
Computer Physics Communications 290 (2023) 108774

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

Aligning active particles py package ✩,✩✩

Rüdiger Kürsten a,b,c,∗
a Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
b Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
c Institut für Physik, Universität Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 November 2022
Received in revised form 1 December 2022
Accepted 2 May 2023
Available online 10 May 2023

Keywords:
Vicsek model
Dry active matter

The package performs molecular-dynamics-like agent-based simulations for models of aligning self-
propelled particles in two dimensions such as e.g. the seminal Vicsek model or variants of it. In one class
of the covered models, the microscopic dynamics is determined by certain time discrete interaction rules.
Thus, it is no Hamiltonian dynamics and quantities such as energy are not defined. In the other class of
considered models (that are generally believed to behave qualitatively the same) Brownian dynamics is
considered. However, also there, the forces are not derived from a Hamiltonian. Furthermore, in most
cases, the forces depend on the state of all particles and can not be decomposed into a sum of forces
that only depend on the states of pairs of particles. Due to the above specified features of the microscopic
dynamics of such models, they are not implemented in major molecular dynamics simulation frameworks
to the best of the authors knowledge. Models that are covered by this package have been studied with
agent-based simulations by dozens of papers. However, no simulation framework of such models seems
to be openly available. The program is provided as a Python package. The simulation code is written in
C. In the current version, parallelization is not implemented.

Program summary
Program Title: aligning active particles py package
CPC Library link to program files: https://doi .org /10 .17632 /gghrf6sz8t .1
Developer’s repository link: https://github .com /kuersten /aappp
Licensing provisions: MIT
Programming language: C / Python
Nature of problem: Perform molecular-dynamics-like agent-based simulations of models for aligning active
particles with interaction rules that are not following Hamiltonian dynamics and that are not restricted
to pair-interactions.
Solution method: Uses cell lists to find interacting particles.
Additional comments including restrictions and unusual features: Does not run in parallel. Allows the usage
of reflecting boundary conditions.

© 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Active particles are characterized by the transformation of en-
ergy into directed motion as well as the dissipation of energy
towards their surrounding. There are engineered active particles

✩ The review of this paper was arranged by Prof. Weigel Martin.
✩✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).

* Correspondence to: Departament de Física de la Matèria Condensada, Universi-
tat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.

E-mail address: kursten@ub.edu.
https://doi.org/10.1016/j.cpc.2023.108774
0010-4655/© 2023 The Author. Published by Elsevier B.V. This is an open access article
such as active colloids or robots, as well as biological active par-
ticles from the scales of microtubuli driven by molecular motors
towards macroscopic animals, see e.g. [1–7] for reviews.

Due to the interplay of constant supply and dissipation of
energy, active particles are driven far from thermal equilibrium.
For the description of collective phenomena of active particles,
nonequilibrium theories are necessary [1–3]. It is suitable to ac-
company and test such theories by computer simulations. How-
ever, in order to compare to coarse grained theories one requires
to simulate a large number of particles. Developing and simulating
realistic models of a large number of active particles seems to be
challenging.
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.cpc.2023.108774
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108774&domain=pdf
https://doi.org/10.17632/gghrf6sz8t.1
https://github.com/kuersten/aappp
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:kursten@ub.edu
https://doi.org/10.1016/j.cpc.2023.108774
http://creativecommons.org/licenses/by/4.0/

R. Kürsten Computer Physics Communications 290 (2023) 108774
Alternatively, simplified prototype models of self-propelled par-
ticles have been introduced, most prominently the famous Vicsek
model [8], see also [4,5] for a review of similar models. Such sim-
plified models can easily be simulated on much larger scales than
realistic models while they keep some key aspects of the far from
equilibrium collective motion.

The aappp simulation package presented here, in the following
called the program, is able to simulate the two dimensional Vicsek
model as well as many similar models. Models that are covered
by the program have been studied by dozens to hundreds of pa-
pers, cf. the references of [4,5]. However, to the best of the authors
knowledge, no simulation framework that can handle those models
is openly available. The models under consideration are not follow-
ing Hamiltonian dynamics and furthermore they involve N-particle
interactions of a special type. For those reasons they are not imple-
mented in well-known molecular dynamics simulation packages.

The source code of the program is available at [9].
This paper is organized as follows. In Sec. 2 we define the

models that can be handled by the program. In Sec. 3 we shortly
describe the implementation as well as the observables that can be
measured automatically on the fly. In Sec. 4 we give very few re-
marks on the basic usage of the program. More instructions can be
found in the documentation at [9]. In Sec. 5 we display simulation
results that have been obtained by the program and compare them
to results of previous studies. Furthermore we show the scaling of
the run time. In Sec. 6 we shortly discuss the difference between
different versions of the program. We conclude with a short sum-
mary in Sec. 7.

2. Models

We consider N point particles in two dimensions. The state of
each particle i ∈ {1, · · · , N} is characterized by xi ∈ [0, Lx], yi ∈
[0, L y] and θi ∈ [−π, π], where (xi, yi) gives the position within
a two-dimensional simulation box of size Lx × L y and the angle θi
defines an orientation. For all considered models, the orientation θi
gives the direction of self-propulsion of the particles. The program
covers two classes of models. In the first class of Vicsek type, the
microscopic dynamics is given by certain time discrete rules. In the
second class, the dynamics is described by overdamped Langevin
equations. In the following we explain the two classes in detail.

