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A B S T R A C T   

Machine Learning (ML) strategies applied to Scanning and conventional Transmission Electron Microscopy have 
become a valuable tool for analyzing the large volumes of data generated by various S/TEM techniques. In this 
work, we focus on Electron Energy Loss Spectroscopy (EELS) and study two ML techniques for classifying spectra 
in detail: Support Vector Machines (SVM) and Artificial Neural Networks (ANN). Firstly, we systematically 
analyze the optimal configurations and architectures for ANN classifiers using random search and the tree- 
structured Parzen estimator methods. Secondly, a new kernel strategy is introduced for the soft-margin SVMs, 
the cosine kernel, which offers a significant advantage over the previously studied kernels and other ML clas
sification strategies. This kernel allows us to bypass the normalization of EEL spectra, achieving accurate clas
sification. This result is highly relevant for the EELS community since we also assess the impact of common 
normalization techniques on our spectra using Uniform Manifold Approximation and Projection (UMAP), 
revealing a strong bias introduced in the spectra once normalized. In order to evaluate and study both classi
fication strategies, we focus on determining the oxidation state of transition metals through their EEL spectra, 
examining which feature is more suitable for oxidation state classification: the oxygen K peak or the transition 
metal white lines. Subsequently, we compare the resistance to energy loss shifts for both classifiers and present a 
strategy to improve their resistance. The results of this study suggest the use of soft-margin SVMs for simpler 
EELS classification tasks with a limited number of spectra, as they provide performance comparable to ANNs 
while requiring lower computational resources and reduced training times. Conversely, ANNs are better suited 
for handling complex classification problems with extensive training data.   

1. Introduction 

Scanning and Transmission Electron Microscopy (S/TEM) has wit
nessed an increase in imaging and spectroscopically generated data. 
Since the correctors were introduced in the 2000s, technological ad
vancements (such as detectors, electron guns, monochromators, etc.) 
and an increase in computing power have enabled the application of 
techniques that were theoretically conceived but not yet feasible to 
implement, such as 4D STEM, Differential Phase Contrast (DPC), 
atomically resolved analytical and fast tomography, ultrafast TEM, or 
photon-induced near-field electron microscopy. Some of these tech
niques, such as 4D STEM, high resolution Electron Energy Loss 

Spectroscopy (EELS) or DPC, easily generate gigabytes per image. This 
issue has made the S/TEM community aware of the need to develop new 
analysis tools to process these vast amounts of data precisely and 
rapidly. 

In this sense, Machine Learning (ML) has become one of the most 
promising fields for handling large amounts of data [1]. As a result, 
many ML algorithms have been applied to various Transmission Elec
tron Microscopy (TEM) techniques for various purposes [2]. In order to 
gain a comprehensive understanding of how these algorithms can be 
utilized for analyzing data, we categorize ML algorithms based on their 
degree of supervision: unsupervised algorithms, semi-supervised algo
rithms, reinforcement algorithms and supervised algorithms. In this 
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classification, the focus is on the type of data required to use them, i.e., 
supervised algorithms need known data with known labels in order to 
train the algorithm and so use it to analyze unknown data. Alternatively, 
we find unsupervised algorithms, which do not require known data 
(labels) to analyze the unknown data. In between them, there are 
semi-supervised and reinforcement algorithms, which require a mini
mum amount of known or labeled data for a good performance. 

Following this classification, the algorithms applied to S/TEM are 
presented based on the type of data required. Historically, the first al
gorithms applied to TEM were unsupervised ones and they were mainly 
applied to process EELS data, since they present a larger complexity than 
other signals acquired from the TEM. In particular, the first algorithms 
were the dimensional reduction algorithms, i.e., those that are capable 
of reducing the dimensionality of the data to facilitate its interpretation. 
They have been applied for multiple tasks such as to eliminate noise or to 
identify signals in EELS Spectrum Images (SI). Such an implementation 
can be found in the first works of N. Bonnet et al. where Principal 
Component Analysis (PCA) and Independent Component Analysis (ICA) 
were introduced in the TEM community to extract relevant information 
from EEL spectra [3,4]. From this initial works plenty of research has 
been conducted by means of those algorithms [5,6] like those of F. del la 
Peña et al. where the ICA was used to map titanium oxides phases [7], 
the works of Yedra et al. where the PCA and ICA were used for noise 
reduction and compositional identification in EELS tomographic 
reconstruction for nanostructured materials [8,9], the work of S. Lich
tert et al. where the PCA was used as a noise filter in SIs [10], the work of 
Eljarrat et al. where the PCA, blind source separation and ICA was 
applied to retrieve the electronic properties of silicon nanocrystals [11], 
the work of Martineau et al. and Ånes et al. where ICA and Non-Negative 
Matrix Factorization (NMF) were used as methods for identifying 
scanning precession electron diffraction data [12,13], the work of M. 
Pelaez-Fernandez et al. where NMF was used to identify plasmons [14], 
the work of J. Sunde et al. where PCA was used to map the orientation of 
4D-STEM datasets [15] or the work of T. Blum for the identification of 
light elements by combining STEM and Energy Dispersive X-ray Spec
troscopy (EDS) images using singular value decomposition and ICA 
[16]. Recently, another dimensionality reduction technique has been 
adopted by the community, the Uniform Manifold Approximation and 
Projection (UMAP), as found in the work of Li et al. where UMAP was 
applied to extract atomic-resolution defect information from 4D-STEM 
datasets [17]. 

Later, continuing with the unsupervised algorithms, our group also 
incorporated clustering algorithms as a tool for classifying EEL SIs, al
gorithms such as K-means, hierarchical clustering, or Hierarchical 
Density-Based Spatial Clustering of Applications with Noise 
(HDBSCAN), which have demonstrated good performance identifying 
spectra with different characteristics, whether for composition identi
fication or oxidation states [18,19]. Recently published works using 
unsupervised Artificial Neural Networks (ANN), specifically Convolu
tional Autoencoders (AEC), have proven to be a good strategy for 
reducing noise after rapid acquisition of EEL spectra [20], identifying 
defects in graphene and zincblende structures [21] or systematic 
exploration of 4D-STEM data by using rotational invariant Variational 
Autoencoder (VAE) approach [22]. 

In the other hand, ANNs have recently played a crucial role in the 
development of supervised and semi-supervised algorithms. The ad
vancements that these strategies have brought to the TEM community 
are manifold, and these algorithms can be applied to conventional S/ 
TEM 2D imaging modes, i.e., those where a 2-dimensional image is ac
quired, and to more complex data such as EELS SIs or 4D STEM images, 
which are formed by 3 and 4 dimensions, respectively. This division is 
really relevant, as the complexity of the algorithms applied is related to 
the complexity of the data. 

In conventional S/TEM 2D imaging modes, such as High-Resolution 
TEM (HRTEM) or High-Angle Annular Dark Field (HAADF), ML strate
gies have been extensively applied for image identification, e.g., 

identifying features in nanostructured materials, NanoParticle (NP) 
shapes, atomic positions, and defects. For these tasks, Convolutional 
Neural Networks (CNN) serve as the primary strategy. They have been 
applied in numerous cases including the classification and identification 
of nanostructures through Bright Field (BF) and Dark Field (DF) images 
[23,24], metrology study of NPs in BF and DF images [25–27], 
atomic-scale detection on S/TEM [28,29], atomic-scale defects and 
distortions detection on S/TEM images [30–32], or even in-situ TEM 
videos where iron irradiation effects were identified [33]. Although 
supervised strategies offer many applications and benefits in the analysis 
of conventional S/TEM, they may be more effective when analyzing 
more complex data. In this regard, there are works for 4D STEM that also 
use CNNs for 2D phase retrieval and phase object reconstructions [34], 
or some works in EELS, where Artificial Neural Networks (ANN) and 
Support Vector Machines (SVM) are used for transition metal oxidation 
state identification [35,36]. 

