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Abstract—Telematics devices have transformed driver risk 

assessment, allowing insurers to tailor premiums based on detailed 

evaluations of driving habits. However, integrating Advanced 

Driver Assistance Systems (ADAS) and contextualized geolocation 

data for predictive improvements remains underexplored due to 

the recent emergence of these technologies. This article introduces 

a novel risk assessment methodology that periodically updates 

insurance premiums by incorporating ADAS risk indicators and 

contextualized geolocation data. Using a naturalistic dataset from 

a fleet of 354 commercial drivers over a year, we modeled the 

relationship between past claims and driving data through claims 

frequency using Poisson regression and claims occurrence 

probability using machine learning models, including XGBoost 

and TabNet. The dataset is divided into weekly profiles containing 

aggregated driving behavior, ADAS events, and contextual 

attributes. Risk predictions from these models are used to compute 

weekly premiums for each driver. SHAP is employed to interpret 

the machine learning model predictions. Results indicate that 

XGBoost achieved the lowest Log Loss, reducing it from 0.59 to 

0.51 with the inclusion of ADAS warnings and driving context. 

However, these improvements were not consistent across all 

models and did not show statistically significant differences in 

ROC AUC values. The proposed methodology computes weekly 

premiums based on risk predictions from these models, penalizing 

risky behaviors while incentivizing safe driving behaviors. This 

dynamic pricing can be incorporated into the insurance lifecycle, 

enabling tailored policies based on emerging technologies. The 

study demonstrates the value of integrating diverse data sources 

for bespoke risk assessment and weekly insurance pricing. 

 
Index Terms—advanced driver assistance systems, explainable 

artificial intelligence, generalized linear models, machine learning, 

risk assessment. 

I. INTRODUCTION 

Motor insurance companies assess their customers' risks to 

provide coverage for their potential losses. Typical risk factors 

involve vehicle and driver metadata that divide the portfolio of 

drivers into different segments according to their crash risk (i.e., 

risk segmentation) [1]. However, such factors need an essential 

layer for predicting crashes: driving habits. Usage-based 

insurance (UBI) addresses this issue by relying on dynamic 

driving data collected through telematics devices to offer 

personalized and dynamic risk assessment. The benefits of such 

 
This project was supported by the Fonds National de la Recherche, 

Luxembourg (Project Code: 14614423) and the Spanish Ministry of Science 

and Innovation, NextGenerationEU (Project Codes: TED2021-130187B-I00 
and PID2019-105986GB-C21). (Corresponding author: Barry Sheehan).  

Leandro Masello, Barry Sheehan, and Finbarr Murphy are with the 

University of Limerick, Limerick KB3-040, Ireland. (email: 
barry.sheehan@ul.ie). 

an approach are three-fold: it leads to fair pricing, incentivizes 

safe driving practices, and enables access to risk indicators 

periodically, even before a crash occurs [2], [3]. 

The advent of emerging vehicular technologies, such as 

Advanced Driver Assistance Systems (ADAS), offers 

opportunities for refining personalized risk assessments. These 

systems enhance vehicle performance and road safety by 

assisting drivers with safety-relevant feedback [4], [5]. 

Depending on the level of automation, some ADAS can control 

the vehicle’s motion (e.g., Automatic Emergency Braking), 

while warning-based ADAS only triggers alerts about safety-

related events (e.g., Forward Collision Warning) [6]. The 

feedback provided in both cases has direct implications for the 

frequency and severity of road crashes, therefore modifying the 

inherent driving risk [7]. 

Incorporating ADAS data into risk assessment models 

enables a deeper understanding of driving risk. Such data 

encompass risk factors related to distraction and risky behaviors 

that are unavailable with telematics devices. For example, a 

driver who receives many forward collision warnings per trip 

has a higher risk appetite than another who keeps a conservative 

distance from the vehicle ahead. Similarly, driver distraction 

has several consequences in driving safety, including keeping 

safe headway distances [8], speed regulation [9], and lane 

position [10]. Driver inattention from engaging in visually or 

manually complex tasks has been linked to a three-fold increase 

in driving risk [11]. Thus, ADAS data presents opportunities for 

improved risk assessment, constituting relevant information for 

motor insurers and road safety stakeholders. 

The driving context represents another information layer 

that plays a significant role in automobile risk assessment. 

Driving behavior cannot be comprehensively assessed in 

isolation; it must be interpreted within the context of the driving 

environment, including road types, traffic conditions, road 

infrastructure, and weather. These contextual factors influence 

driving risk and the effectiveness of ADAS [7]. For instance, 

speeding excessively on motorways has a different impact than 

on urban roads [12]. Similarly, the impact of ADAS can differ 

based on the complexity of road layouts or weather conditions. 

Therefore, a comprehensive risk assessment model must 

integrate data on driving behavior and ADAS use, along with 
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contextual information that reflects the driving conditions under 

scrutiny.  

Integrating ADAS data and the driving context into risk 

assessment models presents several challenges. One significant 

challenge is these technologies' recent emergence and varied 

availability, leading to inconsistent data quality, completeness, 

and a lack of historical correlations with claims. Additionally, 

the contextual information requires sophisticated methods for 

accurate data collection and processing. Another challenge is 

the high dimensionality and heterogeneity of the data, which 

can complicate the modeling process and require advanced 

techniques to identify latent relationships. This challenge also 

influences the willingness to share this data. While many 

drivers are attracted to potential cost savings from lower 

premiums for safe driving, privacy concerns remain significant. 

Insurance companies can address these concerns by ensuring 

data collection and usage transparency, demonstrating clear 

benefits, and maintaining trustworthy practices. 

