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Abstract: Oscillatory fluid flows play an important role in fluid mechanics for their long history
and numerous applications. In this work we will start off from Stokes’ second problem of the bound-
ary layer adjacent to an oscillatory wall in order to study the wall-bounded zero-mean oscillatory
flow of a viscoelastic fluid placed between two parallel plates oscillating synchronously. From related
experiments on the oscillatory flow of a viscoelastic solution in a vertical tube we know that the
rectilinear flow at small forcing amplitudes gives rise to a secondary flow with toroidal vortices at
larger amplitudes. Our purpose is to provide a theoretical understanding of this instability in a
simpler setup. We analytically solve the governing equations of the periodic base flow, and carry
out a Floquet linear stability analysis of the stress and velocity fields. We apply the Galerkin spec-
tral method to numerically solve the corresponding generalized eigenvalue problem, and provide
instability thresholds in forcing amplitude for both resonant and non-resonant forcing frequencies.

I. INTRODUCTION

Oscillatory flows in channels and tubes occur in rel-
evant physiological and engineering processes such as
blood flow, respiration, and speech [1–3], and secondary
oil recovery, fluid pumping, filtration, and microfluidic
mixing [4–6]. The former involve complex fluids such
as blood and mucus, exhibiting non-Newtonian rheolog-
ical behaviours. The stability of these flows against in-
finitesimal disturbances is therefore of both theoretical
and practical interest.

In 1845, Stokes presented a series of problems in the
field of fluid dynamics. One of these (known as Stokes’
second problem) is today a classical example in fluid
mechanics of a non-steady flow that can be analytically
solved, one that stresses the need of adequate boundary
conditions to correctly reproduce the flow of the fluid.
In this problem we consider an infinitely large solid wall
which is placed vertically at x = 0 and it oscillates with
velocity U(t) = U0 cos(w0t) in the z direction. A Newto-
nian fluid occupies the semi-infinite domain x > 0, with
its motion driven by the motion of the wall. The solution
of this problem can be obtained by solving the Navier-
Stokes equations with the no-slip boundary condition,
such that the vertical velocity of the fluid layer adjacent
to the wall is given by Uz(x = 0, t) = U0 cos(w0t). The
region of fluid near the wall affected by this motion is
called the Stokes layer [7].

The system that we will study is a wall-bounded ver-
sion of Stokes’ second problem. It has two main differ-
ences: the geometry of the problem and the rheological
properties of the fluid. The system consists on a semi-
infinite domain of a fluid bounded in between two vertical

∗ arnaucodvil@gmail.com
† master.complex.biophys@ub.edu

solid walls placed at x = −a and x = a and oscillat-
ing synchronously with velocity U(t) = U0 cos(w0t) in
the z direction (vertical). In addition we will consider
a viscoelastic fluid rather than a purely viscous (Newto-
nian) one. The fluid elasticity will give rise to a richer
phenomenology, with resonances appearing at particular
values of the forcing frequency ω0.

The stability of zero-mean oscillatory flows has been
extensively studied in the case of simple (Newtonian)
fluids. Von Kerczek and Davis [8] examined the stabil-
ity of the oscillatory Stokes layer by integration of the
full time-dependent linearized disturbance equations, and
predicted absolute stability within the investigated range
of Reδ (Reynolds number based on the Stokes layer thick-
ness δ), and perhaps for all the values of Reδ. A given
wavenumber disturbance of a Stokes layer was found by
these authors to be more stable than that of the motion-
less state (zero Reynolds number).

Akhavan et al. [9] investigated the stability of oscilla-
tory channel flow to infinitesimal and finite- amplitude
two- and three-dimensional disturbances by direct nu-
merical simulations of the Navier-Stokes equations using
spectral techniques. All infinitesimal disturbances were
found to decay monotonically to a periodic steady state,
in agreement with earlier Floquet theory calculations.

Blennerhassett and Bassom investigated the linear sta-
bility both of a single Stokes layer in a semi-infinite fluid
domain and of the fluid flow generated between a pair of
synchronously oscillating parallel plates [10, 11]. In this
second case, the infinitesimal disturbance equations were
studied using Floquet theory, and pseudospectral numer-
ical methods were used to solve them. Neutral curves for
different plate separations were obtained, shedding light
on former conflicting results in the literature. The au-
thors showed also that the linear stability properties of
the single Stokes layer were recovered when the channel
half-width, scaled by the thickness of the Stokes layer,
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exceeded 14.

In contrast, the stability of the viscoelastic Stokes layer
and related oscillatory viscoelastic flows has not yet been
studied. The simplest way to reproduce the behaviour of
a viscoelastic fluid is provided by the Maxwell model.
One can think of Maxwell viscoelastic behaviour as a
composition of an elastic spring and a viscous damper in
series. These two elements describe how the material can
exhibit both solid-like and liquid-like behaviours, at short
and long time scales, respectively. We will, therefore,
characterize the fluid with a viscosity η and a relaxation
time λ upon which the fluid will behave like a viscous
liquid. For this reason we will be tackling this problem
by solving the generalised Navier-Stokes equation or mo-
mentum balance equation with a single-mode Maxwell
constitutive equation, and with the corresponding no-
slip conditions, in this case: U(x = ±a, t) = U0 cos(w0t).
This system presents a well behaved and analytical solu-
tion.

