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Social interactions lead to motility-induced
phase separation in fire ants

Caleb Anderson1,2 & Alberto Fernandez-Nieves 1,2,3,4

Collections of fire ants are a form of active matter, as the ants use their
internal metabolism to self-propel. In the absence of aligning interactions,
theory and simulations predict that active matter with spatially depen-
dent motility can undergo motility-induced phase separation. However,
so far in experiments, the motility effects that drive this process have
come from either crowding or an external parameter. Though fire ants
are social insects that communicate and cooperate in nontrivial ways,
we show that the effect of their interactions can also be understood
within the framework of motility-induced phase separation. In this con-
text, the slowing down of ants when they approach each other results in
an effective attraction that can lead to space-filling clusters and an
eventual formation of dynamical heterogeneities. These results
illustrate that motility-induced phase separation can provide a unifying
framework to rationalize the behavior of a wide variety of active matter
systems.

Active matter systems, which include flocks of birds1,2, swarms of
bacteria3,4, and collections of fire ants5–7, are far from equilibrium
because they violate the principle of detailed balance8,9. This principle,
reflecting the equal likelihood for a process at themicroscopic level to
occur in one and the opposite direction, is a hallmark underlying all of
equilibrium statistical mechanics10. In contrast, ants convert energy
stored in adenosine triphosphate (ATP) into kinetic energy, which is
then dissipated via frictional forces, but there is no reverse process in
which the ants can convert their kinetic energy into stored chemical
energy. Despite this significant difference, active matter is often best
understood in analogy to equilibrium systems. For example, systems
of self-propelled particles with local aligning interactions undergo the
equivalent of a phase transition, which is a feature of some equilibrium
systems, from a disordered phase to a polar-ordered phase with the
control parameters of noise and density11,12. This phase transition
results in traveling flocks and herds13 in living systems and sometimes,
in phase coexistence14,15. More recently, interest has grown in active
systems with particles that have negligible aligning interactions but
have spatially varying self-propulsion speeds, which could arise due to
crowding, particle interactions, or the influence of external

parameters, such as chemical gradients16 or variable lighting levels for
photosensitive synthetic active particles17,18.

At low densities, it is theorized that if a spatially dependent
motility can result in a spatially varying density, the system can be
mapped onto the behavior of an equilibrium system in the presence of
an effective potential19,20. If this motility-induced effective potential
depends strongly on local density, theory and simulations show that
the system canundergomotility-induced phase separation (MIPS) into
regions that are maximally dense, sometimes crystalline, and regions
with much lower density and more mobile particles19–21. Such phase
separation has been verified in bacteria exposed to chemical
gradients16, and with Quincke rollers22 or hard Janus particles inter-
acting via collisions23,24. In each of these cases, the motility effects that
drive MIPS have come from direct collisions or crowding, which
restrict the motion of individual particles, or from an externally
applied field, so it is currently unknown how broadly applicable these
principles may be.

Here, we show that this framework can be extended to under-
stand the behavior of fire ants, Solenopsis invicta, social insects known
to communicate with each other through pheromones and physical

Received: 29 July 2021

Accepted: 13 October 2022

Check for updates

1Department of CondensedMatter Physics, University of Barcelona, 08028 Barcelona, Spain. 2School of Physics, Georgia Institute of Technology, Atlanta, GA
30332, USA. 3ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain. 4Institute for Complex Systems (UBICS), University of
Barcelona, 08028 Barcelona, Spain. e-mail: a.fernandeznieves@ub.edu

Nature Communications |         (2022) 13:6710 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1286-9809
http://orcid.org/0000-0002-1286-9809
http://orcid.org/0000-0002-1286-9809
http://orcid.org/0000-0002-1286-9809
http://orcid.org/0000-0002-1286-9809
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34181-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34181-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34181-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34181-0&domain=pdf
mailto:a.fernandeznieves@ub.edu


contact25,26. We find that we can indeed describe their behavior using
an effective motility-induced potential that leads to MIPS.

Results
Motility-induced effective potential
We confine sterile female fire ants, which have an average length l =
(3.5±0.7)mm, to a circular cell with a diameter D = (9.00 ±0.02) cm
and a heighth = (1.6±0.1)mm,which is slightly larger than the height of
an ant (see “Methods”). The ants are thus effectively confined to two
dimensions. We place this cell in the plane perpendicular to the grav-
itational direction, image the ants from above, and track their posi-
tions as a function of time. For example, Fig. 1a shows an image of N =
40 ants in a cell, together with their trajectories over the previous 3 s,
which are shown as colored lines. Notice that the ants that have the
shortest trajectories in this figure, and therefore lowest speeds over
the 3 s, tend to be near other ants. This is a typical result of their social
interactions, which we quantify by measuring the average speed of an
ant as a function of its distance fromanother ant.We sort the velocities
of pairs of ants by their center-to-center distance, which we divide into
1mm bins, ensuring that there are at least 20,000 measurements in
each bin with 0.3 cm< r <7 cm, and take the average for each bin. The
resulting <v(r)> for various N are shown in Fig. 1b. This figure can be
understood by considering a reference ant at r =0 and a second ant a
given distance, r, away from the reference ant. Figure 1b then shows
the average speed at which we measure the second ant to be moving.
Notice that <v(r)> depends on N because this second ant is free to
interact with ants in the cell other than the reference ant. Regardless,
for allN, wefind that the ants, on average, slow down as they approach
each other. To account for the effect of the ants’ spatially dependent
motility, we consider a continuity equation for the probability, P, that
an ant has position r, and orientation θ, if the ant moves in the direc-
tion it is facing19,27,28:

