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Abstract 

This paper documents the influence of networks of highly skilled migrants on the international diffusion of 

knowledge – particularly those with degrees and occupations in science, technology, engineering and 

mathematics. It investigates knowledge inflows to host countries brought in by skilled immigrants. It then 

explores knowledge feedback to home countries generated by these migrants. We test our hypotheses in a 

country-pair gravity model setting, for the period 1990-2010, using patent citations across countries to measure 

international knowledge diffusion. Our results confirm our hypotheses on the positive impact of skilled migrants 

on knowledge flows to host and home countries. However, they are not robust to instrumental variables and 

country-pair fixed-effects, and only matter in certain contexts: when the sending countries are developing nations 

and for knowledge diffusion within the boundaries of multinationals. 
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1. Introduction 

 

High-skilled workers are an important asset for a country’s growth as they impact directly on knowledge 

production and diffusion (Nelson and Phelps, 1966; Vandenbussche et al., 2006). This is especially true of 

individuals with degrees and occupations in science, technology, engineering and mathematics (STEM), whose 

social and professional networks have been observed to disseminate important knowledge externalities (Moretti, 

2004; Winters, 2014). Following the increasing globalization of STEM workers’ mobility flows, special attention 

has been paid to the international dimension of such networks, with a focus on STEM migrants as key 

contributors to innovation in both their host countries (Chellaraj et al., 2008; Hunt and Gauthier-Loiselle, 2010; 

Kerr and Lincoln, 2010; Stephan and Levin, 2001) and in their countries of origin (Agrawal et al., 2011; Breschi 

et al., 2017; Kerr, 2008; Kuznetsov, 2006; Saxenian, 2006; Saxenian et al., 2002). 

 

This paper aims to study the relationship between international knowledge diffusion and the migration of 

inventors, at a large, global scale. Migrant inventors constitute a representative category of STEM migrants - 

most of them R&D workers, highly involved in producing the knowledge that spurs economic growth and well-

being. We test the hypothesis of a positive relationship between inventors’ migration and knowledge flows in a 

gravity model framework for a sample of 33 OECD receiving countries and 133 developed and developing 

economies. We test whether the stock of migrant inventors originally from country i and resident in country j is 

positively associated with knowledge inflows (KI) into country j, originating from country i. We also test if the 

stock of migrant inventors originating from country i and resident in country j is positively associated with 

knowledge outflows (KO) to country i, originating from country j. The empirical analysis is made possible by 

the use of a novel dataset of inventors with information on both their residence and nationality (Miguelez and 

Fink, 2013). This information is available for a significant majority of Patent Cooperation Treaty (PCT) 

applications, from 1990 to 2010, thus making it unnecessary to estimate the probable ethnic origin of inventors. 

 

A number of studies have already addressed similar issues. Most have focused on the US, however (Agrawal et 

al., 2011; Breschi et al., 2017; Ganguli, 2015; Kerr, 2008; Kerr and Lincoln, 2010; Moser et al., 2014). 

Systematic empirical evidence on the impact of migration on knowledge diffusion is still scarce. Such evidence 

is much needed as (1) it is well understood that the international diffusion of knowledge and new technologies 

is a source of economic growth and income convergence across countries (Eaton and Kortum, 1999; Keller, 

2004), and (2) despite migrants’ representing a small proportion of total worldwide population (around 3% - 

UN-DESA and OECD, 2013), the number of high-skilled, educated migrants (particularly STEM) in certain 

OECD countries has exploded in recent years (Kerr et al., 2016). 

 

Baseline results point to a positive impact of high-skilled migrants on knowledge flows. We find that doubling 

the number of inventors of a given nationality in a destination country leads to a 5% increase in KI to that host 

economy. Equally, it produces a 5.4% increase in KO to their homelands. 

 

We use different approaches to account for unobserved effects driving both talent and knowledge flows. First, 

we use a recently released index of migration policy to instrument our explanatory variable (Rayp et al., 2017). 

Second, we introduce country-pair fixed-effects (FE) to control for unobservables. Results of the effect of 

inventor migration on KO are consistent either with instrumental variables (IV) regressions or with country-pair 

FE estimates. Conversely, the effect on KI does not survive either of the two approaches.  

 

We also test the existence of heterogeneous effects across broad technological fields, different groups of 

countries, and knowledge diffusion within multinational boundaries. We find that migrant inventors are 

important for KI originating in low- and middle-income countries only, as well as when diffusion occurs within 

organizational boundaries. Finally, we note that the effects diminish dramatically when the US and the BRICS 

countries are excluded from the analysis, proof of the importance of these countries as magnets for worldwide 

talent and as main providers of STEM migrants. 

 

The rest of the paper is organized as follows: the next section summarizes the theoretical literature on highly 

skilled migration and innovation, and presents previous evidence on the topic. Section 3 focuses on the research 



methods, including the description of our data and variables. Section 4 presents the results. We draw our 

conclusions in the last section. 

 

2. Background 
 

2.1.  Theory and expectations 
 

The international diffusion of ideas (especially from leading nations to poorer areas) is central to income 

convergence (Coe and Helpman, 1995; Eaton and Kortum, 1999; Keller, 2004). However, because what matters 

most from knowledge stocks is tacit in nature, it tends to resist diffusion (Audretsch and Feldman, 1996; Polanyi, 

1958; Storper and Venables, 2004) and can only be transmitted by means of frequent face-to-face interactions 

and meetings. It thus requires “knowledge carriers” to transmit it over geographical distances (Breschi and 

Lissoni, 2009; Trippl, 2013). The international mobility of human capital has thus gained attention as a channel 

of international knowledge diffusion. 

High-skilled migration can affect host country innovation through different channels. First, skilled immigrants 

directly contribute to the innovation activities of the receiving societies, simply because they add to the skilled 

labor force – quantitative contribution (Kerr, 2013). Second, as migrants tend to be positively self-selected, they 

specialize in jobs for which they have a comparative advantage with respect to native workers (Bosetti et al., 

2015) – i.e., qualitative contribution (Kerr, 2017). Third, more migrants contribute to more culturally diverse 

societies, alongside the increased creativity and complexity that goes with it (Alesina et al., 2016; Bosetti et al., 

2015; Ferrucci and Lissoni, 2019; Kemeny and Cooke, 2018). Fourth, they may also favor inward FDI 

(Hernandez, 2014) as well as cross-border acquisitions (Useche et al., 2019). This may affect the innovation 

potential of the firms involved. Finally, skilled immigrants are also sources of knowledge transfer by themselves, 

from their original countries to the host countries, as they bring new skills, abilities and ideas to the receiving 

society (Lissoni, 2018). They have the ability to transfer knowledge to their host country and to their firm that 

was previously locked within the cultural context of their homelands (Choudhury and Kim, 2019). These are 

precisely the ideas tested in the historical approaches we mention in the following section (Ganguli, 2015; 

Hornung, 2014; Moser et al., 2014), and the main idea we aim to test in the present paper. We therefore 

hypothesize that larger stocks of immigrants originating from country i who are residents in country j are likely 

to increase knowledge diffusion from origin country i to receiving country j. 

 

Skilled migrants may not only contribute to innovation in their host country, but also to innovation in their 

homelands. A burgeoning body of literature has identified positive returns of migration for the countries of origin 

through diaspora networks. Diasporas have been defined as “part of a people (…) that maintains a feeling of 

transnational community among a people and its homeland” (Chander, 2001). This feeling can be exploited to 

the benefit of the home country. While most research has traditionally focused on monetary remittances, more 

recently, knowledge remittances have gained center stage too (Saxenian et al., 2002). Knowledge remittances 

may take two non-mutually exclusive forms: (1) skilled migrant workers maintaining personal and professional 

contacts with their home countries, favoring the diffusion of knowledge on a friendly or contractual basis 

(Breschi et al., 2017; Meyer, 2001; Meyer and Brown, 1999; Nanda and Khanna, 2010); (2) they may decide to 

move back to their home countries on a permanent or temporary basis, equipped with new skills and social 

networks (Baruffaldi and Landoni, 2012; Choudhury, 2016). We therefore expect that larger stocks of 

immigrants originating from country i who are residents in country j  increase knowledge diffusion from host 

country j to origin country i. 

 

Economic history has extensively documented skilled migration and subsequent knowledge diffusion, typically 

where the sending country has a technical advantage over the receiving country, at least in some fields – e.g. 

Germany with respect to the US in industrial chemistry in the 1930s (Moser et al., 2014). This is less the case 

for skilled migration nowadays, which increasingly comes from developing countries and is centered in English-

speaking economies as hosts (Kerr et al., 2016). A large share of this migration is to complete graduate studies 

abroad, for instance (Breschi et al., 2018). We therefore expect migrant inventors to have a greater effect on KO 

than on KI. 