2.1. Rule based Vicsek type dynamics

In this subsection we consider a discrete time step that consists
of two parts: collision and streaming. In the collision part all orien-
tations θi are updated. In the streaming part all positions (xi, yi)

get updated. Thus one time step always consists of first collision
and second streaming. The collision update follows the rule:

θi(t + 1) = f (θi(t), {θ j(t)} j∈�i) + η · ξi(t), (1)

where the function f specifies the collision rule. It depends on the
orientation of particle i and of all of its neighbors before the colli-
sion. By �i we denote the set of indexes of neighbors of particle i.
In all considered models, the definition of the neighborhoods only
depends on the positions of the particles. The considered neigh-
borhood definitions are discussed in subsection 2.3. The last term
in (1) describes a noise term, where ξi(t) are independent random
variables that are distributed uniformly on [−π, π] and η ∈ [0, 1]
describes the noise strength.

Regarding the collision rule, we consider two models. The first
is the famous Vicsek Model (VM) [8], where

f (θi, {θ j} j∈�i) := arg

[
exp(iθi) +

∑
j∈�i

exp(iθ j)

]
+ ω, (2)
2

where the prefactor i in the exponents is the imaginary unit not
to be confused with the index i. The parameter ω introduces some
chirality on the orientation dynamics. Roughly speaking, in the VM
dynamics, each particle picks up some kind of an average direction
of its neighbors and itself. It is then rotated by ω and disturbed by
noise. In [8] the model was considered with ω = 0.

We refer to the second considered collision rule as nematic Vic-
sek model (NVM). It was introduced in [10,11] with ω = 0. It is
given by

f (θi, {θ j} j∈�i) :=
arg

[
exp(iθi) +

∑
j∈�i

exp[i(θ j + π/2(1 − sign(cos(θi − θ j))))]
]

+ ω, (3)

where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0. In this
dynamics a particle tries to align with its neighbors that have an
orientation that differs by no more than π/2 and it tries to anti-
align with neighbors that have orientations that differ by more
than π/2.

The streaming part of the update is given by

xi(t + 1) = xi(t) + v cos(θi(t + 1)),

yi(t + 1) = yi(t) + v sin(θi(t + 1)), (4)

where v describes the particle speed.

2.2. Overdamped Langevin dynamics

For this class of models the dynamics is continuous in time. It
is given by the following set of differential equations

ẋi = v cos(θi),

ẏi = v sin(θi),

θ̇i = �h(|�i |)
∑
j∈�i

sin(o · (θ j − θi)) + ω + η · ξi, (5)

where v denotes the particles speed and �i the neighbor set of
particle i as before. The parameter � defines a coupling strength.
The function h gives some weight to the interaction depending on
the total number of neighbors. Common choices are h(n) ≡ 1 and
h(n) ≡ 1/(1 + n), see e.g. [4,5] for an overview of considered mod-
els of this type. The program has implemented those two weight
functions, but it also allows to specify another arbitrary weight
function. We refer to the dynamics with h ≡ 1 as additiveL and
with all other weight functions as nonadditiveL. The integer param-
eter o defines the order of the interaction. For o = 1 particles tend
to align (polar alignment), for o = 2 particles tend to either align
or anti-align (nematic alignment), etc. Here, the noise strength η
is from [0, ∞] and ξi(t) denote independent Gaussian white noise
terms. The equations for the x- and y-positions are ordinary dif-
ferential equations and the equation for the orientation dynamics
is a stochastic differential equation. Because the noise is purely
additive Ito- and Stratonovic-interpretation of the stochastic differ-
ential equation coincide here. In the program they are integrated
using the Euler-Maruyama-scheme, see e.g. [12].

2.3. Neighborhoods

We consider two possible neighborhood definitions: metric
neighborhoods and metric free/topological neighborhoods. They
both have in common that we do not count a particle as its own
neighbor (although the particles own orientation effects the colli-
sion rule for Vicsek type interactions).

R. Kürsten Computer Physics Communications 290 (2023) 108774
For metric interactions, for a given particle i, all other particles
that are closer to particle i than a distance R are considered to be
neighbors of particle i. That means

�i := { j �= i :
√

(xi − x j)
2 + (yi − y j)

2 ≤ R}. (6)

For metric free interaction neighborhoods, that are also called
topological interaction neighborhoods, each particle has a fixed
number of (closest) neighbors that is denoted by k. In that case
the set �i consists of the indexes of the k particles, different from
particle i, that are closest to particle i.

We refer to the metric free neighborhood by the abbreviation
’mf’. Whenever we do not specify anything else, we refer to the
metric neighborhood definition. Thus we might refer to the met-
ric free Vicsek model as ’mfVM’ and to the standard Vicsek model
as ’VM’, etc. The weight function introduced in the overdamped
Langevin dynamics makes no sense in the metric free case because
the number of neighbors is the same for all particles and the cor-
responding weight can be absorbed in the interaction strength �.
Thus, we always use h ≡ 1 in the metric free case and refer to the
corresponding overdamped Langevin dynamics as ’mfL’.