_P r,θð Þ= �~∇ � P r,θð Þv rð Þû� �
+Θ P r,θð Þð Þ ð1Þ

where û= cos θð Þx̂ + sin θð Þŷ and Θ P r,θð Þð Þ controls the change in the
orientation of the ants. In most systems, this function is taken as
Θ P r,θð Þð Þ=Dθ rð Þ ∂2

∂θ2
P r,θð Þ, where Dθ (r) is a rotational diffusion con-

stant that depends on location. The rate of change of P thus depends
on the divergence of the probability current, where the minus sign
indicates that an outward flux of the probability current decreases P.
TheΘ P r,θð Þð Þ term then acts as a source or sink for P r,θð Þ. Interestingly,
for isotropic processes, in which all relative orientations are equally
likely and independent of position, P r,θð Þ=PðrÞ=ð2πÞ, a steady state
solution is P rð Þ / v rð Þ�1, suggesting that the ants are more likely to be
in regions in which they move more slowly so that P rð ÞvðrÞ is constant
across the cell.

To physically think of this, we consider a model equilibrium sys-
tem consisting of a single particle in contact with a thermal reservoir
and subjected to an external potential U(r). The probability of finding
this particle with a given position is P rð Þ / exp �U rð Þ

kT

� �
, where kT is the

thermal energy. For this equilibrium particle to have the same prob-
ability distribution as that predicted by the continuity equation above
in steady state, the model potential would need to be
Uv rð Þ= kT ln v rð Þ=v0

� �
, wherewe have chosen as the scale for speed the

average speed, v0, of ants with center-to-center distances
4 cm ≤ r ≤ 6 cm.

In our case, since the ants’ motion is not related to thermal fluc-
tuations, we have no convincing measure of an effective kT. However,
we can still see the effect of themotility by examining the shape of the
motility-induced effective potential, which we define as
U 0

v = ln <v rð Þ>=v0
� �

, neglecting any prefactors. We find that U 0
v increa-

ses as r increases, as shown in Fig. 1c. This indicates that the effect of
social interactions is equivalent to an attraction, since the interaction
force F = � dU 0

v=dr is negative and thus along the �r̂ direction. We
note that one of the effects that is known to disrupt this analogy is
the presence of aligning interactions, which are common in many
active matter systems17. In the presence of aligning interactions, the
relative orientations between particles are no longer independent of
position and the solution to the continuity equation (1) breaks down.
Though we do find some evidence of alignment between the ants in
our experiments, these are only relevant for very small center-to-
center distances (see “Methods”). Importantly, because the ants are,
on average, barely moving when they have small center-to-center
distances, alignment does not seem to disrupt the effective attraction.

Notice that our measurement of U0v for N = 2 implies that attrac-
tive forces between a pair of ants appear localized to within about
1.3 cm≈ 3.5l, which is approximately the distance at which fire ants are
thought to be able to detect one another29, and thus begin to interact.

Potential of mean force
We now check for motility-induced attraction by independently mea-
suring the probability distribution for the ants’ pair distances and
calculating the potential of mean force (PMF) between two ants. The
PMF is the pair-potential associated with the average force between
two particles, given all possible configurations of all other particles in
the system. It is a powerful notion often used to study equilibrium
many-body systems, such as colloidal suspensions30,31. We first mea-
sure the pair distribution function, g(r), for the ants, which compares
the probability of finding a pair of ants with a given separation, P(r), to
the probability of finding a pair of ants very far apart, P (r→∞). In a
system far from theboundaries,g rð Þ= PðrÞ

Pðr!1Þ =
1
ρ

N rð Þ
2πrΔr, whereN(r) is the

number of ants in an annulus of thickness Δr centered at r, and ρ =N/A,
with A the available area, is the particle density. Whereas

Fig. 1 | Motility-induced attraction between ants. a Forty fire ants confined in a
2D cell with their tracked trajectories over the previous 3 s shown as colored lines.
The edge of the cell is outlined in black for clarity. b Average speed of the ants as a

function of their center-to-center distance. c Motility-induced effective potential
between pairs of ants, calculated from the average velocities for a given center-to-
center distance.
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lim
r!1

NðrÞ ! 1, lim
r!1

gðrÞ ! 1. The restrictive dimensions of our cell
requires modifying our calculation because the possible cir-
cumference is no longer 2πr when the ants are near the cell walls.
However, we can correct for this geometrically (see “Methods”). For an
equilibrium system, we can use gðrÞ to obtain the PMF, because by

definition, g rð Þ= exp � Up rð Þ
kT

� �
, whereUpðrÞ is the PMF. For the ants, we

define Up = � ln g rð Þð Þ, neglecting prefactors. Note that the PMF is
distinct from themore familiar pair interaction potential, as it includes
contributions from forces intermediated by particles other than the
observed pair. The result is that Up varies with N for the same reason
U 0

v does.

