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A B S T R A C T

Telematics boxes integrated into vehicles are instrumental in capturing driving data encom-
passing behavioral and contextual information, including speed, distance travelled by road type, 
and time of day. These data can be amalgamated with drivers’ individual attributes and reported 
accident occurrences to their respective insurance providers. Our study analyzes a substantial 
sample size of 19,214 individual drivers over a span of 55 weeks, covering a cumulative distance 
of 181.4 million kilometers driven. Utilizing this dataset, we develop predictive models for 
weekly accident frequency. As anticipated based on prior research with yearly data, our findings 
affirm that behavioral traits, such as instances of excessive speed, and contextual data pertaining 
to road type and time of day significantly aid in ratemaking design. The predictive models enable 
the creation of driving scores and personalized warnings, presenting a potential to enhance traffic 
safety by alerting drivers to perilous conditions. Our discussion delves into the construction of 
multiplicative scores derived from Poisson regression, contrasting them with additive scores 
resulting from a linear probability model approach, which offer greater communicability. 
Furthermore, we demonstrate that the inclusion of lagged behavioral and contextual factors not 
only enhances prediction accuracy but also lays the foundation for a diverse range of usage-based 
insurance schemes for weekly payments.

1. Introduction

Data providers that collect telematics from vehicles in motion usually do not have access to evidence from accidents, which would 
easily be retrieved from insurance records. At the same time, insurers make little use of the massive amounts of material gathered by 
telematics boxes and they do not look at detailed telematics information as they mostly resort to driving mileage only. The dissociation 
between information suppliers comes together with the reluctance of insurance companies to reveal the nature of their rating factors to 
external parties. All in all, this has considerably slowed down research on measurable driving behavior and operating circumstances 
that explain a driver’s proneness to cause a traffic accident, in spite of a massive amount of information that is known to have been 
recorded somewhere. Therefore, data inaccessibility and the lack of synergies are the reasons why we do not expect to see major 
transformations in usage-based insurance in the market in the short future. We do, however, find pay-as-you-drive schemes being 
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commercialized all over the world. Under those systems, drivers pay a constant fee plus some cost per mile. Typically, these schemes do 
not consider where or when the driving distance has been driven or how drivers are effectively managing their vehicles.

Our contribution aims to bridge the gap of the literature on the analytic methods to assess the role of behavioral and contextual 
driving data in predicting accident expected frequency on a weekly basis, something that has a direct implication on the expansion of 
usage-based insurance. Our method proposes an algorithm to estimate risky driving scores that can be used to provide feedback to 
drivers about their performance on the wheel or to construct insurance tariffs based not only on how many miles are driven, but also on 
when and where distance is driven and how a driver is operating their car. Contrary to the existing literature, we offer a comprehensive 
analysis of advanced driving risk assessment in weekly periods. Our approach has the potential to be integrated in new vehicles by 
innovative manufacturers to provide feedback to the driver, or to serve as the basis for insurance ratemaking that includes behavioral 
and contextual driving data. Certainly, one may assert formally that the consideration of weekly ratemaking in motor insurance be-
comes particularly intriguing in the context of carsharing vehicles or rental cars, wherein drivers undergo frequent and dynamic 
changes. The fluid nature of driver rotations in such scenarios necessitates a nuanced approach to ratemaking, accommodating the 
variability in driver profiles and usage patterns. This underscores the importance of a weekly rate structure that can effectively adapt to 
the evolving nature of the driver pool, ensuring a fair and economically viable insurance framework for both the service providers and 
the transient drivers involved.

Unlike previous existing contributions we are able to disclose predictors and examine the role of timely data collection. We 
therefore take full advantage of the fact that telematics data provide a continuous source of information. We argue that a driving risk 
score can be formulated weekly and that lagged information from the previous week is informative about future accident occurrence. 
We provide the analysis of a unique dataset of 19,214 drivers observed over more than one year, with a total kilometer distance 
covered of 181.392.006 km, making this analysis the most complete existing study that can be found in the literature up to now. Our 
telematics data contain behavioral information on speeding events counts, that is, the number of times in a week and per type of road 
that a driver exceeded the maximum posted speed. Data also contain distance driven per type of road and distance driven in the night.

Contrary to most analysis which focus on yearly data, our proposed methodology can be generalized to cope to time interval 
frequencies under one year, such as daily or monthly data, and it can also be implemented by trip, so that a driving risk score is 
provided after a voyage is finished, but unlike the driving score that we see in some modern cars, we are able to adapt the score to a 
variety of context information. For example, driving in an urban area at low speed is not necessarily a sign of precautious behavior, but 
it may be the consequence of heavy traffic congestion and, consequently, more risk of having an accident.

We show that incorporating behavioral and contextual data about the driver’s experience improves the prediction performance of 
classical frequency models used in accident analysis, compared to not including this information, when considering telematics in-
formation from the same period. This is a well-known fact, but we also show that lagged information, i.e. telematics data from the 
previous period, helps anticipating accident frequency in the subsequent period. This opens the door to establishing warning scores 
that can help drivers identify how their probability of suffering an accident changes along time.

We analyze a unique combination of weekly information on individual drivers and their insurance provider records. Telematics 
boxes collect data on distance travelled, type of roads, time of day, and speeding events, which are then integrated with accident 
occurrence records. By amalgamating information on driving style and contextual data with traditional ratemaking factors such as 
gender, age, and vehicle power, we confirm a substantial enhancement in the ability to predict accident frequency. We further 
demonstrate how a multiplicative scheme derived from a Poisson model specification or an additive scheme resulting from a linear 
probability model specification may alter the existing usage-based insurance pricing in the current marketplace, primarily predicated 
on distance driven, irrespective of the manner and location of driving.

Through our contribution, we emphasize that accident frequency can be anticipated by considering when, where, and how a driver 
behaves behind the wheel. Previous research has offered only partial solutions, either due to the lack of merging accident data with 
telematics data or the non-disclosure of factors influencing accident frequency by insurance companies. Our contribution provides a 
comprehensive perspective, introducing new insights that can significantly enhance usage-based insurance schemes and payment 
models based on weekly data, incorporating contextual information beyond behavioral patterns.

2. Background

The literature on usage-based insurance is extensive and it has been intensively developed in last twenty years. Eling and Kraft [1] 
conducted a thorough review of numerous academic studies and industry papers spanning nearly two decades, from 2000 to 2019. 
These works predominantly focused on investigating the pivotal telematics variable for estimating claim frequency: distance driven. 
Lemaire et al. [2] highlighted the significance of annual mileage as a potent predictor of at-fault claims. More recently, Gao et al. [3] 
provided a survey of telematics driving data research in actuarial science. The authors provided a thorough description the nature of 
telematics driving data, received second by second, and the difficulties one faces dealing with such information.

The concept of usage-based insurance (UBI) initially revolved around assessing insurance rates based on the distance covered, as 
elucidated in Litman’s discussion [4] on various distance-based insurance price structures. The role of mileage and its correlation with 
claim frequency was examined in conjunction with other factors. Boucher et al. [5] concluded that although total distance driven is a 
pertinent variable, the relationship between distance driven and accident occurrence might not be strictly linear due to the “learning 
effect.” Essentially, this means that individuals who drive twice as much as others with identical characteristics have fewer than twice 
the accident claims. Moreover, it can be argued that covering more distance might indicate superior driving skills or a propensity to use 
safer roads like highways, which are typically associated with long-distance trips. These roads tend to have a decreasing marginal 
effect on the probability of accidents occurring.
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Boucher et al. [6,7] employed a generalized additive model approach to scrutinize the impact of both distance driven and the 
duration of insurance contracts on claim frequency. Surprisingly, they discovered that neither distance nor contract duration exhibited 
a linear relationship with claim frequency. Adding to this, Guillen et al. [8] incorporated yearly distance travelled as an offset within a 
zero-inflated Poisson model to account for excess zeros in claim frequency counts. They also noted a non-linear effect in their dataset 
regarding this variable. More recently, Boucher and Turcotte [9] utilized GAMLSS (Generalized Additive Models for Location, Scale, 
and Shape) and GAMs (Generalized Additive Models) with fixed effects to analyze telematics count data in a panel setting. Their 
findings contradicted earlier perceptions of non-linearity, suggesting that the relationship does appear to be linear. They attributed the 
apparent non-linearity to residual heterogeneity, effectively captured by the GAMs.