Experiments of oscillatory motion of a viscoelastic fluid
in a bounded domain were done in a cylindrical geome-
try, where the fluid was oscillated by means of a piston
at the bottom [12–14]. It was seen that for low oscilla-
tion amplitudes a stable rectilinear flow was established.
However, by raising the forcing amplitude the flow under-
went a transition, and a secondary flow set in which pre-
sented toroidal-like vortices along the z axis. Upon rais-
ing the forcing amplitude even higher, the flow became
completely turbulent [15, 16]. In the vertical pipe the
governing equations are conveniently written in cylindri-
cal coordinates, and the rectilinear base flow is expressed
in terms of Bessel functions of the first and second kind,
of complex argument [17]. It is anticipated that a Floquet
stability analysis of this base flow will be very cumber-
some from a mathematical point of view. It is for this
reason that we have chosen to deal first with the more
simple problem of the oscillatory flow between two syn-
chronous parallel plates, which admits a description in
Cartesian coordinates and where the base flow is more
simply given in terms of hyperbolic trigonometric func-
tions of complex argument. It is reasonable to expect
that an scenario similar to the one observed experimen-
tally in the vertical cylinder will also take place in this
more simple setup.

The goal of this work is to predict the onset of in-
stability of the rectilinear flow as a function of the forc-
ing frequency and amplitude. In order to do this we
will apply an infinitesimal perturbation to the basic flow,
and perform a linear stability analysis via the Floquet
method. The partial differential equations for the per-
turbed stress and velocity fields will be solved numeri-
cally with a Galerkin-Legendre spectral method.

The remainder of this thesis is organized as follows: In
Section II we derive the equations that govern the ini-
tial rectilinear base flow. In Section III we present the
perturbations that will be imposed on the flow and find
the governing equations for the perturbed flow. Section
IV is devoted to explaining the Galerkin spectral method

and Floquet analysis that will be implemented in order to
solve the perturbed flow and analyse its stability. Our re-
sults are presented and discussed in Section V. In Section
VI, finally, we draw the main conclusions of our work, and
outline possible future research lines that derive from this
study.

II. BASIC FLOW

The main inspiration behind this problem is Stokes’
second problem, which considers an infinite flat plate be-
neath a semi-infinite layer of initially quiescent incom-
pressible viscous fluid; the plate oscillates harmonically
in its own plane, y–z say, along the z axis, with ampli-
tude z0 and angular frequency ω0, and the purpose is
to obtain the steady periodic one-dimensional flow field,
u(x, t). In our problem, however, we further constrict
the flow by adding a second flat plate parallel to the first
one and at a distance of 2a so that the plates are placed
at x = −a and x = +a.
The flow is governed by the momentum balance equa-

tion and the continuity equation for an incompressible
fluid:

ρ

[
∂u

∂t
+ (u ·∇)u

]
= −∇p+∇ · τ , (1)

∇ · u = 0. (2)

Here ρ is the density of the fluid, u(r, t) is the flow field,
p is the applied pressure, and τ is the stress field.
To study the base flow of the problem we can assume

for symmetry reasons that the only non-zero component
of the flow field has direction z and depends only on x,
so that

u = (0, 0,Uz(x, t)). (3)

It is immediate to see that the incompressibility condition
(2) is satisfied.
We will also use no-slip boundary conditions at the

walls,

Uz(−a, t) = Uz(a, t) = z0ω0 cos(w0t) = U0 cos(w0t). (4)

The advective term in (1) is

(u ·∇)u = Uz
∂

∂z
u = 0. (5)

The gravitational body force along z on each fluid el-
ement (not included in equation (1) for simplicity) gives
rise to a vertical hydrostatic pressure gradient. There
is no applied pressure gradient, however, and thus the
pressure term in (1) is ∇p = 0.
In order to find a relationship between the stress ten-

sor and the flow we can use the constitutive equation of
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the fluid, which relates the stress tensor τ and the rate-
of-strain tensor e = [∇u + (∇u)†]/2. The simplest con-
stitutive equation for a viscoelastic fluid is given by the
single-mode upper-convected Maxwell equation (UCM)

τ + λτ(1) = 2ηe. (6)

This equation features a constant viscosity η and a single
fluid relaxation time λ. The subindex (1) represents an
upper-convected time derivative that makes the equation
frame invariant:

τ(1) =
∂τ

∂t
+ (u · ∇) τ −

{
(∇u)† · τ + τ · (∇u)

}
. (7)

The stress tensor has, as non-zero components, the
pressures and the tangential stresses that do not involve
the y axis: τxx(x, t) 0 τxz(x, t)

0 τyy(x, t) 0
τxz(x, t) 0 τzz(x, t)

 , (8)

in which all components depend solely on the x coordi-
nate and time.

