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The package performs molecular-dynamics-like agent-based simulations for models of aligning self-
propelled particles in two dimensions such as e.g. the seminal Vicsek model or variants of it. In one class 
of the covered models, the microscopic dynamics is determined by certain time discrete interaction rules. 
Thus, it is no Hamiltonian dynamics and quantities such as energy are not defined. In the other class of 
considered models (that are generally believed to behave qualitatively the same) Brownian dynamics is 
considered. However, also there, the forces are not derived from a Hamiltonian. Furthermore, in most 
cases, the forces depend on the state of all particles and can not be decomposed into a sum of forces 
that only depend on the states of pairs of particles. Due to the above specified features of the microscopic 
dynamics of such models, they are not implemented in major molecular dynamics simulation frameworks 
to the best of the authors knowledge. Models that are covered by this package have been studied with 
agent-based simulations by dozens of papers. However, no simulation framework of such models seems 
to be openly available. The program is provided as a Python package. The simulation code is written in 
C. In the current version, parallelization is not implemented.
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Nature of problem: Perform molecular-dynamics-like agent-based simulations of models for aligning active 
particles with interaction rules that are not following Hamiltonian dynamics and that are not restricted 
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of reflecting boundary conditions.
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1. Introduction

Active particles are characterized by the transformation of en-
ergy into directed motion as well as the dissipation of energy 
towards their surrounding. There are engineered active particles 
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such as active colloids or robots, as well as biological active par-
ticles from the scales of microtubuli driven by molecular motors 
towards macroscopic animals, see e.g. [1–7] for reviews.

Due to the interplay of constant supply and dissipation of 
energy, active particles are driven far from thermal equilibrium. 
For the description of collective phenomena of active particles, 
nonequilibrium theories are necessary [1–3]. It is suitable to ac-
company and test such theories by computer simulations. How-
ever, in order to compare to coarse grained theories one requires 
to simulate a large number of particles. Developing and simulating 
realistic models of a large number of active particles seems to be 
challenging.
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Alternatively, simplified prototype models of self-propelled par-
ticles have been introduced, most prominently the famous Vicsek 
model [8], see also [4,5] for a review of similar models. Such sim-
plified models can easily be simulated on much larger scales than 
realistic models while they keep some key aspects of the far from 
equilibrium collective motion.

The aappp simulation package presented here, in the following 
called the program, is able to simulate the two dimensional Vicsek 
model as well as many similar models. Models that are covered 
by the program have been studied by dozens to hundreds of pa-
pers, cf. the references of [4,5]. However, to the best of the authors 
knowledge, no simulation framework that can handle those models 
is openly available. The models under consideration are not follow-
ing Hamiltonian dynamics and furthermore they involve N-particle 
interactions of a special type. For those reasons they are not imple-
mented in well-known molecular dynamics simulation packages.

The source code of the program is available at [9].
This paper is organized as follows. In Sec. 2 we define the 

models that can be handled by the program. In Sec. 3 we shortly 
describe the implementation as well as the observables that can be 
measured automatically on the fly. In Sec. 4 we give very few re-
marks on the basic usage of the program. More instructions can be 
found in the documentation at [9]. In Sec. 5 we display simulation 
results that have been obtained by the program and compare them 
to results of previous studies. Furthermore we show the scaling of 
the run time. In Sec. 6 we shortly discuss the difference between 
different versions of the program. We conclude with a short sum-
mary in Sec. 7.

2. Models

We consider N point particles in two dimensions. The state of 
each particle i ∈ {1, · · · , N} is characterized by xi ∈ [0, Lx], yi ∈
[0, L y] and θi ∈ [−π, π ], where (xi, yi) gives the position within 
a two-dimensional simulation box of size Lx × L y and the angle θi
defines an orientation. For all considered models, the orientation θi
gives the direction of self-propulsion of the particles. The program 
covers two classes of models. In the first class of Vicsek type, the 
microscopic dynamics is given by certain time discrete rules. In the 
second class, the dynamics is described by overdamped Langevin 
equations. In the following we explain the two classes in detail.