In this study, we conduct a comparison between soft-margin SVMs 
and ANNs in classifying EELS spectra, in particular the oxidation state of 
transition metal oxides based on their characteristics. We aim to 
distinguish the oxidation state not only from the transition metal white 
lines, but also from the oxygen K edge, or from the entire spectrum 
encompassing both features. To achieve this comparison, we propose a 
set of ANN architectures, testing different types of layers and conducting 
a systematic search in the parameter space using Random Search (RS) 
and Tree-structured Parzen Estimator (TPE) algorithms. These search 
algorithms allow us to determine the most effective combination of 
parameters and architecture in constructing EELS classifiers. Both al
gorithms are also compared in terms of computational resource expen
diture to determine which one offers the best performance. It is 
noteworthy that previous studies have already demonstrated the success 
of soft-margin SVMs and ANNs in classifying the oxidation state of Iron 
(Fe) and Manganese (Mn) oxides based on their white lines [35,36], 
including our previous work. Subsequently, the impact of normalization 
techniques on EELS spectra is analyzed through the utilization of the 
UMAP dimensional reduction algorithm. This algorithm has been pre
viously demonstrated by our group to effectively reduce the complexity 
of EELS spectra while preserving their proximity structure [18]. In this 
sense, a new kernel strategy for the soft-margin SVMs is also proposed: 
the cosine kernel, which eliminates the need for normalizing the data in 
the training and classification of spectra, streamlining the preprocessing 
process. Finally, strategies to enhance the robustness of SVM algorithms 
versus energy shifts in the edges will be explored. 

2. Theoretical background 

2.1. Support vector machines 

Support Vector Machines (SVMs) are a type of supervised ML algo
rithm used for classification and regression analysis. They were first 
introduced in the 1990s as a method for solving binary classification 
problems [37]. The main idea behind SVMs is to find the maximum 
margin hyperplane that separates the data into different classes. The 
margin is the distance between the hyperplane and the closest data 
points, referred to as support vectors. SVMs are effective in handling 
high-dimensional data, and can handle non-linear relationships between 
the input variables and the output class labels through the use of kernel 
functions. These functions transform the input data into a 
higher-dimensional space, where a linear separation can be achieved. 
The SVMs offer a versatile and robust approach to supervised learning, 
which have been applied in a wide range of applications, including 
image classification, bioinformatics, and natural language processing 
[38]. 

The version used in this article corresponds to the soft-margin SVM 
which is a variation of the standard algorithm, that allows for mis
classified samples by introducing a cost parameter balancing the margin 
maximization and the number of misclassified samples. In these cases, a 
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hard-margin SVM, which seeks to find a hyperplane that perfectly sep
arates the classes, may not be suitable as it is prone to overfitting the 
data. The soft-margin SVM addresses this issue by allowing for some 
misclassifications, referred to as slack variables, in exchange for a wider 
margin. This trade-off is controlled by a parameter called “C”, which 
determines the balance between the margin width and the number of 
misclassified data points. A high value of C means that a more accurate 
classification is required (smaller margin), which in turn means that 
fewer misclassified data points are allowed. On the other hand, a low 
value of C means that less accurate classification is allowed (more 
relaxed margin), which in turn means that more misclassified data 
points are allowed in exchange for a wider margin. In other words, a 
high C is associated with a higher penalty for misclassified data points, 
while a low C is associated with a lower penalty. 

When the SVM is trained, an optimization problem is solved to find 
the hyperplane that best separates the data into the desired classes. This 
optimization problem seeks to maximize the margin between the classes 
while minimizing the classification error, and is formulated as a 
Quadratic Programming (QP) problem. The objective function of this QP 
problem is to minimize the sum of the squared distances from the data 
points to the hyperplane, subject to the constraint that the margin is at 
least as large as the tolerance for misclassifications. The complexity of 
this optimization problem depends on the size and complexity of the 
data, as well as on the choice of the kernel function used to transform the 
data into a higher-dimensional space. To solve this QP problem, the 
optimization algorithm used is the Sequential Minimal Optimization 
(SMO) [39] which is designed to be efficient for large-scale datasets. 

2.2. Artificial neural networks 

ANNs, also referred to as Neural Networks (NN), are a family of ML 
algorithms inspired by the structure and function of biological neurons. 
The aim of these algorithms is to replicate the ability of the human brain 
to learn from experience and make predictions based on that learning. 
ANNs are comprised of interconnected artificial neurons, organized into 
layers, that process and transmit information through weighted con
nections. Each neuron receives inputs from other neurons, processes the 
inputs and the activation function to produce an output signal. These 
output signals are then passed on to the next layer until a final output 
prediction is produced. 

To understand ANNs, it is crucial to consider the key components 
that play an important role in the correct application of the network to a 
specific problem. These components include the activation functions, 
loss functions, optimization algorithms, and network architecture. 
Activation functions introduce non-linearity into the model, allowing 
the network to learn complex relationships between inputs and outputs. 
Common activation functions include the sigmoid function, hyperbolic 
tangent (Tanh), Rectified Linear Unit (ReLU), leaky ReLU, Exponential 
Linear Unit (ELU), or Scaled Exponential Linear Unit (SELU). The choice 
of activation function depends on the task and type of network. 

Loss functions measure the difference between the predicted output 
and actual output, with the goal of the training process being to mini
mize the value of the loss function. This is achieved by adjusting the 
weights of the connections between the neurons using optimization al
gorithms. The backpropagation algorithm is a widely used algorithm for 
training ANNs, which computes the gradient of the loss function with 
respect to the weights to compute gradient descent updates. This algo
rithm uses optimization algorithms to update the weights in the direc
tion of the steepest descent of the loss function, with the learning rate 
determining the step size of the updates. Various optimization algo
rithms can be used in ANNs, including Stochastic Gradient Descent 
(SGD), Adaptive Moment Estimation (ADAM), Root Mean Square 
Propagation (RMSProp), and others. The choice of optimization algo
rithm also depends on the specific problem and type of network being 
used. 

The architecture of the network, including the number of hidden 

layers, the number of neurons in each layer, the type of transformation 
applied per each neuron or the way of connected the layers, also plays a 
crucial role in the network’s performance. The optimal network archi
tecture is often determined through trial and error and experimentation 
[40], with a common approach being to start with a simple architecture 
and gradually increasing complexity until performance plateaus. 

In recent years, ANNs have become a widely used tool for solving a 
variety of problems, leading to the development of various type of 
networks, including Feedforward Neural Networks (FNN), CNNs, 
Generative Adversarial Networks (GANs), Autoencoders (AE), and 
Recurrent Neural Networks (RNN). The FNNs are the simplest type of 
ANN, with information flowing only in one direction from the input 
layer to the output layer without forming loops. The CNNs are a specific 
type of FNN specifically designed for image processing tasks and use 
convolutional layers to apply filters to the input data and extract rele
vant features. The AE are used for unsupervised learning tasks, where 
the goal is to encode and decode data in order to learn a compact rep
resentation. The GANs are used for generative tasks, with the goal of 
generating new data samples that are similar to the input data. Finally, 
the RNNs are designed for tasks where the input data are processed over 
time and the network state is influenced by past inputs. Regarding this 
work, we mainly use the FNN and CNN networks, which are the most 
commonly used for classification tasks. 

As we use FNNs and CNNs throughout this work, we focus on these. 
From a mathematical standpoint, the operation carried out by them is as 
follows: 

output = activation(W ∗ input + b) (1)  

where:  

• W is a weight matrix that connects the neurons of the current layer 
with the neurons of the previous layer.  

• input is the input vector coming from the previous layer.  
• b is the bias vector for each neuron in the dense layer.  
• activation is an activation function, such as ReLU, Sigmoid, Tanh, etc. 

that is applied to each neuron. 

ANNs have proven to be a powerful tool in the field of ML and have 
been applied in a wide range of applications, including computer vision, 
speech recognition, and natural language processing [41]. 

2.3. Uniform manifold approximation and projection for dimension 
reduction 

The UMAP is a state-of-the-art graph-based dimensionality reduction 
algorithm that has been increasingly used in recent years for visualizing 
and analyzing high-dimensional data [42]. It is a non-linear technique 
that aims to preserve both the local and global structure of the data 
while reducing its dimensionality to a low-dimensional space that can be 
easily visualized and interpreted. 