The UCM constitutive equation (6) for every non-zero
component leads to(

1 + λ
∂

∂t

)
τxx = 0, (9)(

1 + λ
∂

∂t

)
τyy = 0, (10)(

1 + λ
∂

∂t

)
τxz − λτxx

∂uz

∂x
= η

∂uz

∂x
, (11)(

1 + λ
∂

∂t

)
τzz − 2λτxz

∂uz

∂x
= 0. (12)

We find that τxx and τyy exponentially decay to 0 in a
time scale proportional to λ. On the other hand, τxz
and τzz can be found by solving their respective equa-
tions (11) and (12) numerically. These integrations have
been done using the Crank-Nicolson method, which is an
implicit and stable method used in solving partial differ-
ential equations [18]. Details are provided in Appendix
A. The result of the numerical integration is shown in
figure 1. From figure 1 we can see that all stresses have
a transient period that lasts for about t ≈ 2λ due to the
elastic nature of the viscoelastic fluid before they reach
a steady oscillatory regime after that time period. These
results make sense since τxz is the Newtonian stress due
to viscosity. This shear stress is a consequence of parallel
streamlines of fluid having different velocities, thus lead-
ing to nonzero vorticity. This is reminiscent of a Kelvin-
Helmholtz instability problem with an infinite number of
interfaces. On the other hand, the τzz stress component
is the elastic stress due to the viscoelasticity of the fluid.

Plugging the UCM constitutive equation (6) inside the
momentum balance equation (1) we obtain

ρ
∂u

∂t
= ∇ ·

(
2ηe− λτ(1)

)
, (13)

which we can write down explicitly, to end up with the
following linear partial differential equation:

ρ

(
1 + λ

∂

∂t

)
∂Uz

∂t
− η

∂2Uz

∂x2
= 0, (14)

which is the governing equation of the base flow.
It is convenient at this stage to take a small detour

and rewrite equation (14) in dimensionless form. To this
purpose we define the non-dimensional variables x∗ =
x/a and t∗ = t/λ, so that u∗ = uλ/a. Equation (14)
then becomes

1

El

(
1 +

∂

∂t∗

)
∂U∗

z

∂t∗
− ∂2U∗

z

∂x∗2 = 0, (15)

where El = ηλ/ρa2 is called the elasticity number. El
can be interpreted as the ratio of both elastic and viscous
forces to inertial forces, El = Wi/Re, where Wi = U0λ/a
is the Weissenberg number, i.e. given here by the dimen-
sionless amplitude of the oscillating plates, and Re =
U0aρ/η is a Reynolds number based on the size of the
fluid domain.
Through the non-dimensional formulation of the

balance-momentum equation (15) we can see that the
dynamics of the problem depend only on the elasticity
number, which in turn is given only by the dimensions of
the set-up and the material properties of the fluid used.
In dimensionless form, the no-slip boundary condition

(4) reads

U∗
z (−1, t∗) = U∗

z (1, t
∗) = Wi cos(De t∗), (16)

where De = w0λ is called the Deborah number, the di-
mensionless frequency of the oscillating plates. Note that
both the amplitude and frequency of the oscillation influ-
ence the problem solely through the boundary condition.
In order to solve equation (15) we will assume that

U∗
z = Wi · ℜ(eiDe t∗f(x∗)). (17)

By substituting (17) in equation (15) and recovering the
physical variables we arrive to the solution

Uz(x, t) = U0 · ℜ
(
cosh(κx)

cosh(κa)
eiω0t

)
(18)

where κ = (1/x0) + i(2π/λ0) is a complex reciprocal
length scale. From the solution of Stokes’ second prob-
lem for a single-mode Maxwell model, it is known that
the values of x0 and λ0 represent the penetration length
and wavelength of the transverse waves triggered by the
oscillations of the boundary, and they satisfy [17, 19]

x0 =

√
2ηλ

ρDe

√
1

−De +
√

1 + De2
, (19)

λ0

2π
=

√
2ηλ

ρDe

√
1

De +
√

1 + De2
. (20)
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Figure 1. Representation of the τxx, τxz and τzz stress components for the basic flow as a function of time at the
wall (blue curve) and halfway between the left wall and the center (orange curve) for De = 2π

√
El (non-resonant

condition, left panels) and for De = π
√
El (resonant condition, right panels) with El = 50. We can see how upon

reaching a time of t ≈ 2λ the stresses relax and stay stationary. τyy stress components are not represented as they
are decoupled from all other equations and are irrelevant to the problem due to its symmetry.

It will be useful to rewrite equation (20) in non-
dimensional form by dividing both sides of the equation
by a, so that λ∗

0 is written in terms of the elasticity num-
ber:

λ∗
0

2π
=

√
2El

De

√
1

De +
√
1 + De2

. (21)

For De > 5 we can approximate De2 + 1 ≈ De2, so that
equation (21) becomes

λ∗
0

2π
=

1

De

√
El. (22)

From the geometry of the problem one can see that
the velocity waves will be generated simultaneously from
the left and right walls, thus generating an interference
pattern in the flow. Therefore, it is interesting to study
both the cases of regular and constructive interference.