2.4. Boundary conditions

The program has implemented periodic and reflecting boundary
conditions. They can be specified for x- and y-direction separately.
Here we will explain them only for the x-direction.

For periodic boundary conditions we introduce two virtual im-
age particles for each real particle by shifting the x-coordinate by
±Lx . We only calculate the time evolution of the real particles,
however, they interact also with the virtual image particles. When
a particle leaves the simulation box [0, Lx] during the dynamics, it
is set back into the box by either adding or subtracting Lx .

For reflecting boundary conditions, for each real particle, there
are introduced two virtual image particles as well. However, in this
case, they are created by mirroring position as well as orientation
at the lines x = 0 and x = Lx . For the orientation that means that
θ → π − θ . Particles take into account virtual image particles in
their interactions in the same way as for periodic boundary condi-
tions. When a particle leaves the simulation box [0, Lx] during the
dynamics it is set back into it by applying the mirroring of posi-
tion and orientation at either the line x = 0 or x = Lx . That means
θ → π − θ and either x → −x or x → −x + 2Lx .

Note that the virtual image particles have bean just introduced
for illustration. It is not necessary to produce such image particles
in the implementation in order to calculate the dynamics of the
real particles.

2.5. Distinguished particle types/species

The dynamics described above depends on a number of pa-
rameters. The program allows to use different values for speed v ,
noise strength η, chirality ω and coupling strength � for different
particles. More precisely, it allows to consider e.g. two different
species of particles, say A- and B-particles, such that the dynam-
ics of A-particles uses v A, ηA, ωA, �A A and �AB and the dynamics
of B-particles uses the parameters v B , ηB , ωB , �B B and �B A . Two-
species models that are implemented in the program have been
studied e.g. in [13] (varying coupling) or [14] (varying chirality).
The number of A-particles N A can be different from the number
of B-particles NB . There can be an arbitrary number of particle
species. However, if the number of species is very large (in the ex-
treme case = N such that each particle has a different parameter)
the program is extremely inefficient. The current implementation
is designed for a small number of species only.
3

3. Implementation

3.1. Time evolution

The major part in the implementation is the determination of
the neighborhoods. The collision and streaming rules as well as the
Euler-Maruyama discretization of the stochastic differential equa-
tion are straight forward. It should be mentioned that the glib-
implementation of the Mersenne-Twister-algorithm is used to gen-
erate uniform pseudo random numbers. For the Euler-Maruyama
scheme, Gaussian random numbers are produced by the Box-
Muller-algorithm. In the following we describe the determination
of metric and metric free neighborhoods.

3.2. Metric neighborhoods

Cell lists are used to determine the neighborhoods. The cell size
is close to the interaction radius R in both dimensions. It is a little
larger than R in order to guarantee a perfect tiling of the simula-
tion box. In each step, for each cell, a list is produced that contains
all particles that lie inside the cell. To find the neighbors of par-
ticle i, one needs to check the distance to all particles that are in
the same cell as particle i or in the eight surrounding cells. So, one
needs to check all particles from nine boxes in total. Thus, for ho-
mogeneous systems with density ρ0 = N/Lx/L y the complexity of
the algorithm is Nρ09R2. Homogeneous states are somehow the
best possible scenario. In many cases, e.g. for high density Vicsek
bands, particles accumulate locally. If this happens, the simulations
usually slow down a bit. However, the complexity remains propor-
tional to the particle number N as long as the system exhibits a
well-defined thermodynamic limit.

3.3. Metric free neighborhoods

For the metric free neighborhood, an effective radius is defined
as

Ref f =
√

LxL yk/N/π, (7)

where k is the number of neighbors. The effective radius is then
used to define cells as in the metric case and produce cell lists.
For each particle, a neighbor list with the next k neighbors is pro-
duced by first checking all particles from the box of particle i. If
the closest point from the remaining boxes is closer than the kth
neighbor also the surrounding eight boxes will be checked. In the
next step the surrounding 16 boxes will be checked and so on. The
exact complexity of the algorithm depends on the fluctuations of
the local density, however, also in this case it is proportional to the
total particle number N .

3.4. Measurements

The dynamics of the system can be iterated with or without
performing any measurements. If measurements are done on the
fly the following quantities are measured

• Histogram of the orientations θ .
• Histogram of the number of neighbors |� j |.
• Polar order parameter p := | 1

N

∑N
j=1 exp(iθ j)| and its first four

moments.
• Nematic order parameter q := | 1

N

∑N
j=1 exp(2iθ j)| and its first

four moments.
• The first four moments of the ensemble averaged number of

neighbors n̄ = 1 ∑N
j=1 |� j|.
N

R. Kürsten Computer Physics Communications 290 (2023) 108774

-

All histograms and moments are stored internally unnormalized,
however, when they are accessed they are returned normalized. If
a measurement is performed for n steps, the program performs n
updates, such that there are in total n +1 states from t = 0 to t = n.
The measurements and all the statistical analysis behind only uses
n of those n + 1 steps, namely from t = 0 to t = n − 1 (the last step
is not used for the statistics).