2.1. Rule based Vicsek type dynamics

In this subsection we consider a discrete time step that consists 
of two parts: collision and streaming. In the collision part all orien-
tations θi are updated. In the streaming part all positions (xi, yi)

get updated. Thus one time step always consists of first collision
and second streaming. The collision update follows the rule:

θi(t + 1) = f (θi(t), {θ j(t)} j∈�i ) + η · ξi(t), (1)

where the function f specifies the collision rule. It depends on the 
orientation of particle i and of all of its neighbors before the colli-
sion. By �i we denote the set of indexes of neighbors of particle i. 
In all considered models, the definition of the neighborhoods only 
depends on the positions of the particles. The considered neigh-
borhood definitions are discussed in subsection 2.3. The last term 
in (1) describes a noise term, where ξi(t) are independent random 
variables that are distributed uniformly on [−π, π ] and η ∈ [0, 1]
describes the noise strength.

Regarding the collision rule, we consider two models. The first 
is the famous Vicsek Model (VM) [8], where

f (θi, {θ j} j∈�i ) := arg

[
exp(iθi) +

∑
j∈�i

exp(iθ j)

]
+ ω, (2)
2

where the prefactor i in the exponents is the imaginary unit not 
to be confused with the index i. The parameter ω introduces some 
chirality on the orientation dynamics. Roughly speaking, in the VM 
dynamics, each particle picks up some kind of an average direction 
of its neighbors and itself. It is then rotated by ω and disturbed by 
noise. In [8] the model was considered with ω = 0.

We refer to the second considered collision rule as nematic Vic-
sek model (NVM). It was introduced in [10,11] with ω = 0. It is 
given by

f (θi, {θ j} j∈�i ) :=
arg

[
exp(iθi) +

∑
j∈�i

exp[i(θ j + π/2(1 − sign(cos(θi − θ j))))]
]

+ ω, (3)

where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0. In this 
dynamics a particle tries to align with its neighbors that have an 
orientation that differs by no more than π/2 and it tries to anti-
align with neighbors that have orientations that differ by more 
than π/2.

The streaming part of the update is given by

xi(t + 1) = xi(t) + v cos(θi(t + 1)),

yi(t + 1) = yi(t) + v sin(θi(t + 1)), (4)

where v describes the particle speed.

2.2. Overdamped Langevin dynamics

For this class of models the dynamics is continuous in time. It 
is given by the following set of differential equations

ẋi = v cos(θi),

ẏi = v sin(θi),

θ̇i = �h(|�i |)
∑
j∈�i

sin(o · (θ j − θi)) + ω + η · ξi, (5)

where v denotes the particles speed and �i the neighbor set of 
particle i as before. The parameter � defines a coupling strength. 
The function h gives some weight to the interaction depending on 
the total number of neighbors. Common choices are h(n) ≡ 1 and 
h(n) ≡ 1/(1 + n), see e.g. [4,5] for an overview of considered mod-
els of this type. The program has implemented those two weight 
functions, but it also allows to specify another arbitrary weight 
function. We refer to the dynamics with h ≡ 1 as additiveL and 
with all other weight functions as nonadditiveL. The integer param-
eter o defines the order of the interaction. For o = 1 particles tend 
to align (polar alignment), for o = 2 particles tend to either align 
or anti-align (nematic alignment), etc. Here, the noise strength η
is from [0, ∞] and ξi(t) denote independent Gaussian white noise 
terms. The equations for the x- and y-positions are ordinary dif-
ferential equations and the equation for the orientation dynamics 
is a stochastic differential equation. Because the noise is purely 
additive Ito- and Stratonovic-interpretation of the stochastic differ-
ential equation coincide here. In the program they are integrated 
using the Euler-Maruyama-scheme, see e.g. [12].

2.3. Neighborhoods

We consider two possible neighborhood definitions: metric 
neighborhoods and metric free/topological neighborhoods. They 
both have in common that we do not count a particle as its own 
neighbor (although the particles own orientation effects the colli-
sion rule for Vicsek type interactions).
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For metric interactions, for a given particle i, all other particles 
that are closer to particle i than a distance R are considered to be 
neighbors of particle i. That means

�i := { j �= i :
√

(xi − x j)
2 + (yi − y j)

2 ≤ R}. (6)

For metric free interaction neighborhoods, that are also called 
topological interaction neighborhoods, each particle has a fixed 
number of (closest) neighbors that is denoted by k. In that case 
the set �i consists of the indexes of the k particles, different from 
particle i, that are closest to particle i.