 

Our empirical analysis also divides knowledge flow corridors between two groups, i.e., developed-developed 

countries vs developing-developed pairs. In principle, we expect the latter to affect KO particularly – developing 

countries benefitting most from having their diasporas abroad, while the former affect KI particularly – as South-

North migration generally occurs in pairs where the sending country is not technically superior to the receiving 

country (with a large share of this migration occurring for study purposes). However, developed-developed 

country pairs are more technologically similar than developing-developed pairs. In such cases, developing-

developed migrants could be more important for introducing novel ideas to their receiving societies. 

 

In our analysis, we also differentiate between intra-company and inter-company knowledge diffusion. Indeed, 

the literature has long discussed the role of firms and multinational corporations (MNCs) in managing 

international knowledge transfer across different locations (Hedlund, 1986; Teece, 1977). While knowledge 

diffuses mainly locally (Audretsch and Feldman, 1996), the ability of MNCs to transfer knowledge more 

effectively than is possible through market-mediated channels, is a critical means of international knowledge 

diffusion (Hymer, 1976; Singh, 2008). This is nevertheless not easy, even within organizational boundaries, 

especially with regard to the cross-national transfer of complex or tacit knowledge (Kogut and Zander, 1993; 

Sorenson et al., 2006; Teece, 1977). The potential gains from accessing diverse knowledge hubs are often offset 

by difficulties in achieving integration of knowledge across multiple locations (Singh, 2008). In order to 

overcome the challenges in transferring knowledge across geographic distances, MNCs may rely on the mobility 

of their skilled employees between their countries of origin and their destination in the MNCs’ location (Caligiuri 

and Bonache, 2016; Minbaeva and Michailova, 2004). As stressed by Kerr et al. (2016), the extent of 

employment mobility within the MNCs’ boundaries is often ignored by the migration literature. Nonetheless, 

large MNCs may have almost half of their workforce employed outside the headquarters country – and likely to 

be moved around (possibly on a temporary basis), so the phenomenon is on the rise. Thus, we expect to find 

differences in the relation between knowledge flows and STEM migration within vs outside the firm’s 

boundaries.  

 

Finally, the diaspora literature has differentiated between direct and indirect effects of diaspora networks (Kapur 

and McHale, 2005). The former arise from diaspora members deliberately interacting with their home 

economies. The latter arise from diaspora members serving as intermediates for easing knowledge transmission 

between migrants’ home countries and third persons in their host economies. We expect direct effects of STEM 

migrants on KI and KO to be preponderant, but indirect effects are also likely to arise. 

 

2.2. Previous evidence 
 

In general, studies on high-skilled migration and innovation have long been confined to the area of economic 

history (Belfanti, 2006; Cipolla, 1972; Hornung, 2014; Luu, 2005). However, a group of scholars have worked 

on linking migration to innovation studies, mainly with the help of patent data (Agrawal et al., 2011; Breschi et 

al., 2017; Kerr, 2008; Kerr and Lincoln, 2010; Miguelez, 2018; Moser et al., 2014; Nathan, 2015). One stream 

of literature has focused on knowledge diffusion to receiving countries. This has generally been addressed by 

estimating the impact of the arrival of high-skilled workers on native knowledge creation: some papers have 

documented positive effects (Ganguli, 2015; Hunt and Gauthier-Loiselle, 2010), though some indicate small or 

even negative impacts (Borjas and Doran, 2015, 2012; Kerr and Lincoln, 2010). A critical challenge of this 

literature is identification, as most high-skilled workers may choose to relocate to highly-innovative, highly-

rewarding places. Kerr and Lincoln (2010) apply a shift-share instrument across US States to study the impact 

of H1B visa admissions on local innovation. They find that skilled immigration leads to more patenting by 

inventors of Chinese and Indian origin, but not for natives – so immigrants contribute directly to innovation, 

rather than affecting native productivity through externalities. Using a historical migration exogenous shock, 

Moser et al. (2014) suggest that patenting by US-based inventors increased considerably in the 1930s in 

chemistry fields in which German Jewish émigrés were present, after being expelled from Nazi Germany. 

Interestingly, their results suggest that this effect was especially due to other inventors being attracted into the 

field, rather than an increase in the productivity of actual inventors. Ganguli (2015) is one of the few looking 

directly at migration and knowledge flows, rather than migration and innovation. The author exploits the fall of 



the Soviet Union as a natural experiment and the sudden migration of Russian scientists to the US which resulted. 

She looks at a panel of US cities and scientific fields and shows a disproportionate number of citations to Soviet-

era articles after the arrival of Russian migrants. Oettl and Agrawal (2008) identified internationally mobile 

inventors from the United States Patent and Trademark Office (USPTO) (when reporting different addresses in 

their patents) and find that the inventors’ host countries gain knowledge inflows from their arrival, above and 

beyond the flows enjoyed by the firms recruiting them. Fassio et al. (2019) is one of the few studies, to our 

knowledge, that adopts an industry perspective – rather than a geographical one. The authors measure the impact 

of (skilled) immigration on innovation at industry level (citation-weighted patent production), which is critical, 

as skilled migrants tend to be concentrated in just a few industries. Indeed, in their analysis for France, Germany 

and the UK, the authors find heterogeneous effects across sectors, depending on their openness to trade and FDI. 

  

From the perspective of migration-sending countries, the literature has usually depicted high-skilled migration 

as a source of brain drain, and hence political concern (Beine et al., 2001; Bhagwati and Hamada, 1974). More 

recently, studies claim that international co-ethnic ties may ease knowledge flows among high-skilled workers 

of the same origin back to the migrants’ source country. Saxenian et al. (2002) surveys Silicon Valley scientists 

and engineers and discovers that around 82% of Chinese and Indians report having exchanged technical 

information with their peers back home, and 18% invest in their origin countries. Kerr (2008) uses patent data 

from the USPTO and by applying an ethnicity identification technique based on inventors’ names shows that 

ethnic ties increase knowledge diffusion from the US to the migrants’ home countries. The author estimates 

negative binomial models to show positive impacts of ethnic inventors in the US – seven foreign ethnicities 

identified – on knowledge flows back to their countries of origin, measured by patent citations. The effect is 

especially strong for high-tech industries and for the case of China, and the result is interpreted as evidence of 

positive returns for emigrants’ sending countries. In a similar vein, Agrawal et al. (2011) build an Indian inventor 

database in USPTO patents using name identification techniques, and explore patent-level citations to study 

international knowledge flows from the US back to India. They find that patents by Indian inventors in the US 

do not seem to attract a higher-than-average rate of citations from the inventors’ home country. The only (weak) 

exceptions are patents in Electronics, and patents owned by multinational firms. Interestingly, these results seem 

to suggest that the Indian diaspora is not a major source of knowledge feedback for the home country. The results 

of Agrawal et al. (2011) are reproduced and extended to another eight countries of origin in Breschi et al. (2017) 

– where migrant status is again identified by names. These authors find positive returns for emigrants’ countries 

only in the case of China, Korea and Russia, and also for France, Italy and Japan within company boundaries – 

effects mediated by companies’ self-citations. No results are found for Germany or India. They attribute the 

former to difficulties in determining who are true Germans residing in the US from their name and surname, a 

problem we do not share as we work directly with nationality. Finally, Oettl and Agrawal (2008) again provide 

evidence of a positive effect of internationally mobile inventors moving back to their source country. These 

authors find that the international movement of an inventor influences knowledge flows from the receiving 

country and the receiving firm to the source firm/country. And these effects double when the mover is hosted in 

a new geographic site within the same multinational company, in line with Breschi et al. (2017). This indicates 

that firms manage knowledge flows more effectively within their boundaries than outside them, and that mobility 

of labor reinforces intra-firm knowledge flows.  

 

  

3. Methodology and data 

 

3.1.  Empirical approach 
 

For the present analysis we use a standard gravity model – see Anderson (2011) for gravity models of trade and 

Beine et al. (2016) for gravity models of migration. Only a few studies have extended it to study knowledge 

diffusion patterns (Cappelli and Montobbio, 2016; Kerr, 2008; MacGarvie, 2005; Peri, 2005). The gravity model 

to be estimated for KI takes the following form: 

 

𝐾𝐼𝑖𝑗𝑡 = 𝑒β0. 𝑚𝑖𝑔ijt−1
β1 . Zijt−1

.γn . eτi . eτj . eδt . εijt−1 , (1) 



 

and for KO: 

 

𝐾𝑂𝑗𝑖𝑡 = 𝑒β0 . 𝑚𝑖𝑔ijt−1
β1 . Zijt−1

.γn . eτi . eτj . eδt . εijt−1 , (2) 

 

where 𝐾𝐼𝑖𝑗𝑡 and 𝐾𝑂𝑗𝑖𝑡 are, respectively, the total amount of knowledge flows from country i to country j in year 

t, and the number of knowledge flows from country j to country i, in year t. β1 is our parameter of interest in both 

equations, migijt-1 is the number of active inventors of nationality i residing in country j during year t, Zijt-1 is the 

set of dyadic and country-specific control variables in year t, and τi, τj and δt are country i, country j and time FE, 

respectively. εijt stands as the error term. Note that all time-variant explanatory variables are lagged one year to 

minimize reverse causality problems. 