This article introduces a risk assessment framework that 

integrates data concerning driving behavior, ADAS warnings, 

and the driving context into UBI schemes. It studies predictive 

modeling for claims frequency and claim occurrence 

probability in a fleet of commercial vehicles equipped with 

ADAS. To the best of the authors’ knowledge, the article 

contributes the first risk assessment methodology incorporating 

weekly contextual information and ADAS warnings into the 

driver’s risk profile. The proposed framework leverages the 

claims history of a driving fleet to find associations between at-

fault claim frequencies and driving patterns through two 

predictive modeling perspectives: (i) a claims frequency using 

Poisson Regression and (ii) a claims occurrence probability 

based on five machine learning techniques – Logistic 

Regression, Support Vector Machine, Random Forest, 

XGBoost, and TabNet. The research provides a framework for 

insurance premium determination that can evolve in tandem 

with vehicular technologies. 

The lack of explainability of machine learning algorithms 

poses challenges in meeting the transparency requirements set 

by insurance pricing regulations [13]. Explainable Artificial 

Intelligence (XAI) appears as an approach to reaching a balance 

between complex models and regulatory compliance. Shapley 

Additive Explanations (SHAP), an XAI method based on game 

theory, can effectively interpret complex models' predictions by 

analyzing each feature's contribution to the model’s output [14]. 

Despite its application in several domains [15], [16], the 

adoption of XAI in motor insurance, particularly for 

interpreting the risk derived from naturalistic driving data, 

remains limited. The second contribution of this research is the 

application of SHAP into the insurance lifecycle by analyzing 

the contribution of each studied feature to the driver risk. 

The implications of this research extend to risk management 

and transportation stakeholders. It offers opportunities for 

insurers to enhance risk segmentation and pricing strategies for 

customers with ADAS. Furthermore, weekly pricing tied to the 

driver's performance incentivizes safe driving patterns since 

drivers receive feedback with clear implications on how much 

they pay, as Ellison et al. [17] posited. Thus, the impact of the 

paper is also relevant for road safety stakeholders. 

The article is organized as follows. Section 2 details 

previous works on risk assessment and UBI. Section 3 presents 

the collected naturalistic driving dataset from a commercial 

Light-good Vehicles (LGV) fleet monitored for a year. Section 

4 introduces the methodology to evaluate claims frequency and 

probability with and without ADAS and contextual features. It 

also introduces approaches to using the resulting models for 

weekly insurance ratemaking. The respective results of such 

methods, including model performances and premium 

implications, are elaborated in Section 5. The article concludes 

with the main contributions, applications for stakeholders, and 

future work in Section 6. 

II. RELATED WORK 

Risk assessment for UBI focuses on driving behavior, which 

can be obtained through vehicle dynamics. The rationale is that 

risky drivers tend to perform considerable aggressive 

maneuvers involving acceleration and speeding [18], [19]. 

Typical values for aggressive acceleration events are absolute 

magnitudes higher than six m/s2 [20], [21]. The speeding 

attitude (i.e., the propensity to violate speed limits) supplements 

acceleration information by reflecting drivers’ negligence and 

sensation-seeking [22]. Driven distance is another commonly 

studied factor due to its positive association with claims and 

driving exposure [23]. However, thorough assessments must 

understand where policyholders drive, not just how much. The 

driving context in which certain habits occur addresses this 

challenge by allowing a deeper understanding of risk attitudes. 

Ma et al. [24] showed the importance of driving context in a 

ratemaking scheme based on the relationships between claims 

history and traditional risk factors, driving habits, and the 

context in which people drive. Factors like traffic conditions, 

road layout, road signs, and weather information are associated 

with road crashes and therefore relevant for insurance 

premiums [25], [26], [27]. 

Data from ADAS provides another layer of information for 

modeling driver risk. These emerging technologies capture 

driver distraction, a leading cause of crashes, representing 

around 9.7 % and 7.1 % of fatal crashes in the United States and 

the United Kingdom [28], [29]. While several factors may cause 

driver inattention, engaging in cell phone calls is among the 

most studied causes [27], [30]. Other distraction causes involve 

fatigue, talking to other passengers, or smoking [31], [32], and 

their impact on safety makes them worth considering for driver 

risk assessment. 

Integrating ADAS in automobile insurance has received 

attention in recent literature. Studies suggest that ADAS 

features, such as automatic emergency braking and lane 

departure warning, significantly reduce accident frequency, 

thereby lowering insurance claims [7]. However, while these 

systems decrease overall collision frequency, they may also 

increase the severity of claims due to the higher costs of 

repairing more complex systems. Shannon et al. [33] conducted 

a comprehensive analysis of various levels of vehicular 

autonomy and their impact on claims frequency and loss 

distributions, estimating an increase in large-cost events despite 

the reduction in claims frequency. In contrast, research by 

LexisNexis Risk Solutions, which analyzed 11 million vehicles, 

demonstrated that even though repair costs may rise, reduced 
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claims frequency leads to overall decreases in claims loss [34]. 

Their findings showed that ADAS-equipped vehicles had a 

23% reduction in bodily injury loss cost, a 14% reduction in 

property damage loss cost, and an 8% reduction in collision 

claim loss cost compared to non-ADAS vehicles. Introducing 

ADAS risk score schemes accentuates the importance of using 

vehicle safety data in risk assessment frameworks. For instance, 

Swiss Re's ADAS Risk Score leverages vehicle safety features 

to offer bespoke premiums to policyholders [35]. 