Remarkably, at moderate to high pair distances, the shape of the
ants’Up andU 0

v agree verywell, as shown in Fig. 2a–c, forN = 3, 10, and
40 ants, respectively. On the one hand, this indicates that the motility-
induced effective potential can be physically important in dry active
systems, such as crowds of creatures. On the other hand, notice that
for r < 4mm, Up is effectively repulsive, because the interaction force
F= −dUp/dr is positive and thus along r̂. The source of this repulsion is a
combination of excluded area caused by the shape of the ants’ bodies
and a tendency of the ants to avoid crowding each other’s legs. Since
these effects are not related to the ants’ motility, the repulsion is not
present in their motility-induced potential, U 0

vðrÞ.

Clustering and phase separation
The effective attractive force between the ants leads to the formation
of clusters of nearly stationary ants. At low densities, the system
exhibits short-lived clusters of non-moving ants, like the ones shown in
the false color image of N = 100 ants in Fig. 3a. In this figure, the ants
that are currently near-stationary, which we define as having an

average speed below 1mm/s between two frames, are indicated in
black, and the rest of the ants are shown inmagenta. Notice that most
of the stationary ants are in clusters, including a large cluster con-
sisting of more than 20 ants. All the stationary ants in this frame began
movingwithin the next 30 s. These short-lived clusters can alsobe seen
clearly inSup.Movie 1. Ants in thewild often interact for thepurposeof
allogrooming or communication25. We notice that the ants in these
experiments often probe their surroundings with rapid antenna
motion when they first join a cluster or interact with another ant, but
this antennamotion, alongwith all other slight bodymovements tends
to stopwithin several seconds after an ant joins a cluster.We therefore
believe that the main biological function of the ants’ interactions in
these experiments is either energy conservation or aggregation
promotion.

We group the stationary ants into clusters using a threshold dis-
tance of 7mm ≈ 2l on the center-to-center distance between ants and
calculate the average radius of gyration, Rg, for clusters made up of
different numbers of ants, Nc (see “Methods”). Our results in Fig. 3b
show that large clusters tend to fill space,Nc / R2

g , as demonstrated by
the dashed blue line. These space-filling clusters are reminiscent of
clusters seen in other active systems24, including aggregations natu-
rally formed by other species of ants32 and cockroaches33. At these low
densities, we find that the ants in the center of the clusters are free to
activate and leave. As a result, the size of the clustersfluctuates quickly
and does not continuously grow in time (see “Methods”).

For high densities, the motility effects in active systems can often
result in an instability, in which local fluctuations in the density can
decrease the local motility. The local decrease in motility can cause a
local increase in ∣Uv∣, which in turn causes the density to continue to
increase. In this case, ρðrÞ / P rð Þ / exp � Uv rð Þ

kT

� �
. This runaway process
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Fig. 2 | Comparison of effective potentials. a–c The PMF (left axis, blue triangles) andmotility-induced effective potential (right axis, red circles) for trials with N = 3, 10,
and 40 ants, respectively.

a b c
N

c

Rg (mm)
1 cm 1 cm

Fig. 3 | Clustering and phase separation. a False color image of 100 ants in a cell
with D = 9.00 cm. Stationary ants are shown in black and moving ants are shown in
magenta. b Number of ants in a cluster versus its radius of gyration for various N.
The black line shows Nc ∝ Rg and the blue dashed line shows Nc / R2

g . c False color

image of about 625 ants in a cell with D = 4.50 cm. Ants that remain stationary over
thirty seconds are shown in black and ants thatmove over thirty seconds are shown
in magenta.
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results in motility-induced phase separation, in which the system
separates into regionswith stationaryparticles at very highdensity and
regions of moving particles at much lower density.

To test this expectation, we switch to smaller confining cells with
D = (4.50 ± 0.02) cm, so that we can reach high enough ρ, and
observe the ants’ behavior. At these densities, we are unable to track
individuals. However, we observe that the ants clearly begin to form
spatial heterogeneities that last hundreds of seconds (see “Meth-
ods”). These heterogeneities are visible as dense clusters of sta-
tionary ants surrounded by a background of more quickly moving
ants, as shown in Sup. Movie 2; the observed spatial heterogeneities
thus also correspond to dynamic heterogeneities. Figure 3c shows a
typical frame captured during an experiment with N ≈ 625 ants. In
this false color image, pixels that remain dark for the next 30 s are
shown in black and pixels that were dark when this frame was cap-
tured but then changed to light anytime over the next 30 s are shown
in magenta. This makes it clear that many of the densest regions in
the cell are filled with stationary ants, in agreement with the MIPS
framework.