 

When applying the gravity model we face the issue of strong skewness in the data distribution with relatively 

few high values at the bottom end. A common solution for this has been to transform the gravity equation into 

its logarithmic form – with a normal disturbance term, then to estimate it with OLS. However, this practice may 

result in some heteroskedasticity in the error terms, as pointed out by Santos Silva and Tenreyro (2006). 

Moreover, as our dependent variables contain a large number of zeros, their logarithmic transformation would 

be impossible without incurring serious bias due to arbitrary transformations (Burger et al., 2009). For these 

reasons, Santos Silva and Tenreyro (2006) recommend estimating the multiplicative form of the model using 

Poisson pseudo-maximum likelihood (PPML). Given all the above, we choose to apply the PPML regression to 

the conditional expectation of equations (1) and (2), as: 

 

𝐸(𝐾𝐼𝑖𝑗𝑡|𝑋𝑖𝑗𝑡−1) = exp⁡[𝛽0⁡ + 𝛽1 ln𝑚𝑖𝑔𝑖𝑗𝑡−1+⁡γnln𝑍𝑖𝑗𝑡−1 +⁡𝜏𝑖 +⁡𝜏𝑗 +⁡𝛿𝑡 +⁡𝜀𝑖𝑗𝑡]       (3) 

 

and 

 

𝐸(𝐾𝑂𝑗𝑖𝑡|𝑋𝑖𝑗𝑡−1) = exp⁡[𝛽0⁡ + 𝛽1 ln𝑚𝑖𝑔𝑖𝑗𝑡−1+⁡γnln 𝑍𝑖𝑗𝑡−1 +⁡𝜏𝑖 +⁡𝜏𝑗 +⁡𝛿𝑡 +⁡𝜀𝑖𝑗𝑡]      (4) 

 

3.2.  Data 

 

3.2.1. Patent citations and knowledge flows 

 

Most studies reviewed in the previous sections use either trade flows or innovation outcomes after migration 

shocks as a proxy for knowledge exchange between countries. Finding a good measurement of the actual 

knowledge flows could be cumbersome to the extent that these flows are not tangible. The use of patent citations 

emerged as a way of overcoming this limitation – pioneered by Jaffe et al. (1993). Since then, this technique has 

been widely applied to various other studies, including migration research. Our solution, the use of citations as 

a proxy for knowledge flows, is not without its criticisms, most notably Jaffe and de Rassenfosse (2017) and 

Arora et al. (2018). However, these mostly relate to the use of citations as a proxy for inventor-to-inventor (or 

applicant-to-applicant) knowledge flows, while our analysis, at the aggregate, country-to-country level, aims to 

account for the outcome of a social, community phenomenon of migrant networking and communication. 

Researchers have suggested using applicant-added citations and disregarding examiner-added citations 

(Thompson, 2006), but this is not necessarily a good solution (applicant citations are actually added by 

attorneys). At the European Patent Office (EPO), for instance, the large majority of citations are added by 

examiners. Despite this, Duguet and MacGarvie (2005) find that EPO citations are good proxies for knowledge 

flows as measured by CIS data for a sample of French firms. The community idea makes it possible for inventor 

Z to receive a knowledge token from inventor A through a word-of-mouth process passing through inventors B, 

C, D and so forth. The origin of the flow may escape Z’s attention (Z is unaware of A), but this does not mean 

that the transmission did not take place. Breschi and Lissoni (2005) develop this argument in full. 

 

For their part, Thompson and Fox-Kean (2005) criticize the fact that citations might be a biased proxy of 

knowledge flows to the extent that they capture knowledge similarity rather than real knowledge flows. Indeed, 



patents cite other patents within their technology far more frequently than those outside of their field. We address 

this issue, adding the appropriate controls and running separate regressions per broad technological field (see 

section 3.2.3). 

 

Our dependent variable is built using cross-country citations to PCT patents – the patent database from the World 

International Patent Office (WIPO).1 More precisely, we retrieve backward citations to PCT patents – as cited 

patents – from the OECD Citations database, July 2014, and geo-reference both cited and citing patents across 

all countries. From the initial data, only citing and cited patents with information on inventors and their countries 

of residence are selected, for the period 1990-2010,2 and national-level citations are dropped. As some cited or 

citing patents are produced by teams of inventors scattered across 2 or more countries, citation counts are 

fractionalized as a function of the number of inventors in each citing and cited patent. Thus our dependent 

variable is just a dyadic variable returning the fractional count of backward patent citations from one country to 

another per year, weighted by the total number of inventors per country. 

 

The KI dependent variable is built by counting the number of country j citations (citing patents) to country i 

patents (cited patents), grouped by country-pairs and year. The KO dependent variable is built by counting the 

number of country i citations (citing patents) to country j patents (cited patents), grouped by country-pairs and 

year. We remove self-citations at the inventor level from our analysis. Unfortunately, our sample of inventors is 

not disambiguated (it includes PCT inventors plus all cited inventors from any office). To exclude self-citations 

we compare the names of inventors listed in citing and cited patents, and exclude all citations with at least one 

inventor with the same (or similar) names. 

 

We also divide knowledge flows between inter- and intra-firm citations. To identify intra-firm citations we 

incorporate information from the HAN OECD 2018 dataset which is a harmonized dataset of applicants (only 

name-harmonized, not disambiguated). This database incorporates information from ORBIS, which allows a 

benchmark name to link applicants’ names. We also incorporate information from PATSTAT when the 

applicants of a given citing or a cited patent were not listed in HAN, as well as extensive manual checking. We 

then compare the names of citing and cited applicants, and identify as intra-firm those citations where citing and 

cited applicants have the same (or similar) names. 

 

Next, we also separate citations from inventors whose country of origin is the cited one from the rest, in order 

to differentiate between direct knowledge flows (inventors in origin country citing only co-nationals in receiving 

country – KI, or migrants citing their home country’s colleagues themselves – KO) and indirect knowledge flows 

(cross-nationality citations). This is by no means a straightforward task, as nationality is available for a large 

majority of PCT patents (citing ones) – but not all; and it is not available for the majority of cited patents which 

are not PCT. For a subsample of cited patents we were able to identify the nationality of the listed inventors if 

patents were either PCT or had a PCT as one of the members of the patent family. Whenever we cannot identify 

the full list of inventors’ nationalities in a given citing-cited pair, we remove it completely from the analysis. For 

these reasons, results using this information should be treated with care. 

 

3.2.2. STEM migration from inventor data 

 

Most migration studies use education attained to determine skills level, and census data on the stocks of migrants 

with tertiary education as proxy for high-skilled migration. Yet, when it comes to STEM migration, data 

retrieved from censuses are less appropriate, as (1) education attained and skills can still differ markedly among 

                                                           
1 The PCT is an international treaty administered by WIPO offering an advantageous route for seeking patent protection in more 

than one jurisdiction (in its contracting states). To seek for patent protection in multiple countries, applicants need to apply for 

patents in multiple offices. One simplifying route for doing this is offered by the PCT treaty, which applies a set of procedural rules 

common to all participating countries. 
2 Due to the relatively low quality and consistency of data prior to 1990 and after 2010, we focus on the period 1990-2010. The 

reason for the low quality of pre-1990 data is the limited use of the PCT system by worldwide applicants since the year of its 

inception (1978) until the early 1990s. Low consistency of post-2010 data is due to a lack of complete nationality information of 

inventors from around 2010-2012, as a result of the US enacting the Leahy-Smith America Invents Act, that resulted in the 

suppression of the requirement to list the nationality of the inventors in PCT documents (see Miguelez and Fink, 2013, for details). 



tertiary educated workers, as this category collects people with science and engineering PhD together with people 

with non-STEM degrees or even non-university, tertiary education; (2) differences across countries emerge with 

respect to the quality of the education level attained, making cross-country comparisons troublesome; and (3) 

they are generally released every 10 years, which impedes longitudinal analysis in the short and medium run 

(and released to the public with a significant delay). 

 

Some scholars have found a way to bypass these limitations by working with inventors as a proxy for STEM 

workers – a specific category of high-skilled migrants, most of them scientists and engineers. One advantage of 

using inventors’ data in STEM migration studies is that migrant inventors stand as a more homogenous category 

of high-skilled migrants, highly involved in R&D, and behind the production of knowledge and new 

technologies.  