Driver risk assessment generally encompasses two 

modeling approaches. The first consists of the traditional 

approach used in actuarial sciences based on generalized linear 

models (GLMs). This approach typically uses Poisson or 

Negative Binomial distributions to model the claims frequency. 

For instance, the ratemaking methodology posited by Guillen et 

al. [20] models claims frequency through vehicle metadata and 

near-misses (i.e., a situation where an accident is narrowly 

avoided). The authors illustrate how dynamic risk factors serve 

to update a traditional insurance premium weekly. The process 

computes a base premium through traditional risk factors and 

updates it based on driver behavior events. 

The second approach for risk assessment computes the 

probability that at least one claim happens in a given period, 

known as claims occurrence probability. This approach is based 

on Logistic Regression or more complex machine learning 

algorithms. Paefgen et al. [36] were among the first authors to 

compare several algorithms from a UBI pricing perspective. 

The authors concluded that Logistic Regression was the most 

suitable for insurance due to its interpretability. Ma et al. [24] 

also studied this algorithm, comparing the results with a 

Poisson regression for claims frequency, and found that both 

yielded consistent results. Huang & Meng [37] investigated 

several machine learning algorithms, and the results showed 

that ensemble learning, in particular XGBoost, is the method 

that achieves the best accuracy and robustness. Aiming to 

compare such algorithms with deep learning models, 

McDonnell et al. [38] analyzed TabNet for claim occurrence 

probability, and found that it performs similarly to XGBoost. 

In addition to model performance, model interpretation is 

essential for insurers due to pricing regulations [13]. While 

GLM models provide straightforward interpretability by 

reporting attribute coefficients, complex machine learning 

models pose challenges. Introducing SHAP into predictive 

modeling for risk assessment is a practical approach to address 

this issue. Wen et al. [39] found that SHAP was the most 

effective way to interpret the crash frequency models without 

limiting the complexity. Li et al. [40] demonstrated the 

application of SHAP to telematics data within a UBI scheme, 

providing policyholders with personalized feedback to promote 

safe driving behavior. Their study, conducted over one year 

with data from 9,879 vehicles in China, where 14.5% had at 

least one claim, used SHAP to interpret the claims occurrence 

probability. This approach helped identify the risk factors 

contributing to higher claims risk. 

This research extends previous works by integrating risk 

indicators from ADAS and contextual information into UBI 

models for claims frequency and occurrence probability. The 

model results are used to compute dynamic weekly insurance 

premiums, bridging the gap between driving behavior data, risk 

assessment, and insurance pricing. The proposed methodology 

leverages machine learning and deep learning techniques to 

enhance risk segmentation. This approach aims to provide a fair 

pricing strategy for insurers, reflecting the driving risk of 

policyholders with emerging technologies. Additionally, using 

SHAP for model interpretation adds transparency to using 

complex machine learning models for insurance pricing. 

III. DATA 

The dataset comprises driving data collected from a fleet of 

354 commercial drivers using light-good vehicles in a driving 

monitoring campaign. As part of their daily job activities, the 

drivers performed, on average, five daily trips, covering around 

143 km. The data collection occurred in the Republic of Ireland 

between 01/04/2021 and 31/03/2022, encompassing 8,142,896 

km from 287,511 trips, where drivers were monitored for 277 

days on average. All drivers received feedback about their 

driving patterns and attended quarterly coaching sessions to 

meet road safety standards. 

The first phase of the data processing pipeline involves 

collecting driving data. Such data encompasses geolocation 

samples obtained through a GNSS module and warning-based 

ADAS, which record timestamped behavior attributes. These 

timestamps allow us to align events across different data types 

and augment them with their environmental context using 

Motion-S’s Contextualizer service [41]. In this process, 

geolocation data are augmented with 16 contextual attributes 

related to road environment, road infrastructure and topology, 

traffic conditions, road signs, and weather conditions. 

Driver behavior events include vehicle dynamics collected 

from the telematics device and warning-based ADAS events. 

The former consists of anomalous events of vehicle kinematics 

that might have led to accidents, including harsh acceleration 

(acceleration greater than 6 m/s2), harsh braking (deceleration 

greater than 6 m/s2), and speeding [20], [21], [22]. This research 

classifies speeding into slight and serious speeding based on 

events lower or higher than 20 km/h above the speed limit, 

according to French law [42]. ADAS events involve warnings 

triggered when the vehicle or driver meets specific criteria, 

recorded by a driver-facing and road-facing dashcams 

connected to the vehicle. They include driver inattention (when 

the driver is looking around or talking with a passenger), 

making calls, smoking, fatigue (when the driver’s gaze shows 

drowsiness), forward collision (potential collisions detected 

against a stopped vehicle when traveling at speeds greater than 

20 km/h), lane departure (lane changing without using the 

indicators), and too close distance (tailgating events when the 

vehicle moves at speeds higher than 30 km/h). 

The last process of the data processing pipeline consists of 

getting driver risk profile aggregations using time windows 

according to the target scheme. This research aligns with [20] 

by using weekly aggregations. Consequently, the dataset 

comprises 12,528 driver weeks containing the attributes 

described in Table I. The studied dataset contains information 

about the past two years of the fleet claims history. Only at-fault 

claims are considered, as the goal is to identify relationships 

between patterns of risky drivers and claims. In the two years, 

62 at-fault claims were observed, giving a mean cost per claim 

of €2,899, where 50 drivers had one claim and six drivers had 
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two claims. To foster scientific collaboration and ensure the 

reproducibility of our research, the resulting dataset is publicly 

available [DOI of the public data – updated after the peer-

review]. 