We refer to the metric free neighborhood by the abbreviation 
’mf’. Whenever we do not specify anything else, we refer to the 
metric neighborhood definition. Thus we might refer to the met-
ric free Vicsek model as ’mfVM’ and to the standard Vicsek model 
as ’VM’, etc. The weight function introduced in the overdamped 
Langevin dynamics makes no sense in the metric free case because 
the number of neighbors is the same for all particles and the cor-
responding weight can be absorbed in the interaction strength �. 
Thus, we always use h ≡ 1 in the metric free case and refer to the 
corresponding overdamped Langevin dynamics as ’mfL’.

2.4. Boundary conditions

The program has implemented periodic and reflecting boundary 
conditions. They can be specified for x- and y-direction separately. 
Here we will explain them only for the x-direction.

For periodic boundary conditions we introduce two virtual im-
age particles for each real particle by shifting the x-coordinate by 
±Lx . We only calculate the time evolution of the real particles, 
however, they interact also with the virtual image particles. When 
a particle leaves the simulation box [0, Lx] during the dynamics, it 
is set back into the box by either adding or subtracting Lx .

For reflecting boundary conditions, for each real particle, there 
are introduced two virtual image particles as well. However, in this 
case, they are created by mirroring position as well as orientation 
at the lines x = 0 and x = Lx . For the orientation that means that 
θ → π − θ . Particles take into account virtual image particles in 
their interactions in the same way as for periodic boundary condi-
tions. When a particle leaves the simulation box [0, Lx] during the 
dynamics it is set back into it by applying the mirroring of posi-
tion and orientation at either the line x = 0 or x = Lx . That means 
θ → π − θ and either x → −x or x → −x + 2Lx .

Note that the virtual image particles have bean just introduced 
for illustration. It is not necessary to produce such image particles 
in the implementation in order to calculate the dynamics of the 
real particles.

2.5. Distinguished particle types/species

The dynamics described above depends on a number of pa-
rameters. The program allows to use different values for speed v , 
noise strength η, chirality ω and coupling strength � for different 
particles. More precisely, it allows to consider e.g. two different 
species of particles, say A- and B-particles, such that the dynam-
ics of A-particles uses v A, ηA, ωA, �A A and �AB and the dynamics 
of B-particles uses the parameters v B , ηB , ωB , �B B and �B A . Two-
species models that are implemented in the program have been 
studied e.g. in [13] (varying coupling) or [14] (varying chirality). 
The number of A-particles N A can be different from the number 
of B-particles NB . There can be an arbitrary number of particle 
species. However, if the number of species is very large (in the ex-
treme case = N such that each particle has a different parameter) 
the program is extremely inefficient. The current implementation 
is designed for a small number of species only.
3

3. Implementation

3.1. Time evolution

The major part in the implementation is the determination of 
the neighborhoods. The collision and streaming rules as well as the 
Euler-Maruyama discretization of the stochastic differential equa-
tion are straight forward. It should be mentioned that the glib-
implementation of the Mersenne-Twister-algorithm is used to gen-
erate uniform pseudo random numbers. For the Euler-Maruyama 
scheme, Gaussian random numbers are produced by the Box-
Muller-algorithm. In the following we describe the determination 
of metric and metric free neighborhoods.

3.2. Metric neighborhoods

Cell lists are used to determine the neighborhoods. The cell size 
is close to the interaction radius R in both dimensions. It is a little 
larger than R in order to guarantee a perfect tiling of the simula-
tion box. In each step, for each cell, a list is produced that contains 
all particles that lie inside the cell. To find the neighbors of par-
ticle i, one needs to check the distance to all particles that are in 
the same cell as particle i or in the eight surrounding cells. So, one 
needs to check all particles from nine boxes in total. Thus, for ho-
mogeneous systems with density ρ0 = N/Lx/L y the complexity of 
the algorithm is Nρ09R2. Homogeneous states are somehow the 
best possible scenario. In many cases, e.g. for high density Vicsek 
bands, particles accumulate locally. If this happens, the simulations 
usually slow down a bit. However, the complexity remains propor-
tional to the particle number N as long as the system exhibits a 
well-defined thermodynamic limit.