 

For the present analysis we make use of a recent dataset on inventors from PCT patents (Miguelez and Fink, 

2013), from which we are able to identify inventors with a migratory background on the basis of their nationality 

and place of residence. Compared to other inventor-based datasets, an advantage of using Miguelez and Fink 

(2013) is that it is the only one where information on inventors’ nationality and residence are provided by 

inventors themselves.3 It is therefore possible to identify migrant inventors by comparing information on 

nationality with that of residence. In our view, nationality is a more natural signal of origin than other proxies 

based on name identification techniques that have recently emerged in the literature (Agrawal et al., 2011; 

Breschi et al., 2017; Kerr, 2008). Additionally, patents administered by the PCT are international in nature, as 

applicants from all participant countries have, in principle, the same tendency to apply, contrary to other patent 

datasets which tend to be more biased towards one or other origin/destination country or region – the “home 

bias” effect.  

 

Yearly country data on migrant inventors from the WIPO dataset are the starting point for computing our focal 

explanatory variable at a sending-receiving country pair level. More precisely, this variable stands as the annual 

number of active inventors – they appear listed in patents that year – who are nationals of an origin country i and 

residing in a given host country j (1990-2010).4 

 

3.2.3. Control variables 

 

Following related studies (Beine et al., 2016; MacGarvie, 2005; Miguelez, 2018; Peri, 2005), we control for 

geographical distance as well as cultural and historical ties between countries. Two variables are included for 

the former: (1) a dummy variable for contiguity, taking the value 1 if the two countries share a common border 

and 0 otherwise, and (2) a variable measuring the distance – in kilometers – between the capital cities of both 

countries. Cultural ties are proxied with a dummy for common language, taking the value 1 if both countries 

share at least one language and 0 otherwise. To control for historical ties, we include a dummy taking the value 

1 if there has been a colonial link between the two countries and 0 otherwise.5 

 

We also control for each country level of technological capacity with its total number of PCT inventors. This 

variable is informative to the extent that it measures the size of a country’s innovation system, which determines 

both the amount of inflow and outflow of knowledge as well as the migration of talent in and out of the country. 

We also account for the fact that some countries are, on average, more cited than others, and may affect the 

direction of citation flows. We therefore introduce the host and home country average citation received per patent 

as controls. 

                                                           
3The PCT requires patent applicants to be a national of a PCT Contracting State, hence the requirement to file applicants’ 

nationalities as well as their residences. And for international applications filed before 16 September 2012, inventors have to be 

listed as applicants for the purposes of the US designation. These two rules together made inventors’ nationalities available for 

80% of all PCT inventors. 
4 The migrant inventors variable is built by adding up patent-inventor pairs, per year, as PCT inventors are not disambiguated. If 

inventors acquire the host country nationality (and some of them apparently do), they are no longer counted as migrants. Manual 

checking indicates that this is a small phenomenon, so it is unlikely to affect our results to a large extent. 
5All these control variables come from the ‘Centre d’Etudes Prospectives et d’Informations Internationales’ (CEPII). (See Mayer 

and Zignago, 2011). 



 

Additionally, other more economically-based country-pair variables are included to minimize bias in our focal 

coefficients due to confounding factors. First, we include an index of technological similarity between pairs of 

countries in order to control for whether they both share common fields of technological specialization. This 

index is computed using patent data from the EPO (Coffano and Tarasconi, 2014) and applying the following 

formula:    

 

𝑇𝑒𝑐ℎ. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖𝑗 =
∑ 𝑓𝑖ℎ𝑓𝑗ℎ
ℎ=30
ℎ=1

(∑ 𝑓𝑖ℎ
2ℎ=30

ℎ=1 ∑ 𝑓𝑗ℎ
2ℎ=30

ℎ=1 )1′2
 , (5) 

 

where fih stands for the share of patents of technological class h – according to the 30-class reclassification of 

IPC codes - held by country i, and fjh the share of patents of technological class h held by country j.6 Values of 

the index close to one indicate that a given pair of countries are technologically similar, and values close to zero 

indicate they are technologically remote from each other (Jaffe, 1986). With the inclusion of this control, we aim 

to tackle Thompson and Fox-Kean's (2005) criticisms on the tendency for there to be more citations within than 

across technological fields. 

 

Second, we use trade flows (exports and imports), collected from the COMTRADE database, to proxy for 

economic integration between pairs of countries, as well as to account for knowledge diffusion embodied in 

goods and services (Bahar and Rapoport, 2018).  

 

Finally, we include the stock of college-educated migrants from country i living in country j, taken from the 

2000 census (Artuç et al., 2015). Descriptive statistics and the correlation matrix are presented in Appendix A.2. 

 

Many of our explanatory variables contain zeros, and therefore their logarithmic transformation is problematic. 

To remedy this, we apply the inverse hyperbolic sine transformation (MacKinnon and Magee, 1990). It behaves 

like a log-transformation, but is defined at zero (see recent applications by Bahar and Rapoport, 2018). Except 

for very small values of the variable, the inverse sine is approximately equal to its logarithmic version, and 

therefore it can be interpreted similarly. We apply this to all our explanatory variables except dummies, the index 

of technological similarity (ranging 0-1) and distance between capitals, which is log transformed. 

  

 

 

 

4. Results 

 

4.1.  Stylized facts 

 

Our regressions include pairs of countries formed from 33 OECD destinations, and 133 developed and 

developing sending economies – see the list of countries included in Appendix A.3.  

 

Table 1 shows the top 20 largest players when it comes to knowledge flows and inventor migration, respectively 

– selected time period 2006-2010. From Table 1 (top panel) we can see that the largest flows of citations are 

amongst technology-leading or high-income countries, with the US being the largest origin of knowledge 

compared with other high-income nations, and China. Unsurprisingly, there is a strong reciprocity in the flow of 

knowledge to the extent that many top knowledge-recipient countries are also a source of knowledge for the 

countries they get knowledge from. Note that the largest flows of knowledge are exchanged amongst a small 

group of countries (13), most of them being high-income except for China. When dropping high-income 

countries from the list of knowledge-recipient countries, China appears as an important knowledge destination, 

                                                           
6This 30-class re-classification of IPC codes was originally proposed by the OST (Observatoire des Sciences et Techniques). For 

more details see Coffano and Tarasconi (2014). 



receiving from the US alone around 20% of the share of citations going to low- and middle-income countries 

(Table A.2.1 in Appendix). This table also shows India as a second leading knowledge-recipient country.  

 

[Table 1 about here] 

 

The second panel splits citations between inter- and intra-company flows. At first sight, no major differences 

emerge between the two rankings (aside from the imbalance in the number of absolute citations between inter- 

and intra-company citations, as expected). Only the China-US corridor enters the top10 when intra-company 

citations are considered, though it already departed from the 11th position.  

 

The bottom part of Table 1 looks at inventor migration corridors, which coincide to some extent with citation 

corridors, although with slight but striking differences. Unsurprisingly, the US appears as the most common host 

country for migrant inventors from 14 origins. Migrant inventors from China and India to the US account for 

24% or almost one fourth of all migrant inventors in our dataset. There are also a large number of migrant 

inventors from Europe residing in the US, mainly from the UK, Germany and France, all of them are technology 

leading countries. When we focus on low- and middle-income sending countries, there is more variety in migrant 

inventors’ origins (see Table A.2.2 in Appendix), but with the US as the main host economy. Migrant inventors 

coming from China and India to the US account altogether for around 57% of all migrant inventors originating 

from low- and middle-income countries. 

 

4.2.  Econometric results 

 

Table 2 shows baseline regressions with the usual gravity variables as controls, plus the number of inventors in 

countries i and j to account for size and innovativeness (results using number of patents instead are qualitatively 

the same), in columns 1 and 2 for, respectively, KI and KO. Regressions also include country i FE, country j FE, 

and time FE. Results for control variables are for the most part significant and with the expected sign, with the 

exception of contiguity and same colonial past, which are not significantly different from zero.  

 

The focal variable – migrant inventors – is positive and significant in the case of KI and KO. Doubling the 

number of inventors of a given nationality to a destination country leads to an 8.4% increase in KI to the host 

economy, while a similar increase in the number of migrant inventors increases KO by 8.7% - coefficients can 

be read as elasticities (Santos Silva and Tenreyro, 2006). 

  

Columns 3 and 4 mimic 1 and 2 but add important country-proximity controls that are not accounted for in the 

usual gravity models, such as technological proximity, trade (exports and imports), and the stock of college-

educated migrants originating from country i living in country j (2000 round census). The variables are positive 

and significant, and our focal variable diminishes its point estimate (though remains strongly significant in both 

cases) confirming the necessity of adding these three controls – 5% for KI, 5.4% for KO. 