TABLE I 

WEEKLY PROFILE ATTRIBUTES 

Category Attributes1 

Driving 
context 

mean_speed_limit [km/h], mean_weather_temperature [°C], 
mean_weather_visibility [m], mean_weather_wind_speed 

[km/h], prop_clear_weather, prop_congested, 

prop_more_than_one_lane, prop_motorway, 
prop_road_quality_moderate, prop_rural, prop_slope_flat, 

sum_animal_crossing_sign, sum_pedestrian_crossing_sign, 

sum_roundabout, sum_stop_sign, sum_traffic_light, 
sum_yield_sign 

Driving 

behavior 

sum_harsh_acceleration, sum_harsh_braking, 

sum_speeding_slight, sum_speeding_serious 

ADAS 
warnings 

sum_fatigue_driving, sum_forward_collision, 
sum_driver_inattention, sum_driver_smoking, 

sum_driver_making_calls, sum_lane_departure, 

sum_too_close_distance 

Driving 

exposure 

total_distance [km] 

Vehicle 

information 

engine_capacity [thousands cc] 

Claim 
information 

exposure_in_weeks, claims_count 

IV. METHODS 

This section presents the risk assessment methodology 

illustrated in Fig. 1. Using the contextualized weekly profiles 

described in the previous section, the methodology involves 

modeling both claim frequency and occurrence probability. 

Subsequently, it calculates weekly premiums for each driver. 

These premiums are designed to penalize risky driving 

behaviors while incentivizing safe driving practices. The 

models are interpreted using GLM coefficients for claim 

frequency modeling and SHAP values for machine learning 

models. 

 
Fig. 1. Methodology for weekly insurance pricing. A weekly profile is a vector 

x with the attributes listed in Table 1 for driver i and week t. The claims 
frequency modeling takes a set of weekly profiles and outputs GLM estimates, 

whereas claims occurrence probability outputs the probability of claims in the 

insurance period. 

Model performance is reported through a 5-fold stratified 

group cross-validation strategy, considering the nature of 

 
1 The prefix refers to the respective aggregation operation: mean, proportion, 

sum. Proportions are given in the range 0-1 and represent the exposure to that 

claims data and the limited number of drivers in the study. This 

technique splits the dataset into stratified folds of non-

overlapping drivers, preserving the proportion of samples with 

and without claims. In each iteration, four folds are used as a 

training set, leaving 20% of the data for evaluation. This 

process is repeated five times, with each iteration reporting a 

performance metric according to the modeling approach. The 

average of these metrics, along with the respective standard 

deviation over the folds, is then reported to provide a 

comprehensive evaluation of the model's performance. 

A. Claims frequency modeling 

The claims frequency modeling aims to find the relationship 

between the number of claims in a given period and driver 

profile attributes. GLMs are used to model such relationships, 

assuming that the number of claims follows a Poisson or 

Negative Binomial distribution [1]. This research investigates a 

Poisson regression to model claims frequency weekly, 

following the methodology posited by Guillen et al. [20]. 

Poisson regression is particularly suitable for modeling 

count data and is widely used in insurance for claim frequency 

modeling due to its simplicity and interpretability. The model 

assumes that the number of claims Yi for a given insurance 

policy i over a period Ti, represented by the duration of the 

contract, follows a Poisson distribution. This assumption holds 

because insurance claims are rare events that occur 

independently. 

The number of claims can be modelled through a vector of 

k risk factors xi=(xi1, xi2, …, xik). The parameter λi represents the 

expected claim frequency and is a function of the linear 

combination of risk factors xi
Tβ, where β is the vector of 

parameters resulting from the Poisson model. Such a 

relationship is determined by (1). The exponential term gives 

the predicted claims number by the exposure unit, while the 

period Ti allows capturing different contract durations. In this 

research Ti denotes the number of weeks of the policy. 

𝐸(𝑌𝑖|𝑥𝑖) = 𝜆𝑖 = 𝑒𝑥𝑝(𝑙𝑛 𝑇𝑖 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘𝑥𝑖𝑘)     (1) 

=  𝑇𝑖 ⋅ 𝑒𝑥𝑝(𝛽1𝑥𝑖1+. . . +𝛽𝑘𝑥𝑖𝑘) 

Traditional insurance models generally collect the risk 

factor vector xi when the policy is underwritten. In UBI models, 

this vector also encompasses attributes about the driving 

profile. Equation 2 rewrites (1) by using two risk factor sets – 

static and telematics-based – through vectors xi and Eit. The 

telematics risk vector Eit represents the driver behavior events 

of the ith policyholder at week t. However, the number of 

telematics observations is Ti, whereas the number of 

observations for the static risk factor is one per driver. 

Following [20], [24], a possible approach to overcome this 

challenge is replicating past claims data Ti times (i.e., Yi = Yit 

and Ti = Tit for every driver-week t). 

𝐸(𝑌𝑖|𝑥𝑖) = 𝑇𝑖 ⋅ 𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽) ⋅ 𝑒𝑥𝑝(𝐸𝑖𝑡

𝑇𝛼)     (2) 

condition within the week. Summations denote the total count of the respective 
event over the week. 
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The model is measured through several metrics. The mean 

Poisson deviance (MPD) represents the mean of Poisson unit 

deviances. The root-mean-squared error (RMSE) is also 

considered to compare the performance of previous work [37]. 

The Pearson’s Chi-squared test compares the observed 

distribution of data and the expected distribution if the variables 

are independent [43]. These metrics are complemented by the 

Akaike information criterion (AIC), which measures the 

goodness-of-fit and penalizes large number of model 

parameters. 