3.5. Memory usage

On usual machines where a C double takes 8 Bytes a simula-
tion object takes 40 × N Bytes +N× the size of a pointer (8Bytes
on 64bit system, 4Bytes on 32bit system) + the number of cells
× the size of a pointer + some small overhead for storing pa-
rameters and measurement results. Note that currently memory
for both cell list: for metric and metric free neighborhoods is allo-
cated. If memory is an issue, for metric neighborhood simulation
one can set the parameter k (which is not used) to a very large
value leading to a large Ref f . For metric free simulations one can
set R (which is not used) to a very large value. In that way one
can minimize the memory usage of the unused cell list.

3.6. Disk space usage

It is possible to save the full state of the simulation to disk
in binary format and read it in later for analysis or in order to
continue the simulation. The system state including the particle
configurations, all measurement results and the state of the pseudo
random number generator is fully saved. Hence an intermediate
save/load operation leads to identical results as a simulation with-
out interim saving/loading. Saving is, however, not strictly type
saves as in principle the size of C double depends on the system.
Assuming usual machines that use 8 Bytes for a C double, saving
a simulation object takes 24 × N Bytes + some small overhead to
save a simulation object.

4. Usage

Details on the usage of the package can be found in the docu-
mentation (either in the README or by calling help(aappp)). Here,
we only give some general remarks. Independent on the model
that will be simulated, a simulation object is always initialized
by the function aappp_init. Not all parameters have to be given.
For parameters that are not given, default values are used. They
can be found in the documentation. Possible parameters are: ve-
locity v as v=. . . , interaction radius R as R=. . . , noise strength
η as eta=. . . , chirality ω as omega=. . . , coupling � as gamma=. . . ,
simulation box size in x-direction Lx as Lx=. . . , simulation box
size in y-direction L y as Ly=. . . , step size of Euler-Maruyama-
scheme
t as dt=. . . , neighbor number for metric free models k
as kn=. . . , interaction order for overdamped Langevin dynamics o
as order=. . . , boundary condition in x-direction (periodic if=0, re-
flecting if=1) bx as bx=. . . , boundary condition in y-direction by
as by=. . . , particle number N as N=. . . , seed for pseudo random
number generator as seed=. . . , weight function f for nonaddi-
tive overdamped Langevin dynamics as weight_function=. . . (if no
weight function is specified f (n) = 1/(1 + n) is used for all n),
weight vector length as weight_vector_length=. . . (the weight func-
tion is called only once for n = 0, · · · , weight_vector_length − 1
and the results are saved in memory, if the number of neighbors is
larger than weight_vector_length-1 in some case, then the weight
f (weight_vector_length − 1) is used), the number of bins used
for the orientation histogram as binnum_theta=. . . , the number of
bins used for the number of neighbor histogram as binnum_neigh-
bors=. . . . In the current implementation, reflecting boundary con-
ditions are used whenever bx/by �= 0, however, bx/by = 1 should
4

be used as other values might be implemented later. When dif-
ferent species of particles are simulated, the following parameters
can be lists: v, eta, omega, N and gamma can be a list of lists (e.g.
a coupling matrix).

Time evolution is done by the functions
*model*_update_timesteps(simulation, timesteps), where *model*
should be replaced by the abbreviation for the model that should
be iterated as e.g. mfVM, simulation is the simulation object ini-
tialized before and timesteps is the number of time steps that will
be iterated.

Similarly, time evolution with measurements is done by
*model*_measurement_timesteps(simulation, measurement). The re-
sults of measurements can be obtained by aappp_get_results(sim-
ulation).

A simulation object can be saved to or loaded from a file on
disc via aappp_save(simulation, ’filename’), simulation=aappp_load(’file
name’).

5. Numerical results

5.1. Comparison to literature

We perform a few test simulations and compare them to pub-
lished results of some of the models that can be handled by the
program. Simulation data discussed here are available at [15]. First,
we look at simulations of the famous standard Vicsek model (VM).
In Fig. 1 we display simulation results of a parameter set that was
used in Fig. 1 (iii) of Ref. [16]. In Fig. 1(a) we see a snapshot af-
ter 105 time steps. We observe a nice band pattern, very similar
to Fig. 1(iii) of Ref. [16]. There are still two defects in the pattern
that are most likely vanishing in longer simulations.

We remark that in the experience of the author, in a typical sit-
uation, the bands that arise from random initial conditions move
in an arbitrary direction (that is in most cases not equal to the x-
or the y− axis direction, see also supplemental material of [16]).
However, in many cases, bands that are moving nicely in the di-
rection of the coordinate axis are presented without commenting
on it. In the authors experience it is not so easy to create such
directed band patterns. One might try to initialize all particles
moving e.g. in the x-direction. However, then usually initial polar
order gets lost in the beginning of the simulation and later, polar
order builds up again spontaneously in (most likely) some other
direction.

Here, we want to present a simple recipe to (artificially) cre-
ate band patterns that are aligned with one of the coordinates axis
whenever this is desired. This works by applying reflecting bound-
ary conditions in one of the directions and thus stopping a directed
motion into this direction. Reflecting boundary conditions in y−
direction have been used in Fig. 1 (b) leading to bands that are
nicely moving into x-direction. Once such a pattern is created one
can switch boundary conditions back to periodic and the pattern
survives, see Fig. 1(c).