Beyond just considering mileage, a plethora of evidence suggests that various telematics variables hold a strong causal link with 
accidents. Consequently, these variables can significantly enhance the predictive accuracy of frequency models utilized in automobile 
insurance. For instance, Verbelen et al. (2018) [10]contend that telematics data empowers the tailoring of automobile insurance 
pricing based on policyholders’ driving behavior. They devised a statistical modeling approach for claim frequency using telematics 
variables and demonstrated that such variables bolster the model’s predictive capability. Consequently, gender as a discriminating 
rating variable becomes obsolete. A similar finding was echoed by Ayuso et al. [11]. In a more recent study, Ayuso et al. [12] con-
structed a frequency model adaptable to updates with telemetric data. Their research affirmed that not only the distance covered but 
also driver habits significantly impact the anticipated number of at-fault accident claims [13]. This revelation underscores that the cost 
of insurance coverage can be personalized. Telemetry enables insurers to consider factors identified by traffic authorities as associated 
with risky driving, including traffic violations. So et al. [14] delved into the integration of telematics data into a classification model to 
ascertain driver heterogeneity, utilizing data gleaned from a Canadian telematics program. Their investigation revealed that evalu-
ating driving behavior is markedly enhanced when employing telematics in comparison to traditional risk factors.

In this context, identifying telematics variables with significant predictive power for accident frequency is pivotal. Modern tele-
matics technologies in car insurance generate vast amounts of data, obtained from high-frequency GPS location data (measured per 
second) from individual car drivers and trips, leading to the proliferation of big data in the insurance industry. Paefgen et al. [15] noted 
the complexity and data volume associated with usage-based insurance pricing, emphasizing its challenge in actuarial 
decision-making. They analyzed real raw location data, considering 15 predictor variables, and compared logistic regression, neural 
network, and decision tree classifiers. Their study demonstrated that while neural networks exhibited superior classification perfor-
mance, logistic regression was more favorable from an actuarial perspective due to its ease of interpretation and direct effect quan-
tification. Their results highlighted the potential of high-resolution exposure data in simplifying usage-based insurance pricing. Baecke 
and Bocca [16] explored risk assessment models integrating driving behavior data using three distinct data mining techniques. They 
concluded that including standard telematics variables significantly enhanced customer risk assessment, enabling insurers to tailor 
their products to individual risk profiles. The study also emphasized the importance of incorporating easily interpretable data mining 
techniques mandated by regulators before advancing to more complex predictive models. Moreover, they demonstrated that 
telematics-based insurance products could be swiftly implemented, requiring only three months of data for reliable risk estimations.

Huang and Meng [17] utilized logistic regression and four machine learning techniques as risk probability models and Poisson 
regression as a claim frequency model. They established tariff classes with substantial predictive effects, proposing a pricing frame-
work that improved both interpretability and predictive accuracy. Their empirical results reaffirmed the considerable potential of 
driving behavior variables in automobile insurance. Pesantez et al. [18] also highlighted logistic regression as a suitable model for 
predicting claim frequency using telematics information, given its interpretability and good predictive capacity. Despite implementing 
modern machine learning modeling approaches, they observed that XGBoost necessitated extensive model-tuning procedures to match 
logistic regression’s predictive performance and required more effort for interpretation.

In the realm of machine learning, numerous contributions focused on driving pattern recognition, which can be leveraged to 
determine accident safety scores and enhance insurance pricing. Weidner et al. [19] identified maneuver patterns, trips, trip segments, 
and the total insurance period as significant indicators of individual driving behavior. Wüthrich [20] utilized high-frequency GPS 
location data and innovative algorithms to classify distinct driving styles, demonstrating their applicability in regression analysis for 
car insurance pricing. Gao and Wüthrich [21] introduced speed and acceleration heatmaps, categorized using the K-means algorithm 
to differentiate varying driving styles. Gao et al. [22] further explored telematics covariates extracted from car driving data, affirming 
their superior predictive power for claim frequencies compared to traditional pricing factors like driver’s age. Gao and Wüthrich [23] 
extracted feature information from high-frequency GPS location data, utilizing it to allocate individual car driving trips to specific 
drivers. Geyer et al. [24] defined a driving factor based on overall distance driven, the number of car rides, and speeding, identifying a 
significant impact of speed driving factor on risk. Meng et al. [25] calculated risk scores using a supervised driving risk scoring neural 
network model, demonstrating improved prediction performance for claim frequency when incorporating these risk scores.

Arumugan and Bhargavi [26] conducted a survey on driving behavior in usage based insurance using big data. They proposed a 
solution that finds the risk posed by aggressive driving and road rage incidents by considering the behavioral and emotional factors of a 
driver. Ziakopoulos et al. [27]. claimed that telematics pricing entails crash reductions of 20%–43 % and harsh event reductions of 
10%–52 % are reported. However, they also noted that telematics-based research might have biases stemming from data availability. 
The usefulness of telematics-supported driver behaviour analysis is addressed by Ziakopoulos et al. [28] and Siami et al. [29].

Pérez-Marín and Guillen [30] investigated telematics information for risk quantification and safety in vehicles with speed control 
capabilities, emphasizing the potential to reduce accident claims by addressing excess speed. Guillen et al. [31] identified relevant risk 
factors to streamline telematics information necessary for risk classification, introducing the concept of near miss events in 
usage-based insurance, i.e recorded risky events such as braking/accelerating/cornering or smart phone use that are positively 
correlated with accident occurrence. Their analysis revealed that near-miss events, even if no accident is recorded, offer valuable 
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insights for dynamic risk monitoring through telematics. Recently, Alrassy et al. [32] investigated driver behavior obtained from 
large-scale telematics data and its relationship with crash data. They found that hard braking is more indicative of higher collision rates 
on highways, and hard acceleration is a stronger risk indicator on non-highways urban roads. Guillen et al. [33] integrated telematics 
data in UBI pricing schemes that penalize near miss occurrence. In their analysis, the authors compensate the lack of claims during the 
period when telematics information was collected with past claim history of insureds. This is a common limitation in actuarial research 
dealing with telematics data, specifically that the accident history does not match with telematics data collection period. Similarly, 
Moosavi and Ramnath [34] investigated driver’s styles and also used past-at fault traffic accidents and citations as risk indicators of 
clusters of drivers with similar driving behavior. Masello et al. [35] found that the driving context has significant power in predicting 
driving risk.

Tesla presented its Predicted Collision Frequency (PCF) formulas, shedding light on risk score components like forward collision 
warnings, hard braking, aggressive turning, unsafe following, and forced autopilot disengagement (see Ref. [36]). This transparency 
contributes to the ongoing discussion on model opacity and showcases the relevance of driving behavior variables in assessing risk. 
Several car manufacturers [37] have introduced similar safety score systems, emphasizing acceleration, braking, cornering behavior, 
and distance driven as key metrics to calculate driving performance scores.

Regarding the effectiveness of telematics-based feedback in improving driving behavior, Li et al. [38] remark that post-trip in-
terventions have a limited effect if they are not part of a risk mitigation strategy able to improve long-term behavior. In that sense, the 
authors proposed to provide a personalized feedback and realistic and actionable suggestions for policyholders. Malekpour et al. [39] 
found that only providing feedback has a minuscule impact in reducing speeding behavior, and financial incentives are necessary. 
Similarly, Meuleners et al. [40] concluded that personalized feedback does not seem to produce a significant change in overall driving 
scores of young drivers (they only found some improvements for specific drivers).

The Appendix A1 provides a summary of telematics variables utilized in the literature for driving risk assessment, encompassing 
factors beyond distance travelled, such as speed, road type, time of vehicle usage, and the inclusion of near miss events. These insights 
collectively advance the understanding of telematics variables and their role in shaping insurance products and pricing strategies 
[41–47].

3. Methods

Our strategy consists in predicting the expected frequency of accidents for driver i in period t, in a sample on n drivers each observed 
a total of Ti time periods. In our application we observe weekly data, so that Ti is the total number of observed weeks for driver i. We 
define the maximum observation frame, T = max

i
Ti.

Our objective is to model the conditional mathematical expectation of accident frequency for driver i, in period t, denoted as E
(
yit
)
, 

as a function of J dynamic predictors zjit, where j = 1,…,J, which change over time and K static predictors xki, where k = 1,…,K, 
which do not change over time, including a constant intercept.

Generalized linear models specify a link of the linear predictor, h
(
xki, zjit

)
, and the output E

(
yit
)
. A statistical distribution in the 

exponential family for the response random variable yit is also specified. Parameter estimates of the linear predictor can easily be found 
by likelihood maximization. Other machine learning methods are more flexible in the specification of the combinations of static and 
dynamic factors, but they require establishing a loss-minimization principle. Usually, Random Forest or XGBoost methods provide 
interesting and accurate predictive algorithms at the expense of interpretability and analytical expression for the expected accident 
frequency depending on the predictors [18,48].