B. Claims occurrence probability modeling 

The second approach predicts the claim probability for each 

driver. In contrast to the previous approach, the dependent 

variable represents whether a given driver had any claims in the 

insurance period. Four machine learning algorithms are 

considered through their Python implementations: Logistic 

Regression, Support Vector Machine, Random Forest, and 

XGBoost. These models were chosen for their distinct 

characteristics and prevalence in similar works, as outlined in 

the Related Work section. Additionally, TabNet, a deep 

learning architecture specifically designed for tabular data, is 

included for a benchmark comparison against deep learning 

techniques. 

Logistic Regression, grounded in maximum likelihood 

estimation, provides straightforward interpretations of 

coefficients. This model uses a logit link function to determine 

the conditional probability of a claim given the linear 

combination of risk factors. It serves as a reference model due 

to its traditional use in insurance models [36], [44]. Support 

Vector Machine (SVM) constructs hyperplanes in a high-

dimensional space to classify observations based on a vector of 

risk factors. As a non-probabilistic model, claim occurrence 

probabilities are derived using Platt scaling [45], [46]. Random 

Forest leverages an ensemble of decision trees, enhancing 

prediction accuracy and robustness by introducing randomness 

in the tree growth process, resulting in independent predictors 

making uncorrelated errors  [47]. XGBoost is built on the theory 

of gradient boosting, iteratively improving model accuracy by 

optimizing residual errors [48]. It consistently scores among the 

top performers in similar works. TabNet employs sequential 

attention mechanisms to identify and focus on the most relevant 

features at each decision step [49]. It has achieved comparable 

results to XGBoost in previous research, demonstrating its 

predictive performance in risk assessment [38]. 

Given a set of driver-week vectors xit, the models aim to 

learn the model hypothesis h(xit) that predicts the probability of 

having a claim in the insurance period (two years). Scikit-

learn’s MaxAbsScaler is implemented to scale the input vector. 

An inner loop of 5-fold stratified group cross-validation is 

employed to select the best hyperparameters, creating a nested 

cross-validation framework in conjunction with the outer loop 

used to evaluate model performance. The primary metrics for 

choosing the optimal models are Log Loss and the area under 

the receiver operating characteristic curve (ROC AUC), which 

aligns with previous research [37]. The former compares 

predicted probabilities with ground truth classes, where low 

values represent good predictions. The ROC AUC measures the 

probability that a randomly chosen driver with claims is ranked 

higher than a randomly chosen driver without claims [50]. The 

models implement a balanced strategy for setting class weights 

needed for the imbalanced nature of the data. 

C. From risk assessment to insurance premiums 

1) Premium based on claims frequency 

The coefficients resulting from (2) are the basis for the 

weekly premium computation. The proposed premium, detailed 

in (3), is given by the expected claims frequency multiplied by 

the expected claim cost, which for simplicity is the average cost 

C. Equation 4 separates the telematics risk factor vector Eit into 

Bit and Cit to represent behavioral and contextual factors. Thus, 

the weekly premium is composed by base, behavioral, and 

contextual premiums. The upper bound of a linear rate 

approximation is used to penalize event counts instead of a 

percent increase of the base premium. 

𝑃𝑖𝑡 = 𝐶 ⋅ 𝑇𝑖 ⋅ exp(𝑥𝑖
𝑇𝛽) ⋅ exp(𝐸𝑖𝑡

𝑇𝛼) (3) 

= 𝑃𝑏𝑎𝑠𝑒−𝑖 ⋅ exp(𝐸𝑖𝑡
𝑇𝛼) 

𝑃𝑖𝑡 = 𝑃𝑏𝑎𝑠𝑒−𝑖 ⋅ 𝑒𝑥𝑝(𝐵𝑖𝑡
𝑇𝛼) ⋅ 𝑒𝑥𝑝(𝐶𝑖𝑡

𝑇𝛾) (4) 

≈ 𝑃𝑏𝑎𝑠𝑒−𝑖 ⋅ (1 + 𝐵𝑖𝑡
𝑇𝛼 + 𝐶𝑖𝑡

𝑇𝛾) 

  ≤ 𝑃𝑏𝑎𝑠𝑒−𝑖 + 𝐵𝑖𝑡
𝑇𝛼𝑚𝑎𝑥 + 𝐶𝑖𝑡

𝑇𝛾𝑚𝑎𝑥 

2) Premium based on claims occurrence probability 

The second weekly premium approach is estimated by 

multiplying the average claim cost by the predicted probability 

of having a claim and dividing by 104 weeks (i.e., two years). 

Equation 5 describes the weekly premium of driver i at week t, 

where C is the average cost of a claim in the training set, h(xit) 

is the model output, and T is the insurance period. 

𝑃𝑖𝑡 = 𝐶 ⋅
ℎ(𝑥𝑖𝑡)

𝑇 

 (5) 

The outputs of machine learning models are processed 

through SHAP to interpret the predictions. SHAP is a model-

agnostic technique based on cooperative game theory with 

Shapley values [14]. It aims to fairly distribute the contribution 

of each feature to the model predictions through an additive 

feature attribution method where the most important features 

receive the highest absolute Shapley value. After considering 

all possible feature combinations, this value represents a 

feature’s average expected marginal contribution to the model 

output. The Shapley value of feature j is obtained through (6), 

where S is the subset of features of the entire set N; v is a 

characteristic function that assigns values to feature subsets, 

and v(S) describes the total expected sum of contributions that 

the features belonging to S can obtain by cooperation. 

𝛷𝑗(𝑣) = ∑  

 

𝑆⊆𝑁{𝑗}

|𝑆|!  (𝑛 − |𝑆| − 1)!