Apparently this method does not alway succeed. In Fig. 1 (d)

we apply periodic boundary conditions in x-direction and we ob-
serve that the bands get really reflected at the boundaries given by
x = 0 and x = Lx . After switching back to periodic boundary con-
ditions we observe a cross sea pattern, see Fig. 1(e) and cf. [16].
For the given parameter set this phase is most likely not stable
and collapsing after some very long time. In order to enforce the
direction of the bands to be aligned with one of the coordinates
axis one might switch between periodic and reflecting boundary
conditions with a higher frequency, however, in order to keep the
discussion short we do not show results of such a simulation pro-
tocol here.

Next, we perform simulations of the nematic Vicsek model
(NVM) using a parameter set from Fig. 2(c) of [11]. From uni-

R. Kürsten Computer Physics Communications 290 (2023) 108774

Fig. 1. Snapshots of the standard Vicsek model with N = 106 particles. Physical parameters are R = 1, v = 1, η = 0.37 and ω = 0. For (a), (b) and (d) uniform, isotropic
random initial conditions have been used. For (c) and (e) the final states of (b) and (d) have been used as initial conditions, respectively. Simulations (a), (c) and (e) use
periodic boundary conditions in both directions. Simulations (b) and (d) use reflecting boundary conditions in x- and y-direction, respectively. Snapshot (a) was taken after
105 time steps, snapshots (b) − (e) after 5 × 104 time steps. For each particle a point was drawn at its position. The color encodes the orientation of the particle according
to the color wheel shown in (a). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Snapshots of the nematic Vicsek model (NVM) with N = 524288 particles. Physical parameters are R = 1, v = 0.5, η = 0.065 and ω = 0. Uniform and isotropic random
initial conditions have been used for (a) and (b). For (c), the final state of (b) was used as initial condition. For (a) and (c) periodic boundary conditions have been used in
both directions. For (b) reflecting boundary conditions have been used in y-direction. All snapshots have been taken after 105 time steps. Plotting was done as in Fig. 1.
form, isotropic random initial conditions we obtain after 105 steps
a not yet perfectly ordered, nematic band structure that is directed
somehow diagonal, see Fig. 2(a).

In order to speed things up and obtain a nice band oriented in
x-direction we employ the same method as for the Vicsek model.
We first use reflecting boundary conditions in y-direction for a few
time steps, see Fig. 2 (b) and switch to periodic boundary condi-
tions later. Eventually, we arrive at a state that looks like Fig. 2(c)
of Ref. [11], see Fig. 2(c).

Until recently, it was believed that the flocking state for metric
free models is spatially homogeneous, cf. e.g. [5]. However, it was
found that polar ordered bands exist also there, see [17]. We per-
formed simulations of the metric free Vicsek model (mfVM) with
parameters as in Fig. 3 of [17]. We used again the same method as
before, switching between reflecting and periodic boundary condi-
tions in order to align the resulting pattern with the x-axis. The
final states of the simulations seem to be very close to the ones
presented in Ref. [17], cf. Fig. 3(b) and (d).

For an overdamped Langevin model with weight function
h(n) = 1/(n + 1) (nonadditiveL) we perform a simulation for a
parameter set as in Fig. 1(a) of Ref. [18], middle snapshot. We
observe a very similar snapshot, see Fig. 4(a). Here, we also dis-
5

play the measured orientation distribution, see Fig. 4(b), because
there is some analytical theory to compare with. It is known that
the steady state orientational distribution of the considered model
is a von Mises distribution within homogeneous mean field the-
ory [18,19]. That means the orientation distribution is of the type
p(θ) = exp[K cos(θ − θ0)]/Z , where K and θ0 are distribution pa-
rameters and Z is a normalization factor.

It is well known and we can easily observe from Fig. 4 (a) that
the density is not homogeneous. Instead there is micro phase sepa-
ration. Within a high density band the particles are polarly ordered
while the particles in the surrounding low density region are dis-
ordered, cf. also [20]. For that reason we have identified the high
density band by eye in Fig. 4(a) as the region between the two
horizontal black lines. We count the number of particles in that
region and denote its fraction from all particles by α ≈ 0.703.

We use the von Mises ansatz only for the fraction α of particles
in the band and assume that the fraction 1 − α of particles out-
side the band is isotropic oriented. Eventually we obtain the von
Mises parameters K and θ0 from the expectation values 〈cos(θ)〉,
〈sin(θ)〉, which we calculate from the measured distribution p(θ).
From the combined von Mises/disordered ansatz we obtain the ori-

R. Kürsten Computer Physics Communications 290 (2023) 108774

Fig. 3. Snapshots of the metric free Vicsek model (mfVM) for N = 2 × 105 ((a) and (b)), and N = 3.2 × 105 (c and (d)) particles. Physical parameters are k = 2, v = 0.2,
η = 0.08 and ω = 0. Thus, each particle interacts with itself and the next two neighbors. Uniform and isotropic random initial conditions have been used in (a) and (c).
The final states of (a) and (c) have been used as initial conditions for (b) and (d), respectively. For (a) and (c) periodic boundary conditions in x-direction and reflecting
boundary conditions in y-direction have been used. For (b) and (d) periodic boundary conditions have been used in both directions. Snapshots (a) and b have been taken
after 5 × 104 time steps. Snapshot (c) was taken after 2.5 × 105 time steps and snapshot (d) was taken after 8 × 105 time steps. Plotting was don as in Fig. 1.