The algorithm begins by constructing a high-dimensional graph 
representation of the data, which is then optimized to be as structurally 
similar as possible to a low-dimensional graph. To construct the initial 
high-dimensional graph, UMAP builds essentially a weighted graph, 
where the edge weights represent the likelihood that two points are 
connected. To determine connectedness, UMAP extends a radius from 
each point and connects points when their radii overlap. The choice of 
radius is crucial, as too small a radius can lead to an isolated plethora of 
very small clusters, while too large a radius will result in the connecting 
of all points. To address this challenge, UMAP chooses the radius locally 
based on the distance to each point’s nth nearest neighbor. The graph is 
then made "fuzzy" by decreasing the likelihood of connection as the 
radius grows. Finally, by ensuring that each point is connected to at least 
its closest neighbor, UMAP balances the preservation of local and global 
structure. 

D. del-Pozo-Bueno et al.                                                                                                                                                                                                                       



Ultramicroscopy 253 (2023) 113828

4

The algorithm is controlled by two parameters: the number of 
neighbors and the minimum distance. These parameters effectively 
determine the balance between the local and global structure in the final 
projection. The number of neighbors, which corresponds to the 
approximate number of nearest neighbors used to construct the initial 
high-dimensional graph, is the most important parameter. A low number 
of neighbors will result in UMAP focusing more on local structure by 
limiting the number of neighboring points considered when analyzing 
high-dimensional data, while a high number will lead to UMAP priori
tizing the overall structure at the expense of fine details. The minimum 
distance parameter, on the other hand, determines the tightness of 
clustering of points in the low-dimensional space. Lower values will 
result in tightly packed embeddings, while higher values will result in a 
more relaxed grouping of points, with a focus on preserving the broad 
topological structure. 

UMAP has been proven effective in preserving the structure of 
various data types, including images, text, and gene expression data. It 
has also shown to outperform other dimension reduction algorithms, 
such as t-SNE, in terms of speed, scalability, and accuracy. 

3. Methodology 

3.1. Dataset construction 

In this study, the oxidation state of transition metal oxides, partic
ularly Fe and Mn oxides, is examined. The study focuses on two features 
of these compounds in EELS: the transition metal white lines and the 
oxygen K-edge. In Fig. 1a, these features are visualized for two Fe oxides, 
wüstite (FeO) and magnetite (Fe3O4). The fine structure of the oxygen 
K-edges is seen to be primarily divided into 4 edges, with a pre-edge, a 
main edge, and two subsequent edges of lower intensity. The main dif
ference between the two oxidation states is seen in the intensity of the 
pre-peak and a slight energy shift in the main peak [43]. The Fe white 
lines are composed by two edges: the first and most intense corre
sponding to the L3 edge, with an onset value of approximately 708eV, 
and a less intense second edge known as L2, with an onset value of 
around 721eV. It is important to note that both onset values depend on 
the oxidation state and the specific component under study [43,44]. 
Therefore, the main differences in these edges based on the oxidation 
state are the onset position and shape, with a clear variation in intensity 
of the second peak based on Fe ion oxidation state [43]. Similarly, in 
Fig. 1b the Mn white lines are presented, keeping the same structure of 

Fe white lines: first and most intense corresponding to the L3 edge, with 
an onset value of approximately 640eV, and a less intense second edge 
known as L2, with an onset value of around 653eV. In this case, they are 
also conditioned by their oxidation state, with Mn2+ having the lowest 
energy loss and Mn4+ having the highest energy loss [44]. 

To classify the oxidation state, ten spectral datasets were con
structed, with a set of labels required for each dataset. The spectra 
employed to build the datasets were obtained from SIs of magnetite 
NanoCubes (NC) and Fe oxide core-shell NCs, previously studied in the 
works of Torruella et al. and del-Pozo-Bueno et al. [45–47], with only 
the signal from the nucleus corresponding to wüstite being used. Given 
that the NCs exhibit a core-shell structure, the wüstite signal obtained is 
influenced to some extent by the top and bottom magnetite shell layers. 
However, we utilized the spectra with the least influence from these 
magnetite shell layers, achieved through the application of UMAP and 
HDBSCAN algorithms. The extraction and labeling of these spectra were 
conducted using the UMAP and HDBSCAN algorithms to ensure the 
correct labeling of each spectrum [18]. The Mn white lines spectra were 
obtained from pure Mn oxides from the work of Chatzidakis et al. [36]. 

Simultaneously, an eleventh spectral dataset was constructed to 
assess the performance of the cosine kernel in classifying EEL spectra 
from NPs of varying sizes, resulting in different thickness, and so, in
tensity values. These NPs presented a circular morphology, with a range 
of diameters from 5 to 11 nm. These spectra were obtained from Fe3O4/ 
MnxFe3-xO4 core/shell NPs, consisting of a magnetite oxide core sur
rounded by a Mn-ferrite shell [48]. As a result, each class within the 
dataset corresponds to either the Mn-ferrite shell or the magnetite core. 
Similar to the previous NCs, these classes were labeled using UMAP and 
HDBSCAN algorithms. 

The preprocessing applied to the tenth initial datasets is summarized 
in Fig. 2, where the final datasets are marked by a square inscribed in 
circular nodes. A straightforward preprocessing procedure was applied, 
consisting of removing the background prior to the edges of interest and 
normalizing the resultant spectra. This was carried out using the 
HyperSpy module of Python [49]. 

All the spectra associated with Fe oxides come from intermediary 
Dataset W, which contains the oxygen K-edge and the Fe white lines for 
an energy range of 460–800 eV, corresponding to 1360 energy channels 
with an energy dispersion of 0.25 eV/ch. In addition, it is composed of 
2744 spectra of wüstite and 1350 spectra of magnetite. From this 
dataset, intermediary Datasets K and L were constructed, containing the 
spectra with the oxygen K-edge and the Fe white lines, respectively. The 

Fig. 1. (a) EELS Fe oxide spectra between 510 and 760 eV, containing the oxygen K-edge and Fe white lines. (b) EELS spectra of Mn oxides between 610 and 680 eV, 
containing Mn white lines. 
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first one contains spectra of an energy range of 460–610 eV, corre
sponding to 600 energy channels, while the second contains spectra of 
an energy range of 600–800 eV, corresponding to 800 energy channels. 
The background was removed from the pre-edge of the interesting edge 
in the datasets W and K from 485 to 515 eV, while in the dataset L was 
applied from 665 to 695 eV. Three final datasets were constructed from 
each of these intermediary datasets according to the three normalization 
methods used: the L2-norm, maximum norm and no-normalization. 
Therefore, as an instance from the intermediary Dataset W three final 
datasets are obtained: one with no normalization applied (W-nn), one 
with L2-norm applied (W-l2), and the last one with maximum norm 
applied (W-max). 

The WL dataset was constructed by combining intermediary Dataset 
L and Dataset Mn-max, which contains the Mn white lines of Mn oxides. 
This final dataset contains a total of 7187 spectra, composed of 2744 
spectra of wüstite, 1350 spectra of magnetite, 992 spectra of Mn oxide, 
841 spectra of Mn oxide III, and 1260 spectra of Mn oxide IV. The Fe 
oxide spectra span 700 energy channels from 612.5 to 787.5 eV with an 
energy dispersion of 0.25 eV/ch, while the Mn oxide spectra span 700 
energy channels from 615 to 685 eV with an energy dispersion of 0.1 eV/ 
ch. It is worth mentioning that the background removal and normali
zation procedures applied to the Mn oxide spectra were done in a similar 
manner to the Fe oxide spectra. The background was removed from 610 
to 630 eV, and the spectra were normalized by the maximum norm. 

The final dataset, known as the MF dataset, consists of 2458 spectra 
containing both Fe and Mn white lines, obtained from iron-Mn oxide 
core-shell NPs. The MF dataset covers the Mn and Fe white lines within 
an energy range of 580–784.7 eV. This range corresponds to 2048 en
ergy channels, each with an energy dispersion of 0.1 eV/ch. Pre
processing applied to these spectra included PCA noise reduction and 
background removal from 590 to 620 eV. It is important to note that no 
normalization was performed. 