Unlike in the clusters formed when the ants are confined at low
density, at high density, the ants on the interior of the clusters are no
longer free to leave the clusters.While the clusters stillmelt and reform
over long times,we find that the clusters coarsen such that their length
scale grows in tentative agreement with L / t

1
3, as expected for MIPS

andmore generally seen in spinodal decomposition processes20,34 (see
“Methods”).

Departure from MIPS
While MIPS explains the existence of dynamic heterogeneities in the
ants at high densities, the social behavior of the ants causes a sur-
prising departure from traditional phase separation. In equilibrium
phase coexistence, a change in global density changes the proportions
of the coexisting phases, but the density of each phase remains
unchanged. Based on this expectation, we look at the details of the
observed phase coexistence in our fire-ant crowds and measure the
difference in light extinction, detected as an unsigned 8-bit integer,
between an empty cell and each of the phases, which serves as a proxy
for the number density of the stationary andmoving phases of the ant-
crowds (see “Methods”). We find that increasing the number of ants in
the cell results in an increase in the density of both phases, as shownby
the light extinguished by each phase in Fig. 4a, in which blue triangles
represent the density of the stationary phase and red circles represent
the density of the moving phase. The fact that the density of the
coexistent phases is not constant reflects a density-dependent vapor
pressure, which is a known effect in multicomponent liquid-liquid
phase separation35, like those common in intracellular environments,36

but that has not been seen in single component liquid-gas phase
separation or MIPS.

This departure from the equilibrium analogymust result from the
specifics of how ants socially interact. To consider the source of this
difference, we determine the speed distributions of the ants in our
tracking experiments with various N, see Fig. 4b. We find there is a
noticeable difference in the speeddistributionof single ants compared
to the speed distributions with more ants. While a single ant spends
only about 30% of its time moving slower than 1mm/s, for N > 1, the
ants spend about 50% of their time moving slower than 1mm/s.
However, adding more ants to the cell after the second ant does not
appreciably change the speed distribution. The ants thus have a pre-
disposition to spend about half their time moving and about half of
their time stationary, regardless of density, provided they have at least
one companion in the cell. This is at odds with what onemight expect,
as increasing the number of ants in the cell would typically decrease
the speed of the ants, given that therewould a priori bemore locations
in the cell where the ants could be slowed down due to their interac-
tions with other ants. However, our finding agrees with previous
experiments with Solenopsis invicta that show that the ants begin to
avoid social interactions as the density increases so that their rate of
contact remains unchanged, regardless of global density29.

To further illustrate that the social interactions of the ants remain
unchanged for N > 1, we examine the waiting times of the ants, which
we define as the time intervals that the ants remain stationary before
they start moving again. Figure 4c shows that the ants do not exhibit a
characteristic timescale for these waiting times. Instead, we find that
theprobability distribution for thesewaiting times agreeswith apower
law distribution. For N = 1, this power law has an exponent of γ = −2.8
(dashed line in Fig. 4c). When one more ant is added, this exponent
decreases to γ = −2.1 (dotted line in Fig. 4c), indicating that the ants are
now much more likely to have longer waiting times as a result of their
interactions.However, addingmore ants has no effect on the observed
exponent, supporting the idea that the ants prefer a certain amount of
social interaction, regardless of N.

Our findings indicate that an ant has a set fraction of time that it
prefers to spend moving. If we further assume that the ants do not
coordinate the timing of their activity, then, at any given moment,
approximately the same proportion of ants will be moving. If the
proportion ofmoving ants is fixedby the ants’ social behavior, then the
densities of the two phases must change with global density, which is
indeed what we find experimentally.

Discussion
At low densities, pairs of ants interact via complicated social interac-
tions that we can summarize by examining their spatially dependent
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Fig. 4 | Departure from equilibrium analogy. aMeasurements of the intensity of
the light extinguished by the stationary clusters (blue triangles) and the actively
moving phase (red circles) for various numbers of ants contained in D = 4.50 cm
cells. The dashed lines are guides to the eye to show that both densities are
increasing. b The speed distributions for various numbers of ants in D = 9.00 cm

cells. After the addition of a second ant, further additions do not appreciably
change the speed distributions. c The probability distributions of waiting times
between ceasing and beginning motion. The distributions agree with power laws
(dashed and dotted lines).
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motility. When we increase the density of ants in the cell, we find that
the strength of these interactions begins to decrease, due to interac-
tions with other ants in the cell. This is consistent with the principle of
local activation/long range inhibition that governs many aspects of
social insect behavior32,37. In this case, an ants’ interactions with other
ants in the cell tend to decrease the likelihood of interactions with any
particular ant. In termsof ourmodel potential, the other ants in the cell
exert a force on any given ant that points radially away from a
reference ant.

Aggregation in biological systems is known to have evolutionary
advantages38 and remains an active area of study with a variety of well-
known theoretical models39,40, including some successful models that
propose a density-dependent motility41,42 and bear a striking resem-
blance to the formalism of MIPS19. Under the right conditions, these
models also predict stationary clusters with sharp edges embedded in
an actively moving lower density background, consistent with the ant
clusters we observe here. Our results thus provide an interesting case
study where motility effects exist and result in the formation of
essentially stationary clusters within a single crowded system.