In the pre-processing phase we transform some of the telematics information as risky events recorded as part of the dynamic 
predictors zjit . This is done similar to Guillen et al. [33] where near-miss events (based on hard braking/acceleration and smartphone 
usage) are considered. We usually denote by Dit , distance driven by driver i in period t, i.e. the exposure, or the model offset. Dynamic 
predictors can be divided in two groups. On one side, we consider continuous predictors like total distance driven in a certain condition 
(type of road and nighttime/daytime). On the other side, we consider event counts. For example, the sum of excess speed occurrence by 
type of road.

A simple approach to calculating the impact on the expected frequency of accidents of behavioral and contextual predictor is 
provided. In order to convert the occurrence of telematics risky events or dangerous distance driven into a simple scoring, we may 
consider a linear probability model specification or a more general input function h

(
xki,zjit

)
, which may later be linearized. This linear 

approximation may not be necessary if we only aim at producing a risk score to inform the driver. However, a linear formulation 
provides a straightforward way to design usage-based insurance schemes that are easy to communicate.

When risky events have a direct linear impact, an insurance rate per week can be expressed as a flat rate, plus some additional 

Table 1 
Accident risk scoring formulae for static and dynamic predictive factors with distance driven as exposure.

Risk scoring formula 
specification

Communication

h(xki) Expected accident frequency depends on a function of driver characteristics only
Dith(xki) Expected accident frequency is proportional to current period distance driven times a combination of driver characteristics
Dith

(
xki, zjit

)
Expected accident frequency is proportional to current period distance driven times a combination of driver characteristics and 
dynamic factors
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charges for distance driven and risky event occurrence. Charges can be homogeneous or depending on contextual data, so the cost can 
vary depending on context and behavioral information. For example, if distance is driven exceeding speed limits, in the weekend, in 
the night or in congestion areas (urban driving), the impact on accident risk and the final cost, differs from driving without speeding 
events, during weekdays, during the day and in non-urban areas.

Several possibilities for static and dynamic scoring are presented in Table 1. Note that even if Table 1 only aims at modelling 
accident frequency, usage-based insurance schemes can follow directly from frequency models, once average cost and general in-
surance charges are imputed proportionally to expected frequencies. Table 2 presents possible linearized specifications of driving 
scores.

Our results explore basic classical generalized linear models. Similar conclusions can be found for other possibilities. Poisson 
models with a log-link were estimated using SAS software and R software. The link in the Poisson model equals h

(
xki, zjit

)
=

exp

(
∑K

k=1αkxki +
∑J

j=1βjzjit

)

. Logistic regression and linear probability models are estimated too. Their corresponding links are h
(
xki,

zjit
)
= 1/

[

1+exp

{

−

(
∑K

k=1αkxki +
∑J

j=1βjzjit

)}

and h
(
xki, zjit

)
=
∑K

k=1αkxki +
∑J

j=1βjzjit, respectively. Details on linearization ap-

proximations for the Poisson model can be found in Guillen et al. [33]. Model comparison was done using AIC so that a model with a 
lower AIC is preferable to another model with a higher AIC.

The predicted average frequency of claims is interpreted as a driving risk score. To design a premium rating, we multiply weekly 
expected frequency of claims by the claim cost. To compare the differences between premium rates calculated under different models 
the Gini coefficient is employed [49]. In interpreting the results of the Gini index, it is imperative to consider that small Gini values 
signify a portfolio with premiums that closely resemble one another. Conversely, a Gini index approaching one signifies substantial 
inequality, where one policyholder bears the entire cost burden while others contribute comparatively trivial premiums. An inter-
mediate Gini index value indicates a moderate level of personalization in premiums, tailored to policyholder characteristics.

4. Data

Anonymous data were provided by a Spanish insurer that commercializes pay-as-you drive-insurance since 2009. Specifically, our 
data contain 19,214 drivers observed in Spain from the 9th week of 2018 to the 17th week of 2019. Nevertheless, 8 of these weeks were 
finally not considered in the analysis because there was a failure in the IT telematics recording system and, as a result, there were too 
few observations. A total of 922 accidents at fault were observed for the sampled drivers. Table 3 shows variable definitions and 
Table 4 presents some basic descriptive analysis.

Our data are observed by weeks. This is a unique feature of this particular data set, as usually only yearly analysis is generally 
available. Reig-Torra et al. [50] analyzed a subset of these data and included weather information from external sources. In this data 
set we estimated an average claim cost equal to 2331.4 Euros.

Table 4 shows some descriptive statistics. There are 44.30 % men and 55.70 % women in the sample. The average age of drivers is 
28.73 years old (standard deviation 4.67), and age ranges between 17 and 74 years of age. The average vehicle power is 102.63 Hp. 
(standard deviation 29.88). The total number of drivers-week observations is 790,698. Regarding telematics variables, we observe that 
the total distance travelled per week by one driver ranges between 0.001 and 5974 km, with an average of 229 km/week. When a 
driver does not drive for one week, that week is excluded from the sample. We also observe that, on average, 20.29 km/week are 
travelled in the night. The weekly number of speed events (in any type or road) is 3.19, with a maximum of 61. In urban roads the 
weekly number of speed events is 1.847, with a maximum of 23. Note that the mean weekly frequency of 0.001 corresponds to an 
expected level of annual claim rate for at-fault accidents (0.001 multiplied by 52 weeks). This rate level is not surprisingly high, given 
that the portfolio is slightly biased, comprising predominantly novice and young drivers. We observe 0.117 % of the weekly obser-
vations there is one at fault claim (in the remaining 99.883 % there is no claim), this corresponds to a yearly frequency of 4.80 %, 
which lies within the range of similar studies when only accidents at fault are being considered.

Fig. 1 shows the evolution of mean distance driven for the drivers in this data set and Fig. 2 presents the frequency of at-fault claims 
over time. Fig. 3 shows histograms and bar charts of the variables in the data set. The sharp drop observed after the age of 35 in the 
sample can be attributed to the fact that Pay-as-You-Drive schemes were primarily marketed to young drivers, resulting in fewer older 
individuals participating in such pricing schemes. This demographic limitation should be acknowledged in our study. The small 

Table 2 
Accident risk scoring linear formulae for static and dynamic predictive factors considering distance or log-distance driven.

Linear risk scoring formula specification Communication
∑K

k=1αkxki + γDit + (1 − γ)
∑J

j=1β2jzjit Expected accident frequency is approximated (or bounded for pricing purposed) by a static part that depends on a 
combination of driver characteristics plus a linear combination of distance driven and same-period dynamic factors

∑K
k=1αkxki + γlnDit + (1 − γ)

[
∑J

j=1β2jzjit +

∑L
l=1β3lzlit− 1

]

Expected accident frequency is approximated (or bounded for pricing purposed) by a static part that depends on a 
combination of driver characteristics plus a linear combination of log-distance driven and same- and previous- 
period dynamic factors
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increase observed after the 95th percentile for driving in urban areas reflects the presence of drivers who primarily use their vehicles 
within their own city, without venturing onto highways or national interurban roads. While this does not constitute a limitation, it is an 
important aspect that merits discussion in our analysis.

Table 3 
Variable definition in telematics weekly data set, Spain 2019.

Variable Description

VEHICLE_POWER Vehicle power (in Hp)
AGE Age of the driver
GENDER 1 = Male, 0 = Female
TOTAL_DISTANCE_DRIVENMK Thousands of kilometers travelled during the week
KM_NIGHTMK Thousands of kilometers travelled in the night during the week
SPEED_EVENT Number of trips when the driver exceeded the posted speed limit on the road during the week
SPEED_EVENT_URBAN Number of trips when the driver exceeded the posted speed limit on an urban area during the week
PERC_URBAN Percentage of kilometers driven in urban roads
CLAIM_AT_FAULT Number of claims at fault during the week

Table 4 
Descriptive statistics in telematics weekly data set, Spain 2019.

Variable Mean Standard Deviation Minimum Maximum

Characteristics of the driver
AGE 28.727 4.667 17.000 74.000

Characteristics of the vehicle
VEHICLE_POWER 102.625 29.876 34.000 450.000

Telematics variables (referred to weeks)
TOTAL_DISTANCE_DRIVENMK 0.229 0.204 0.000 5.974
KM_NIGHTMK 0.020 0.058 0.000 4.064
SPEED_EVENT 3.191 3.709 0.000 61.000
SPEED_EVENT_URBAN 1.847 2.104 0.000 23.000
PERC_URBAN 33.265 23.766 0.000 100.000

CLAIMS_AT_FAULT 0.001 0.034 0.000 1.000

Fig. 1. Mean distance driven per week in the telematics weekly data set, Spain, 2019.

Fig. 2. Average frequency of at-fault claims in the telematics weekly data set, Spain, 2019.