3.3. Metric free neighborhoods

For the metric free neighborhood, an effective radius is defined 
as

Ref f =
√

LxL yk/N/π, (7)

where k is the number of neighbors. The effective radius is then 
used to define cells as in the metric case and produce cell lists. 
For each particle, a neighbor list with the next k neighbors is pro-
duced by first checking all particles from the box of particle i. If 
the closest point from the remaining boxes is closer than the kth 
neighbor also the surrounding eight boxes will be checked. In the 
next step the surrounding 16 boxes will be checked and so on. The 
exact complexity of the algorithm depends on the fluctuations of 
the local density, however, also in this case it is proportional to the 
total particle number N .

3.4. Measurements

The dynamics of the system can be iterated with or without 
performing any measurements. If measurements are done on the 
fly the following quantities are measured

• Histogram of the orientations θ .
• Histogram of the number of neighbors |� j |.
• Polar order parameter p := | 1

N

∑N
j=1 exp(iθ j)| and its first four 

moments.
• Nematic order parameter q := | 1

N

∑N
j=1 exp(2iθ j)| and its first 

four moments.
• The first four moments of the ensemble averaged number of 

neighbors n̄ = 1 ∑N
j=1 |� j|.
N
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-

All histograms and moments are stored internally unnormalized, 
however, when they are accessed they are returned normalized. If 
a measurement is performed for n steps, the program performs n
updates, such that there are in total n +1 states from t = 0 to t = n. 
The measurements and all the statistical analysis behind only uses 
n of those n + 1 steps, namely from t = 0 to t = n − 1 (the last step 
is not used for the statistics).

3.5. Memory usage

On usual machines where a C double takes 8 Bytes a simula-
tion object takes 40 × N Bytes +N× the size of a pointer (8Bytes 
on 64bit system, 4Bytes on 32bit system) + the number of cells 
× the size of a pointer + some small overhead for storing pa-
rameters and measurement results. Note that currently memory 
for both cell list: for metric and metric free neighborhoods is allo-
cated. If memory is an issue, for metric neighborhood simulation 
one can set the parameter k (which is not used) to a very large 
value leading to a large Ref f . For metric free simulations one can 
set R (which is not used) to a very large value. In that way one 
can minimize the memory usage of the unused cell list.

3.6. Disk space usage

It is possible to save the full state of the simulation to disk 
in binary format and read it in later for analysis or in order to 
continue the simulation. The system state including the particle 
configurations, all measurement results and the state of the pseudo 
random number generator is fully saved. Hence an intermediate 
save/load operation leads to identical results as a simulation with-
out interim saving/loading. Saving is, however, not strictly type 
saves as in principle the size of C double depends on the system. 
Assuming usual machines that use 8 Bytes for a C double, saving 
a simulation object takes 24 × N Bytes + some small overhead to 
save a simulation object.

4. Usage

Details on the usage of the package can be found in the docu-
mentation (either in the README or by calling help(aappp)). Here, 
we only give some general remarks. Independent on the model 
that will be simulated, a simulation object is always initialized 
by the function aappp_init. Not all parameters have to be given. 
For parameters that are not given, default values are used. They 
can be found in the documentation. Possible parameters are: ve-
locity v as v=. . . , interaction radius R as R=. . . , noise strength 
η as eta=. . . , chirality ω as omega=. . . , coupling � as gamma=. . . , 
simulation box size in x-direction Lx as Lx=. . . , simulation box 
size in y-direction L y as Ly=. . . , step size of Euler-Maruyama-
scheme 
t as dt=. . . , neighbor number for metric free models k
as kn=. . . , interaction order for overdamped Langevin dynamics o
as order=. . . , boundary condition in x-direction (periodic if=0, re-
flecting if=1) bx as bx=. . . , boundary condition in y-direction by 
as by=. . . , particle number N as N=. . . , seed for pseudo random 
number generator as seed=. . . , weight function f for nonaddi-
tive overdamped Langevin dynamics as weight_function=. . . (if no 
weight function is specified f (n) = 1/(1 + n) is used for all n), 
weight vector length as weight_vector_length=. . . (the weight func-
tion is called only once for n = 0, · · · , weight_vector_length − 1
and the results are saved in memory, if the number of neighbors is 
larger than weight_vector_length-1 in some case, then the weight 
f (weight_vector_length − 1) is used), the number of bins used 
for the orientation histogram as binnum_theta=. . . , the number of 
bins used for the number of neighbor histogram as binnum_neigh-
bors=. . . . In the current implementation, reflecting boundary con-
ditions are used whenever bx/by �= 0, however, bx/by = 1 should 
4