The condition for constructive interference or resonance
is 2a = (1/2 + n)λ0 with n = 0, 1, 2, . . . It is convenient
to rewrite this resonance condition in non-dimensional
variables, i.e. 2 = (1/2+n)λ∗

0. Substituting the resonance
condition in equation (22) we find the values of Deborah
for which the flow is resonant. They are given by

De = π
√
El

(
1

2
+ n

)
n = 0, 1, 2, ... (23)

At these Deborah values the peak velocity increases sig-
nificantly and its phase shifts by π/2, as shown in figure
2.

III. LINEAR STABILITY ANALYSIS

From the experiments carried out in a vertical cylin-
der by Casanellas and Ort́ın we know that the laminar
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Figure 2. Vertical velocity profile of the basic flow in the oscillating wall-bounded problem for a Maxwell-like
viscoelastic fluid for De= 4π

√
El (non-resonant condition, left) and De= 5π

√
El (resonant condition, right) with

El= 50, at time phases w0t = 0 (blue curve) and w0t = π/2 (orange curve). Note the different vertical scales.

rectilinear flow Uz(x, t) became unstable against the for-
mation of vortex rings as the forcing amplitude z0 became
sufficiently large. Moreover, the threshold amplitude of
the instability was found to be highly dependent on the
forcing frequency ω0.

From the study of the base flow done on the previous
section it is impossible for the flow to exhibit this kind of
behaviour, as Uz(x, t) is a well-behaved periodical func-
tion for all x and time. Therefore, if we want to study the

regime in which the rectilinear flow is not stable anymore
we need to introduce some perturbations in our system.

To this purpose we will perturb the velocity in both the
x and z axis and also the stress components that do not
involve the y component. In all cases we are submitting
the variables to an exponential perturbing mode in the
z axis and let the amplitude of the perturbation depend
on x and time. This way, we have:

U = (u(x, z, t), 0, w(x, z, t)) = (up(x, z, t), 0, wp(x, z, t) + Uz) = (ũ(x, t)eiαz, 0, w̃(x, t)eiαz + Uz(x, t)), (24)

τ =

τxx(x, z, t) 0 τxz(x, z, t)
0 τyy(x, z, t) 0

τxz(x, z, t) 0 τzz(x, z, t)

 =

 0 0 τ0xz(x, t)
0 0 0

τ0xz(x, t) 0 τ0zz(x, t)

+

Txx(x, z, t) 0 Txz(x, z, t)
0 Tyy(x, z, t) 0

Txz(x, z, t) 0 Tzz(x, z, t)

 =

 0 0 τ0xz(x, t)
0 0 0

τ0xz(x, t) 0 τ0zz(x, t)

+

T̃xx(x, t)e
iαz 0 T̃xz(x, t)e

iαz

0 T̃yy(x, t)e
iαz 0

T̃xz(x, t)e
iαz 0 T̃zz(x, t)e

iαz

 (25)

where Uz(x, t) will from now on be used to indicate the
base state flow of the system and τ0ii the stress compo-
nents of the fluid in its base state. By using these pertur-
bations any derivative with respect to z can be replaced
by iα.

Once we have the perturbed flows and stresses we
can work as we did in section II in order to obtain the
equations that govern the perturbed system. From here
on, derivatives will be written as ∂i = ∂/∂i and second
derivatives will be written as ∂ij = ∂/(∂i∂j) for the sake
of compactness.

We start off, yet again, with the momentum balance

equation (1), the incompressibility condition (2) and the
UCM constitutive equation (6).
From the incompressibility condition we can obtain a

constraint between the components x and z of the per-
turbed velocity:

∂xũ(x, t) + iαw̃(x, t) = 0. (26)

The advective term in (1) is no longer zero and now it
reads:

(u ·∇)u = (iαupUz, 0, up∂xUz + iαUzwp). (27)

Unlike in section II where there was only one unknown
variable (Uz(x, t)) which led to a single equation that we
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then solved, this problem is more complex. We arrive to
a set of equations with up, wp, Txx, Txz and Tzz as vari-
ables which we have to solve for. In order to maintain
the problem linear, as we will be using linear stability
analysis to study whether the solutions are stable or not,
we will neglect terms of order higher than 1 in the per-
turbations. This is to say that any term with a product
of two or more perturbations will be neglected.

From the UCM constitutive equation (6) we obtain

three equations (29) to (31) and from the momentum
balance equation

ρ

[
∂u

∂t
+ (u ·∇)u

]
= ∇ · τ (28)

we obtain two more equations (32) and (33).