Note that the energy resolutions from all the datasets have been 
measured from the Full-Width at Half Maximum (FWHM) of the Zero- 
Loss Peak (ZLP), after setting the energy dispersion in the spectrometer. 

In summary, this study provides eleven final datasets comprising EEL 
spectra of Fe oxides (oxygen K edge and Fe white lines), Mn oxides (Mn 
white lines), and EEL spectra containing both Fe and Mn oxides (Mn and 
Fe white lines). The initial ten datasets are employed to assess the per
formance of supervised classification algorithms, specifically soft- 
margin SVMs and ANNs, in classifying the oxidation states of these 
transition metal oxides. The last MF dataset is used to evaluate the 
performance of the cosine kernel strategy for SVMs. 

3.2. Support vector machines classifiers 

From our previous work [35], the soft-margin SVM was established 
as an optimal classification method for detecting the oxidation state of 
transition metal oxides using the white lines. In this study, we introduce 
and assess the performance of the cosine kernel and employ it as a 
probabilistic classifier for SIs, as opposed to a binary one. Furthermore, 
we investigate various approaches to differentiate the oxidation state 
based on the transition metal white lines, the oxygen K edge, and the 
complete spectrum encompassing both features [50]. 

To evaluate which EEL feature is most reliable for determining the 
oxidation state, we adhere to the methodology outlined in our previous 
work [35]. First, the nine datasets constructed for this work are 
required, enabling us to assess the most suitable EEL feature for deter
mining the oxidation state and the best normalization strategy for 
normalizing EEL spectra. Four kernel strategies are applied: linear, 
Radial Basis Function (RBF), sigmoid, and cosine kernel. For each 
dataset and model, the hyperparameters are optimized using the Grid
Search algorithm, the classifiers are trained with 15% of the dataset and 
a 5-fold cross-validation. Finally, their performance is evaluated on the 

Fig. 2. Scheme of the datasets built for this work. The central nodes (Dataset W, L and K) correspond to the original spectra with an energy cut-off, and the pre-edge 
background removal depending on the feature in which we are interested (W = whole spectrum, L = white lines, K = oxygen K-edge). The nodes with a yellow square 
represent the tenth final datasets, where a normalization strategy is used, they are represented by colors: green → no-norm, red → L2-norm, blue → maximum-norm. 
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test set, consisting of the remaining 85% of the spectra. These latter 
strategies aid in preventing overfitting during the training process. 

The newly introduced kernel strategy, the cosine kernel, allows data 
normalization to be omitted. This kernel represents the cosine similarity 
used to compute the L2-normalized dot product of vectors. If X and Y are 
row vectors, then their cosine similarity, cosD, is represented as follows: 

cosD(X, Y) = 1 − cos(θ) = 1 −
X⋅YT

‖ X ‖ ⋅ ‖ Y ‖
= 1 −

∑n
i=1XiYi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1Y2

i

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1X2

i

√

(2) 

This estimator projects the vectors onto the unit sphere, and their dot 
product is the cosine of the angle between the vectors. 

Subsequently, we examine the soft-margin SVM as a probabilistic 
classifier for EELS SIs, where the model output a probability score 
instead of a binary classification, thus providing more information about 
the confidence of the prediction. This probabilistic classifier is obtained 
by training the SVM using the Platt scaling method [51], which involves 
fitting a logistic regression model to the decision values produced by the 
SVM. 

The employment of probabilistic classifiers is highly beneficial in 
EELS. When handling samples with compounds exhibiting mixed states, 
as is the case of having magnetite (Fe2+ and 2⋅Fe3+) or Mn tetroxide 
(Mn2+ and 2⋅Mn3+), the obtained spectra represent a combination of the 
individual spectra associated with each constituent, resulting in an in
termediate state. It becomes a challenge to accurately classify the 
oxidation state to the corresponding spectra using traditional classifi
cation methods. Under these circumstances, probabilistic classifiers can 
offer significant advantages. 

Probabilistic classifiers, however, are designed to manage such 
complexities by providing a probability distribution over the possible 
classes rather than a single, definitive classification. This approach al
lows for a more nuanced understanding of the data, as it enables the 
identification of the most probable classes and the corresponding con
fidence levels associated with each classification. By quantifying the 
uncertainty inherent in these intermediate states, probabilistic classi
fiers facilitate better decision-making and a more comprehensive 
interpretation of the results. 

Ultimately, the cosine and probabilistic classifier are assessed, firstly, 
by the L-nn dataset and, in SIs of Fe oxide core/shell NCs, and secondly, 
by the MF dataset to demonstrate the effectiveness of the soft-margin 
SVM as EELS classifiers in more complex scenarios, where Fe and Mn 
white lines coexist within a single spectrum. In this context, the MF 
dataset is utilized to train a SVM classifier and directly classify EELS SIs. 
These SIs pertain to magnetite/Mn-Ferrite core/shell NPs of varying 
sizes, showcasing the effectiveness of the cosine kernel in handling in
tensity variability. In order to classify them, three preprocessing steps 
are applied. First, the PCA is used to reduce the noise in the spectra, 
subsequently, the NP signals and background noise are separated, 
resulting in the classification of only the NP signals. It is important to 
note that SVM is restricted by the classes, meaning that it will always 
assign a class for each point. Therefore, if the background is passed 
through, the algorithm will incorrectly assign a class to each spectrum 
from the background, which is nonsensical. Finally, the pre-edge back
ground is removed for all NPs within an energy range of 580–620 eV. 

3.3. Artificial neural networks classifiers 

Shen et al. previous work has demonstrated that ANNs are an 
effective classification method for identifying the oxidation state of 
transition metal oxides [33], focusing on Mn oxides based on white line 
shapes. They evaluate popular ANN architectures and propose a fully 
convolutional one with better translation-invariance. In this study, we 
investigate various architectures for distinguishing oxidation states 
based on transition metal white lines, the oxygen K edge, and the full 
spectrum containing both features. We propose twenty-two different 

network architectures, including dense, convolutional, and hybrid 
models, to thoroughly assess the potential of ANNs as classifiers. To 
identify the most appropriate structure for classifying EEL spectra, we 
conduct an extensive parameter search using both RS and TPE methods 
[52,53]. Hyperparameter optimization is a critical step in the ML 
pipeline, enabling model parameter adjustments to improve perfor
mance. The RS method utilizes the Keras-Tuner module’s Random
Search function [54], while TPE employs the Hyperopt module [55]. 
The optimal architecture and hyperparameters are subsequently evalu
ated using Python and TensorBoard [56]. 

RS is a straightforward method for hyperparameter optimization, 
evaluating random parameter combinations to identify the best- 
performing set. Although efficient for low-dimensional parameter 
spaces, RS becomes less effective as the number of parameters and 
possible values increase. With a high number of parameters, the prob
ability of finding the optimal set through random sampling diminishes 
significantly. 

On the other hand, TPE is a more sophisticated optimization method 
that employs bayesian optimization to determine the next set of pa
rameters to evaluate. The TPE algorithm constructs a probability dis
tribution of the parameter space based on previous evaluations and uses 
this distribution to guide the search towards the most promising areas. 
This results in a more efficient search, as the algorithm can focus on 
parameter space regions most likely to contain the optimal set. 

We explore various ANN architectures to optimize performance, 
categorized into two primary groups: those based on dense layers and 
those based on 1D convolutional layers. 

For architectures based on dense layers: 

0: Basic Dense Neural Networks (DNNs) consisting only of dense 
layers. 
1–4: DNNs incorporating normalization layers, which help to stabi
lize and speed up the training process. These layers are incorporated 
in each structure as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

1 : LayerNorm.

2 : BatchNorm.

3 : Alternanting LayerNorm. and BatchNorm.

4 : Alternante BatchNorm. and LayerNorm.

5–9: DNNs featuring dropout layers, which reduce overfitting by 
randomly ignoring a fraction of neurons during training, and 
normalization layers. These layers are incorporated in each structure 
as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

5 : LayerNorm.+ Dropout
6 : BatchNorm.+ Dropout
7 : Dropout + BatchNorm.