M. Guillen et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e36501

7

5. Results

Following Guillen et al. [33], in Table 5 we present an initial model (Model 0) where we only use driver’s characteristics to predict 
the expected frequency of claims at fault with a Poisson model. Note that the dependent variable is the number of claims in the same 

Fig. 3. Descriptive histograms of covariates in the telematics weekly data set, Spain, 2019.

Table 5 
Poisson Regression Models: Model 0 (non-telematics), Model 1 (following [33], one near-miss event) and Model 2 results (with speed events as a 
contextual and risky event), in telematics weekly data set, Spain 2019.

Variable MODEL 0 MODEL 1 MODEL 2

Coef p-val Coef p-val Coef p-val

Intercept − 6.502 <0.001 − 6.599 <0.001 − 6.680 <0.001
Vehicle_power 0.002 0.069 0.001 0.238 0.002 0.149
Gender 0.180 0.009 0.163 0.018 0.163 0.018
Age − 0.019 0.010 − 0.016 0.028 − 0.016 0.034
Speed_event (wherever) 10− 1 lag 0.284 <0.001
Speed_event_urban_lag 0.065 <0.001

AIC 14287 14277 14269
Pseudo R2 (%) 0,139 0,220 0,279
Residual deviance (Null deviance 12455) 12435 12423 12415
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weekly period when telematics information will be introduced. The results of Model 0 set the baseline performance level. The vehicle’s 
engine power, gender and age of the driver conform to the static explanatory variables in all the models considered here. The 
parameter estimates indicate that a significantly higher accident frequency is expected for powerful cars, younger drivers and males. 
The reason why we retained the covariate related to car power is to be consistent with previous research by Guillen et al. [31], where 
hard-braking and acceleration events as well as smartphone use while driving increase the cost of insurance, while conditioning on 
vehicle horse power.

To demonstrate that the main conclusions remain solid even when all types of reported accidents are considered, we have rerun the 
analysis for all claims. The results are available from the authors upon results. We acknowledge that our analysis does not include 
contextual information such as traffic congestion, road conditions, and external factors, nor does it account for assisted driving 
technologies that may be available in some insured vehicles.

In Model 1, a behavioral risk event count is introduced in the Poisson model: the lagged number of speed events no matter what 
type of road or circumstance. Our conclusions coincide with those of Guillen et al. [33] who provided much less sophisticated data. We 
conclude that more speed events positively correlate (p-value<0.001) with a higher expected frequency of at fault claims. In Model 2 
only the lagged number of speed events are considered if they occur in urban roads. The parameter for this risky event factor is positive 
and significant (p-value<0.001). The AIC of Model 2 is lower than the previous two models.

In Table 5 we consider total distance travelled, which is the most basic information provided by telematics. Specifically, we 
consider the total number of kilometers, that we introduce in the model with a logarithm transformation. The log of the total number of 
kilometers is introduced in three different ways: as an offset (Model 3), as an explanatory variable (Model 4a), and, finally, we also 
introduced the lagged log of the total number of kilometers as an explanatory variable (Model 4b). When the log of the distance is 
introduced as an explanatory variable, the corresponding parameter is positive and significant, therefore, travelling more kilometers 
increases the frequency of claims. The model with the lowest AIC is the one where the lagged log of the total number of kilometers is 
introduced as an explanatory variable.

In Table 6, we introduced more sophisticated behavioral and contextual information, apart from the lagged log of the total distance. 
Specifically, in Model 5a the lagged number of speed events in urban roads is considered, and it has a positive and significant 
parameter (p-value = 0.003), therefore, more speed events in urban roads are associated to a higher frequency of claims. In Model 5b 
we introduce the lagged percentage of urban driving, which it has a positive and significant parameter (p-value <0.001). Therefore, we 
conclude that driving in urban roads increases the frequency of claims. It is important to remark that these two variables should not be 
included in the model at the same time, as they are highly correlated (the more kilometers are travelled in urban roads, the more speed 
event in urban roads occur). As the AIC is lower for Model 5b compared to Model 5a, we decide to keep the lagged percentage of urban 
driving in the model. In Model 6, the lagged log of the total number of kilometers travelled at night is also included in the model, and it 
does not have a significant effect. Nevertheless, in Model 7 we observe that when we introduce the log of the current number of ki-
lometers travelled at night, then the coefficient is positive and significant (p-value = 0.027) and the AIC is lower than the one obtained 
for Model 6. Therefore, we conclude that the distance travelled at night should be included in the model by using the information of the 
current week, and it has a positive effect on the frequency of claims: driving at night increases the accident risk. Additionally, in Model 
7 we also observe that men and younger drivers have a higher claim frequency, while vehicle power does not have a significant effect 
(p-value = 0.076). Moreover, the lagged log of the total distance, lagged percentage of urban driving and log of the total distance 
travelled at night increase the claim frequency. Finally, in Model 8 we introduce the same variables as in Model 7, and, additionally, 
the log of the current total distance travelled. We observe that the AIC slightly increases with respect to Model 7, which means that the 
effect of the log of the current total distance travelled is not significant even at the 10 % significance level (p-value = 0.166).

Logistic regression and linear probability models are presented in Appendix A2. Interpretations and additional discussion are 
available from the authors for these two other models.

All results show that distance driven and risky event information help to improve the predictive performance of model for the 
expected frequency of at-fault accidents on a weekly basis using the AIC. We show that contextual information and lagged data is even 
more informative, showing that location and time of the day where driving improves the model.

The significance of our conclusions is important for implementing usage-based risk assessment digital tech devices. Our risk 

Table 6 
Poisson Regression Models: Model 3 (all non-telematics and log of distance travelled as offset), Model 4a (all non-telematics and log of distance 
travelled) and Model 4b (all non-telematics and lagged log of distance travelled) in telematics weekly data set, Spain 2019.

Variable MODEL 3 MODEL 4a MODEL 4b

Coef p-val Coef p-val Coef p-val

Intercept − 4.863 <0.001 − 6.258 <0.001 − 6.212 <0.001
Vehicle_power − 0.001 0.491 0.002 0.138 0.002 0.155
Gender 0.099 0.149 0.171 0.013 0.169 0.014
Age − 0.013 0.066 − 0.018 0.014 − 0.018 0.015
Ln(Total distance drivenKM) offset – 0.126 <0.001
Ln(Total distance drivenKM)_lag 0.150 <0.001

AIC 14789 14275 14270
Pseudo R2 (%) 0,042 0,233 0,270
Residual deviance (Null deviance 12455) 12937 12421 12416
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assessment scores, especially those based on linear approximations, are convenient to create simple pricing mechanisms for insurance 
ratemaking. However, traditional ratemaking in motor insurance has been based on the Poisson regression model and they are 
multiplicative. Our results have the limitation that data on the same driver might be correlated, thus calling for using panel data 
analysis. If the number of days in a week that the driver uses their car is introduced in the model, then the model performance may 
improve, but the associated parameter is not significant due to correlations with other telematics variables, in particular the total 
distance.

6. Pricing schemes

In this section, we present a comparative analysis of ratemaking approaches within telematics insurance schemes. We provide 
distinct examples that illuminate various models and frameworks employed to determine insurance premiums based on telematics 
data. Through the examination of these examples, our objective is to elucidate the versatility and effectiveness of different ratemaking 
strategies, contributing to a deeper understanding of how telematics technology influences insurance pricing and policy design. 
Additionally, we illustrate how scores can be translated into prices, facilitating their integration into insurance ratemaking to either 
reward good drivers or penalize poor ones.

Fig. 4 shows the evolution of the mean premium paid by insureds that suffered a claim at fault (red) and those that did suffer a claim 
at fault (green). We see that independently of when the claim was reported, the average premium of those who reported at least one 
claim at fault is higher than for the rest. In Table 8 we calculate in the same dataset what the insured policy holders in our sample 
would pay per week (and then find the annual equivalent) under the schemes in model 0 (in Table 5) and models 3, 4a, 4b (in Table 6), 
5a, 5b, 6, 7 and 8 (in Table 7). In our dataset there are 922 claims, and the average number of claims per week is 0.00117. The total sum 
of costs equals 2,152,040.2. Therefore, on average each claim costs 2334.1 Euros. This results in an average weekly premium of 2.72 
Euros.