be used as other values might be implemented later. When dif-
ferent species of particles are simulated, the following parameters 
can be lists: v, eta, omega, N and gamma can be a list of lists (e.g. 
a coupling matrix).

Time evolution is done by the functions
*model*_update_timesteps(simulation, timesteps), where *model*
should be replaced by the abbreviation for the model that should 
be iterated as e.g. mfVM, simulation is the simulation object ini-
tialized before and timesteps is the number of time steps that will 
be iterated.

Similarly, time evolution with measurements is done by
*model*_measurement_timesteps(simulation, measurement). The re-
sults of measurements can be obtained by aappp_get_results(sim-
ulation).

A simulation object can be saved to or loaded from a file on 
disc via aappp_save(simulation, ’filename’), simulation=aappp_load(’file
name’).

5. Numerical results

5.1. Comparison to literature

We perform a few test simulations and compare them to pub-
lished results of some of the models that can be handled by the 
program. Simulation data discussed here are available at [15]. First, 
we look at simulations of the famous standard Vicsek model (VM). 
In Fig. 1 we display simulation results of a parameter set that was 
used in Fig. 1 (iii) of Ref. [16]. In Fig. 1(a) we see a snapshot af-
ter 105 time steps. We observe a nice band pattern, very similar 
to Fig. 1(iii) of Ref. [16]. There are still two defects in the pattern 
that are most likely vanishing in longer simulations.

We remark that in the experience of the author, in a typical sit-
uation, the bands that arise from random initial conditions move 
in an arbitrary direction (that is in most cases not equal to the x-
or the y− axis direction, see also supplemental material of [16]). 
However, in many cases, bands that are moving nicely in the di-
rection of the coordinate axis are presented without commenting 
on it. In the authors experience it is not so easy to create such 
directed band patterns. One might try to initialize all particles 
moving e.g. in the x-direction. However, then usually initial polar 
order gets lost in the beginning of the simulation and later, polar 
order builds up again spontaneously in (most likely) some other 
direction.

Here, we want to present a simple recipe to (artificially) cre-
ate band patterns that are aligned with one of the coordinates axis
whenever this is desired. This works by applying reflecting bound-
ary conditions in one of the directions and thus stopping a directed 
motion into this direction. Reflecting boundary conditions in y−
direction have been used in Fig. 1 (b) leading to bands that are 
nicely moving into x-direction. Once such a pattern is created one 
can switch boundary conditions back to periodic and the pattern 
survives, see Fig. 1(c).

Apparently this method does not alway succeed. In Fig. 1 (d)

we apply periodic boundary conditions in x-direction and we ob-
serve that the bands get really reflected at the boundaries given by 
x = 0 and x = Lx . After switching back to periodic boundary con-
ditions we observe a cross sea pattern, see Fig. 1(e) and cf. [16]. 
For the given parameter set this phase is most likely not stable 
and collapsing after some very long time. In order to enforce the 
direction of the bands to be aligned with one of the coordinates 
axis one might switch between periodic and reflecting boundary 
conditions with a higher frequency, however, in order to keep the 
discussion short we do not show results of such a simulation pro-
tocol here.