𝑛!
[𝑣(𝑆 ∪ {𝑗}) −  𝑣(𝑆)](6) 

V. RESULTS AND DISCUSSION 

A. Claims frequency modeling 

The Poisson regression model for the weekly rate of at-fault 

claims, detailed by (2), estimates the parameters listed in Table 

II. There are no statistically significant differences between the 
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model with all attributes and with only traditional telematics. 

The AIC values show slightly better performance of the former. 

The results are similar to those of the models in [37], which 

reported slight variance in the RMSE for Poisson GLM with 

only traditional attributes and adding driving behavior. 

Pearson’s chi-squared tests show no evidence of a lack of fit. 

TABLE II 

POISSON MODELS FOR THE WEEKLY RATE OF CLAIMS 
Attribute Estimate2 

 All attributes Traditional 

telematics 

const -5.2555*** -4.81249*** 

engine_capacity -0.86439*** -1.00335*** 

prop_road_quality_moderate -0.35186  

prop_slope_flat 1.51666**  

prop_motorway 2.73525  

prop_rural 2.77197***  

prop_more_than_one_lane 0.81547*  

prop_clear_weather 0.21007  

prop_congested 4.98569***  

mean_speed_limit -0.03271  

mean_weather_temperature -0.02009*  

mean_weather_wind_speed 0.00221  

mean_weather_visibility -0.00004  

sum_roundabout -0.0066***  

sum_traffic_signal 0.00502***  

sum_stop_sign -0.03172***  

sum_yield_sign 0.01185*  

sum_pedestrian_crossing_sign 0.00974  

sum_animal_crossing_sign 0.00508  

sum_speeding_serious 0.00143* 0.00078* 

sum_harsh_acceleration -0.03936*** -0.03826*** 

sum_harsh_braking 0.02004 0.01575 

sum_forward_collision 0.00062  

sum_driver_inattention 0.00078*  

sum_too_close_distance 0.00001  

sum_lane_departure 0.00094**  

sum_driver_making_calls -0.00832  

sum_driver_smoking -0.00071  

sum_fatigue_driving 0.00043  

total_distance 0.00042* 0.00025* 

Model performance with 5-fold cross-validation  

Mean Poisson deviance 0.62 (std: 0.11) 0.60 (std: 0.11) 

RMSE 0.39 (std: 0.06) 0.38 (std: 0.06) 

Goodness-of-fit (Chi-squared) 8,831 (std: 469) 8,789 (std: 303) 

Akaike information criterion 8,468 (std: 456) 8,666 (std: 464) 

The estimates reflect the mean coefficient over the five 

folds. Several contextual and behavioral attributes have 

significant effects, denoted with the * symbol, and latent 

interactions might affect the coefficients. For instance, while 

prop_motorway presents a high estimate, the prediction is 

 
2 Stars refer to p-values (***: p < 0.001, **: p < 0.01, *: p < 0.1) 

influenced by mean_speed_limit, which has a negative 

coefficient. As expected, the total distance and heavy traffic 

conditions (i.e., prop_congested) increase the claim frequency, 

aligning with the literature. Weather conditions do not present 

considerable effects on claim predictions, in contrast to [51], 

who found that windy conditions increase the expected 

frequency for drivers in Spain. The only weather-related 

attribute with a significant effect is the temperature, which 

decreases the predicted claims frequency as the temperature 

increases. 

As for driver behavior attributes, sum_speeding_serious, 

sum_driver_inattention, and sum_lane_departure report 

significant values with positive coefficients. This finding 

indicates their effect in representing driver negligence and risk 

appetite, supporting road safety efforts in avoiding speeding 

violations and distraction. Other attributes with positive 

coefficients encompass forward collision, too close distance, 

and harsh braking, although lacking significant effects. The 

negative values observed for harsh acceleration might be due 

to the expertise of the commercial drivers. 

B. Claims occurrence probability modeling 

Table III details the comparison of model performance for 

claims occurrence probability resulting from nested Cross-

Validation. XGBoost reported the lowest log loss, and Random 

Forest reported the best ROC AUC. The former indicates that 

XGBoost assigns more probability to profiles with claims and 

less probability to profiles without claims (i.e., safe drivers), 

which is the objective for setting technical premiums. The ROC 

AUC values resemble the claims probability values reported by 

those of [37], where the best model achieved an ROC AUC of 

0.613. The benchmark established by Logistic Regression 

shows that this traditional modeling achieves competitive 

results while providing straightforward interpretation. TabNet 

achieved competitive results, similar to XGBoost and Random 

Forest, with lower tuning efforts, as highlighted in [38]. 

Incorporating ADAS and context reduces the log loss for 

XGBoost, going from 0.59 (std: 0.03) to 0.51 (std: 0.03). 

However, this result is not consistent with the other models and 

there are no statistically significant differences in ROC AUC 

values when considering the model without ADAS and context. 

This finding might be due to the professional nature of the 

drivers, with considerable expertise and levels of safe driving 

set by the fleet company. Moreover, as part of their operations, 

they might be exposed to various driving contexts without a 

particular setting that distinguishes them. 

Fig. 2 presents the contribution of features for model 

predictions. Each point represents a particular instance of the 

training set (i.e., a weekly profile), where the color serves to 

identify the feature value, from low (blue) to high (red). The 

value indicates whether the feature decreases or increases the 

claim probability on a particular instance, given by the SHAP. 