The set of equations we obtain is the following:

(1 + λ∂t)T̃xx + iαλUzT̃xx − 2iαλτ0xzũ+ λũ∂xτ
0
xx − 2λτ0xx∂xũ = 2η∂xũ, (29)

(1 + λ∂t)T̃xz + λũ∂xτ
0
xz − iαλτ0zzũ− λτ0xz(∂xũ+ iαw̃)− λT̃xx∂xUz + iαλUzT̃xz − λτ0xx∂xw̃ = η(∂xw̃ + iαũ), (30)

(1 + λ∂t)T̃zz + λũ∂xτ
0
zz + iαλUzT̃zz − 2λτ0xz∂xw̃ − 2λT̃xz∂xUz − 2iαλτ0zzw̃ = 2iαηw̃, (31)

ρ(∂t + iαUz)ũ = ∂xT̃xx + iαT̃xz, (32)

ρ(∂tw̃ + ũ∂xUz + iαUzw̃) = ∂xT̃xz + ∂zT̃zz, (33)

where the terms satisfying the corresponding equations
for the base flow, and a global factor eiαz, have been
removed. In order to tackle this system of equations
we start off by defining the non-dimensional variables
x∗ = x/a, z∗ = z/a, t∗ = t/λ. Then, ũ∗ = ũλ/a,

w̃∗ = w̃λ/a, U∗
z = Uzλ/a and α∗ = αa. In order to

make the stresses non-dimensional we can choose between
viscosity-driven or inertia-driven variables. For this prob-
lem we have chosen the non-dimensional stresses to be
τ∗ = τλ/η, as the problem is dominated by viscous and
elastic forces. Equations (29) to (33) become:

T̂ T̃ ∗
xx − (2iα∗τ0∗xz + 2∂x∗)ũ∗ = 0, (34)

T̂ T̃ ∗
xz + (∂x∗τ0∗xz − iα∗τ0∗zz − τ0∗xz∂x∗ − iα∗)ũ∗ − T̃ ∗

xx∂x∗U∗
z − (iα∗τ0∗xz + ∂x∗)w̃∗ = 0, (35)

T̂ T̃ ∗
zz + ũ∗∂x∗τ0∗zz − 2(τ0∗xz∂x∗ + iα∗τ0∗zz + iα∗)w̃∗ − 2T̃ ∗

xz∂x∗U∗
z = 0, (36)

1

El
(∂t∗ + iα∗U∗

z )ũ
∗ = ∂x∗ T̃ ∗

xx + iα∗T̃ ∗
xz, (37)

1

El
(∂t∗w̃

∗ + ũ∗∂x∗U∗
z + iα∗U∗

z w̃
∗) = ∂x∗ T̃ ∗

xz + iα∗T̃ ∗
zz, (38)

where T̂ = (1 + ∂t∗ + iα∗U∗
z ), and we recover that

El = ηλ/(ρa2) is the elasticity number. From here on we
will drop the asterisks for simplicity. We have chosen ho-
mogeneous Dirichlet and Neumann boundary conditions

for the velocities, so that

up(x = ±1, z, t) = 0, u′
p(x = ±1, z, t) = 0,

wp(x = ±1, z, t) = 0, w′
p(x = ±1, z, t) = 0, (39)

and no boundary conditions have been imposed on the
perturbed stresses. The prime in u′(x, z, t) indicates a
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derivative with respect to x.
It is important to note that in order to solve these equa-

tions we need the stable base flow and stresses. There-
fore we will set the τxx stress to 0 and we will analyt-
ically solve equations (11) and (12) with independence
of the initial conditions, as we are not interested in the
initial transient phase and will need a higher precision
than what we can obtain using the Crank-Nicolson ap-
proximation. Details are provided in Appendix B.

IV. GALERKIN SPECTRAL METHODS

The purpose now is to integrate equations (34) - (38)
in space and time, and study the growth or decay of the
perturbations in one period of oscillation. This cannot
be done analytically. In order to integrate the equations
with the highest possible precision, we will make use of
the Galerkin spectral method [20]. This method trans-
forms our problem from a continuous differential equa-
tion problem to a discrete one by expanding our variables
on a basis of Legendre polynomials. We will then write
the problem in the form

Ż = L̂Z (40)

in where Z is the Legendre expansion of Z =
(Txx, Txz, Tzz, up, wp)

T and L̂ is a 5N× 5N operator ma-
trix in which N is equal to the number of points in space
in which we will be solving our equations. The over-
dot stands for the time derivative. Once this is done we
will integrate Z over a time period using a Runge-Kutta
method in order to study the stability of the problem
through Floquet theory. By using a Poincare map in
all N positions chosen we will be able to determine the
linear stability of the base flow against the applied per-
turbations.

We first define a Hilbert space in our domain with in-
ternal product

(u,v) =

∫ 1

−1

u · v dx (41)

where the overbar denotes the complex conjugate.
We can define the Legendre polynomials of degree n

Pn(x) as a system of complete and orthogonal polynomi-
als such that∫ 1

−1

Pn(x)Pm(x) dx = 0 if n ̸= m (42)

with a standardization condition that Pn(1) = 1 ∀n.
From here we can construct all the polynomial system
so that P0(x) = 1, P1(x) = x, and for higher order poly-
nomials we use Bonnet’s recursion formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (43)
From here we will discretize the integrals in equation (41)
using the Gauss-Legendre quadratures [21] so that∫ 1

−1

f(x)dx ≈
N∑
i=1

wif(xi), (44)

where N is the number of sample points that are used,
wi the quadrature weights, and xi the roots of the nth
Legendre polynomial. The weights are obtained through
the formula

wi =
2

(1− x2
i )[P

′
n(xi)]2

. (45)

We define our Legendre expansions Φ as

Φm = (1− x2)2Lm(x). (46)

Therefore we can write

Z =


Txx

Txz

Tzz

u
wp

 =

M−1∑
m=0

am(t)


Φm(x)

0
0
0
0

+ bm(t)


0

Φm(x)
0
0
0

+ cm(t)


0
0

Φm(x)
0
0

+ dm(t)


0
0
0

iαΦm(x)
−∂xΦm(x)


Z = am(t)Φ(1)

m (x) + bm(t)Φ(2)
m (x) + cm(t)Φ(3)

m (x) + dm(t)Φ(4)
m (x). (47)

The first three terms of Z are the direct polynomial de-
composition of the perturbed stresses, whereas the fourth
term includes both the x and z components of the per-
turbed velocity in order to make sure that we satisfy
the incompressibility condition given by equation (26).