Next, we perform simulations of the nematic Vicsek model 
(NVM) using a parameter set from Fig. 2(c) of [11]. From uni-
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Fig. 1. Snapshots of the standard Vicsek model with N = 106 particles. Physical parameters are R = 1, v = 1, η = 0.37 and ω = 0. For (a), (b) and (d) uniform, isotropic 
random initial conditions have been used. For (c) and (e) the final states of (b) and (d) have been used as initial conditions, respectively. Simulations (a), (c) and (e) use 
periodic boundary conditions in both directions. Simulations (b) and (d) use reflecting boundary conditions in x- and y-direction, respectively. Snapshot (a) was taken after 
105 time steps, snapshots (b) − (e) after 5 × 104 time steps. For each particle a point was drawn at its position. The color encodes the orientation of the particle according 
to the color wheel shown in (a). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Snapshots of the nematic Vicsek model (NVM) with N = 524288 particles. Physical parameters are R = 1, v = 0.5, η = 0.065 and ω = 0. Uniform and isotropic random 
initial conditions have been used for (a) and (b). For (c), the final state of (b) was used as initial condition. For (a) and (c) periodic boundary conditions have been used in 
both directions. For (b) reflecting boundary conditions have been used in y-direction. All snapshots have been taken after 105 time steps. Plotting was done as in Fig. 1.
form, isotropic random initial conditions we obtain after 105 steps 
a not yet perfectly ordered, nematic band structure that is directed 
somehow diagonal, see Fig. 2(a).

In order to speed things up and obtain a nice band oriented in 
x-direction we employ the same method as for the Vicsek model. 
We first use reflecting boundary conditions in y-direction for a few 
time steps, see Fig. 2 (b) and switch to periodic boundary condi-
tions later. Eventually, we arrive at a state that looks like Fig. 2(c)
of Ref. [11], see Fig. 2(c).

Until recently, it was believed that the flocking state for metric 
free models is spatially homogeneous, cf. e.g. [5]. However, it was 
found that polar ordered bands exist also there, see [17]. We per-
formed simulations of the metric free Vicsek model (mfVM) with 
parameters as in Fig. 3 of [17]. We used again the same method as 
before, switching between reflecting and periodic boundary condi-
tions in order to align the resulting pattern with the x-axis. The 
final states of the simulations seem to be very close to the ones 
presented in Ref. [17], cf. Fig. 3(b) and (d).

For an overdamped Langevin model with weight function 
h(n) = 1/(n + 1) (nonadditiveL) we perform a simulation for a 
parameter set as in Fig. 1(a) of Ref. [18], middle snapshot. We 
observe a very similar snapshot, see Fig. 4(a). Here, we also dis-
5

play the measured orientation distribution, see Fig. 4(b), because 
there is some analytical theory to compare with. It is known that 
the steady state orientational distribution of the considered model 
is a von Mises distribution within homogeneous mean field the-
ory [18,19]. That means the orientation distribution is of the type 
p(θ) = exp[K cos(θ − θ0)]/Z , where K and θ0 are distribution pa-
rameters and Z is a normalization factor.

It is well known and we can easily observe from Fig. 4 (a) that 
the density is not homogeneous. Instead there is micro phase sepa-
ration. Within a high density band the particles are polarly ordered 
while the particles in the surrounding low density region are dis-
ordered, cf. also [20]. For that reason we have identified the high 
density band by eye in Fig. 4(a) as the region between the two 
horizontal black lines. We count the number of particles in that 
region and denote its fraction from all particles by α ≈ 0.703.

We use the von Mises ansatz only for the fraction α of particles 
in the band and assume that the fraction 1 − α of particles out-
side the band is isotropic oriented. Eventually we obtain the von 
Mises parameters K and θ0 from the expectation values 〈cos(θ)〉, 
〈sin(θ)〉, which we calculate from the measured distribution p(θ). 
From the combined von Mises/disordered ansatz we obtain the ori-
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Fig. 3. Snapshots of the metric free Vicsek model (mfVM) for N = 2 × 105 ((a) and (b)), and N = 3.2 × 105 (c and (d)) particles. Physical parameters are k = 2, v = 0.2, 
η = 0.08 and ω = 0. Thus, each particle interacts with itself and the next two neighbors. Uniform and isotropic random initial conditions have been used in (a) and (c). 
The final states of (a) and (c) have been used as initial conditions for (b) and (d), respectively. For (a) and (c) periodic boundary conditions in x-direction and reflecting 
boundary conditions in y-direction have been used. For (b) and (d) periodic boundary conditions have been used in both directions. Snapshots (a) and b have been taken 
after 5 × 104 time steps. Snapshot (c) was taken after 2.5 × 105 time steps and snapshot (d) was taken after 8 × 105 time steps. Plotting was don as in Fig. 1.