In Model 0 (Table 8) we calculate the pure premium based on average cost times expected claims that only depend on age, gender 
and vehicle power. The weekly premium ranges between 1.2 and 6.5 Euros and the yearly premium between 63.8 and 338.0 Euros. 
Model 3 corresponds to the Pay As You Drive scheme, where the premium is proportional to distance driven. In that case, the weekly 
premium ranges between 0 (for parked cars) and 73.62 Euros. Note that insurers would usually establish a minimum premium even if 
the vehicle is parked and is not driven. Models 4a and 4b correspond to the Pay As You Drive scheme, but distance is in logs (not lagged 
and lagged, respectively) and so, it is not a linear model. Now the weekly premium ranges between 0.5 and 7.2 Euros for Model 4a and 
0.4 and 7.3 Euros for Model 4b. Model 5a and 5b correspond to the Pay-How-You-Drive scheme, as lagged speed events in urban areas 
(Model 5a) or lagged percentage of urban driving (Model 5b) are considered. In that case, the weekly premium ranges between 0.6 and 
12.2 Euros for Model 5a and between 0.02 and 20.4 Euros for Model 5b. Model 6 corresponds to the Usage-Based Insurance scheme. 
Now, apart from the lagged percentage of urban driving, also information about time of driving is considered, specifically, the lagged 
distance travelled at night. In that case, the weekly premium ranges between 0.02 and 20.4 Euros. Model 7 corresponds to the same 
Usage-based Insurance scheme considered in Model 6, but now we consider the current log of the number of kilometers travelled at 
night. In that case, the weekly premium ranges between 0.02 and 21.2 Euros. Finally, in Model 8 we consider the same Usage-based 
Insurance scheme considered in Model 7 but the model also includes the current log of the total distance travelled. In that case, weekly 
premiums range between 0.02 and 19.0 Euros. In all scenarios, the total premiums paid are equal to the total sum of costs.

The Gini index in Table 8 escalates as the insurance model gains sophistication, except for Model 3, where the proportionality to 
distance travelled results in a stark contrast between the maximum premium and the mean premium. In this case, the Gini coefficient 
reaches 0.443. This discrepancy cautions against employing Poisson multiplicative specifications with distance as an offset. Instances 
arise where policyholders with extensive distances travelled may face exorbitant premiums, underscoring the observed inequality in 
premium distribution, as evidenced by the Gini coefficient.

In Appendix A3, we present calculations akin to those in Table 8, encompassing both the Linear Probability Model, characterized by 

Fig. 4. Average pure premium per week under Model 8 by group of drivers in the telematics weekly data set, Spain, 2019. Those who suffered an 
accident during the observation period (red) and those who did not suffer an accident during the observation period (green). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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an additive structure, and the Logistic Probability Model, which adopts a non-linear framework. On one hand, we observe that the 
minimum weekly premiums across various scenarios are set at 0, while the maximum weekly premium in the linear models reaches 
11.3. Hence, the maximum is notably lower compared to the Poisson approach, arising from the multiplicative scheme.

On the other hand, the weekly premiums derived from logistic models exhibit a range of values between 0.02 and 37.5 Euros. 
Despite the logistic regression model featuring a non-linear specification, it appears to strike a reasonable balance between the 
multiplicative and additive schemes.

7. Conclusions

In this study, we present compelling evidence that dynamic telematics factors offer easily interpretable and transparent algorithms 
that represent the future of dynamic driving safety assessment. We commence by considering a foundational scenario where traditional 
risk factors are the sole focus and subsequently compare these results with a scenario where speed events’ occurrence is integrated into 
the model, akin to the approach taken by Guillen et al. [33]. Our distinctive contribution lies in the analysis of claims that occurred 
during the same time as the collection of telematics information, differentiating our approach from Guillen et al. [33] where claims 
were derived from historical claim data. We acknowledge the potential for correlated data within our dataset, which can present 
challenges for the reliability of our statistical models.

End users are typically less concerned with the intricacies of scoring calculations. Nevertheless, we advocate for a linear specifi-
cation, which is often more transparent and easier to communicate to consumers. We have incorporated this suggestion into our 

Table 7 
Poisson Regression Models: Model 5a (all non-telematics, distance, urban speed events), Model 5b (all non-telematics, distance, percentage of urban 
driving), Model 6 (all non-telematics and lagged telematics variables), Model 7 (all non-telematics, lagged total distance, lagged percentage of urban 
driving and current total distance travelled at night) and Model 8 all non-telematics, current and lagged total distance, lagged percentage of urban 
driving and current total distance travelled at night) in telematics weekly data set, Spain 2019.

Variable MODEL 5a MODEL 5b MODEL 6 MODEL 7 MODEL 8

Coef p-val Coef p-val Coef p-val Coef p-val Coef p-val

Intercept − 6.429 <0.001 − 6.336 <0.001 − 6.340 <0.001 − 6.289 <0.001 − 6.246 <0.001
Vehicle_power 0.001 0.203 0.002 0.097 0.002 0.097 0.002 0.103 0.002 0.116
Gender 0.160 0.020 0.156 0.023 0.158 0.022 0.144 0.037 0.144 0.038
Age − 0.016 0.031 − 0.016 0.026 − 0.017 0.025 − 0.014 0.054 − 0.014 0.052
Ln(Total distance drivenKM) 0.060 0.166
Ln(Total distance drivenKM)_lag 0.105 0.007 0.376 <0.001 0.379 <0.001 0.361 <0.001 0.330 <0.001
Speed_event_urban_lag 0.047 0.003
Perc_urban_lag 0.013 <0.001 0.013 <0.001 0.013 <0.001 0.013 <0.001
Ln(km_nightMK) 0.010 0.027 0.009 0.059
Ln(km_nightMK)_lag − 0.001 0.802

AIC 14263 14219 14220 14216 14216
Pseudo R2 (%) 0,331 0,644 0,644 0,678 0,692
Residual deviance (Null deviance 12455) 12407 12363 12362 12358 12356

Table 8 
Range of weekly and yearly premium for different ratemaking schemes (based on the Poisson model) and Gini index for the telematics weekly data set, 
Spain, 2019 (in Euros).

Weekly premium Yearly premium Gini

Min Max Min Max

Model 0: Traditional risk factors 1.227 6.500 63.791 337.989 0.082
Model 3: PAYD (proporcional distance) 0.000 73.616 0.001 3828.046 0.443
Model 4a: PAYD (distance in logs) 0.541 7.155 28.149 372.058 0.107
Model 4b: PAYD (lagged distance in logs) 0.403 7.279 20.97 378.518 0.115
Model 5a: PHYD (lagged speed events urban) 0.640 12.227 33.285 635.812 0.126
Model 5b: PHYD (lagged percentage urban) 0.017 20.444 0.902 1063.113 0.175
Model 6: UBI (lagged telematics info) 0.017 20.356 0.876 1058.505 0.175
Model 7: UBI (lagged telematics info, but current log of km in the night) 0.020 21.164 1.035 1100.538 0.180
Model 8: UBI (lagged telematics info, but current log of km in the night and also current log of total km) 0.015 19.013 0.763 988.670 0.182

The sum of premiums always equals 2,152,040.2.
PAYD: Pay As You Drive. PHYD: Pay How you Drive. UBI: Usage based Insurance.
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manuscript. Additionally, in the limitations section, we acknowledge that while more sophisticated tree-based algorithms, capable of 
capturing non-linear effects and interactions between factors, may be technically more accurate, they are perceived as less transparent 
and can be more complex. These adjustments help clarify the focus on transparency and the trade-offs between linear and tree-based 
models.

Our findings substantiate the significance of risky events in predicting accident occurrence, aligning with the conclusions drawn by 
Guillen et al. [33]. Near miss or risky events emerge as potent indicators of risky driving, encapsulating critical insights into potential 
accidents. Nevertheless, our study underscores the continued relevance of incorporating classical telematics variables, notably dis-
tance, time of driving, and type of road. Specifically, we ascertain that the distance travelled on urban roads and during nighttime 
significantly correlates with a heightened risk of accidents and should therefore be factored into the safety assessment. We 
acknowledge that the focus on a specific geographic region (Spain) and time period (2018–2019) may limit the generalizability of our 
findings to other countries and time periods. We applied three distinct modeling approaches (Poisson, Logistic and Linear Probability 
models), and the three of them converge on these crucial conclusions. In discussing the implications of our findings, it is essential to 
acknowledge the growing adoption of telematics-based insurance schemes, particularly Pay-as-You-Drive policies. These policies, 
which charge premiums based on actual driving behavior and distance travelled, offer potential benefits such as cost savings for 
low-mileage drivers. Our study underscores the importance of understanding and leveraging telematics data to refine risk assessment 
models and enhance insurance pricing accuracy. However, it is also critical to address ethical considerations and privacy concerns 
associated with the collection and use of such data, despite our use of anonymized information in this analysis. As telematics tech-
nology continues to evolve, future research should explore its broader implications for insurance practices and policyholder 
preferences.

Additionally, we explored models incorporating lagged predictors and demonstrated their comparable efficacy to models utilizing 
concurrent information. This finding is pivotal in encouraging safe driving practices, as it implies that recent historical data can be as 
influential as real-time data in predicting and promoting safe driving behaviors. These insights provide a comprehensive framework for 
leveraging telematics data in dynamic driving safety assessment, emphasizing the importance of both traditional and dynamic factors 
for a comprehensive understanding of risk in the domain of automobile insurance.
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Institució Catalana de Recerca Avançada [grant number ICREA Academia].