 

[Table 2 about here] 

 

4.3.  Confounding factors 

 

Endogeneity issues could affect our baseline regressions and bias the results. Focal coefficients in KI regressions 

could be upward biased if more innovative (and highly-cited) receiving countries were to attract more inventors 

from abroad – KI and talent inflows would be spuriously correlated. For coefficients in KO regressions, they 

could be biased upwards if human capital and technological developments of sending countries increase their 

knowledge attractiveness (and citations received), and simultaneously increase the number of outward skilled 

migrants and the brain drain (see Clemens, 2014, for a discussion on the unexpected effects of development on 

the brain drain). Conversely, if unobserved technological development of sending countries reduces the 

emigration of STEM workers, our baseline estimates would be downward biased. 

 



We address this using instrumental variables regressions. In particular, we use an index of migration policy as 

instrument, taken from Rayp et al. (2017). The authors compute a quantitative indicator of migration policy that 

accounts for restrictiveness of entry policy, staying requirements and regulations to foster integration. They 

combine publicly available data sources to provide a measure of “openness” to migrants (the larger the index, 

the more open the countries are to migration) based on these three concepts, for 38 countries between 1996 and 

2014.  

 

Note that, given that our sample ranges from 1990 to 2010, we do not use the years 2011-2014. In addition, the 

index is introduced with a 5-year time lag with respect to the dependent variable, and therefore a 4-year lag with 

respect to the variable to be instrumented (migrant inventors). The time needed for migration policy to affect 

inventor migration and their subsequent inventions (as we only observe migrant inventors when they patent, 

which could be some years after their arrival) is not immediate, and therefore a time lag is justified. We run IV 

regressions with different time lags of the instrument and we choose the time lag with the largest F-stat in the 

first stage. Consequently, our sample is reduced to the years 2001-2010 only. 

 

As can be seen in Table 3, the instrument in the first stage (column 1) is positive and significant, as expected. 

Also, from the bottom of column 1 we learn that the F-stat of the first stage is well above 10, which is also a 

good sign of the appropriateness of the instrument. In columns 2 and 3 of Table 3 we reproduce our baseline 

regressions shown in Table 2, but for the indicated sample only, for comparison purposes. As can be seen, 

positive and significant coefficients remain. For presentation purposes, all the tables from now on do not show 

the coefficients for control variables, although these are always included (they are listed in the table notes). 

Results showing all controls can be requested from the authors. 

 

Columns 4 and 5 show the result for  KI and KO respectively. From column 4 we learn that, when our focal 

variable is instrumented, inventor migration does not influence KI to the host countries any more, indicating that 

baseline regressions were upward biased. In column 5, on the contrary, we see that the IV coefficient for KO 

increases considerably, and continues to be strongly significant, indicating that baseline regressions were 

downward biased. 

 
[Table 3 about here] 

  

In order to avoid losing too many observations, we take an alternative approach to deal with unobservables – in 

this case, country-pair unobserved factors.7 Thus, in Table 4 we introduce country-pair FE and repeat our 

baseline regressions. Of course, due to the inclusion of pair FE we remove all time invariant variables. Columns 

1 and 2 show the results for  KI and KO respectively. Overall, results confirm our previous IV approach: positive 

and significant effects of inventor migration on KO, and inexistent on KI. This leads us to conclude that inventor 

migration favours the overall transfer of knowledge back to their homelands, but it does not seem to affect 

knowledge flows into the receiving countries.8 

 
[Table 4 about here] 

 

Table 5 goes one step further and shows pair-wise regressions adding interactions with our focal variable, 

migrant inventors, and 5 of our controls, namely, Technological similarity, Contiguity, Colony, Language, and 

Geographical distance (which we turn into the inverse of distance, proximity, for interpretation purposes). In 

their role of facilitating knowledge diffusion across borders, we may expect their impact to be larger for country 

pairs exhibiting stronger informational frictions, that is when the cognitive, cultural, or geographical distances 

between the two are more acute. Negative and significant interaction coefficients could be interpreted as causal 

evidence between inventor migration and knowledge diffusion, because if confounding effects drive both 

phenomena, they should work in such a way that they are not only capable of explaining the direct migration-

                                                           
7 The number of observations in the country-pair FE regressions decreases with respect to Table 2 due to the fact that non-linear 

models (e.g., Poisson) remove country-pair observations in the absence of time variation (all zero outcomes) if country-pair FE are 

included. 
8 The country-pair FE approach is adopted in the rest of the paper, as we lose fewer observations than with the IV approach. 



diffusion link, but also their different effects across several country-pair dimensions (Kugler et al., 2018; 

Miguelez, 2018). Results partially go in this direction, as most of the coefficients show negative signs, though 

they are only significant for technological and geographical proximities. 

 

[Table 5 about here] 

 

In sum, going back to section 2, it seems that results for KI do not align with Ganguli's (2015) findings on 

Russian scientists fleeing to the US, though her analysis of this highly specific context makes comparisons 

difficult – historical shock, scientists. Similarly, they do not coincide with Moser et al. (2014). Interestingly, 

however, these authors suggest that increases in innovation come from crowding-in effects, and are not due to 

native inventors’ productivity shifts. Similarly, Kerr and Lincoln (2010) find positive effects of H1B visa 

holders’ inflows on patenting, but all attributable to Chinese and Indian ethnic inventors, and not to natives. With 

respect to KO, our results coincide with Kerr (2008) (positive and significant effects) and, at least partially, also 

with Breschi et al. (2017). 

 

4.4.  Field and origin-country heterogeneity 
 

Both inventor migration and the use of citations to acknowledge ideas diffusion, are highly heterogeneous across 

technological fields (WIPR, 2013). We explore this issue by dividing our inventor migration and citation flows 

across 5 technological fields, using the standard aggregation of IPC codes (Schmoch, 2008). As shown in Table 

6, none of the five sectors shows a significant positive migration-diffusion relationship for the KI equation. In 

the meantime, the positive effects on KO show up in all domains, but they are especially strong in electrical and 

mechanical engineering. 

 
[Table 6 about here] 

 

Next, inspired by differences in STEM migration effects on different measures of globalization across types of 

countries (Kugler and Rapoport, 2007; Miguelez, 2018), we explore heterogeneous effects in the migration-

diffusion relationship across the “North-North” and “South-North” axes. To do so, we multiply our main 

explanatory variable by two dummies: “High-income”, valued 1 if the sending country is classified as a high-

income country by the World Bank (before 2010), 0 otherwise, and “Middle/Low-income”, valued 1 if the 

sending country is classified as a middle- or low-income country by the World Bank, 0 otherwise. We re-run 

regressions – again with country-pair FE, which are presented in Table 7: only inventors coming from middle- 

and low-income countries significantly affect KI. Conversely, migrant inventors are critical for KO in both cases 

(inventors from high- or middle- and low-income countries) – though the coefficient is significantly larger in 

favor of middle/low income countries.9 It seems then that migrant inventors are more important for the “South-

North” corridors than for the “North-North” ones. Together with results on interactions (Table 5), we interpret 

this as evidence of greater transaction costs in “South-North” country-pairs, as compared to “North-North” ones, 

due to larger cultural and technological differences. Indeed, the average technological proximity among 

developed-developed pairs is significantly greater (0.54) than between developing-developed countries (0.19). 

All this makes the role of STEM migrants especially relevant in these contexts. Besides, as already pointed out 

in Breschi et al. (2017), it could be that for the “North-North” corridors most of the knowledge travels within 

multinationals’ boundaries, jumping between their different facilities located in different places, with migrant 

inventors playing a more nuanced role in this case. We address this particular point in the next subsection. 

 
[Table 7 about here] 

 

4.5.  Multinationals and STEM migration 

 

Table 8 reproduces the main regressions, removing intra-company citations – identified using the OECD HAN 

database, July 2014. As can be seen, results remain the same: they are not significant for knowledge inflows 

                                                           
9 Wald tests indicate that differences in coefficients are significant in both cases.  



(column 1), and are positive and significant for knowledge outflows (column 2). Columns 3 and 4 break the 

sample down into countries of origin, and again the results found in Table 7 are reproduced. 

 
[Table 8 about here] 

 
Next, we also re-compute our dependent variable using intra-company citations only. This is done in Table 9, 

where country-pair FE regressions are shown in columns 1 and 2. Interestingly, the coefficient for the 

relationship with KI now increases and becomes significant, which supports the idea that migrant inventors do 

bring in knowledge flows, but only within the boundaries of their firms. This is confirmed even more strongly 

when the focal variable is split between high-income and middle/low-income sending countries. As can be seen, 

now not only is the coefficient for middle/low-income countries positive and significant, but that of the high-

income economies is too, confirming the idea that knowledge flows carried by migrants pass, at least partially, 

through multinationals at the same time. Again, the importance of STEM migration for intra-firm knowledge 

flows accords with findings by Oettl and Agrawal (2008) and Breschi et al. (2017). 