Equations (34) to (38) can be written as Ż = L̂Z, where

L̂ is a 5N×5N matrix whose matrix elements L̂ij are N×N

operator matrices such that Żi = L̂ijZj . Through the
approximation done in equation (47) Z has a vector rep-
resentation

[a
(1)
0 , a

(1)
1 , ..., a

(1)
M−1, a

(2)
0 , ..., a

(2)
M−1, ..., a

(4)
M−1]Φ(1)

m ,...,Φ
(4)
m

in a 2M dimensional space SM with basis

SM = {Φ(1)
0 ,Φ

(1)
1 , ...,Φ

(1)
M−1,Φ

(2)
0 , ...,Φ

(2)
M−1, ...,Φ

(4)
M−1}.
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Figure 3. Representation of the Floquet exponents on the complex plane. A unit radius circumference has also
been represented in order to evaluate the stability of the solutions. The figure on the left has all Floquet exponents
inside the circumference so, as all of them have modulus smaller than 1, the solution is stable. On the other hand,
the figure on the right has a Floquet exponents outside the circumference crossing through the real axis. As this
exponent has a modulus larger than 1 this solution is unstable.

The Galerkin method consists of expanding all variables as done in equation (47) and projecting over the elements
of the SM base, so that

(Φ
(i)
l , Ż) = (Φ

(i)
l , L̂Z) for i = 1, ...4, (48)

M−1∑
m=0

ȧm(Φ
(i)
l ,Φ(1)

m ) + ḃm(Φ
(i)
l ,Φ(2)

m ) + ... =

M−1∑
m=0

am(Φ
(i)
l , L̂Φ(1)

m ) + bm(Φ
(i)
l , L̂Φ(2)

m ) + ... for i = 1, ...4, (49)

in which (Φ
(i)
l ,Φ

(j)
m ) = 0 for i ̸= j. All internal products

will then be carried out computationally using equations
(41) and (44). We will define the vector of Legendre
coefficients V = (a0, ...aM−1, b0, ..., dM−1)

T . Once all
the internal products have been done we are left with
the following system

ÂV̇ = B̂V ⇒ V̇ = Â−1B̂V , (50)

in which Â is the operator resulting from the (Φ
(i)
l ,Φ

(j)
m )

internal products and B̂ is the operator resulting from

the (Φ
(i)
l , L̂Φ

(j)
m ) internal products.

From here we will integrate equation (50) in time dur-
ing a time period using the explicit Runge-Kutta (4,5)

method. Let Ĉ = Â−1B̂, where Ĉ is a matrix with an
explicit temporal dependence. Following Floquet theory
one can solve equation (50) assuming an initial condition

V (t = 0) = I. The integration process is done by in-
dividually evolving each element of the SM base over a
time period.

The result is the monodromy matrix, which is the eval-
uation of the fundamental matrix after a time period.
The eigenvalues of the monodromy matrix are the Flo-
quet exponents γ ∈ C, which determine the stability of
the solution. If all the exponents are confined in the ra-
dius unit circle in the complex plane, the solution is sta-
ble. If any of the Floquet exponents has modulus greater
than one, the solution will have become unstable to the
perturbation.

From the problem’s setup, we have two main variables
we can control in order to favour or disfavour the emer-
gence of instabilities. These are the Deborah number
and the Weissenberg number which correspond to the
non-dimensional frequency and amplitude of oscillation
respectively. The process will therefore be repeated for
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Figure 4. Representation of the neutral stability curves for a non-resonant value of Deborah (left) and a resonant
value of Deborah (right). Note the difference in both the critical values of Wi and α as they both differ by an order
of magnitude in those two cases. The curve serves as a stability threshold: the flow is stable for values of Wi and α
under the curve and unstable for values of Wi and α above it.

any different values of Deborah, Weissenberg, and α. The
aim is to find the instability threshold for different values
of De. By scanning systematically the Weissenberg num-
ber for a given De, we will obtain the neutral instability
curve α vs Wi for that particular De. The critical mode
will be the value of α that minimizes the Weissenberg
number, and the corresponding Wi will be the instability
threshold for the particular value of De chosen.