CRediT authorship contribution statement

Montserrat Guillen: Writing – review & editing, Writing – original draft, Validation, Supervision, Project administration, 
Methodology, Funding acquisition, Formal analysis, Data curation, Conceptualization. Ana M. Pérez-Marín: Writing – review & 
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Appendix A1

Table A1 
Summary table with the revised list of references where telematics information was used.

Authors Year Variables

Alrassy, P., Smyth, A. W. & Jang, J. [32] GPS trajectòries
Timestamps
Speed
Hard braking/acceleration

Gao, G., Meng, S. & Wüthrich, M. V. [48] Latitude
Longitude
Heading (approaching direction of the vehicle in decimal degree)
Speed
Positional_Quality (indicator of the GPS signal quality)
Engine_RPM
Lateral acceleration
Longitudinal acceleration
Vertical acceleration

Li, H. J., Luo, X. G., Zhang, Z. L., Jiang, W. & Huang, S. W. [38] Mileage
Timestamp
Speed
Acceleration
Gear State
Engine speed
Tire pressure
Fuel consumption
Abnormal vehicle status information

Malekpour, M. R., Ghamari, S. H., Ghasemi, E., Hejaziyeganeh, S., 
Abbasi-Kangevari, M., Bhalla, K., Rezaei, N., Shahraz, S., 
Dilmaghani-Marand, A., Heydari, S. T., Rezaei, N., Lankarani, K. B. 
& Farzadfar, F.

[39] GPS location
Speed
3-axis acceleration data

Meuleners, L., Fraser, M., Stevenson, M. and Roberts, P. [40] Distance travelled
Speed
Harsh deceleration/acceleration

Moosavi, S. & Ramnath, R. [34] GPS trajectòries
Speed
Acceleration
Angular speed
Road type
Day light

Gao, G., Wang, H., & Wüthrich, M. V. [48] Average driving time per week
Speed
Acceleration

Henckaerts, R., & Antonio, K. [51] Mileage
Road type
Time of day
Harsh events

Meng, S., Wang, H., Shi, Y., & Gao, G. [25] Latitude
Longitude
Heading (approaching direction of the vehicle in decimal degree)
Speed
Positional_Quality (indicator of the GPS signal quality)
Engine_RPM
Lateral acceleration
Longitudinal acceleration
Vertical acceleration.

Duval, F., Boucher, J. P., & Pigeon, M. [52] Average daily distance
Average daily number of trips
Median of the average speeds of the trips
Median of the distances of the trips
Median of the maximum speeds of the trips
Maximum of the maximum speed of the trips
Proportion of long trips (>100 km)
Time of day
Week day

Guillen, M., Nielsen, J. P., & Pérez-Marín, A. M. [33] Acceleration event (three intensities: 1, 2, and 3)
Braking event (three intensities: 1, 2, and 3)
Smartphone usage event (usage in seconds)

(continued on next page) 
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Table A1 (continued ) 

Authors Year Variables

Guillen, M., Pérez-Marín, A. M., & Alcañiz, M. [53] Number of kilometres driven at speeds above the posted limit during 
2010
Total number of kilometres driven during 2010
% of kilometres driven on urban roads during 2010
% of kilometres driven at night (between midnight and 6 a.m.) during 
2010

Mao, H., Guo, F., Deng, X., & Doerzaph, Z. R. [54] Driving hours in the study
Annual Mileage (mile)
Run red lights past 12 months (*)
Drive sleepy past 12 months (*)
Impatiently pass on right (*)
Brake aggressively (*)
Involved in racing (*)
Nod off while driving (*)
(*) Never; Rarely; Sometimes; Often; NA

So, B., Boucher, J. P., & Valdez, E. A. [55] Annualized percentage of time on the road
Total distance driven in miles
Percent of driving day x of the week: mon/tue/ …/sun
Percent vehicle driven within x hrs: 2hrs/3hrs/4hrs
Percent vehicle driven during x: wkday/wkend
Percent of driving during x rush hours: am/pm
Mean number of days used per week
Number of sudden acceleration 6/8/9/ …/14 mph/s per 1000 miles
Number of sudden brakes 6/8/9/ …/14 mph/s per 1000 miles
Number of left turn per 1000 miles with intensity 08/09/10/11/12
Number of right turn per 1000 miles with intensity 08/09/10/11/12

Sun, S., Bi, J., Guillen, M., & Pérez-Marín, A. M. [56] Frequency of driving speed greater than 100 km/h
Frequency of braking when the driving speed is greater than 90 km/h
Frequency of cases when acceleration is greater than 6 m/s2
Frequency of cases when acceleration is less than 6 m/s2
Total driving distance (km)
Total fuel consumption (L)
Total number of brakes
Range of driving (geographical units)
Mean of speed (km/h)
Mean of revolutions per minute (r/min)
Mean of acceleration pedal position (%)
Mean of engine fuel rate (%)

Guillen, M., Nielsen, J. P., Pérez-Marín, A. M., & Elpidorou, V. [31] Percentage of kilometers travelled during night hours
Percentage of kilometers travelled in urban areas
Percentage of kilometers travelled at speeds above the limits
Total number of kilometers travelled over one week
Number of observed accelerating events over one week.
Number of observed braking events over one week.
Number of observed maneuvering events over one week.
Percentage of kilometers travelled during night hours

Seacrist, T., Douglas, E. C., Hannan, C., Rogers, R., Belwadi, A., & Loeb, 
H.

[57] Secondary tasks preceding crashes and near crashes
Seven types of incident: (1) rear-ends, (2) road departures, (3) 
intersections, (4) side-swipe, (5) head-on, (6) animal, and (7) 
pedestrian/cyclist

Sun, S., Bi, J., Guillen, M., & Pérez-Marín, A. M. [58] Brake counts with speed >40 km/h
Mean of acceleration pedal position (%)
Cumulative driving distance (km)
Mean of Speed (km/h)
Mean of RPM
Range of driving (geographical units)

Geyer, A., Kremslehner, D. and Mürmann, A. [24] Speeding index (average speeding above legal speed limits)
Distance driven
Number of car rides per day
Interaction between the previous two

Pérez-Marín, A. M., Guillén, M., Alcañiz, M., & Bermúdez, L. (2019). [59] Number of kilometers driven at speeds above the posted limit during 
2010
Total number of kilometers driven during 2010
% of kilometers driven on urban roads during 2010
% of kilometers driven at night (between midnight and 6 a.m.) during 
2010

Guillén, M., Nielsen, J. P., Ayuso, M. & Pérez-Marín, A. M. [8] Total kilometres travelled per year
Percentage of kilometres travelled at night during the year
Percentage of kilometres travelled during the year above the limit
Percentage of kilometres travelled in urban areas during the year

(continued on next page) 
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Table A1 (continued ) 

Authors Year Variables

Gao, G., & Wüthrich, M. V. [23] Average speed
Average acceleration
Braking
Average change in direction (angle),
by second, trip and driver.

Hu, X., Zhu, X., Ma, Y.-L., Chiu, Y.-C., & Tang, Q. [60] Vehicle miles travelled
Average relative speed measures weighted on the duration of each trip 
among all the trips for one user
Average speeding measures weighted on the duration of each trip 
among all the trips for one user
Average smooth measures weighted on the duration of each trip among 
all the trips for one user
Average hard brake measures weighted on the duration of each trip 
among all the trips for one user
Average hard start measures weighted on the duration of each trip 
among all the trips for one user
Worst relative speed measures among all the trips for one user
Worst speeding measures among all the trips for one user
Worst smooth measures among all the trips for one user
Worst hard brake measures among all the trips for one user
Worst hard start measures among all the trips for one user
Average congestion level among all the trips for one user
Average percentile duration on freeway among all the trips for one user
Average percentile duration on arterial among all the trips for one user
Average percentile duration on the local street among all the trips for 
one user
Average percentile duration at peak hour among all the trips for one 
user
Average percentile duration at off peak hour among all the trips for one 
user
Average percentile duration at midnight among all the trips for one user

