularly through LLMs, has the opportunity to 
transform research by offering advanced tools that can 
support every stage of the process. Central to adopting 
these capabilities is the concept of prompting—the process 
of giving instructions to AI systems. Prompts can range 
from simple, direct queries to complex, structured inputs 
designed to elicit detailed responses.78 In research, 
prompting can be executed as ‘zero- shot’ learning, 
where the AI is given a task without any prior example or 
training; more refined prompts can guide AI to produce 
more focused and relevant information based on 
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examples, such as few- shot prompting (giving examples) 
or chain- of- thought (providing step- by- step) prompting.

The role of AI in all aspects of research goes from idea 
generation and literature review to data analysis and 
manuscript preparation (figure 2). In the early stages 
of research, AI can significantly help via brainstorming 
sessions, in which a wide range of ideas and hypotheses 
can be explored.79 LLMs such as ChatGPT- 4, Gemini, 
Perplexity and Claude are capable of generating diverse 
perspectives on a given research question, helping to 
promote the creativity that helps refine research objec-
tives.62 These tools allow researchers to quickly iterate 
their ideas, explore conceivable investigative angles 
and develop a clear roadmap for studies. A recent study 
found that an AI model generated research ideas rated 
as more original and exciting than those of human 
scientists, though with slightly lower feasibility. Using 
the Claude 3.5 model, researchers produced 4000 ideas 
across several topics, and reviewers assessed these ideas 
without knowing their source. Despite AI’s high novelty 
scores, only about 200 ideas were genuinely unique, with 
creativity diminishing over time.80 The overwhelming 
abundance of options produced by AI challenges conven-
tional creative processes, pushing researchers to shift 
from seeking single insights to generating numerous 
ideas for refinement. Rather than asking for one idea, AI 
enables researchers to request many altogether, allowing 
to sift through diverse suggestions and strategies. This 
surplus demands the skill of curating and discerning 
the best quality, which highlights a core value of AI in 
augmenting intellectual creativity and decision- making 
in research. As the research project progresses, AI tools 
can assist in refining the design and structure of the 

study. Beyond generating ideas, these systems can suggest 
detailed article structures, and help in drafting sections 
of a manuscript.

Conducting a literature review can also benefit from AI 
support. Tools such as Elicit or Research Rabbit provide 
curated bibliographies by searching with NLP.81 82 In 
addition, they can offer insights into the state- of- the- art of 
research concepts and visualise the relationships between 
key studies, potentially uncovering connections between 
research articles that may not be immediately apparent. 
They can also generate summaries from articles, extract 
precise data and even highlight emerging trends in the 
field, enabling researchers to stay ahead in their field.

AI tools can also take on a more active role during the 
data analysis phase. LLMs can assist in data analysis by 
guiding researchers through their analysis, performing 
statistical tests and generating insights from datasets. For 
instance, ChatGPT- 4, can provide AI- generated code for 
statistical tools like SPSS, R or Python that facilitates the 
execution of complex analyses. Moreover, it can directly 
perform advanced computational calculations and data 
queries by inputting the prompt and the dataset to the 
system. As an additional support, it can also provide 
preliminary interpretations of data and give insights on 
the results. A recent study of 187 489 software developers 
using GitHub Copilot demonstrated how AI tools can 
reshape work by shifting focus from non- core manage-
ment tasks to primary tasks, such as coding. This shift 
allowed developers to work more autonomously, explore 
new methods, and potentially reduce hierarchical 
dependencies.83

Finally, the writing phase—often the most time- 
consuming—can be facilitated using AI. Besides 

Figure 2 Generative applications of artificial intelligence (AI) in research.
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ChatGPT or Gemini, other tools such as Jenni AI can 
suggest article structures, and help draft coherent and 
well- organised manuscripts.84 These platforms can assist 
with translation, paraphrasing and ensuring that the text 
adheres to publication standards. As for the presentation 
of the results, image models can support on creating 
graphs, images or presentations. For example, platforms 
like Microsoft Copilot can create a presentation of the 
research.85

Challenges ahead
The integration of AI into the field of rheumatology 
research is a double- edged sword, offering significant 
chances alongside profound ethical and practical chal-
lenges.