High SHAP magnitudes represent high feature impacts on the 

predicted probability, where positive values increase the 

probability and negative ones decrease it. The attributes are 

sorted by their global importance, given by the mean absolute 

of a feature’s SHAP values. 
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TABLE III 

CLAIMS OCCURRENCE PROBABILITY MODELS COMPARISON 

WITH 5-FOLD CROSS-VALIDATION 

Model Log Loss ROC AUC 

Performance with all attributes 

XGBoost 0.51 (std: 0.03) 0.58 (std: 0.07) 

SVC 0.52 (std: 0.10) 0.54 (std: 0.04) 

TabNet 0.60 (std: 0.42) 0.58 (std: 0.04) 

Random  Forest 1.02 (std: 0.10) 0.59 (std: 0.07) 

Logistic Regression 1.52 (std: 0.07) 0.56 (std: 0.05) 

Performance without ADAS and context 

XGBoost 0.59 (std: 0.03) 0.61 (std: 0.05) 

SVC 0.44 (std: 0.07) 0.48 (std: 0.05) 

TabNet 0.47 (std: 0.11) 0.60 (std: 0.10) 

Random Forest 1.29 (std: 0.13) 0.63 (std: 0.06) 

Logistic Regression 1.55 (std: 0.08) 0.58 (std: 0.08) 

 
Fig. 2. Feature importance of the XGBoost model. The figure shows 

SHAP values for instances of the training set, where each point 

represents one weekly profile. The color scale represents the feature 

value from low (blue) to high (red). The y-axis is sorted according to 

the feature importance. 

The SHAP analysis shows that many features do not linearly 

affect the model output. For instance, low engine capacity 

values have positive and negative impacts, which depend on 

interactions with other features. Aligned with the results of the 

Poisson model, moderate road qualities, roundabouts, and high 

temperatures tend to reduce the claim probability. Rural areas, 

distance traveled, traffic lights, congested traffic conditions, 

and flat roads positively impact claims prediction. In contrast to 

the Poisson model, high-speed limits increase the risk. As for 

driver behavior events, the ones with the most direct impacts on 

increased risk probabilities are too-close distance, fatigue, and 

lane departure. Harsh acceleration indicates reductions in the 

claim probability, which may be due to driver expertise, as [20] 

argued. Smoking and inattention tend to reduce the model 

outputs. Other behavioral events, including severe speeding and 

forward collisions, have mixed effects on the model output and 

may vary according to the interactions with other attributes. 

C. From risk assessment to weekly insurance premiums 

1) Premium distribution 

The studied premiums represent the technical premium 

without incorporating additional insurance components such as 

operational costs. Fig. 3 compares the weekly premiums from 

the two approaches using an evaluation set of 71 drivers listed 

over the vertical axis. Each bar represents the interquartile 

range of the driver’s weekly premium, where the darker color 

indicates whether the driver has any claim. The figure shows 

that the Poisson model has a wider premium spread, although 

three drivers with claims have mean premiums below the global 

mean (€5.87). In contrast, the XGBoost model presents a more 

compacted distribution, but only two drivers out of 11 have 

premiums below the global mean (€3.86) Furthermore, 

XGBoost gives lower variability concerning per-driver weekly 

premiums, identified by shorter bars.  

 

Fig. 3. Comparison of weekly premium distribution per driver using 

Poisson and XGBoost models on a test set. Each bar represents the 

weekly premium distribution per driver, given by the interquartile 

range, where the central point is the driver’s mean weekly premium. 

The impact on the whole driver portfolio is detailed in Table 

IV, showing the mean weekly premium per driver and its 

respective annual value. The training and evaluation sets 

correspond to one fold of the cross-validation process. The 

former has 283 drivers and 49 claims, whereas the latter has 71 

drivers and 13 claims. The difference in the resulting premiums 

arises from the distinct approaches taken by the two models in 

both their hypothesis and premium computation methods. The 

Poisson model tends to provide more consistent and stable 

premium estimates across the train and test sets. On the other 

hand, the XGBoost model assigns high-risk probabilities to 

driver profiles with claims in the training set. This results in 

heavily penalizing these profiles, leading to greater variability 

in the premium estimates. However, this penalization is reduced 

in the test set due to the lower model outputs, indicating that the 

model is better at identifying high-risk profiles during training 

but more conservative during testing. The GLM also allows for 

the disaggregation of the resulting weekly premium into three 

premium components. Based on the claims history of such 

drivers, with a mean claim cost C of €2,316, the mean base 

premium is €4.06. This value represents the initial rate without 

considering the driving context or behavioral events and 

depends on the information collected at the creation of the 

(a) Poisson (b) XGBoost

Figure 1

1
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policy. Then, such a premium is adjusted according to the 

number of behavioral and contextual factors. 

2) Risk profile examples for low and high risk 

This section compares the billing processes using two 

different driver profiles taken from Fig. 3, one for a risky driver 

(i.e., with claims in the claims history) and another for a safe 

driver (i.e., without claims and with a low mean premium). The 

risky driver experienced more driver behavior events, 

particularly driver inattention and forward collision, drove 

significantly more on rural roads (i.e., 27% of the weekly 

distance, compared to 4% of the safe driver), and drove 664 km 

in contrast to 192 km. Applying the linear combination (4) with 

the Poisson coefficients of Table II, these driving profiles have 

a weekly premium of €5.60 for the risky driver and €2.56 for 

the safe driver. 