Fig. 4. Simulation results of nonadditive overdamped Langevin dynamics (nonadditiveL) with weight function h(n) = 1/(n + 1) for N = 19881 particles. Physical parameters
are R = 1, v = 1, η = 1/

√
2, � = 1 and ω = 0. The integration step size is
t = 0.003. The simulation was started from uniform and isotropic random initial conditions.

Periodic boundary conditions have been used. The snapshot (a) was taken after 101 × 104 time steps. The orientation distribution (b) was measured for 104 time steps after
thermalizing for 106 time steps. The red line shows the normalized histogram from the simulation. The dotted black line shows a superposition of a von Mises distribution
with weight α and a uniform distribution with weight 1 − α. The weight α was determined as the fraction of particles that are between the two horizontal black lines in
(a), α ≈ 0.703. Those lines have been set by eye in order to mark the band of polarly ordered particles.
entation distribution displayed by the dotted black line in Fig. 4
which agrees very well with the measured distribution.

In a recent study [21], it was reported that the metric free
overdamped Langevin model exhibits not only one but two phase
transitions. For small coupling there is disorder as expected. For
larger coupling there is a transition towards polar order. Interest-
ingly, for even larger coupling, there is another transition towards
disorder [21]. Disorder at large coupling appears because particles
arrange into locally high ordered clusters that only rarely interact
with, and thus do not align with other clusters. The interaction
term used in Ref. [21] is linear and discontinuous and thus not
exactly the same as implemented here (which is harmonic and
continuous). However, we expect to observe the same qualitative
behavior.

As another test of the program we run simulations of the metric
free overdamped Langevin model (mfL) and measure polar order as
a function of coupling. Indeed, we find both transitions reported in
[21]. In Fig. 5 we display the average polar order parameter and
the Binder cumulant of the polar order parameter. We have only
used one realization for each coupling and simulated only one sys-
tem size. Thus, the measured Binder cumulant fluctuates a bit, but
it still shows the characteristic drop from 2/3 to a smaller value
(that should be zero in the thermodynamic limit) indicating two
continuous transitions from disorder to order to disorder.

We also display a snapshot from within the ordered phase (at
� = 1.6) that shows a band, similar to the metric free Vicsek case,
see Fig. 5(b). The presence of such bands was already reported in
[21].

As the last test we performe a simulation of the additive over-
damped Langevin dynamics (additiveL) with nonzero chirality. We
6

use the physical parameters of Fig. 2(d) of Ref. [22]. A snapshot
of the final simulation state is shown in Fig. 6. We find the same
number and about the same size of polar ordered droplets as in
Fig. 2(d) of Ref. [22].

5.2. Performance

In this subsection we show the run time of the program for the
standard Vicsek model (VM) as a function of particle number N
and density ρ0 within the disordered phase. All simulations have
been performed using a single cpu-core of the Brain-Cluster at Uni-
versitätsrechenzentrum Greifswald.

In Fig. 7(a) we display the run time to perform 104 Vicsek time
steps as a function of the particle number at constant global den-
sity. Parameters have been chosen such that the system is within
the disordered phase where the spatial particle density is homoge-
neous. For large particle number, the program run time is propor-
tional to the particle number as argued in Sec. 3.

In Fig. 7(b) we display the run time to perform 104 Vicsek time
steps as a function of global particle density for constant particle
number. Again, parameters have been chosen such that the sys-
tem is in the disordered phase. For large densities we find a run
time that is approximately proportional to the global density as
discussed in Sec. 3. Finding the neighbors for each particle is the
part that is proportional to the density. Additionally to the de-
termination of neighbors, other operations (that take a run time
proportional to the particle number) such as obtaining pseudo ran-
dom numbers or creating cell lists have to be done. Apparently
those operations are dominant at small densities.

R. Kürsten Computer Physics Communications 290 (2023) 108774

Fig. 5. Simulation results of metric free overdamped Langevin model (mfL) for N = 4 × 104 particles. Physical parameters are k = 3, v = 1.5, ω = 0 and � ∈ {0.3,0.32,

0.34,0.36, 0.38, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2,2.5,3,3.5,4,4.5, 5, 6, 7, 8}. Thus each particle interacts with its (different from itself) three
nearest neighbors. The integration step used is
t = 0.01. Uniform, isotropic random initial conditions and periodic boundary conditions have been used. The system was
thermalized for 106 time steps. Afterwards, moments of the polar order parameter have been sampled for 105 time steps. In (a) we display the first moment of the polar
order parameter (black crosses) and the Binder cumulant U (p) = 1 − 〈p4〉/3/〈p2〉2 (dashed purple line). Only one realization was used for each data point. In (b) we display
a snapshot at the end of the measurement from within the ordered phase at � = 1.6.
Fig. 6. Snapshot of a simulation of additive overdamped Langevin model (additiveL)
with chirality for N = 3.2 × 104 particles. Physical parameters are R = 1, v = 0.5,
ω = 1.5, η = 1 and � = 0.07. The integration step used is
t = 0.01. Uniform,
isotropic random initial conditions and periodic boundary conditions have been
used. The snapshot was taken after 4.1 × 106 time steps.