 

[Table 9 about here] 

 

4.6.  Direct and indirect effects 

 

We also explore differences in the migration-diffusion relationship, depending on whether citations occur among 

members of a given migrant community and their home colleagues (direct effects) or they include natives and 

migrants from other origins (indirect effects). We expect the former to show stronger effects, but the latter to 

influence diffusion, too. As we do not have information on nationality for all the inventors listed in the citing 

and cited patents, the results should be treated with care, but are still informative. Thus, as shown in Table 10, 

direct effects (both for KI and for KO) show positive coefficients, as expected. They are particularly large for 

KI, in fact. Results emerge also for indirect effects, which remain positive and significant. In fact, the coefficient 

for KI turns out to be significant when citations are split between direct and indirect effects.  

 

[Table 10 about here] 

 

4.7.  Robustness analysis 

 

We present some robustness checks in this section. As discussed in section 2 of the present paper, the large 

majority of empirical evidence on the relationship between STEM migration and knowledge diffusion concerns 

mainly the US, as it is, by far, the largest receiving talent country – especially from China and India, as well as 

the leading technology nation from which international spillovers emanate. In order to assess whether the results 

encountered in this paper, and in a large part of the related literature, can be extended beyond the US, we 

reproduce some of our regressions without the US as destination country. 

 

This is done in Table 11. As in previous regressions, STEM migration does not impact KI, on average. 

Interestingly, the coefficient on KO is considerably reduced too, becoming non-significant, due to the importance 

of the US as an attractor of foreign talent as well as a source of knowledge and technology to all other nations. 

Columns 3 and 4 differentiate across countries of origin (high- vs middle/low-income countries), and again find 

that what matters for non-US countries is STEM migration from developing countries, as it shows a positive and 

significant relationship with both KI and KO. Thus, when removing the US as receiving country, it seems that 

STEM migrants are important only when differences across countries are more acute (“South-North” axis).  

 

[Table 11 about here] 

 

Table 12 removes the BRICS countries from the analysis (Brazil, Russia, India, China and South Africa). Results 

do not change to a large extent with respect to the baseline. However, the effect of migrants from middle-income 



countries on KI, formerly positive and significant, does not arise this time. This is as expected, as a large majority 

of migrants from middle-income economies originate in BRICS countries.  

 

[Table 12 about here] 

 

Next, in Table 13 we focus on intra-European flows only. Columns 1 and 2 confirm that the migration-diffusion 

relationship is positive and significant, again, for KO, but not for KI (even slightly negative). Given that barely 

any flows come from non-high income countries, we focus instead on inter- and intra-company citations in 

columns 3 to 6. Results are repeated for inter-company citations (migrant inventors matter for KO). However, 

migrant inventors do matter for KI when these flows occur within the boundaries of the firm. 

 

[Table 13 about here] 

 

In further robustness checks, Table 14 shows the main results using only X, I and Y citations. These are 

particularly relevant documents, that may question the novelty and/or inventive step of using the citing patents 

(Jaffe and de Rassenfosse, 2017). This type of citation is possibly more important for inventors themselves, and 

less for examiners and lawyers (Criscuolo and Verspagen, 2008), which makes them more suitable for proxying 

knowledge flows. Fortunately, as shown in Table 14, our results and conclusions hold. In fact, the majority of 

coefficients are larger when using only “relevant documents”. 

 

[Table 14 about here] 

 

5. Conclusion 

 

In this paper we have used the gravity model to show how STEM migration – as measured by the number of 

migrant inventors – affects international knowledge diffusion – as measured by patent citations. While this 

research question is not new, systematic, global empirical evidence (especially beyond the US) is still scarce. 

Using inventors as a proxy for STEM migrants and their declared nationality to infer their migratory background, 

we have provided new results on the relationship between STEM migration and knowledge brought into their 

host countries, as well as knowledge sent back to their homelands. Further, we have also explored certain 

conditions for which these relationships are not linear: (1) when transaction costs are more acute (“South-North” 

axis); (2) within the boundaries of multinationals, and (3) beyond the US.  

 

All in all, our results suggest that migrant inventors living in a given country are important for knowledge flows, 

not only to their homelands but also to their host countries – though to a lesser extent. Contrary to what has been 

advocated in the migration literature on the detrimental effect of high-skilled migration from low-income 

countries and an alarming brain drain, we find that low/middle-income countries benefit technologically from 

their migrant inventors living in high-income economies. At the same time, high-skilled migrants from 

low/middle-income countries also bring in some knowledge to their high-income host countries. Finally, we also 

learn that STEM migration and multinationals’ strategies interact with each other with respect to knowledge 

diffusion, as well as the importance of the US in driving our results (with a few, notable exceptions). 

 

Our research intends to convey the message that, instead of focusing the debate on brain drain issues, the 

attention of home and host countries’ policymakers should be more oriented towards finding strategies that will 

establish and strengthen connections between STEM migrants and their non-mover peers, both at home and 

abroad, through adequate knowledge networks.  

 

A few limitations are worth discussing. Our approach to STEM migration, based on inventors from the PCT 

with known nationality, could be an underestimate, as it misses inventors with a migratory background that have 

become nationals of their host country. If the likelihood of gaining citizenship differs across country-pairs, this 

could bias our estimates – though we build our explanatory variable using 1-year windows, so as to account for 

the most recent migrants only. Unfortunately, it is difficult to assess the severity of this potential bias. Related 

to this, PCT applications comprise only around 15-20% of all inventions worldwide. They are, indeed, only a 



subsample of all patents (and all inventors). However, the underlying inventions are likely to have a larger 

economic and technological value than national applications (van Zeebroeck and van Pottelsberghe de la 

Potterie, 2011). Finally, as our analysis remains at the aggregate, country level (despite efforts to disentangle 

heterogeneous effects across countries), some particularities may remain hidden. More detailed, case study 

approaches would be required to uncover specific singularities. 
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Table 1. Citations and migration corridors, 2006-2010 

Citing country Cited country # of citations Citing country Cited country # of citations 

Top-10 corridors Top 10-20 corridors 

Germany US 90925.26 China US 21979.27 

US Japan 78024.24 Israel US 19767.45 

UK US 47207.88 R. Korea US 19754.45 

US Germany 44903.69 US R. Korea 19662.8 

France US 40987.69 US Canada 19258.18 

Germany Japan 39445.01 Australia US 18999.21 

US UK 28822.09 Italy US 18831.14 

Canada US 28651.24 Sweden US 18810.68 

Japan US 25303.78 US France 15926.44 

Netherlands US 23852.72 France Germany 14966.33 

Citing country Cited country # of citations Citing country Cited country # of citations 

Top-10 inter-company corridors Top-10 intra-company corridors 

Germany US 87853.57 Germany US 2949.833 

US Japan 75664.39 US Japan 2272.237 

UK US 45119.2 US Germany 2130.503 

US Germany 42722.13 UK US 2033.256 

France US 39759.93 US UK 1675.753 

Germany Japan 38925.94 Japan US 1426.976 

Canada US 27419.32 Canada US 1218.286 

US UK 27106.1 France US 1160.141 

Japan US 23855.05 Netherlands US 992.3494 

Netherlands US 22828.07 China US 984.137 

Origin country Dest. country # inventors Origin country Dest. country # inventors 

Top-10 corridors Top 10-20 corridors 

China US 27,696 France Switzerland 1,880 

India US 21,712 Israel US 1,878 

Canada US 11,364 Australia US 1,783 

UK US 8,313 Netherlands US 1,670 

Germany US 5,895 France Germany 1,492 

Germany Switzerland 4,952 Italy US 1,492 

R. Korea US 4,877 China Japan 1,463 

France US 3,898 Germany Netherlands 1,335 

Japan US 2,844 Austria Germany 1,308 

Russia US 2,309 Turkey US 1,233 

Source: OECD Citations database from July 2014 and Miguelez and Fink (2013). 

  



Table 2. Baseline results: Does inventor migration affect knowledge flows? 