Huang, Y., & Meng, S. [17] Annual mileage
Range of usual driving regions
Irregularity of travel routes
Median of trip distances
Fractions of longtime driving (over 2 h)
Exposure fraction between 0 and 30 km/h
Exposure fraction between 30 and 60 km/h
Exposure fraction between 60 and 90 km/h
Exposure fraction between 90 and 120 km/h
Exposure fraction on workdays
Exposure fraction on peak workday mornings (7–9 a.m.)
Exposure fraction on peak workday evenings (5–8 p.m.) Exposure 
fraction at noon (11 a.m.–2 p.m.)
Exposure fraction in the evenings (8–12 p.m.)
Exposure fraction at night (0–6 a.m.)
Median of the average speed of trips (unit: km/h) Maximum of the 
recorded speed (unit: km/h)
Median of the driving instability of trips
Median of the comfort score of trips
Bad driving events per km
Lane changes per km
Fractions of lane changes at high speeds (over 30 km/h)
Sudden accelerations per km
Fractions of sudden accelerations
Sudden brakes per km
Fractions of sudden brakes
Sudden left turns per km
Fractions of sudden left turns
Sudden right turns per km
Fractions of sudden right turns

Pérez-Marín, A. M., & Guillen, M. [30] Distance travelled during the year measured in kilometers
Speed (% of kilometers travelled at speeds above the limit)
Urban (% of kilometers travelled on urban roads)

Pesantez-Narvaez, J., Guillen, M., & Alcañiz, M. [18] Total kilometers travelled
% of total kilometers travelled in urban areas
% of total kilometers above the mandatory speed limit
% of total kilometers travelled at night

Gao, G., Meng, S. and Wüthrich, M.V. [22] GPS speed and vehicle sensor speed

(continued on next page) 
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Table A1 (continued ) 

Authors Year Variables

They use velocity-acceleration heat maps. Covariates extracted from 
these maps are introduced in classical models.

Bian, Y., Yang, C., Zhao, J. L., & Liang, L. [61] Total mileage per month
Nighttime driving hours per month
Workday driving hours per month
Monthly average speed
Times of over speed (the vehicle speed is higher than road speed limits)
Times of acceleration, maximum deceleration and sharp turn

Gao, G., & Wüthrich, M. V. and Gao, G., Wuthrich, M. V., & Yang, H. [21, 
62]

Speed
Acceleration

Verbelen, R., Antonio, K., & Claeskens, G. [10] Distance driven during the policy period
Number of trips (key-on, key-off) during the policy period
Distance in meters driven on average during one trip
Division of the distance 4 road types (urban, other, motorways and 
abroad)
Division of the distance into 5 time slots (6h–9h30, 9h30-16h, 16h–19h, 
19h–22h and 22h–6h)
Division of distance into week (Monday–Friday) and weekend 
(Saturday and Sunday)

Ma, Y.L., Zhu, X., Hu, X. and Chiu, Y.C. [63] Hard brake
Hard start
Speeding when congestion
Speeding when no congestion
Speed limit ≥60
Speed limit <60
Faster relative speed
Link speed <40 mph
Link speed ≥40 mph
Slower relative speed
Link speed <40 mph
Link speed ≥40 mph

Wüthrich, M. V. [20] Average acceleration/braking
Total distance
Average distance per trip (in km)
Total time (in h)
Average time per trip (in min)
Average speed (in km/h)
Median speed over trips (in km/h)

Baecke, P. and Bocca, L. [16] Total distance
Total trip time
Location distance (city, highway, abroad, other)
Day time distance (low night, high AM, low day, high PM, low PM)
Telematics crash
Telematics crash G-force
Night trip (Friday, Saturday)
Rush hours trip (morning, evening)
Rush hours trip start (morning, evening)

Ayuso, M., Guillén, M. & Pérez-Marin, A.M. [11] Distance travelled
% of urban driving
% of nighttime driving
% of the total kilometers travelled above the mandatory speed limits

Weidner, W., Transchel, F. W., & Weidner, R. [19] Velocity 
Longitudinal and lateral acceleration

Makov, U. and Weiss, J. [64] Time (UTC)
Latitude
Longitude
Average speed (MPH, since prior obs.)
Accelerometer axis x readings (g-force)
Accelerometer axis y readings (g-force)
Accelerometer axis z readings (g-force)

Ellison, A.B., Bliemer, M.C.J. & Greaves, S.P. [65] Speed limit (40, 50, 60, 70, 80, 90, 100, 110 (km/h))
School Zone (binary)
Rain Temporal (Binary)
Time of day (1: Morning, 2: Day 3: Afternoon, 4: Night)
Weekend (Binary)
Outcomes: Driver Behaviour Profiles (DBPs) constructed from sec-by- 
sec data for speeding, accelerating and braking

Ellison, A. B., Greaves, S. P., & Bliemer, M. C. [66] Speed limit of road
School zone
Rain

(continued on next page) 
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Table A1 (continued ) 

Authors Year Variables

Signalized intersection (within 25m)
Non-signalized intersection (within 25m)
Roundabout (within 25m)
Time of Day: Morning, Day, Afternoon or Night
Weekend: Saturday or Sunday

Wahlström, J., Skog, I. and Händel, P. [67] Speed 
Acceleration 
Strength G

Ayuso, M., Guillén, M. and Pérez-Marín, A.M. [68, 
69]

Distance travelled
% of urban driving
% of nighttime driving
% of the total kilometers travelled above the mandatory speed limits

Handel, P., Skog, I., Wahlstrom, J., Bonawiede, F., Welch, R., Ohlsson, J. 
and Ohlsson, M.

[70] Number of rapid acceleration events and their harshness
Number of harsh braking events and their harshness
Amount of absolute speeding
Amount of speeding relative a location dependent limit
Long-term speed variations around a nominal speed
Number of abrupt steering maneuvers and their harshness
Number of events when turning at too high speed and their harshness
Instantaneous or trip-based energy consumption or carbon footprint
Time duration of the trip
Distance of the trip
Actual time of day when making the trip
Geographical location of the trip

Boucher, J.P., Pérez-Marín, A.M. & Santolino, M. [5] Number of kilometers driven by the insured in the year 2011
Paefgen, J., Kehr, F., Zhai, Y. and Michahelles, F. [71] Speed

Longitudinal and lateral acceleration
Gerpott, T.J. and Berg, S. [72] Kilometrage: proportion with at least 20,000 km

Type of road: proportion of highway >25 %
Time of travel: Proportion of rush-hourc >10 %

Bolderdijk, J.W., Knockaert, J., Steg, E.M. and Verhoef, E.T. [73] Speeding (percentage of total distance travelled at 6 % or more above 
the local speed limit across all five road types)
Type of road: (30, 50, 80, 100 and 120 km/h)
Total distance travelled
Distance driven on weekend nights

Farmer, C., Kirley, B. and McCartt, A. [74] Sudden braking/acceleration events per 100 miles driven.
Miles not using seat belts
Speeding by more than 10 mph per 100 miles driven

Toledo, T., Musicant, O. and Lotan, T. [75] Trip start and end times
Acceleration of the vehicle (both in the lateral and longitudinal 
directions)
Speed
Vehicle location measured
Vehicle on-board diagnostics system in order to obtain additional 
engine parameters

Musicant, O., Lotan, T. and Toledo, T. [76] Vehicle movement (longitudinal and lateral accelerations and the speed 
of the vehicle)
Driver control (engine throttle and brake application and wheel-angle)
Engine parameters (such as RPM)
State of the vehicle safety systems (air bags, seat belts, ABS and traction 
control)
Vehicle location
Time
Visual documentation (both inside and outside the vehicle)

Appendix A2 

Table A2.1 
Linear Regression Models: Model 0 (non-telematics), Model 1 (following [31], one near-miss event) and Model 2 results (with speed events as a 
contextual and risky event), in telematics weekly data set, Spain 2019 (coefficients have been multiplied by 10,000).

Variable MODEL 0 MODEL 1 MODEL 2

Coef p-val Coef p-val Coef p-val

Intercept 14.358 <0.001 13.254 <0.001 12.356 <0.001
Vehicle_power 0.025 0.065 0.016 0.236 0.020 0.147

(continued on next page) 
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Table A2.1 (continued ) 

Variable MODEL 0 MODEL 1 MODEL 2

Coef p-val Coef p-val Coef p-val

Gender 2.120 0.009 1.914 0.018 1.915 0.018
Age − 0.216 0.009 − 0.186 0.025 − 0.180 0.030
Speed_event (wherever) 10− 1 lag 3.873 <0.001
Speed_event_urban_lag 0.866 <0.001

AIC − 3097503 − 3097514 − 3097523

Table A2.2 
Linear Regression Models: Model 3 (all non-telematics and log of distance travelled as offset), Model 4a (all non-telematics and log of distance 
travelled) and Model 4b (all non-telematics and lagged log of distance travelled) in telematics weekly data set, Spain 2019 (coefficients have been 
multiplied by 10,000).