8 : GaussianDropout
9 : Dropout   

10–13: DNNs with dual branches, which are parallel pathways 
within the network, each one handling a different aspect of the input 
data, and containing BatchNormalization or Dropout layers. These 
layers are incorporated in each structure as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

10 : LayerNorm.

11 : Dropout
12 : BatchNorm.

13 : Basic   

For architectures based on 1D convolutional layers: 
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0: Convolutional Neural Networks (CNNs) with or without Pooling 
layers, which help to reduce the dimensions of the input data while 
preserving important features. 
1–2: CNNs containing normalization layers, which are incorporated 
as follows: 
{

1 : BatchNorm.

2 : LayerNorm.

3: CNNs followed by dense layers, combining the advantages of both 
layer types. 
4–6: Two-branch structures, each comprising CNN and DNN, and 
including normalization layers, which are incorporated as follows: 
⎧
⎨

⎩

4 : Basic
5 : BatchNorm.

6 : LayerNorm.

7: Residual Neural Networks (ResNet), a type of CNN that uses 
shortcut connections to improve learning capabilities [57], consist
ing of 34 convolutional layers in our proposal. 

The specific values and constraints are also presented for the various 
hyperparameters, which are the settings that can be adjusted to control 
the learning process, in Tables 1 and 2. Table 1 outlines parameters for 
dense structures, while Table 2 provides details for convolutional 
structures. Some parameters from Table 1 also appear in Table 2, as 
certain convolutional models incorporate dense layers within them. 

Finally, once the optimal ANN models as EEL classifiers were iden
tified, we were in a position to verify their effectiveness for classifying 
the oxidation state in the spectra. In order to evaluate the performance 
of the dense and convolutional-based architectures as classifiers with 
respect to the spectral region most useful for this task the 9 datasets built 
were used. Precautions were taken to avoid overfitting the model, 
particularly considering the limited amount of data available. Similarly, 
to the SVM, to prevent overfitting, we utilized a low number of epochs 
(one complete pass of training data through the algorithm), specifically 
100 epochs, employed a 5-fold cross-validation to train the models, and 
reserved half of the data for testing the model. 

3.4. Addressing energy shifts 

In order to enhance the resistance of the EELS classifiers to energy 
shifts, we explore a method for improving the robustness of SVM and 
ANN models. This approach involves training the classifiers on spectra 
with energy shifts, ensuring that the models recognize that the onset 

value should not be the sole determining factor when identifying a 
spectrum. This strategy aims to overcome the experimental drift typi
cally introduced in the acquired spectra as a result of the zero-loss peak 
displacement during SI acquisitions. To accomplish this, we have 
incorporated a total of 2.500 spectra, with an energy shift ranging from 
[− 1.75, 1.75] eV, into the dataset WL (Fe and Mn white lines). As a 
result, we have trained the classifiers using the shifted spectra dataset 
and compared their performance to the models trained solely with the 
WL dataset. In order to evaluate the performance of the classifiers, we 
have applied energy shifts to the spectra of WL dataset until reaching the 
desired energy shift and tested them at each energy step. This analysis 
aims to provide insights into the effectiveness of these classifiers in 
handling energy shifts, which is crucial for the accurate classification of 
EELS spectra in real-world applications. We must be aware that the 
Electron Energy-Loss Near-Edge Structure (ELNES) of transition metals 
white lines includes energy shifts of approximately 1 eV from one 
oxidation state to another [43,50]. 

4. Results and discussion 

4.1. Assessing dataset formation with UMAP 

Dimensionality reduction techniques, such as UMAP, in conjunction 
with clustering algorithms, like HDBSCAN [58,59], have been proven 
effective in accurately classifying composites in EELS spectra when 
addressing the thickness effect [18]. In this context, the term composites 
refer to distinct groups or clusters of spectra in the dataset, while classes 
correspond to the specific categories or labels assigned to these groups. 
The thickness effect arises when the intensity of a spectrum is propor
tional to the sample’s thickness, leading intensity variations unrelated to 
the samples’ chemical composition, which can lead to inaccurate results 
in ML algorithms. Other solution for this issue is the ML approach pro
posed by Dzyubachyk et al. [60] which addresses thickness-induced 
intensity variations in conventional TEM imaging, complementing 
dimensionality reduction techniques and clustering algorithms, specif
ically, UMAP and coherent local intensity clustering [61]. Finally, it is 
worth noting that thickness can also alter the ELNES of EELS spectra via 
plural scattering [62]. However, as we are working with small NPs of 
reduced sizes, this effect does not have a significant impact in the pre
sent study. 

Given the advantages of UMAP as a dimensionality reduction tech
nique for EELS, it was an appropriate method for evaluating the quality 

Table 1 
Hyperparameter space for dense structures in random search and TPE optimi
zation. The table displays the minimum, maximum, and step values for the 
number of dense layers and the number of neurons. Additionally, it presents the 
options for the activation function, the output neuron activation, dropout, 
optimization algorithm, and learning rate.  

Hyperparameters for dense structures  

Min. Max. Step 

Dense layers 1 10 1 
Neurons 16 1024 16  

Options 

Activation ReLU, Sigmoid, Tanh, SELU, ELU, Exponential 
Algorithm ADAM SGD RMSprop 
Learning Rate 1, 10− 1, 10− 2, 10− 3, 10− 4, 10− 5 

Activation exit neuron Sigmoid or SoftMax 

Dropout 0.2, 0.3, 0.5, 0.7, 0.9  

Table 2 
Hyperparameter space for convolutional structures in random search and TPE 
optimization. The table displays the minimum, maximum, and step values for 
the number of convolutional layers, the number of convolution filters, the size of 
the convolution kernels, the pooling size, the number of dense layers, and the 
number of neurons. Additionally, it presents the options for the pooling type, 
activation functions, optimization algorithm, learning rate, and the activation 
function for the output neuron.  

Hyperparameters for convolutional structures  

Min. Max. Step 

Convolution layers 1 5 1 
Convolution filters 2 16 1 
Convolution kernel size 2 6 1 
Pooling size 2 3 1 
Dense layers 1 12 1 
Neurons 16 1024 16  

Options 

Pooling type None, Max Pooling, Average Pooling 
Activations ReLU, Sigmoid, Tanh, SELU, ELU, Exponential 
Optimization algorithm ADAM SGD RMSprop 
Learning Rate 1, 10− 1, 10− 2, 10− 3, 10− 4, 10− 5 

Activation exit neuron Sigmoid or SoftMax  
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of the constructed datasets. To assess the effectiveness of our datasets 
and examine the effect of normalization on EEL spectra, we employed 
the UMAP algorithm to reduce the high dimensionality of the datasets to 
2D point for each spectrum, enabling their visualization in a 2D map. It 
is important to note that the parameters used in the UMAP algorithm for 
all the dimensional reductions correspond to a value of 0.5 for the 
minimum distance and 300 for the number of neighbors. This allowed us 
to observe whether the data was well-separated and originated from 
distinct composites. All datasets were reduced using the UMAP algo
rithm to determine if they were well-constructed in light of the intensity 
issue. The results were illustrated in Figs. 3 and 4, where each dataset 
was mapped. 

In Fig. 3, it became apparent that, when analyzing the datasets 
without normalization (Fig. 3, 1st row), different classes in the datasets 
were corresponding to different composites, indicating well-constructed 
datasets. Even considering the thickness effect, which arose from the use 
of multiple samples with varying thicknesses to construct the datasets, it 
was evident that each composite was well-separated from the others. 
Conversely, when normalization was applied, a high degree of class 
overlap was observed for both the L2-norm and the maximum-norm, as 
seen in the 2nd and 3rd rows of Fig. 3, respectively. This suggest that 
normalization introduced a bias into our data and may impede classi
fication and clustering algorithms to accurately classify or identify 
spectra. 

From the results presented in Fig. 3 and drawing upon previous 
studies conducted by J. Blanco-Portals et al. [18,63], it is confirmed that 
UMAP has robust capabilities in dealing with the intensity effect without 

compromising its focus on ELNES. This dimensional reduction meth
odology considers intensity and ELNES as two interdependent variables 
and effectively manages to reduce dimensionality while preserving the 
importance of these characteristics. The results without normalization 
represented in the 1st row of Fig. 3 provide further support to this 
assertion, showing how UMAP even facilitates the correct separation of 
these two classes. 