 (1) (2) (3) (4) 

 KI KO KI KO 

Migrant inventors 0.0844*** 0.0867*** 0.0503*** 0.0537*** 

 (0.0126) (0.0159) (0.0109) (0.0148) 

Contiguity 0.0268 0.0259 -0.0117 0.0111 

 (0.0542) (0.0571) (0.0330) (0.0362) 

Colony 0.0213 0.0134 0.0210 0.00887 

 (0.0350) (0.0328) (0.0226) (0.0287) 

Common official language 0.243*** 0.239*** 0.114*** 0.121*** 

 (0.0430) (0.0479) (0.0309) (0.0324) 

ln(Distance b/ capitals) -0.0949*** -0.0924*** -0.0407*** -0.0542*** 

 (0.0211) (0.0243) (0.0136) (0.0172) 

# inventors in i 0.595*** 0.546*** 0.594*** 0.583*** 

 (0.0708) (0.102) (0.0714) (0.103) 

# inventors in j 0.560*** 0.657*** 0.589*** 0.687*** 

 (0.0808) (0.0398) (0.0820) (0.0419) 

Average citations in i -0.378*** 0.208*** -0.362*** 0.258*** 

 (0.123) (0.0702) (0.108) (0.0741) 

Average citations in j 0.430*** -0.331** 0.467*** -0.369*** 

 (0.140) (0.146) (0.134) (0.132) 

Exports   0.375** -0.227 

   (0.148) (0.141) 

Imports   0.00740 0.323** 

   (0.190) (0.136) 

Stocks migrants 2000   0.0478** 0.0740*** 

   (0.0220) (0.0198) 

Tecnological similarity   1.651*** 1.717*** 

   (0.126) (0.144) 

Constant  -2.860** -3.310** -5.786*** -6.152*** 

 (1.217) (1.312) (1.343) (1.405) 

     

Observations 88,635 88,635 88,635 88,635 

Origin country FE Yes Yes Yes Yes 

Destination country FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

The reason why observations are less than the implied 33 receiving countries * (133-1) sending * 21 

years is that inventor migration data are not existent for some country-year pairs (e.g., ex-USSR 

republics before 1993). All explanatory variables are transformed using the inverse hyperbolic sine 

transformation (MacKinnon and Magee, 1990), except for dummies, the index of technological 

similarity and distance between capitals, which is log transformed. 

  



Table 3. Instrumental variables regression. Instrument: Migration policy index 

 (1) (2) (3) (4) (5) 

 Migrant 

inventors 

Equivalent baseline  IV 

 KI KO KI KO 

      

Migrant inventors  0.0683*** 0.0426** 0.0583 0.322*** 

  (0.0137) (0.0179) (0.0433) (0.0600) 

Mig. Policy Index 0.104***     

 (0.0251)     

Controls Yes Yes Yes Yes Yes 

1st stage F-stat 22.17     

p-value 0.000     

Observations 39,600 39,600 39,600 39,600 39,600 
Origin & Dest. FE Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Controls in all regressions include Contiguity, Colony, Common official language, ln(Distance b/ 

capitals), # inventors in i, # inventors in j, Average citations in i, Average citations in j, Exports, 

Imports, Stocks migrants 2000, and Technological similarity. All explanatory variables are 

transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 1990), except 

for dummies, the index of technological similarity, the migration policy index, and distance between 

capitals, which is log transformed. 

  

Table 4. Baseline with country-pair FE 

 (1) (2) 

 KI KO 

   

Migrant inventors -0.00895 0.0543*** 

 (0.0145) (0.0198) 

Controls Yes Yes 

Observations 50,991 51,926 

Origin & dest.  FE No No 

Year FE Yes Yes 

Country-pair FE  Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

 

  



Table 5. Interactions 

 Migrant 

inventors* 

Tech.similarity 

Migrant 

inventors* 

Contiguity 

Migrant 

inventors* 

Colony 

Migrant 

inventors* 

Language 

Migrant 

inventors* 

Geo 

Proximity 

KI 
0.0442 0.0701* -0.0154 -0.0181 -0.0409*** 

(0.0738) (0.0379) (0.0493) (0.0348) (0.0144) 

KO 
-0.120** 0.0707* -0.00723 -0.0207 -0.0378** 

(0.0488) (0.0378) (0.0358) (0.0300) (0.0171) 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

 

Table 6. Field heterogeneity 

 (1) (2) (3) (4) (5) 

 Electrical 

engineering 
Instruments Chemistry 

Mechanical 

engineering 
Other fields 

KI 
0.0113 -0.0351*** -0.0195 -0.0149 -0.0149 

(0.0137) (0.0129) (0.0130) (0.0116) (0.0116) 

KO 
0.0420* 0.0299** 0.0266** 0.0413*** 0.0244*** 

(0.0251) (0.0130) (0.0105) (0.0111) (0.00886) 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

  

  



Table 7. Split inventor migration between high and medium/low-income countries 

 (1) (2) 

 KI KO 

   

Migrant inventors *High-income -0.0128 0.0470** 

 (0.0153) (0.0199) 

Migrant inventors *Middle/Low-income 0.135*** 0.149*** 

 (0.0468) (0.0301) 

Wald test 7.67 12.89 

Prob. 0.0056 0.0003 

Observations 50,991 51,926 

Origin & destination country FE No No 

Year FE Yes Yes 

Country-pair FE  Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

 

Table 8. Only inter-company citations 

 (1) (2) (3) (4) 

 KI KO KI KO 

Migrant inventors -0.0117 0.0544***   

 (0.0149) (0.0202)   

Migrant inventors *High-income   -0.0154 0.0471** 

   (0.0157) (0.0203) 

Migrant inventors *Middle/Low-income   0.130*** 0.149*** 

   (0.0464) (0.0304) 

Controls Yes Yes Yes Yes 

Wald test   7.46 12.66 

Prob.   0.0063 0.0004 

Observations 50,478 51,577 50,478 51,577 

Origin & destination country FE No No No No 

Year FE Yes Yes Yes Yes 

Country-pair FE Yes Yes Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

 

  



Table 9. Only intra-company citations 

 (1) (2) (3) (4) 

 KI KO KI KO 

     

Migrant inventors 0.0900*** 0.0549***   

 (0.0258) (0.0199)   

Migrant inventors High-income   0.0833*** 0.0494** 

   (0.0262) (0.0209) 

Migrant inventors *Middle/Low-income   0.257** 0.146*** 

   (0.101) (0.0547) 

Controls Yes Yes Yes Yes 

Wald test   2.95 2.86 

Prob.   0.0859 0.0905 

Observations 22,660 23,520 22,660 23,520 

Origin country FE No No No No 

Destination country FE No No No No 

Year FE Yes Yes Yes Yes 

Country-pair FE Yes Yes Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

 

Table 10. Direct and indirect effects of diaspora networks on knowledge flows 

 (1) (2) (3) (4) 

 KI KO 

 Direct Indirect Direct Indirect 

Migrant inventors 0.354*** 0.0648** 0.0903*** 0.0565*** 

 (0.0496) (0.0269) (0.0271) (0.0190) 

Observations 27,026 49,353 24,644 51,079 

Controls Yes Yes Yes Yes 

Origin & dest. country FE No No No No 

Year FE Yes Yes Yes Yes 

Country-pair FE Yes Yes Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

 

  



Table 11. Excluding the US 

 (1) (2) (3) (4) 

 KI KO KI KO 

Migrant inventors 0.00191 0.0250   

 (0.0116) (0.0187)   

Migrant inventors *High-income   -0.00264 0.0201 

   (0.0119) (0.0191) 

Migrant inventors*Middle/Low-income   0.218*** 0.100*** 

   (0.0322) (0.0259) 

Controls Yes Yes Yes Yes 

Wald test   38.21 8.48 

Prob.   0.0000 0.0036 

Observations 48,367 49,260 48,367 49,260 

Origin & dest. country FE No No No No 

Year FE Yes Yes Yes Yes 

Country-pair FE Yes Yes Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

 

Table 12. Removes BRICS 

 (1) (2) (3) (4) 

 KI KO KI KO 

Migrant inventors -0.0127 0.0628***   

 (0.0173) (0.0203)   

Migrant inventors*High-income   -0.0131 0.0613*** 

   (0.0175) (0.0204) 

Migrant inventors*Middle/Low-income   0.0311 0.142*** 

   (0.0399) (0.0334) 

Controls Yes Yes Yes Yes 

Wald test   0.92 6.99 

Prob.   0.3370 0.0082 

Observations 47,705 48,598 47,705 48,598 

Origin & dest. country FE No No No No 

Year FE Yes Yes Yes Yes 

Country-pair FE Yes Yes Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

 

  



Table 13. Keeps only European countries as origin and destination 

 (1) (2) (3) (4) (5) (6) 

 KI KO KI KO KI KO 

 All flows Inter-company flows Intra-company flows 

Migrant inventors -0.0231* 0.0684*** -0.0268** 0.0681*** 0.0895** 0.0737** 

 (0.0124) (0.0138) (0.0123) (0.0140) (0.0383) (0.0344) 

Controls Yes Yes Yes Yes Yes Yes 

Observations 13,623 14,312 13,543 14,192 7,803 7,945 

Year FE Yes Yes Yes Yes Yes Yes 

Country-pair FE Yes Yes Yes Yes Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 