After integrating equation (50) and diagonalizing the
monodromy matrix we obtained the Floquet exponents.
We expect that these eigenvalues will be within the unit
circle up to a given critical value of the Weissenberg num-
ber. The most unstable mode will be the mode α that
corresponds to the lower value of Wi. At this critical
point the system will become unstable and either a sin-
gle eigenvalue will escape the unit circle through the real
axis or a pair of complex conjugates will escape the unit
circle. It is not possible for the Floquet exponents to
escape the unit circle from the imaginary axis since our
equations have real coefficients. For that reason all eigen-
values cannot be purely imaginary. The way in which the
eigenvalues escape the unit circle is important since it
dictates the type of bifurcation the system undergoes. If
an eigenvalue crosses the circumference through the real
axis the bifurcation will be transcritical and the largest
eigenvalue will dictate the characteristic size of the vor-
tex that appears due to the instability. If two complex
conjugate eigenvalues cross the unit circle the system will
undergo a Neimark-Sacker or secondary Hopf bifurcation.
This first case is what we can see in figure 3 and is what
occurs in our problem for both values of De.

V. RESULTS AND DISCUSSION

Results of the stability analysis have been obtained
for two cases, a resonant Deborah number (De =

(5π/2)
√
El) and a non-resonant Deborah number (De =

2π
√
El), as calculations were very time-consuming com-

putationally and the biggest differences in behaviour
should be evident by studying the most extreme inter-
ference cases. All the analysis has been programmed in
MatLab.

As stated before, the Weissenberg number is the di-
mensionless amplitude of the oscillating plates. There-
fore, one can expect that the higher the Weissenberg
number, the more likely it is to induce an instability of
the flow. In a similar fashion, the Deborah number is
the non-dimensional frequency. We can therefore expect
that for resonant values of Deborah the stability thresh-
old will be significantly lower, as the resonance condition
implies a constructive interference of the flow waves gen-
erated from both plates. This constructive interference
may be expected to magnify all instability driving pro-
cesses, making it easier for the flow to become unstable
at lower oscillation amplitudes.

Deciding upon the number of Legendre polynomials
that should be used in order to approximate the per-
turbed stresses and velocities was challenging. After a
series of convergence tests, a number of M=24 polynomi-
als was chosen. This decision will be discussed later in
the section, as the problem does not appear to converge
with increasing number of polynomials, as it should.

Examples of a stable configuration and the latter un-
stable possibility can be seen in figure 3. However, since
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we are only interested in the threshold of instability we
will only be taking into account the eigenvalue with the
largest modulus since its behaviour will be enough to de-
cide whether the solution is stable or unstable.

From figure 4 one can directly see the difference in
the stability of the flow for the two cases studied. For
the case of a non-resonant Deborah value (figure 4 left)
the most dangerous perturbational mode α is about 20
times smaller than for a resonant Deborah value (fig-
ure 4 right). The critical Weissenberg number is also
significantly higher in the absence of resonance. The
non-resonant condition is universally stable up to a crit-
ical Weissenberg number Wi ≈ 0.288 whereas the criti-
cal value for the resonant condition is around 20 times
smaller, with Wi ≈ 0.013.

These results are coherent with our predictions as we
find instabilities in the flow for both resonant and non-
resonant conditions due to the viscoelastic nature of the
fluid. We can also reproduce the difference in stabil-
ity of resonant and non-resonant conditions. We have
shown that at a non-resonant value of Deborah the sys-
tem can maintain a global stability condition up to a
critical threshold that appears at a much higher Weis-
senberg value than for a resonant Deborah value.

These results are also compatible with the experiments
that have been done in the field [12, 14]. We notice that,
despite the fact that experiments were done in a cylin-
drical set-up, the instability appeared for all Deborah
values, with lower critical Weissenberg numbers for reso-
nant conditions.

However, even though the results obtained are satisfac-
tory and compatible with the experimental evidence, the
method used shows one important flaw that conditions
the validity of the results. Solving equations (34)-(38)
using a Galerkin spectral method with Legendre polyno-
mials and a posterior temporal integration has shown to
be very complex computationally. This happens as all
the perturbations have to be carefully worked with in or-
der not to create any artificial computational instabilities
that might blow up the results.

Our initial approach was to solve every aspect of
the problem analytically up to the temporal integra-
tion which is practically impossible to solve without us-
ing computational techniques. We decided to use an
integrated MatLab function (ode45) that is based on
the implicit Runge-Kutta (4,5) or Runge-Kutta-Fehlberg
method. The way this algorithm works, in a nutshell, is
by calculating the integration with an order O(h4) and
an order O(h5) method. The order O(h4) is used as the
solution while the order O(h5) method estimates the er-
ror. This process allows for an adaptive time step size
that is determined automatically. We chose this inte-
grator since the adaptive time step size and the higher
order error estimator should provide a more exact solu-
tion than a regular Runge-Kutta 4 or other integration
methods that use a single time stepsize.