Variable MODEL 3 MODEL 4a MODEL 4b

Coef p-val Coef p-val Coef p-val

Intercept 13.268 <0.001 17.19 <0.001 17.726 <0.001
Vehicle_power 0.021 0.125 0.021 0.128 0.02 0.143
Gender 2.013 0.013 2.036 0.012 2.021 0.012
Age − 0.209 0.011 − 0.208 0.012 − 0.207 0.012
Total distance drivenKM 5.949 0.002
Ln(Total distance drivenKM) 1.384 <0.001
Ln(Total distance drivenKM)_lag 1.637 <0.001

AIC − 3097511 − 3097514 − 3097519

Table A2.3 
Linear Regression Models: Model 5a (all non-telematics, distance, urban speed events), Model 5b (all non-telematics, distance, percentage of urban 
driving), Model 6 (all non-telematics and lagged telematics variables), Model 7 (all non-telematics, lagged total distance, lagged percentage of urban 
driving and current total distance travelled at night) and Model 8 all non-telematics, current and lagged total distance, lagged percentage of urban 
driving and current total distance travelled at night) in telematics weekly data set, Spain 2019 (coefficients have been multiplied by 10,000).

Variable MODEL 5a MODEL 5b MODEL 6 MODEL 7 MODEL 8

Coef p-val Coef p-val Coef p-val Coef p-val Coef p-val

Intercept 15.058 <0.001 16.339 <0.001 16.304 <0.001 17.081 <0.001 17.603 <0.001
Vehicle_power 0.018 0.195 0.024 0.085 0.024 0.085 0.023 0.09 0.022 0.104
Gender 1.899 0.019 1.916 0.018 1.925 0.018 1.767 0.029 1.766 0.029
Age − 0.182 0.028 − 0.195 0.018 − 0.197 0.018 − 0.171 0.04 − 0.172 0.039
Ln(Total distance drivenKM) 0.676 0.149
Ln(Total distance drivenKM)_lag 1.078 0.011 3.870 <0.001 3.886 <0.001 3.706 <0.001 3.379 <0.001
Speed_event_urban_lag 0.656 0.001
Perc_urban_lag 0.147 <0.001 0.148 <0.001 0.145 <0.001 0.147 <0.001
Ln(km_nightMK) 0.128 0.020 0.112 0.046
Ln(km_nightMK)_lag − 0.008 0.893

AIC − 3097527 − 3097566 − 3097564 − 3097570 − 3097570

Table A2.4 
Logistic Regression Models: Model 0 (non-telematics), Model 1 (following [31], one near-miss event) and Model 2 results (with speed events as a 
contextual and risky event), in telematics weekly data set, Spain 2019.

Variable MODEL 0 MODEL 1 MODEL 2

Coef p-val Coef p-val Coef p-val

Intercept − 6.501 <0.001 − 6.598 <0.001 − 6.678 <0.001
Vehicle_power 0.002 0.069 0.001 0.238 0.002 0.149
Gender 0.180 0.009 0.163 0.018 0.163 0.018
Age − 0.019 0.010 − 0.016 0.028 − 0.016 0.033
Speed_event (wherever) 10− 1 lag 0.284 <0.001
Speed_event_urban_lag 0.065 <0.001

AIC 14286 14276 14268

Table A2.5 
Logistic Regression Models: Model 3 (all non-telematics and log of distance travelled as offset), Model 4a (all non-telematics and log of distance 
travelled) and Model 4b (all non-telematics and lagged log of distance travelled) in telematics weekly data set, Spain 2019.

Variable MODEL 3 MODEL 4a MODEL 4b

Coef p-val Coef p-val Coef p-val

(continued on next page) 
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Table A2.5 (continued ) 

Variable MODEL 3 MODEL 4a MODEL 4b

Coef p-val Coef p-val Coef p-val

Intercept − 6.589 <0.001 − 6.257 <0.001 − 6.21 <0.001
Vehicle_power 0.002 0.126 0.002 0.137 0.002 0.155
Gender 0.171 0.013 0.171 0.013 0.170 0.014
Age − 0.018 0.013 − 0.018 0.014 − 0.018 0.015
Totaldistance drivenKM 0.442 0.002
Ln(Total distance drivenKM) 0.126 <0.001
Ln(Total distance drivenKM)_lag 0.150 <0.001

AIC 14279 14274 14269

Table A2.6 
Logistic Regression Models: Model 5a (all non-telematics, distance, urban speed events), Model 5b (all non-telematics, distance, percentage of urban 
driving), Model 6 (all non-telematics and lagged telematics variables), Model 7 (all non-telematics, lagged total distance, lagged percentage of urban 
driving and current total distance travelled at night) and Model 8 all non-telematics, current and lagged total distance, lagged percentage of urban 
driving and current total distance travelled at night) in telematics weekly data set, Spain 2019

Variable MODEL 5a MODEL 5b MODEL 6 MODEL 7 MODEL 8

Coef p-val Coef p-val Coef p-val Coef p-val Coef p-val

Intercept − 6.427 <0.001 − 6.334 <0.001 − 6.338 <0.001 − 6.287 <0.001 − 6.244 <0.001
Vehicle_power 0.001 0.203 0.002 0.097 0.002 0.097 0.002 0.103 0.002 0.116
Gender 0.160 0.020 0.157 0.023 0.158 0.022 0.144 0.037 0.144 0.038
Age − 0.016 0.031 − 0.017 0.025 − 0.017 0.025 − 0.014 0.054 − 0.014 0.052
Ln(Total distance drivenKM) 0.060 0.165
Ln(Total distance drivenKM)_lag 0.105 0.007 0.376 <0.001 0.379 <0.001 0.361 <0.001 0.330 <0.001
Speed_event_urban_lag 0.047 0.003
Perc_urban_lag 0.013 <0.001 0.014 <0.001 0.013 <0.001 0.013 <0.001
Ln(km_nightMK) 0.010 0.027 0.009 0.058
Ln(km_nightMK)_lag − 0.001 0.802

AIC 14262 14217 14219 14214 14215

Appendix A3 

Table A3.1 
Range of weekly and yearly premium for different ratemaking schemes (based on the linear probability model) and Gini index for the telematics 
weekly data set, Spain, 2019 (in Euros).

Weekly premium Yearly premium Gini

Min Max Min Max

Model 0: Traditional risk factors 0.635 5.247 33.033 272.824 0.083
Model 3: PAYD (proporcional distance) 0.397 11.013 20.646 572.658 0.099
Model 4a: PAYD (distance in logs) 0 5.473 0 284.58 0.106
Model 4b: PAYD (lagged distance in logs) 0 5.516 0 286.845 0.114
Model 5a: PHYD (lagged speed events urban) 0 7.302 0 379.693 0.128
Model 5b: PHYD (lagged percentage urban) 0 7.876 0 409.534 0.167
Model 6: UBI (lagged telematics info) 0 7.868 0 409.123 0.167
Model 7: UBI (lagged telematics info, but current log of km in the night) 0 8.008 0 416.396 0.173
Model 8: UBI (lagged telematics info, but current log of km in the night and also current log of total km) 0 7.747 0 402.847 0.175

The sum of premiums always equals 2,152,040.2.
PAYD: Pay As You Drive. PHYD: Pay How you Drive. UBI: Usage based Insurance.

Table A3.2 
Range of weekly and yearly premium for different ratemaking schemes (based on the logistic regression model) and Gini index for the telematics 
weekly data set, Spain, 2019 (in Euros).

Weekly premium Yearly premium Gini

Min Max Min Max

Model 0: Traditional risk factors 1.226 6.497 63.773 337.821 0.082
Model 3: PAYD (proporcional distance) 1.136 37.481 59.061 1949.025 0.096
Model 4a: PAYD (distance in logs) 0.541 7.150 28.124 371.81 0.107
Model 4b: PAYD (lagged distance in logs) 0.403 7.274 20.946 378.254 0.115
Model 5a: PHYD (lagged speed events urban) 0.640 12.202 33.262 634.527 0.126
Model 5b: PHYD (lagged percentage urban) 0.017 20.342 0.897 1057.803 0.175
Model 6: UBI (lagged telematics info) 0.017 20.255 0.872 1053.254 0.175

(continued on next page) 
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Table A3.2 (continued ) 

Weekly premium Yearly premium Gini

Min Max Min Max

Model 7: UBI (lagged telematics info, but current log of km in the night) 0.020 21.053 1.030 1094.779 0.180
Model 8: UBI (lagged telematics info, but current log of km in the night and also current log of total km) 0.015 18.928 0.759 984.278 0.182

The sum of premiums always equals 2,152,040.2.
PAYD: Pay As You Drive. PHYD: Pay How you Drive. UBI: Usage based Insurance.
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[67] J. Wahlström, I. Skog, P. Händel, Detection of dangerous cornering in GNSS-data-driven insurance telematics, IEEE Trans. Intell. Transport. Syst. 16 (6) (2015) 

3073–3083, https://doi.org/10.1109/TITS.2015.2431293.
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