AI models have demonstrated high accuracy in diag-
nosing and predicting outcomes of rheumatic diseases, 
sometimes even surpassing traditional methods. Predic-
tive analytics can identify patients at higher risk of disease 
progression, facilitating proactive management. None-
theless, accuracy and reliability of these models in clin-
ical practice is yet to be explored. While there are some 
studies including external validation of the algorithms, 
clinical trials assessing the efficacy of these models in 
randomised controlled trials are lacking in rheumatology.

Another primary concern is the rapid pace at which 
AI is being adopted, particularly as health systems deploy 
AI- driven support tools with minimal clinician training. 
Without structured guidance, clinicians may struggle to 
use these tools effectively, which could limit their impact 
on diagnostic accuracy. A recent randomised trial demon-
strated that access to an LLM alone did not improve 
physicians’ diagnostic reasoning in challenging cases, 
even though the LLM performed well when operating 
independently. Unexpectedly, the LLM alone signifi-
cantly outperformed physicians in diagnostic reasoning 
for complex cases.75 This finding suggests that simply 
having access to AI tools does not inherently enhance 
clinical reasoning skills and that effective use of these 
tools requires comprehensive training.

Besides, flawed training data may possibly lead to algo-
rithmic bias; AI models trained on non- representative 
data might produce skewed outcomes, disadvantaging 
certain patient groups.83 As an example in SLE, AI models 
trained predominantly on data from non- Hispanic white 
populations may produce less accurate predictions 
for under- represented groups, such as black, Hispanic 
or Asian patients, due to differing symptom patterns 
and disease progression, potentially leading to skewed 
outcomes in diagnosis and treatment.

Concerning generative AI, some researchers have 
raised concerns about the readiness of LLMs for medical 
application. For example, there have been instances 
where the unethical use of LLMs, such as generating 
fraudulent research or using undisclosed AI assistance in 
manuscript writing, has led to the retraction of scientific 
papers. Additionally, LLMs are prone to ‘hallucinations’, 
where they generate plausible- sounding but incorrect 

information, which is a matter of debate for clinical prac-
tice, where accuracy and evidence- based knowledge are 
paramount. In addition, the black- box nature of many 
AI algorithms also raises transparency issues, making it 
difficult for practitioners to understand and trust AI- gen-
erated insights.

To address these concerns, new reporting guidelines 
have emerged for both discriminative and generative 
models, such as TRIPOD- AI for validating AI inter-
ventions, CONSORT- AI for clinical trials, DECIDE- AI 
for decision support systems and CLAIM- AI for 
imaging technologies.86–89 Additionally, guidelines like 
CANGARU have been developed specifically for gener-
ative AI models, reflecting the growing need for trans-
parency and accountability in AI- driven research.90 In 
addition, regulatory frameworks, such as the European 
Union’s AI Act, set to be enforced in 2026, are now being 
formulated.91 As we stand at the crossroads of innova-
tion, regulation and ethics, the responsible evolution of 
AI in rheumatology requires a collective commitment 
from researchers to thoughtfully use these technologies, 
ensuring they enhance both research and patient care.

With an ageing population and a projected increase in 
RMDs, AI can assist in managing the growing demand 
on healthcare systems.92 In this regard, AI may enhance 
collaboration between general practitioners and rheu-
matologists. Decision- support systems can aid in the early 
detection of RMDs at the primary care level, improving 
the accuracy and timeliness of referrals. Enhanced 
communication platforms can lead to a more integrated 
approach to patient care. Moving forward, it is crucial to 
balance the promising capabilities of AI with a mindful 
consideration of its limitations. Training healthcare 
professionals in AI technologies will facilitate their effec-
tive integration into clinical practice. Ongoing research 
is necessary to enhance the robustness of AI models and 
adapt them to the evolving needs of rheumatology.

CONCLUSION
The combined strengths of discriminative and gener-
ative AI are revolutionising rheumatology research. 
Discriminative AI’s precise classification and predic-
tion capabilities, paired with generative AI’s ability 
to synthesise and create content, may provide rheu-
matology researchers with powerful tools to enhance 
their work. These advancements can accelerate the 
research process and therefore contribute to the 
development of efficient processes in rheumatology. 
However, as we integrate these technologies into our 
research, we must proceed with caution, balancing 
innovation with responsibility to maximise their 
prospective impact on the field. The future trajectory 
of AI in rheumatology is within our hands, with its 
ultimate impact determined by our collective efforts 
and thoughtful application.

X José Miguel Sequí-Sabater @drjsequirheum
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