Fig. 4. Simulation results of nonadditive overdamped Langevin dynamics (nonadditiveL) with weight function h(n) = 1/(n + 1) for N = 19881 particles. Physical parameters 
are R = 1, v = 1, η = 1/

√
2, � = 1 and ω = 0. The integration step size is 
t = 0.003. The simulation was started from uniform and isotropic random initial conditions. 

Periodic boundary conditions have been used. The snapshot (a) was taken after 101 × 104 time steps. The orientation distribution (b) was measured for 104 time steps after 
thermalizing for 106 time steps. The red line shows the normalized histogram from the simulation. The dotted black line shows a superposition of a von Mises distribution 
with weight α and a uniform distribution with weight 1 − α. The weight α was determined as the fraction of particles that are between the two horizontal black lines in 
(a), α ≈ 0.703. Those lines have been set by eye in order to mark the band of polarly ordered particles.
entation distribution displayed by the dotted black line in Fig. 4
which agrees very well with the measured distribution.

In a recent study [21], it was reported that the metric free 
overdamped Langevin model exhibits not only one but two phase 
transitions. For small coupling there is disorder as expected. For 
larger coupling there is a transition towards polar order. Interest-
ingly, for even larger coupling, there is another transition towards 
disorder [21]. Disorder at large coupling appears because particles 
arrange into locally high ordered clusters that only rarely interact 
with, and thus do not align with other clusters. The interaction 
term used in Ref. [21] is linear and discontinuous and thus not 
exactly the same as implemented here (which is harmonic and 
continuous). However, we expect to observe the same qualitative 
behavior.

As another test of the program we run simulations of the metric 
free overdamped Langevin model (mfL) and measure polar order as 
a function of coupling. Indeed, we find both transitions reported in 
[21]. In Fig. 5 we display the average polar order parameter and 
the Binder cumulant of the polar order parameter. We have only 
used one realization for each coupling and simulated only one sys-
tem size. Thus, the measured Binder cumulant fluctuates a bit, but 
it still shows the characteristic drop from 2/3 to a smaller value 
(that should be zero in the thermodynamic limit) indicating two 
continuous transitions from disorder to order to disorder.

We also display a snapshot from within the ordered phase (at 
� = 1.6) that shows a band, similar to the metric free Vicsek case, 
see Fig. 5(b). The presence of such bands was already reported in 
[21].

As the last test we performe a simulation of the additive over-
damped Langevin dynamics (additiveL) with nonzero chirality. We 
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use the physical parameters of Fig. 2(d) of Ref. [22]. A snapshot 
of the final simulation state is shown in Fig. 6. We find the same 
number and about the same size of polar ordered droplets as in 
Fig. 2(d) of Ref. [22].

5.2. Performance

In this subsection we show the run time of the program for the 
standard Vicsek model (VM) as a function of particle number N
and density ρ0 within the disordered phase. All simulations have 
been performed using a single cpu-core of the Brain-Cluster at Uni-
versitätsrechenzentrum Greifswald.

In Fig. 7(a) we display the run time to perform 104 Vicsek time 
steps as a function of the particle number at constant global den-
sity. Parameters have been chosen such that the system is within 
the disordered phase where the spatial particle density is homoge-
neous. For large particle number, the program run time is propor-
tional to the particle number as argued in Sec. 3.