However, the application of normalization eliminates the variability 
associated with intensity. This phenomenon is clearly observed in Fig. 5, 
which displays the spectra pertaining to each class of the iron oxides 
(magnetite and wüstite), both normalized (using the L2 and max norm) 
and raw. In Fig. 5b, we observe that the intensity corresponding to 
wüstite is a bit higher than that of magnetite, complicating the obser
vation of the iron white lines differences associated to each composite. 
On the other hand, in Fig. 5a, this intensity difference disappears in the 
spectra, where the displacement of the L3 onset becomes evident in 
combination of the L2 intensity difference. Therefore, the normalization 
improves visual distinction in the EELS edges for human visualization 
and some ML strategies. Yet, it does not necessarily enhance UMAP 
ability to distinguish between the spectra. 

These observations lead us to realize that finding new strategies to 
analyze unnormalized spectra is crucial. While normalization might 
homogenize the spectra, thereby clarifying the EELS peak differences for 
human interpretation and a large quantity of ML strategies, it also 
confines all spectra to a strict intensity value range. This process may 
inadvertently discard valuable information that could assist in dis
tinguishing spectra characteristics beyond thickness. Thus, a careful and 

Fig. 3. 2D maps created using UMAP, a minimum distance between embedded points of 0.5 and a number of neighboring sample points of 300 are used for the nine 
datasets of Fe oxides used in this work. Each column represents a family of datasets (K, L and W) depending on the selected features (oxygen K edge, white lines or 
both), and each row indicates the normalization applied. 
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strategic approach to data normalization is essential in the field of EELS 
analysis. 

Lastly, Fig. 4 depicts the UMAP embedding for WL dataset (Fig. 4a) 
and MF dataset (Fig. 4b). These maps unequivocally confirmed that both 

datasets were well-constructed, with all classes being well-separated. 
Comparing the 4a map to the one in the 3rd column and row of Fig. 3, 
corresponding to the L-max dataset, we observed that as more variability 
was added to the dataset, the UMAP algorithm was able to separate the 
Fe white lines more easily. 

4.2. Support vector machine classifiers 

The soft-margin SVM classifiers results for the 9 datasets built are 
presented in Table 3. The test accuracy outcomes of the SVM for clas
sifying the oxidation state of transition metals using three EELS featur
es—the oxygen K-edge (K), the white lines (L), and both features (W)— 
are shown as a function of the feature employed (column 1), the 
normalization approach (column 2), the kernel (column 3), and the 
optimal hyperparameters found (column 4). Three normalization stra
tegies were employed: maximum counts, L2-norm, and no normaliza
tion. The latter, the absence of normalization, is associated with the 
introduction of a new kernel method, the cosine kernel, and is employed 
to simplify data preprocessing. 

All classifier configurations in Table 3 achieved a minimum accuracy 
of 90%, making them effective models for the task at hand. However, 
some combinations were found to be more optimal. The highest accu
racy was observed for the use of white lines (L) and the entire spectrum 
(W) that includes them, as opposed to using the oxygen K-edge (K) 
alone. This is a consequence of several factors. First, the ELNES of the 
oxygen K-edge contains more subtle features. Next, the white lines of the 
transition metal are less sensitive to the electron beam, providing more 
robust and accurate information about the crystal structure and bonding 
of the transition metal atoms in the sample, which is related to the 
oxidation state. Finally, the oxygen K-edge features have a lower signal- 
to-noise ratio compared to the white lines, making it more challenging to 
identify subtle differences related to oxidation states. 

In this regard, it is important to clarify that the SVMs do not incor
porate the information from the energy axis. Instead, the algorithm re
ceives vectors of a fixed length, where the energy axis does not provide 
any energy information. Thus, the algorithm accurately classifies based 
on the shape of the edges. 

As previously reported in our earlier work [35], the RBF kernel 
yielded the best results among the kernels used. In contrast, the sigmoid 
kernel exhibits the poorest performance, while other kernels achieve test 
accuracies up to 99% in some cases, the highest test accuracy achieved 
by the sigmoid kernel is 96% for the W-max L-l2 dataset. Notably, the 
cosine kernel demonstrates promising results and offers the advantage of 

Fig. 4. 2D maps created using UMAP, a minimum distance between embedded points of 1.0 and a number of neighboring sample points of 300/150 are used for the 
a) WL dataset and b) MF dataset, respectively. 

Fig. 5. EEL spectra for the Fe oxides classes, encompassing both the oxygen K- 
edge and the Fe white lines, and displaying the same set of spectra under 
different normalization conditions within the range of 460 to 800 eV: a) 
Normalized spectra (using both L2 and maximum norm), and b) Raw spectra 
(without normalization). 
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not requiring data normalization. As observed in Fig. 3, normalization 
has a substantial impact on EELS data, by skipping this step, the risk of 
altering the original data is reduced. 

In Fig. 6, we evaluated the performance of the probabilistic soft- 
margin SVM classifier trained with the L-nn dataset and the cosine 
kernel on real EELS SIs of previously reported Fe oxide core-shell NCs 
[45–47]. The results indicate that the algorithm effectively distinguishes 
the magnetite-composed shell from the wüstite-dominated core. 
Furthermore, probabilistic classifiers such as this one does not depend 
on rigid labels, providing greater flexibility in the classification process. 
It is also important to mention that the only data preprocessing applied 
to these SIs consisted of removing the pre-edge background and crop
ping the energy region corresponding to the white lines. This un
derscores the simplicity and efficacy of the cosine kernel method for 
identifying EELS spectra. 

In this sense, in Fig. 7, we reevaluate the cosine kernel to address a 
different problem involving the determination of core and shell, but this 
time not through the oxidation state of iron as in the case of Fig. 6, but 
through the relative intensities of the Mn and Fe white lines that are 
related to the composition of each transition metal. In this case, the 
spectra are classified by the intensity of each white lines, this allows us 
to assess the proper functioning of the cosine kernel more confidently. If 
we look at Fig. 7, it is worth noting that the spectra used to train the SVM 
classifier, i.e., to build the MF dataset, were obtained from SIs a) and b), 
with an energy dispersion of 0.1 eV/ch, equal to SI e), while SIs c) and d) 
were obtained at a dispersion of 0.5 eV/ch. In the case of these higher 
energy resolution images, the SVM model is trained by the same MF 
dataset as for the rest of the classifications, with the difference that their 
energy resolution was adapted by interpolation. Furthermore, the cosine 
kernel successfully overcomes the thickness effect. This is evident in 

Table 3 
Results of the test accuracy for different datasets using soft-margin SVM classifiers. The EELS feature column indicates the type of characteristic used, the normalization 
column indicates how the data was normalized, the kernel column indicates the kernel function considered, the C/Gamma/r column indicates the parameters used for 
each kernel, and the test accuracy column shows the accuracy of the classifier applied in the test set.  

Fig. 6. Classification map of EELS SIs for two distinct core/shell NCs, obtained using a probabilistic cosine kernel SVM. The colors represent the probability of the 
oxidation states of magnetite and wüstite. 
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Fig. 7, where the diameter of the NPs ranges from 5 to 56 nm, while the 
MF dataset was constructed from NPs with diameters ranging from 5 to 
11 nm. 

When examining the resulting probabilistic classification of all the 
SIs, we clearly see the good performance offered by this kernel without 
normalizing spectra, thereby reducing the bias that might be incorpo
rated into them. Moreover, since these SIs have different energy reso
lutions, this demonstrates that if we have high-energy-resolution 
training spectra for the problem we want to tackle, any spectrum ac
quired at a higher energy resolution can be classified without major 
inconvenience. Therefore, Fig. 7 shows that SVMs can be used as EELS 
spectrum classifiers to solve a wide variety of problems while also 
demonstrating that using the cosine kernel makes unnecessary the 
normalization of our spectra. 