Effective interaction potentials also have long history of being
used to model animal behavior43. Recently, for example, success has
been found in directly measuring effective interaction potentials of
fish by detecting the acceleration of individuals as they approach each
other44,45. Here, we have measured the interaction potential in a dif-
ferent manner that may be more appropriate to crowds of organisms,
as it can easily capturemultibody effects, and shown that the complex
social interactions of ants can be rationalized in terms of existing
theory formodel activematter. Our results use the framework ofMIPS
to explain the behavior of multicellular organisms, showing that MIPS
can indeed be useful in describing crowds of living creatures. This
connection between social ants and active matter physics paves the
way for developing newmodels to describe the behavior of crowds of
other social creatures, such as humans. Modeling social creatures as
equilibrium particles interacting with effective potentials may help
predict the threshold levels at which crowd dynamics begin to slow
down or stop. Taking the analogy of an effective potential further, we
believe that certain room or hallway geometries could naturally be
modeled as an external effective potential that causes clusters of
people to gather in certain areas, allowing effective crowd control.
However, despite the success of MIPS in describing what we observe
with fire ants due social interactions, more work is needed to fully
rationalize all of our results; this further work might include simula-
tions to address our proposed source for a density-dependent “vapor
pressure” and theory work to quantitatively obtain and compare both
the motility potential and the PMF for various N, paying special
attention to the physics behind the prefactors preceding their r-
dependence.

Methods
Ant collection
We collect our fire ants from the wild in a vacant lot in Kennesaw, GA,
(34°01'10.7“N 84°31'36.6“W) between March and October. To do this,
we slick the walls of 5-gallon buckets with talcum powder to prevent
ants from climbing out of them and then seek out the largest colonies
available. We search for large above-ground mounds that are aggres-
sively defended between 24 and 72 h after a heavy rain. We collect the
ants along with the soil of their mound and subterranean tunnel sys-
tem to a depth of about 20 cm and fill the buckets no more than two-
thirds of the way to the rim. Once we have brought the ants to the lab,
we leave the ants undisturbed in the buckets for one full day to allow
the ants to form a tunnel system. Then we use a system of irrigation
tubing to drip water into the soil at a rate of about 1mL/s, flooding the
buckets over the courseof another twodays.Dripping thewater allows
the ants to make their way to the surface of the soil without drowning.
As the water level continues to rise past the surface of the soil, the ants

form rafts on the water surface. We remove the rafts with a spoon,
place them into large open Tupperware bins and, slick the walls of the
bins with Polytetrafluoroethylene, also known as Fluon, a copolymer
which keeps the ants from climbing out of the lidless bin. These bins
make for convenient storage because they allow for easy removal of
ants for experiments by keeping the ants away from soil.

Once in our care, the ants are given a continuous supply of high
protein baby food, in particular a smooth purée containing chicken or
turkey, and water so that they never run out. We supply water with a
cottonball that is resting inwater, either in a shallowpetri dish ofwater
or as a stopper on a test tube filled with water. The ants are also given
two overturned halves of a petri dish that have been blacked out,
where they naturally store their eggs, winged males, and possibly
queens. Outside of the blacked-out halves of petri dish, the ants are
exposed to constant overhead lighting.

We calculate the average length of an ant by measuring the dis-
tance from the tip of the mandibles to the stinger for each of slightly
more than 1000 ants from 10 different colonies. The average and
standard deviation of our collected sterile females’ length are l =
(3.5±0.7)mm.

We measure the average mass of our sterile females to be mant =
(0.8 ± 0.1)mg. This average is calculated by weighing 5 samples of
about 200 ants and the error contains the maximum and minimum
average mass of the samples. This mass is compared to the total mass
of a sample to calculate the number of ants we use in an experiment
when N > 150 ants.

When we collect ants from the bins to use them in an experiment,
it is convenient to chill the ants in a refrigerator to temporarily reduce
their metabolism to ease the transfer. Chilling the ants for a short time
does not harm them.However, the ants’behavior changes after several
weeks in captivity, even if the ants are fed and watered consistently.
For this reason, we typically obtain new ants about once per month in
the warmer months.

Tracking
The cells are made by cutting a circle out of a thin sheet of acrylic and
then sandwiching the acrylic between twopieces of glass.We place the
acrylic on one sheet of glass, load the circular cell with N chilled ants,
add the second piece of glass, place these cells horizontally, and back-
light them through a sheet of light diffuser. We then quickly begin
imaging the ants from above, so that the first image is taken no more
than 10 s after the ants are added to the cell. After encountering the
room-temperature glass of the cell, the chilled ants warmup and begin
to wander the cell within several seconds.

After imaging the ants, we segment the images to detect the
regions of pixels that correspond to ants andmeasure the area, A, and
centroid, r, of each region.We alsomeasure the orientation of each ant
byfirstfinding the ellipse that has the samesecond areamoment as the
groupofpixels thatwe associatewith an ant.We then calculate θ as the
rotation angle of this ellipse; θ is the angle of the major axis of the
ellipse relative to the x-axis of a lab frame.