TABLE IV 

WEEKLY AND YEARLY DRIVER PREMIUMS 

Observation Fleet Poisson XGBoost 

Mean weekly 

premium per 
driver (std dev) 

Train set €5.87 (€2.40) €9.47 (€2.04) 

Validation set €5.90 (€2.56) €3.85 (€1.51) 

Mean yearly 

premium per 

driver (std dev) 

Train set €306.80 (€105.8) €494.31 (€365.3) 

Validation set €307.92 (€107.8) €200.57 (€74.5) 

With the claims probability model, the risky profile has a 

weekly premium of €6.02 and the safe profile has a premium of 

€1.49. Fig. 4 shows the composition of such predictions using 

SHAP’s force plots. The plots indicate how different features 

of the weekly profile increase (red) or decrease (blue) the 

probability of having a claim. For the risky driver’s profile 

(top), the main features are the vehicle’s engine capacity, the 

proportion of rural roads, total distance and moderate road 

qualities, and events involving inattention and smoking. In 

contrast, for the safe driver’s profile (bottom), low values of the 

mean speed limit and proportion of rural roads and the engine 

capacity decrease the predicted probability.  

One of the principal differences between claims frequency 

and claims probability is that the feature contribution of the 

former is fixed on the model’s coefficients. In the latter, it varies 

depending on feature interactions. That variability stems from 

the mathematical characteristics of SHAP, where feature 

contributions are computed considering feature coalitions. 

However, the static nature of the GLM model makes it more 

suitable for regulatory requirements and transparency within 

the insurer ratemaking process. 

3) Using both approaches in the insurance lifecycle 

While machine learning models enable an enhanced 

segmentation of the fleet’s risk, their application in the 

insurance domain is challenged by insurance regulations. 

SHAP could solve this challenge by allowing explanations of 

model predictions to the customer, although with considerable 

effort. This article proposes the complementary use of both 

approaches, where complex models and XAI are used internally 

to enhance and validate risk segmentation.  

 

 

 
Fig. 4. Predicted claims probability for risky (top) and safe (bottom) 

weekly driver profiles. The figure gives the contribution of each 

feature to the predicted probability of having any claims in a week. 

Fig. 5 illustrates the insurance lifecycle incorporating the 

two modeling techniques. After issuing the base policy with 

traditional insurance factors, the vehicle reports telematics data, 

which is contextualized and aggregated into the driver's weekly 

profile. Consequently, the premium is updated with the GLM 

coefficients, satisfying the interpretability requirements for 

motor insurers. In parallel, the insurer can use the machine 

learning-based process internally to validate the portfolio risk 

segmentation and exploit feature interactions through XAI. For 

example, model interpretation analyses could highlight that 

speeding patterns should be coupled with exposure to different 

road types and use such interaction in the GLM for the pricing 

update as a separate attribute. 

 
Fig. 5. Proposed risk assessment for the usage-based insurance 

lifecycle. Abbreviations: Machine Learning (ML), Explainable 

Artificial Intelligence (XAI). 

VI. CONCLUSION 

This article proposes a driver risk assessment methodology 

integrating risk indicators from ADAS, the driving context, and 

vehicle dynamics. To the authors’ knowledge, this is the first 

research exploring insurance pricing of a commercial fleet 

equipped with warning-based ADAS and contextual attributes 

(e.g., road types, weather, and traffic conditions). Such a 

dynamic risk assessment enables a comprehensive periodic 

premium where drivers are charged according to how much, 

how safe, and where they drive, incentivizing safe driving 

through the insurance bill. 
The proposed methodology is designed to assist 

stakeholders in the motor insurance industry by enabling fair 

premiums through incorporating emerging driving assistance 

technologies and driving context. Insurers can implement these 

findings by augmenting their existing telematics data with 

contextualization services and beginning to collect information 

about ADAS usage. With their extensive data records, insurers 

could replicate the driver aggregations according to their needs 

and target dynamic billing schemes, whether weekly or 
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monthly. The Poisson and XGBoost modeling results show 

consistent attribute impacts on driver risk, given by the 

expected claim frequency or probability, respectively. 

Moderate road qualities, roundabouts, and high temperatures 

tend to reduce driver risk, while rural areas, distance traveled, 

traffic lights, congested traffic conditions, and flat roads are 

positively associated with higher risk levels. Results showed 

that incorporating ADAS and contextual information improves 

the log loss of XGBoost, although there were no significant 

differences concerning the ROC AUC or the Poisson model. 

This finding might be due to the professional nature of the 

drivers, with considerable levels of safe driving set by the fleet 

company and lack of clear differences between them in their 

operational driving contexts. Thus, future work could explore 

another fleet of drivers. Moreover, complementing modeling 

efforts with explainable AI methods, such as SHAP, can 

support insurers and policymakers in using state-of-the-art 

models that meet interpretability requirements. By leveraging 

these insights through periodic premiums, insurers can offer 

tailored policies and incentivize safe driving behaviors, while 

policymakers can develop informed regulations that encourage 

the use of ADAS and contextual data in risk assessment. 

This study has its limitations. The dataset used is specific to 

a commercial fleet in Ireland, which may restrict the 

applicability of the findings to other regions or driver types. 

Additionally, the study focuses on warning-based ADAS 

captured by dashcams connected to the vehicle; future research 

could delve into the impact of integrated ADAS and more 

autonomous driving systems (e.g., autopilot). An important 

assumption in our methodology involves replicating claims 

over weekly profiles to identify risky driving behaviors. This is 

due to the limited timeframe of the study and the number of 

drivers relative to the infrequent occurrence of at-fault claims. 

Future studies could address this by including more drivers and 

extending the study period, thereby allowing for a more 

comprehensive assessment of the model's scalability. Finally, 

there is a need for further research to evaluate the long-term 

effectiveness of dynamic billing schemes on driver behavior. 

These areas present opportunities for future research and 

development, which could enhance the applicability and 

effectiveness of the proposed methodology. 
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