6. Remarks on versions 1.0 to version 1.2

In versions 1.0 and 1.1 there was a mistake in the implementa-
tion of reflecting boundary conditions for models with overdamped
Langevin dynamics (additiveL, nonadditiveL, mfL). In that case the
orientations of particles have not been reflected when they leave
the simulation domain. This mistake was not present for Vicsek
type models (VM, NVM, mfVM, mfNVM) and not for periodic bound-
ary conditions for any model. The mistake was corrected with
version 1.2.

Versions 1.0 and 1.1 differ only in the measurements of the mo-
ments of the number of neighbors.

In version 1.0 those moments are calculated from the micro-
scopic number of neighbors n j := |� j|. If the number of bins for
the histogram of the number of neighbors is chosen large enough
such that no event is missed, the moments of the histogram are
identical to the moments measured directly. The number of neigh-
bors of particle j, n j , is a microscopic quantity.

In version 1.1 (and later) the measurement of the moments of
the number of neighbors was changed while its histogram is still
measured in the same way. The behavior described in Subsec. 3.4
refers to version 1.1. In version 1.1, in each measurement step, the
mean number of neighbors n̄ := 1

N

∑N
j=1 n j is calculated. The first

four moments of this quantity are averaged over all measurement
time steps. Note that now n̄ is a macroscopic observable rather
than a microscopic quantity. The first moment is the same but mo-
7

ments two to four differ (only for the number of neighbors) from
version 1.0 to version 1.1.

It is possible to use version 1.2 to open and analyze a data file
produced with versions 1.0 or 1.1. All data can be accessed cor-
rectly, however a warning is raised, that a different version is used.

All numerical results presented in Sec. 5 have been obtained
with version 1.0. However, the number of neighbor statistics was
not considered in Sec. 5 any way and reflecting boundary con-
ditions have been used only for Vicsek type models, such that
version 1.2 is supposed to produce (even microscopically) identi-
cal results.

7. Summary

We present a simulation package for the purpose of perform-
ing molecular-dynamics-like agent-based simulations of models of
aligning self-propelled particles in two dimensions. The nature of
such prototype models of active matter is different from stan-
dard molecular dynamics simulations because the dynamics is not
Hamiltonian and N-particle interactions of a special type are in-
volved. The simulation package is able to simulate models that
have been studied by dozens to hundreds of papers, see e.g. [4,5],
as well as models that have not yet been studied. To the best of the
authors knowledge, there is no simulation package openly avail-
able that can do any of those tasks. This paper comes with a few
test simulation results of the program for six different models that
have been studied before. The results of the program are consistent
with previous results as well as with mean field theory.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in-
terests:

Ruediger Kuersten reports a relationship with University of
Barcelona that includes: funding grants.

Data availability

Data and Software is openly available under links provided in
the references.

Acknowledgements

The author acknowledges funding through a ’María Zambra-
no’ postdoctoral grant at University of Barcelona financed by the

R. Kürsten Computer Physics Communications 290 (2023) 108774

Fig. 7. Run time (in s) of program initialization with uniform, isotropic random initial conditions + iteration of 104 time steps of the standard Vicsek model (VM) as a
function of particle number N (a) and of particle density ρ0 (b). System parameters are R = 1, v = 1 and (a): η = 0.45, ρ0 = 0.6366, (b): η = 0.85, N = 105. The system
remains in the disordered state for all simulations. The dashed black line in (a) shows the line t = 0.0072s × N , in (b) it shows the line t = 150s × ρ0, they serve as a guide
to the eye.
Spanish Ministerio de Universidades and the European Union (Next
Generation EU/PRTR). The author thanks Universitätsrechenzen-
trum Greifswald for supporting this work by providing computa-
tional resources.

References

[1] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1 (1) (2010) 323–345, https://
doi .org /10 .1146 /annurev-conmatphys -070909 -104101.

[2] M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao,
R.A. Simha, Rev. Mod. Phys. 85 (2013) 1143–1189, https://doi .org /10 .1103 /
RevModPhys .85 .1143.

[3] S. Ramaswamy, J. Stat. Mech. Theory Exp. 2017 (5) (2017) 054002, https://doi .
org /10 .1088 /1742 -5468 /aa6bc5.

[4] M. Bär, R. Großmann, S. Heidenreich, F. Peruani, Annu. Rev. Condens. Mat-
ter Phys. 11 (1) (2020) 441–466, https://doi .org /10 .1146 /annurev-conmatphys -
031119 -050611.

[5] H. Chaté, Annu. Rev. Condens. Matter Phys. 11 (1) (2020) 189–212, https://
doi .org /10 .1146 /annurev-conmatphys -031119 -050752.

[6] S. Shankar, A. Souslov, M.J. Bowick, M.C. Marchetti, V. Vitelli, Nat. Rev. Phys.
4 (6) (2022) 380–398.

[7] R. Alert, J. Casademunt, J.-F. Joanny, Annu. Rev. Condens. Matter Phys. 13 (1)
(2022) 143–170, https://doi .org /10 .1146 /annurev-conmatphys -082321 -035957.

[8] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75 (1995)
1226–1229, https://doi .org /10 .1103 /PhysRevLett .75 .1226.

[9] R. Kürsten, [link]. https://github .com /kuersten /aappp/, 2022.