By choosing to compare the ant to an ellipse, we have neglected
polar orientation. We track the ants by minimizing the cost, cij,
between the ants in one frame and the ants in the next frame and
adding the new ants to the existing tracks. In our case,

cij =Cr ∣Δrij ∣+Cθ∣θij∣+CA∣
ffiffiffiffiffi
Ai

p
�

ffiffiffiffiffi
Aj

q
∣ ð2Þ

where θij is the difference in orientation between the two ants,
∣Δrij ∣= ∣rj � ri∣ is the relative distance between ants, and Cr, Cθ, and CA

are constants set so that, on average, the distance between ants
accounts for 90% of cij. For computing efficiency, we first try a greedy
solution to minimize the cost of connecting each of the ants, so that
each track searches for the ant with the minimum cost to add to
itself. Then, if two tracks both try to add the same ant, the track with
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the lower cost gets to keep the ant and the track with the higher cost
must take its next choice. This process avoids the computationally
expensive process of finding the global minimum cost. We begin
tracking the ants at the beginning of the experiment and use all our
tracking data to compute θ(r), v(r), g(r), waiting times, and Nc. There
is a transient state at the beginning of the experiments, in which the
ants hardly interact, but this state is brief enough that it does not
affect our averages.

Alignment measurements
We sort all measurements of θij, for ants in the same frame by center-
to-center distance and measure the orientational order parameter,
SðrÞ= h2cos2θijðrÞ � 1i,in each bin. A value of S = 0 corresponds to
completely disordered rods in 2D, while a value of S = 1 corresponds to
completely ordered rods. Note that S can in principle take negative
values; this occurs if the rods tend to align perpendicularly. In our
experiments, we in fact observe that S takes slight negative values at
intermediate r; this results from the alignment induced by the

confining walls, which forces occurrence of configurations where the
ants align perpendicular to each other along the boundary. Also recall
that the ants are rather unlikely to be found very close together, which
is evident from the relatively high values ofUp (r) when r is very small in
Fig. 2. To aid our statistics then, we bin all pairs of ants from experi-
ments with N = 2, 3, and 5 ants to find that the ants do align over short
distances, as shown in Fig. 5a.Notice that the order parameter drops to
near S =0 steeply when r ≈ 4mm≈ l. When r approaches 9 cm, S(r)
increases, since a pair of ants at this separation are at opposite sides of
the circular cell, and for this to occur, the ants must align relative to
each other.

Pair correlation normalization
The pair correlation function in 2D far from system boundaries is
g rð Þ= 1

ρ
N rð Þ
2πrΔr. Our confinement geometry requires us to use a normal-

ization factor different from 2πrð Þ�1, which we call the available arc
length, L. For two ants, labeled X and Y, with ant X a distanceR from the
center of the cell, the available arc length for ant Y to be found a
distance r away from ant X, in a cell with diameter D is:

L X ,Yð Þ= 2r π � arccos D2�4R2�4r2
8Rr

� �� �
, R+ r < D

2

2πr, R+ r ≤ D
2

8<
: ð3Þ

The available arc length L X ,Yð Þ≠LðY ,X Þ, becauseR depends only on the
position of ant X, so L is calculated twice for each pair of ants, as
demonstrated in Fig. 5b. From the measured positions of the ants, we
calculate the center-to-center distances from each ant to each other
ant and the available arc lengths for each of those distances every
frame. We sort the measured available arc lengths in all trials with a
given N by the pairs’ center-to-center distances into 0.14mm bins,
which results in at least 104 counts in each bin for 0.3 cm< r < 7 cm.

Next, we calculate a weightedmeasure of the counts for each bin,
ω rð Þ=PiL

�1
i , where the summation runs over pairs in each bin. This

calculation ofω(r) normalizes each count individually by its associated
available arc length. For example, consider a pair of ants found at a
distance apart in which only π radians are possible at that distance
apart in the cell. Weighting this count by L−1 is equivalent to adding a
phantom count to make up for the fact that this count was made
despite it being half as statistically likely as it would be if the whole
circle, 2πr, was available.

In a system without boundary concerns, ω(r) would simplify to
ω rð Þ=Pi1=ð2πrÞ=NðrÞ=ð2πrÞ where N(r) is the number of ants in the
circular annulus that corresponds to the bin starting at r.
Finally, we normalize ω(r) by its average value between 4 cm and
6 cm to insure that g(r) → 1 appropriately at long distances.
Hence: g rð Þ=ωðrÞ= ω rð Þ	 


4�6.

L(X,Y)

X

Y

r

L(Y,X)

g(
r)
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p(r

)
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a b

c

S
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r (cm)

d
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Fig. 5 | Alignment and pair correlations. a Alignment between pairs of ants
demonstratedby theorder parameter for pairs at various distances.b Illustration of
the available arc length. The red line shows the available arc length, L(Y,X), for ant Y
to be found a distance r away fromantX and the blue line shows L(X,Y). cCalculated
pair correlation function after using our geometric correction for different N.
d Potentials of Mean Force for different N.