In Fig. 7(b) we display the run time to perform 104 Vicsek time 
steps as a function of global particle density for constant particle 
number. Again, parameters have been chosen such that the sys-
tem is in the disordered phase. For large densities we find a run 
time that is approximately proportional to the global density as 
discussed in Sec. 3. Finding the neighbors for each particle is the 
part that is proportional to the density. Additionally to the de-
termination of neighbors, other operations (that take a run time 
proportional to the particle number) such as obtaining pseudo ran-
dom numbers or creating cell lists have to be done. Apparently 
those operations are dominant at small densities.
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Fig. 5. Simulation results of metric free overdamped Langevin model (mfL) for N = 4 × 104 particles. Physical parameters are k = 3, v = 1.5, ω = 0 and � ∈ {0.3,0.32,

0.34,0.36, 0.38, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2,2.5,3,3.5,4,4.5, 5, 6, 7, 8}. Thus each particle interacts with its (different from itself) three 
nearest neighbors. The integration step used is 
t = 0.01. Uniform, isotropic random initial conditions and periodic boundary conditions have been used. The system was 
thermalized for 106 time steps. Afterwards, moments of the polar order parameter have been sampled for 105 time steps. In (a) we display the first moment of the polar 
order parameter (black crosses) and the Binder cumulant U (p) = 1 − 〈p4〉/3/〈p2〉2 (dashed purple line). Only one realization was used for each data point. In (b) we display 
a snapshot at the end of the measurement from within the ordered phase at � = 1.6.
Fig. 6. Snapshot of a simulation of additive overdamped Langevin model (additiveL) 
with chirality for N = 3.2 × 104 particles. Physical parameters are R = 1, v = 0.5, 
ω = 1.5, η = 1 and � = 0.07. The integration step used is 
t = 0.01. Uniform, 
isotropic random initial conditions and periodic boundary conditions have been 
used. The snapshot was taken after 4.1 × 106 time steps.

6. Remarks on versions 1.0 to version 1.2

In versions 1.0 and 1.1 there was a mistake in the implementa-
tion of reflecting boundary conditions for models with overdamped 
Langevin dynamics (additiveL, nonadditiveL, mfL). In that case the 
orientations of particles have not been reflected when they leave 
the simulation domain. This mistake was not present for Vicsek 
type models (VM, NVM, mfVM, mfNVM) and not for periodic bound-
ary conditions for any model. The mistake was corrected with 
version 1.2.

Versions 1.0 and 1.1 differ only in the measurements of the mo-
ments of the number of neighbors.

In version 1.0 those moments are calculated from the micro-
scopic number of neighbors n j := |� j|. If the number of bins for 
the histogram of the number of neighbors is chosen large enough 
such that no event is missed, the moments of the histogram are 
identical to the moments measured directly. The number of neigh-
bors of particle j, n j , is a microscopic quantity.

In version 1.1 (and later) the measurement of the moments of 
the number of neighbors was changed while its histogram is still 
measured in the same way. The behavior described in Subsec. 3.4
refers to version 1.1. In version 1.1, in each measurement step, the 
mean number of neighbors n̄ := 1

N

∑N
j=1 n j is calculated. The first 

four moments of this quantity are averaged over all measurement 
time steps. Note that now n̄ is a macroscopic observable rather 
than a microscopic quantity. The first moment is the same but mo-
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ments two to four differ (only for the number of neighbors) from 
version 1.0 to version 1.1.

It is possible to use version 1.2 to open and analyze a data file 
produced with versions 1.0 or 1.1. All data can be accessed cor-
rectly, however a warning is raised, that a different version is used.

All numerical results presented in Sec. 5 have been obtained 
with version 1.0. However, the number of neighbor statistics was 
not considered in Sec. 5 any way and reflecting boundary con-
ditions have been used only for Vicsek type models, such that 
version 1.2 is supposed to produce (even microscopically) identi-
cal results.

7. Summary

We present a simulation package for the purpose of perform-
ing molecular-dynamics-like agent-based simulations of models of 
aligning self-propelled particles in two dimensions. The nature of 
such prototype models of active matter is different from stan-
dard molecular dynamics simulations because the dynamics is not 
Hamiltonian and N-particle interactions of a special type are in-
volved. The simulation package is able to simulate models that 
have been studied by dozens to hundreds of papers, see e.g. [4,5], 
as well as models that have not yet been studied. To the best of the 
authors knowledge, there is no simulation package openly avail-
able that can do any of those tasks. This paper comes with a few 
test simulation results of the program for six different models that 
have been studied before. The results of the program are consistent 
with previous results as well as with mean field theory.
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