[10] H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Eur. Phys. J. B 64 (3)
(2008) 451–456.

[11] F. Ginelli, F. Peruani, M. Bär, H. Chaté, Phys. Rev. Lett. 104 (2010) 184502,
https://doi .org /10 .1103 /PhysRevLett .104 .184502.

[12] P.E. Kloeden, E. Platen, Stochastic Differential Equations, Springer, 1992.
[13] A.M. Menzel, Phys. Rev. E 85 (2012) 021912, https://doi .org /10 .1103 /PhysRevE .

85 .021912.
[14] B. Ventejou, H. Chaté, R. Montagne, X.-q. Shi, Phys. Rev. Lett. 127 (2021)

238001, https://doi .org /10 .1103 /PhysRevLett .127.238001.
[15] R. Kürsten, Data available online, https://doi .org /10 .5281 /zenodo .7373472,

2022.
[16] R. Kürsten, T. Ihle, Phys. Rev. Lett. 125 (2020) 188003, https://doi .org /10 .1103 /

PhysRevLett .125 .188003.
[17] D. Martin, H. Chaté, C. Nardini, A. Solon, J. Tailleur, F. Van Wijland, Phys. Rev.

Lett. 126 (2021) 148001, https://doi .org /10 .1103 /PhysRevLett .126 .148001.
[18] O. Chepizhko, D. Saintillan, F. Peruani, Soft Matter 17 (2021) 3113–3120,

https://doi .org /10 .1039 /D0SM01220C.
[19] R. Kürsten, T. Ihle, Phys. Rev. E 104 (2021) 034604, https://doi .org /10 .1103 /

PhysRevE .104 .034604.
[20] A.P. Solon, H. Chaté, J. Tailleur, Phys. Rev. Lett. 114 (2015) 068101, https://doi .

org /10 .1103 /PhysRevLett .114 .068101.
[21] Y. Zhao, C. Huepe, P. Romanczuk, Emergent metric-like states of active particles

with metric-free polar alignment, https://doi .org /10 .48550 /ARXIV .2208 .06597,
https://arxiv.org /abs /2208 .06597, 2022.

[22] B. Liebchen, D. Levis, Phys. Rev. Lett. 119 (2017) 058002, https://doi .org /10 .
1103 /PhysRevLett .119 .058002.
8

https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1088/1742-5468/aa6bc5
https://doi.org/10.1088/1742-5468/aa6bc5
https://doi.org/10.1146/annurev-conmatphys-031119-050611
https://doi.org/10.1146/annurev-conmatphys-031119-050611
https://doi.org/10.1146/annurev-conmatphys-031119-050752
https://doi.org/10.1146/annurev-conmatphys-031119-050752
http://refhub.elsevier.com/S0010-4655(23)00119-4/bibB7B526E9A5E00649CC91C53EB9A6A952s1
http://refhub.elsevier.com/S0010-4655(23)00119-4/bibB7B526E9A5E00649CC91C53EB9A6A952s1
https://doi.org/10.1146/annurev-conmatphys-082321-035957
https://doi.org/10.1103/PhysRevLett.75.1226
https://github.com/kuersten/aappp/
http://refhub.elsevier.com/S0010-4655(23)00119-4/bibD947C800BEBED4978DF431B164F3A2C0s1
http://refhub.elsevier.com/S0010-4655(23)00119-4/bibD947C800BEBED4978DF431B164F3A2C0s1
https://doi.org/10.1103/PhysRevLett.104.184502
http://refhub.elsevier.com/S0010-4655(23)00119-4/bib45F0DFB5AB70B3D92E9ABB466E2D0003s1
https://doi.org/10.1103/PhysRevE.85.021912
https://doi.org/10.1103/PhysRevE.85.021912
https://doi.org/10.1103/PhysRevLett.127.238001
https://doi.org/10.5281/zenodo.7373472
https://doi.org/10.1103/PhysRevLett.125.188003
https://doi.org/10.1103/PhysRevLett.125.188003
https://doi.org/10.1103/PhysRevLett.126.148001
https://doi.org/10.1039/D0SM01220C
https://doi.org/10.1103/PhysRevE.104.034604
https://doi.org/10.1103/PhysRevE.104.034604
https://doi.org/10.1103/PhysRevLett.114.068101
https://doi.org/10.1103/PhysRevLett.114.068101
https://doi.org/10.48550/ARXIV.2208.06597
https://arxiv.org/abs/2208.06597
https://doi.org/10.1103/PhysRevLett.119.058002
https://doi.org/10.1103/PhysRevLett.119.058002

	Aligning active particles py package
	1 Introduction
	2 Models
	2.1 Rule based Vicsek type dynamics
	2.2 Overdamped Langevin dynamics
	2.3 Neighborhoods
	2.4 Boundary conditions
	2.5 Distinguished particle types/species

	3 Implementation
	3.1 Time evolution
	3.2 Metric neighborhoods
	3.3 Metric free neighborhoods
	3.4 Measurements
	3.5 Memory usage
	3.6 Disk space usage

	4 Usage
	5 Numerical results
	5.1 Comparison to literature
	5.2 Performance

	6 Remarks on versions 1.0 to version 1.2
	7 Summary
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