1 cm

Ants

r (
cm

)

a b

rthresh

Fig. 6 | Cluster analysis. a Dendrogram for one frame of an experiment with
N = 100 ants. Clusters of ants correspond to branches that cross the rthresh line.
Leaves that correspond to ants in a single cluster terminate on a line colored to

match the cluster in Fig. 6b. Only clusters of more than 1 ant are shown. b Clusters
of stationary ants divided using the previous dendrogram. The clusters have, in
order of size, Nc = 22, 7, 4, 3, 3, 2, and 2 ants.
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The results for variousN are shown in Fig. 5c. Thepair correlations
show a strong peak around r = l and then decays to 1 at long distances.
These pair correlations are used to calculate the PMF, Up = � ln g rð Þð Þ,
which are shown in Fig. 5d.

Cluster detection
To characterize the clusters, we first filter out any ants that are moving
in each frame with ∣~v tð Þ∣>1mm=s, so that we are left with only “sta-
tionary” ants in each frame. For example, only stationary ants are
highlighted in Fig. 3a. Then, in each frame, we sort the stationary ants
into clusters by creating a dendrogram, which is a common chart used
in clustering analysis46, from their center-to-center-distances and
choosing a cutoff distance that corresponds to about twice the lengthof
an ant, as shown in Fig. 6a. We include in our cluster size distribution all
observedclusters, including those thatweonlydetect for a single frame.

The x-axis in Fig. 6a shows the labels associated to each stationary
ant. Each ant starts out as a leaf on the dendrogram, and its branch
continues vertically until it reaches a y-value that corresponds to the
distance between the starting ant and its nearest neighbor, at which
point the branch merges with the branch that includes its neighbor.
Then, this merged branch, which now represents a cluster, continues
vertically upwards until a y-value that corresponds to the minimum
distance between any ant in this cluster and another ant outside of the
cluster, and the branches merge again.

This continues until all the ants are included in one branch (the
trunk) at the top. Notice that many of the leaves first join around r = l,
consistent with the location of the local minima in Fig. 2 of the main
text. Segregating the ants into individual clusters is amatter of picking
a rthresh checking which ants are included in each branch rthresh inter-
sects. Choosing rthresh = 7mm≈ 2l results in the clusters designated by
different colored lines on the x-axis in Fig. 6a. The ants in Fig. 6b, have
been color coded according to the color of their leaf in Fig. 3a. The
biggest cluster in this image contains Nc = 22 ants.

For our calculation of the radius of gyration, Rg, for each cluster,
we treat the masses of the ants as equal and treat each ant as a point
particle located at its centroid so that R2

g =
1
Nc

P
iðri � rCM Þ2, where rCM

is the average position of the ants in the cluster.
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Fig. 7 | Cluster dynamics. a Average size of the clusters measured in the experi-
ment with N = 40 ants. The cluster sizes continually fluctuate. b Autocorrelation
function for an experiment with N = 625 ants (solid navy line). We measure two
timescales from this function, τ1 (dashed line) and τ2 (dotted line). c The spatial
autocorrelation function of pixels associated to the stationary phase as a function
of time for an experiment with N = 625. The dashed line is the best linear fit of

log(g(r)), and its slope corresponds to −1/L. d Correlation length scale for the
clusters measured in experiments with N ≥ 400. The data for each experiment has
been offset vertically and lines representing L∝ t1/3 have been added for clarity.
e Different measurements of relevant lengths in the experiment with N = 850:ffiffiffiffiffi

Ai

p	 

(gray squares), L (red circles), max(Rg) (blue upwards triangles),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max Að Þ

p
(green downwards triangles). The solid gray line is L / t1=3.

1 cm

c d

ba

1 cm
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Fig. 8 | Effects of increasing density. a–d Frames from experiments using N = 438,
625, 850, and 1012 ants, respectively. Notice that both the clusters and the back-
ground of moving ants become denser when the number of ants in the cell
increases.
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Dynamics
In our tracking experiments at low density, we find the average
cluster size does not continue to grow over the course of the
experiment. For example, Fig. 7a shows the average size of the
clusters over the course of a 5-h experiment, smoothed with a
1-minute rolling average. This stands in contrast to what has been
seen in the aggregations of other species of ants32 and to the beha-
vior of the phase-separated fire ants.

To begin measuring the dynamics of the clusters in experiments
at higher ant densities, we divide the cell into 2mm× 2mm bins,
measure the time autocorrelation function for these bins, and then
average these autocorrelations together. We denote this auto-
correlation function C(Δt). Figure 7b is a typical example of the
result. We always find two decays with characteristic timescales τ1
and τ2.

We find that τ2 is always on the order of several hundred seconds,
which is approximately how long it takes for the clusters to “dissolve”
and reform. In contrast, τ1 is on the order of ten seconds, which cor-
responds to about how long it takes an ant in the moving phase to
move about an ant length l.