Regarding this ability of the cosine kernel and SVMs to identify EELS 
spectra without the need for normalizing the spectra, it is crucial to note 
that this behavior is not coincidental or arbitrary. When examining the 
formulation of the kernel in Eq. (2), we observe that it measures the 
cosine of the angle between two vectors in an n-dimensional space, 
disregarding the magnitude of these vectors, i.e., the intensity. Thus, by 
definition, the cosine kernel inherently incorporates an internal 
normalization when computing the similarity between two vectors. 
Hence, we decided not to assess normalized data using the cosine kernel. 
It appeared redundant since this kernel already incorporates internal 
normalization. Furthermore, ML algorithms are significantly impacted 
by data intensity variability [64]. Thus, testing non-normalized data 
with these algorithms seemed impractical. 

4.3. Artificial neural network classifiers 

4.3.1. ANN optimization 
The results of the ANN hyperparameters optimization, using the RS 

and TPE optimization methods are presented and discussed in this sec
tion. We start evaluating the results from the RS, then we proceed to 
analyze the results from the TPE optimization and finally we evaluate 
the performance of the best architecture as an ANN classifier for 
determining the oxidation state. 

Regarding the RS results, due to the large number of hyper
parameters and the computational cost of model selection, a total of 
approximately 475 trials were performed for each type of structure, 
dense and convolutional. The exact number of models searched was 
summarized in Table 4. During the RS, models were trained for 10 and 
30 epochs. Given that we were aiming to identify the best model for EEL 
spectra, we used relatively small values for the number of training 
epochs. The criterion used to determine the success of a classification 
model is a test validation accuracy greater than 0.90, that is, 90%. 

In order to determine the most effective ANN classifier for EELS 
spectra, we present Table 5. This table displays the success rate for 
different structures as a function of the number of epochs used during 
training. To account for the non-uniform distribution of sample sizes 
resulting from this RS, we have employed a bayesian approach, specif
ically a beta-binomial model, to estimate the success rate for each 
structure. This approach allowed for a reliable and informative deter
mination of the most effective classifier based on the results obtained. 

This bayesian model was constructed with the number of successful 

Fig. 7. Classification map of EELS SIs for five distinct Fe/Mn oxide core/shell NPs, generated using a probabilistic cosine kernel SVM. The colors represent the 
probability of a spectrum belonging to a shell (class 2) or a core (class 1). 
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attempts and total attempts for each structure considered. The prior 
distribution for the success rate of each structure was a beta distribution, 
which reflects our uncertainty regarding the true success rate. Using a 
binomial distribution, we modeled for each structure the probability of 
observing a certain number of successful attempts given the total 
number of attempts and the success rate. Using bayesian inference and 
the beta-binomial model, we computed the success ratio per structure. 

From the results in Table 5, we found that the best performing dense 
structures were numbers 3, 4, and 12, while the top convolutional 
structures were numbers 5, 6, and 7. Dense structures 3 and 4 combine 
dense and normalization layers, while structure 12 have a two-branch 
architecture. Convolutional structures 5 and 6 are two-branch configu
rations with normalization layers, and structure 7 is based on the ResNet 
architecture. 

After identifying the most suitable structures for EELS classification, 
the remaining hyperparameters for these structures were evaluated 
using Fig. 8. As shown in this figure, optimal models were found across 
the entire range of each parameter, indicating that for the majority of the 
investigated hyperparameters, there were no clear preferences. The only 
metric that demonstrated a distinct preference was the learning rate. For 
dense models, small rates (≤ 10− 3) were preferred, while rates between 
10− 2 and 10− 4 were optimal for convolutional models. Although no 
specific parameter configuration was observed, Tables 6 and 7 list the 
parameters for the models with the highest absolute accuracy. 

After discussing the RS results, we examine the results obtained 
through TPE optimization. The TPE algorithm was applied to evaluate a 
total of 250 and 500 models for both type of structures, each trained for 
30 epochs. The TPE optimization process resulted in a selection of the 

10th structure for dense layers and 5th structure for convolutional 
layers. As for the RS, we have presented the hyperparameters of the best 
models in Tables 6 and 7. Although for the convolutional layer we have 
shown that the 7th structure is also convenient, their complexity is 
higher than the 5th one, thus, we decided to pick this first one. 

From these tables, it is observed that in most of the dense and con
volutional structures, the preferred optimization algorithm is SGD or 
RMSprop. It is also observed that the number of dense layers and the 
number of filters in the convolution layers vary significantly between 
the optimal structures. However, in general, no clear pattern is observed 
in terms of the number of convolution layers or kernel size. Based on 
these results, it appears that the tanh activation function is a preferred 
choice for the dense structures, as it is used in several of the models with 
the highest validation accuracy. Additionally, for the convolutional 
structures, ReLU, SELU and tanh activation functions are used in models 
with high validation accuracy. It is noteworthy that for 10 epochs, the 
simplest architecture achieved the highest accuracy due to having fewer 
parameters to optimize. However, as the number of epochs increased, 
the accuracy of larger networks improved. 

Based on these findings, we conclude that determining optimal pa
rameters for an ANN classifier is a challenging task, as the weights are 
constantly updated during training to determine the optimal weight 
configuration for the selected hyperparameters [65]. Furthermore, we 
have observed that all the successful architectures contain normaliza
tion layers, thus, it is recommended to include them in ANN classifiers 
built for EELS data [66]. With regards to the optimization problem, we 
are attempting to solve, our data complexity is low. Therefore, with a 
sufficient number of training iterations, a wide range of configurations 
can be properly optimized and thus, can be effective classifiers. This 
highlights that this type of parameter optimization may not be necessary 
for data with low complexity [67]. In addition, it is important to note 
that the complexity of a model should be matched to the complexity of 
the data [67]. 

4.3.2. ANN classification 
After discussing the most appropriate ANN architecture for EELS 

data from both optimization strategies, we have selected one configu
ration each from Tables 6 and 7 and trained the ANN models using the 
datasets constructed to evaluate their performance in a realistic sce
nario. For the dense structures, we chose configuration 10, while for the 
convolutional case, we selected configuration 5. In this regard, the 
convolutional classifiers comprised approximately 5000 parameters, 
and the dense ones contained around 3 million parameters. The test 
accuracy results obtained are presented in Table 8. 

From Table 8, we derived several insights regarding the classification 
accuracy of different datasets. The test accuracies were consistently high 
99% for the whole spectrum (W) and white lines (L) features across all 
normalization methods. This indicated that both dense and convolu
tional classifiers excel in handling these features, irrespective of the 
normalization technique employed. In contrast, the oxygen K-edge (K) 
feature yielded lower test accuracies compared to the whole spectrum 
and white lines, with convolutional classifiers consistently out
performing their dense counterparts. This suggests that convolutional 
structures may be better suited for these particular data. 

However, the difference in the number of parameters between the 

Table 4 
Results of a RS for ANN models using two different structures (dense and convolutional) over two different sets of epochs (10 and 30). The table displays the total 
number of models attempted, the number of successful models (with accuracy greater than or equal to 0.9), and the number of failed models (with accuracy less than 
0.9).  

Random search Total Successful model (Accuracy ≥ 0.9) Failed model (Accuracy < 0.9) 

10 epochs Dense 175 77 98 
Conv 162 101 61 

30 epochs Dense 300 180 120 
Conv 306 206 100  

Table 5 
Success ratio of the models per structure. The table includes the results for dense 
and convolutional structures. The first and last columns indicate the structure’s 
number and the central columns the success ratio for each structure and epochs 
used in the training. Then, the rows show the different structures, the ones 
marked in purple correspond with most successful structures.  
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CNN and DNN models might impact their performance. The CNN model, 
with fewer parameters, leaded to a more simplified model that gener
alizes better and potentially results in improved performance on test 
data. Since both models were trained for the same number of epochs, the 
more complex DNN model, with its higher number of parameters, might 
not have enough time to converge to an optimal solution. Consequently, 
the simpler CNN model exhibited better performance in this scenario. It 
was also crucial to consider that CNNs were inherently designed to 
exploit local correlations and spatial hierarchies in the data, which can 
be advantageous when working with spectral data like EELS. This 
inherent structure in CNNs contributed to their superior performance 
compared to DNNs. 