 

Table 14. Only X, I, Y citations used 

 (1) (2) (3) (4) 

 KI KO KI KO 

Migrant inventors 0.00403 0.0588***   

 (0.0152) (0.0193)   

Migrant inventors *High-income   -0.000183 0.0505*** 

   (0.0159) (0.0195) 

Migrant inventors *Middle/Low-income   0.156*** 0.184*** 

   (0.0442) (0.0231) 

Controls Yes Yes Yes Yes 

Wald test   10.03 32.28 

Prob.   0.0015 0.0000 

Observations 44,029 46,091 44,029 46,091 

Origin & destination country FE No No No No 

Year FE Yes Yes Yes Yes 

Country-pair FE Yes Yes Yes Yes 

Notes: Country-pair level clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Observations decrease with respect to table 2, due to the fact that non-linear models (e.g., Poisson) 

removes country-pair observations in the absence of time variation (all zero outcomes) if country-

pair FE are included. Controls in all regressions include # inventors in i, # inventors in j, Average 

citations in i, Average citations in j, Exports, Imports, and Technological similarity. All explanatory 

variables are transformed using the inverse hyperbolic sine transformation (MacKinnon and Magee, 

1990), except for the index of technological similarity. 
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Appendix A1: Descriptive statistics 

 

Table A1.1. Summary statistics 

Variable Obs Mean Std. Dev. Min Max 

KI 88,635 30.43 359.22 0 20740.89 

KO 88,635 31.93 361.79 0 20740.89 

KI inter-firm 88,635 29.38 347.57 0 19889.66 

KO inter-firm 88,635 30.84 350.02 0 19889.66 

KI intra-firm 88,635 1.05 12.62 0 851.24 

KO intra-firm 88,635 1.09 12.74 0 851.24 

KI ethnic 88,635 1.41 20.15 0 1249.20 

KO ethnic 88,635 0.70 10.03 0 743.51 

KI not ethnic 88,635 24.39 295.56 0 19194.96 

KO not ethnic 88,635 29.17 327.01 0 17502.39 

Migrant inventors 88,635 0.36 0.99 0 9.32 

Exports 88,635 13.11 8.43 0 27.28 

Imports 88,635 14.12 8.22 0 27.23 

Stock migrants 2000 88,635 4.64 3.89 0 15.49 

Technological similarity 88,635 0.31 0.29 0 1 

Contiguity 88,635 0.02 0.15 0 1 

Colony 88,635 0.03 0.17 0 1 

Common official language 88,635 0.10 0.29 0 1 

ln(distance) 88,635 8.51 0.90 4.09 9.88 

# of inventors in i 88,635 7.54 2.39 0 12.33 

# of inventors in j 88,635 3.07 3.28 0 12.33 

Average citations in i 88,635 0.88 0.67 0 4.61 

Average citations in j 88,635 1.33 0.29 0 2.64 

Notes: All explanatory variables are transformed using the inverse hyperbolic sine transformation, 

except for dummies, the index of technological similarity, the migration policy index, and distance 

between capitals, which is log transformed. 

 

Table A1.2.Correlation matrix 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 KI 1               

2 KO 0.7 1              

3 Migrant inventors 0.3 0.4 1             

4 Exports 0.1 0.1 0.4 1            

5 Imports 0.1 0.1 0.3 0.9 1           

6 Stock migrants 2000 0.1 0.1 0.5 0.4 0.4 1          

7 Tech. similarity 0.2 0.2 0.4 0.6 0.5 0.4 1         

8 Contiguity 0.1 0.1 0.2 0.1 0.1 0.2 0.2 1        

9 Colony 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 1       

10 Common language 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.1 0.3 1      

11 ln(distance) 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.2 -0.4 -0.1 0.0 1     

12 # of inventors in i 0.1 0.1 0.4 0.3 0.3 0.4 0.1 0.0 0.1 0.1 0.0 1    

13 # of inventors in j 0.2 0.2 0.4 0.6 0.5 0.4 0.8 0.2 0.0 0.0 -0.3 0.0 1   

14 Average citations in i 0.0 0.0 0.2 0.4 0.3 0.2 0.5 0.1 0.0 0.0 -0.1 0.0 0.5 1  

15 Average citations in j 0.0 0.0 0.0 -0.1 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.2 1 

Notes: All explanatory variables are transformed using the inverse hyperbolic sine transformation, 

except for dummies, the index of technological similarity, the migration policy index, and distance 

between capitals, which is log transformed. 



Appendix A2: Citation and migration corridors originating from developing countries 

 

Table A.2.1. Citations corridors – without high-income as citing countries (total flow of 

citations for the top-20 country-pairs for the period 2006-2010) 

Citing country Cited country Total share of 

citations 

Citation share Cum. 

(%) 

China US 22,055.15 20.07 

China Japan 8,533.97 27.83 

India US 7,673.99 34.81 

China South Korea 5,111.61 39.46 

China Germany 4,143.47 43.23 

Russian Federation US 3,281.55 46.22 

South Africa US 2,885.64 48.85 

Brazil US 2,874.61 51.47 

China UK 2,078.99 53.36 

India Japan 1,747.44 54.95 

Mexico US 1,737.97 56.53 

China France 1,654.54 58.04 

China Finland 1,594.19 59.49 

Turkey US 1,451.02 60.81 

India Germany 1,392.88 62.08 

China Canada 1,384.37 63.34 

Malaysia US 1,193.37 64,43 

China Sweden 1,162.83 65.49 

Turkey Germany 1,019.76 66.42 

India UK 965.89 67.3 

Source: OECD citations database, July 2014 

  



Table A.2.2 Migration corridors – without high-income origin countries (total of 

inventor immigrants for the top-20 country pairs for the period 2006-2010) 

Origin country Destination country Total migration Cum. Migration 

share (%) 

China US 27,696 31.79 

India US 21,712 56.71 

Russian Federation US 2,309 59.36 

China Japan 1,463 61.04 

Turkey US 1,233 62.46 

China Singapore 1,149 63.78 

Iran  US 960 64.88 

Brazil US 763 65.75 

Mexico US 722 66.58 

Romania US 710 67.39 

Russian Federation Germany 702 68.2 

India Singapore 610 68.9 

Malaysia Singapore 607 69.6 

Ukraine US 601 70.29 

China Germany 555 70.92 

China UK 545 71.55 

Malaysia US 484 72.11 

Argentina US 478 72.65 

South Africa US 414 73.13 

India UK 393 73.58 

Source: Miguelez and Fink (2013). 

 

  



Appendix A3: List of countries included in the analysis 

Table A.3.1. Countries included in the analysis 

Receiving 

countries 
Sending countries 

Australia Albania El Salvador Lebanon Senegal 

Austria Algeria 

Equatorial 

Guinea Liberia Sierra Leone 

Belgium Argentina Estonia Libya Singapore 

Canada Armenia Ethiopia Lithuania Slovakia 

Chile Australia Finland Luxembourg Slovenia 

Czech Republic Austria France Madagascar South Africa 

Denmark Azerbaijan Gabon Malawi Spain 

Estonia Bahamas Gambia Malaysia Sri Lanka 

Finland Bangladesh Georgia Mali Sudan 

France Belarus Germany Malta Suriname 

Germany Belgium Ghana Mauritania Swaziland 

Greece Bolivia Greece Mexico Sweden 

Hungary 
Bosnia and 

Herzegovina 
Guatemala Mongolia Switzerland 

Iceland Botswana Guinea Morocco Syria 

Ireland Brazil Haiti Namibia Macedonia 

Israel Bulgaria Honduras Netherlands Tajikistan 

Italy Burkina Faso Hungary New Zealand Thailand 

Japan Cameroon Iceland Nicaragua 
Trinidad and 

Tobago 

Luxembourg Canada India Niger Tunisia 

Mexico Chad Indonesia Nigeria Turkey 

Netherlands Chile Iran Norway Uganda 

New Zealand China Iraq Oman Ukraine 

Norway Colombia Ireland Pakistan UAE 

Poland Congo Israel Panama UK 

Portugal Costa Rica Italy Paraguay Tanzania 

R. of Korea Croatia Jamaica Peru US 

Slovakia Cuba Japan Philippines Uruguay 

Slovenia Cyprus Jordan Poland Uzbekistan 

Spain Czech Republic Kazakhstan Portugal Venezuela 

Sweden Côte d'Ivoire Kenya Qatar Viet Nam 

Switzerland Denmark Kuwait R. of Korea Zambia 

UK Dominican Rep. Kyrgyzstan R. of Moldova Zimbabwe 

US Ecuador Latvia Russian Fed.  

 Egypt  Saudi Arabia  

 

 