While the clusters in the phase-separated samples “evaporate”
and reform, they also seem to coarsen. Tomeasure the coarsening of
the clusters during experiments with N ≥ 400, we first measure the
pair correlation function for the pixels that correspond to the dense
phase, like those shown in green in 9c. Let ϕ(x, y) represent the
phase associated to each pixel, where ϕ = 1 corresponds to a pixel
representing part of the dense phase and ϕ = 0 corresponds to a
pixel that is not included in the dense phase. We calculate the
spatial autocorrelation using the convolution theorem:
g Δx,Δyð Þ=F�1 F ϕ x, yð Þð ÞF * ϕ x, yð Þð Þ� �

: Then we bin the 2D spatial
autocorrelation by distance from (0,0), which we locate at the upper

left corner of our images, and normalize the result by g(0,0) to
obtain g(r). The pair correlation corresponding to the frame shown in
Fig. 9c is shown in Fig. 7c. For small r, g rð Þ ≈ exp � r

L

� �
, where L is a

constant length scale. We fit ln g(r) versus r to obtain L. We
sample this length scale every 200 frames to examine the growth of
the clusters over the course of the experiment. We find that the
coarsening of the clusters is consistent with L / t

1
3, as shown

in Fig. 7d, where the points for each trial have been offset vertically
for clarity and the solid lines represent L / t

1
3; this t1=3 scaling is

typical of MIPS and of spinodal decomposition processes. Impor-
tantly, we find similar results for other possible measures of the
characteristic length scale; see Fig. 7e, where we show the scaling of
〈

ffiffiffiffiffi
Ai

p
〉, with Ai the area of the clusters (green),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðAÞ

p
, with max(A)

the area of the largest cluster (gray), and max(Rg), the radius of
gyration of the largest cluster (blue), each offset vertically for
clarity. Notice that the scaling of each of these measures is
approximately the same as the scaling of L(t) (red), which is L tð Þ / t1=3

(black line).

“Vapor pressure” related analysis
The density of both phases clearly increases with the global density,
as shown in Fig. 8a–d, which shows trials with N = 438, 625, 850, and
1012 ants, respectively. To quantify this and generate the plot in
Fig. 4a, we measure the intensity of light extinguished by the two
phases.

We process the video to calculate the background intensity of
light, which is the intensity we would measure if there were no ants in
the cell, by taking themaximum intensity recorded for each pixel over
the course of the 5 h experiment, BGðx, yÞ= max

t
Iðx, y, tÞ.

Because this observation window is much longer than the time-
scales associated with either phase, the background calculation
effectively captures an empty cell, as shown in Fig. 9a.

To detect the stationary clusters, but not the moving ants, we
repeat this basic process with 30 s windows. Because this is in
between the timescales we associate with the two phases, τ1 and τ2,
we now detect the stationary clusters, as shown in Fig. 9c.
Subtracting this temporary maximum from the background,
A x, y, t0ð Þ=BGðx, yÞ �max

t
Iðx, y, t0 + tÞ, with t=30 s, yields the extinc-

tion of light by the clusters. We blur this result with a circular
pillbox averaging filter with a diameter of 1.2mm and choose a
threshold to detect the regions that we associate with the clusters,
as shown in the green overlay in Fig. 9c. We associate the rest of the
cell with the moving phase, shown with the magenta overlay in
Fig. 9c. Our results are not sensitive to reasonable choices of
threshold.

Finally, we take the average value of the extinction intensity
separately in each of the two regions and report them in Fig. 4a.

c

1 cm1 cm1 cm

ba

Fig. 9 | Density analysis. a Themaximumprojection for each pixel over the course
of an experiment withN = 625 ants.bThemaximumprojection for each pixel in the
30 s following the image shown in Fig. 8b. cA composite image showing the results

of blurring and thresholding the difference between the previous two panels to
isolate the moving (magenta) and stationary (green) phases. These phases are
overlayed onto the inverted raw image.

Table 1 | Statistical details

N Trials Trial
length (hours)

total hours total pairs

1 15 3 45 0

2 22 3 65 8.78E+05

3 13 3 39 1.58E+06

5 7 3 21 2.84E+06

10 2 3 6 3.65E+06

30 3 5 15 8.81E+07

40 1 5 5 5.27E+07

100 1 5 5 3.34E+08

The number of trials conducted using varying numbers of ants, the length of the trials in hours,
total hours of observed ant behavior, and the number of pairs used to calculate g(r) and v(r).
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Statistics
All videos of the ants were captured at 3.75 fps and pair distances,
velocities, available arc lengths, and cluster sizes were calculated for
every ant or pair of ants in each frame. Because there are N

2

� �
pairs in

each frame, many fewer frames are necessary to calculate g(r) and
v(r) in experiments with more ants. Table 1 shows the number of
trials, hours, and measured pairs we observed in experiments
with N ≤ 100.

For each of the trials with N ≥ 400, we performed each trial once
for 3 h. The points we reported in Fig. 4a correspond to the densities
we measured in each phase 0.75, 1.5, and 2.25 h into each of the
experiments.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data of this study are provided as Source data. Source data are
provided with this paper.

Code availability
The codes used to analyze the data are provided as Source Software.
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