4.4. Energy shifts 

In this section, we present the results of resistance of SVM and ANN 
models to energy shifts in combination with the results when they were 

trained with energy-shifted spectra. In Fig. 9, we present three plots 
displaying test accuracy as a function of the energy shift values applied 
in the spectra for three classifiers: (a) linear SVM, (b) RBF SVM, and (c) 
convolutional ANN classifier. Each classifier is represented in a separate 
plot, displaying two curves: one representing the model trained with 
spectra without shift applied (WL dataset) in blue, and a second curve in 
orange representing the model trained with randomly shifted spectra up 
to a maximum of 1.75 eV for both sides. For each curve, two vertical 
lines indicate the corresponding energy shift values at which the accu
racy drops below 90% of its highest value (when no shift is applied) for 
each side, these values are also numerically provided in the legend. 

The first clear result emerged when examining the blue curves, 
where we observed that the classifier offering the best resilience to 

Fig. 8. Representation of hyperparameter for RS based on validation accuracy of the most successful ANN structures found in Table 5. The sub-figures (a)–(d) depict 
the parameters for dense structures, while sub-figures (e)–(h) show the parameters for convolutional structures. Sub-figure (a) illustrates the activation functions and 
number of neurons, sub-figure b) displays the number of hidden layers and structure value, sub-figure c) showcases the number of hidden layers and neurons, sub- 
figures (d) and (h) depict the learning rate and optimization algorithm, sub-figure e) illustrates the number of hidden layers and filter size, sub-figure (f) displays the 
activation functions and structure values, and sub-figure g) shows the filter and kernel size. 

Table 6 
Hyperparameters for the most successful dense ANN structures obtained from 
the RS and the TPE optimization.  

Hyperparameters for dense structures  

RS PTE 

10 Epochs 30 Epochs 30 Epochs 30 Epochs 

Tries 175 300 250 500 
Validation Accuracy 0.993 0.992 0.995 0.995 
Dense layers 1 9 5 9 
Neurons 640 944 890 725 
Structure 3 12 10 10 
Activation Tanh Tanh Tanh SELU 
Algorithm RMSprop RMSprop SGD SGD 
Learning Rate 10− 5 10− 5 10− 1 10− 1 

Activation exit neuron SoftMax SoftMax Sigmoid Sigmoid  

Table 7 
Hyperparameters for the most successful convolutional ANN structures obtained 
from the RS and the TPE optimization.  

Hyperparameters for convolutional structures  

RS PTE 

10 Epochs 30 Epochs 30 Epochs 20 Epochs 

Tries 162 306 250 500 
Validation Accuracy 0.993 0.993 0.995 0.995 
Structure 5 5 5 7 
Convolution layers 1 3 2 2 
Convolution filters 15 16 11 6 
Convolution kernel size 5 3 4 5 
Pooling size – – 2 3 
Dense layers 1 8 1 9 
Neurons 672 720 648 448 
Pooling type None None Average Average 
Activations ReLU Tanh ELU SELU 
Optimization algorithm ADAM RMSprop SGD SGD 
Learning Rate 0.001 0.0001 0.01 0.01 
Activation exit neuron Sigmoid SoftMax Sigmoid Sigmoid  
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energy shifts was the SVM using the RBF kernel, closely followed by the 
convolutional classifier. Subsequently, when evaluating the effect of 
training the models with shifted spectra, we found that all models 
indeed improved their resilience, with the initially most resilient models 
showing the most significant improvement. Specifically, the SVM using 
the RBF kernel and the ANN classifier exhibit the greatest improvement 
in resilience compared to the initial model, while, in the linear SVM 
classifier the improvement was relatively small. In addition, examining 
all the models, we noticed that their robustness was not symmetric with 
respect to the side of the energy shift applied (negative or positive 
shifts). We observed that the slope of the accuracy curves was less 
pronounced for positive energy shifts than for negative ones, suggesting 
better resistance to positive shifts. This observation was also supported 
by the values of the accuracy drops indicated in the legends of Fig. 9. 

4.5. Discussion 

Based on the results obtained from the SVM and ANN classifiers, it 
was evident that white lines serve as the most reliable features for 
determining the oxidation state. Convolutional classifiers have been 
demonstrated to outperform dense classifiers, which was consistent with 
their lower complexity and therefore faster training times. This perfor
mance advantage can largely be attributed to the convolutional layers’ 
ability to account for the spatial structure of the input data through the 
application of convolutional filters that scan the input spectrum to 
extract characteristics. Furthermore, the utilization of convolutional 
layers enables the network to learn spatial hierarchies of characteristics, 
where lower layers discern simple and local elements and higher layers 
identify more complex and abstract factors by combining lower-level 
features, thereby enhancing the network’s capacity to generalize to 

Table 8 
Results of the classification accuracy for the different datasets using the ANN 
classifiers. The table shows the test accuracy for different EELS features and 
normalization methods for both dense and convolutional ANN structures.  

Fig. 9. Test accuracy as a function of energy shift values (in eV) for (a) linear SVM, (b) RBF SVM, and (c) convolutional ANN classifier. Blue and orange curves 
represent models trained on unshifted and shifted spectra, respectively. Vertical lines indicate energy shift values at which accuracy drops below 90%, with nu
merical values provided in the legend. 
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novel data. 
Regarding the SVM classifiers, they exhibited comparable perfor

mance to ANN classifiers and inherently possess greater resistance to 
energy shifts, which can be further improved by training the model with 
shifted spectra. The SVM employing the RBF kernel emerged as the 
optimal classifier for handling energy shifts, while employing the cosine 
kernel proved that the normalization could be unnecessary for classi
fying EEL spectra Additionally, SVM models generally have faster 
training times than those based on ANN, as they typically require fewer 
parameters to be adjusted. These findings lead us to conclude that 
employing ANN as a classifier for EEL spectra, contingent upon the 
feature under investigation or the volume of available data, may be an 
impractical, overly complex, and resource-intensive methodology. 

Consequently, for the classification of specific and individual fea
tures of EELS spectra, where data complexity is low, we strongly 
recommend for the use of SVMs. However, this does not imply that there 
are no scenarios in which ANN is a significantly more practical tool, if 
the aim is to train a classification model of transition metal oxidation 
states based on their white lines for a large number of compounds, the 
data complexity in this case would be sufficiently high to guarantee the 
use of ANN classifiers as a more convenient option. 

5. Conclusions 

Through the comparison carried out in this work, we conclude that 
both soft-margin SVM and ANN classifiers are highly effective for EELS 
spectra classification, specifically for discerning the oxidation state of 
transition metals. We have observed that SVMs perform better for 
classifying EELS spectra when using the RBF kernel, and that convolu
tional networks provide the best performance. Notably, the cosine 
kernel has shown excellent performance in classifying EELS spectra 
without the need for normalization. 

The most effective feature for classifying oxidation states in transi
tion metals was their white lines, although the oxygen K-edge also 
provided good results. Since the oxygen K-edge has more complex 
ELNES compared to white lines, it presented more challenges for both 
classifiers studied. In addition, the SVMs offered greater robustness 
when dealing with energy shifts, and in both cases, for ANNs and SVMs, 
training the models with shifted spectra further improved their resis
tance to them, providing accurate classifications for shifts up to 2.5 eV. 

Thanks to the UMAP algorithm, we have observed the effects of 
normalization on dimensionality reduction across datasets constructed 
in this study. In this regard, we noticed that normalization significantly 
alters the data structure, which is often the price that have to be paid for 
enabling algorithms to effectively analyze data. In this context, we 
propose an alternative to the normalization procedure by utilizing SVMs 
with the cosine kernel. This approach demonstrated excellent perfor
mance in classifying EELS spectra without the need for normalization. 

In conclusion, we recommend the use of SVMs over ANNs for simple 
EELS classification problems, where there is a small number of spectra to 
train the models, as these classifiers can offer the same performance as 
ANNs at a lower computational cost and shorter training and optimi
zation times. On the other hand, the use of ANNs is recommended when 
dealing with large volumes of training data and, therefore, facing more 
complex classification problems. 
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[11] A. Eljarrat, L. López-Conesa, J. López-Vidrier, S. Hernández, B. Garrido, C. Magén, 
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