Having chosen a numerical integrator we still had to
decide what the suitable number of Legendre polynomi-

als should be used to accurately approximate the per-
turbed stresses and velocities. To do that we performed
a convergence test. We imposed values for all possible
variables: the Deborah number, the Weissenberg num-
ber and the perturbation mode α. By repeating this
process for different numbers of Legendre polynomials,
M, we can compare the results as a function of M. In
principle we would expect the results to be ill-behaved
for small values of M and gradually attain a plateau and
stabilise around a constant value. We would then use the
smallest possible value of M that guarantees convergence
since higher values of M significantly increase the com-
putation time. However, we can see in figure 5 that this
is not what happens. Even though at a number of poly-
nomials around M = 24 the results seem to converge, we
can see that further increase in the number of polynomi-
als results in a steady descent of the highest eigenvalue.
This can be a consequence of many things but the most
possible one is that increasing the amount of polynomi-
als increases the degree of complexity of the problem as a
whole thus giving rise to further computational problems
that distort the solutions. We tried to solve these com-
putational problems by attempting to solve the temporal
integration in some other ways, that will be explained in
the following paragraphs, but in the end we decided to
settle with this approach which we believe should theo-
retically end up converging given a sufficiently small time
step size when integrating.

The most obvious change that could be done, in this
case, would be to stop using the ode45 function and intro-
duce a method with a fixed stepsize instead of an adap-
tive stepsize, as we could then make the stepsize as small
as we would want it to be. This was the first thing that
was tried but we quickly realised that the computational
time it took for a fixed stepsize method to give coher-
ent results that were comparable, in quality, to the ones
we obtained using the adaptive stepsize was far greater.
To put it into perspective, the neutral stability curves
found in figure 4 took a total of 14 days to be produced
in a computer provided by the university. Adding this to
some previous attempts that failed due to incorrect for-
mulation or computational issues, the results took over
two months to be obtained since the correct formula-
tion for equations (34)-(38) was found. This is to say
that, even if it was possible to obtain accurate results by
lowering the step size, this could take many months of
computational time.

The first attempt at trying another approach to the
problem was to change the beam functions by which we
have approximated the perturbed stresses and velocities.
Instead of using Legendre polynomials we decided to use
Chebyshev polynomials [22]. These polynomials are sim-
ilar to Legendre polynomials since they both are orthog-
onal in the [−1, 1] interval. Because of this both could
be used in approximating our perturbed variables. How-
ever, all weights and roots are different, so equations (43)
and (45) had to be revisited. After the pertinent changes
and corrections we ended up with a simplified version of
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Figure 5. Convergence test of the problem for different number of Legendre polynomials used to approximate the
perturbed stresses and velocities. The test was done at values of De = 70.7468, Wi = 1.6 and α = 0.7. We are
representing the value of the modulus of the biggest eigenvalue minus 1 versus the number of polynomials. We have
chosen this representation so that negative values mean instability and positive values stability. We can see how for
a small number of polynomials M < 20 the behaviour of the highest eigenvalue varies drastically with M. For
intermediate number of polynomials 20 < M < 26 the value of the highest Floquet exponent seems to plateau and
converge to a stable value. However, for higher number of polynomials M > 26 the value of the eigenvalue starts
decreasing steadily, failing to properly converge.

equation (50) that could facilitate a more computation-
ally efficient integration

V̇ = B̂V , (51)

where V and B̂ are constructed in the same way as in
equation (50) altering the value of the weights and the
implementation of boundary conditions. However, after
this change in formulation, the integration method that
followed in order to integrate the system of equations over
one period of the oscillation presented the same prob-
lems than using Legendre polynomials. For this reason
we rejected using Chebyshev polynomials, since Legendre
polynomials are simpler to work with.

The last attempt at solving the problem was centered
around changing the time integration approach. Since
both the Runge-Kutta 4 and Runge-Kutta (4,5) were
blowing up at high number of polynomials we decided
to solve the differential equation by exponentiating the
matrix and using a temporal discretization by dividing a
time period T in n discrete time steps of size dt. We start
from equation (50) with initial condition V (t = 0) = I.
Let Ĉ = Â−1B̂. From here we integrate directly and end

up with

V (t+ 1) = exp
(
Ĉ(t) · dt

)
V (t) (52)

Using this recurrence relation one can find the mon-
odromy matrix and, diagonalizing it, the Floquet expo-
nents. Yet again, the results that were obtained with this
discretization resembled those that were found using the
ode45 function with the same limitations.
Since none of the attempts to make the method con-

verge seemed to show any signs of working properly,
we ultimately decided to go on with the ode45 MatLab
function. From figure 5 we decided to set the amount
of polynomials to M = 24, since this value lies in the
range of values that seem to reach a plateau and since
a higher value of M would be computationally too time-
consuming.
Even if the method does not seem to converge, the re-

sults obtained are coherent both with our predictions and
with the experiments. For this reason it seems reasonable
to assume that the results may be qualitatively correct.
That is to say that our results should capture the nature
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of the instability accurately. Even if the exact values of
the critical Weissenberg number and perturbation mode
α are probably quantitatively inaccurate, it seems plau-
sible to assume that the critical Weissenberg number is
lower and the critical perturbed mode α is higher at a
resonant De value than at a non-resonant one.

The source of the difficulties that we have faced to
integrate the system of equations defining our linear sta-
bility problem, in contrast to similar approaches for cor-
responding Newtonian flows, might be found in the hy-
perbolic nature of the terms in the differential equations
coming from the elasticity of the fluid, in contrast with
the parabolic nature of the typical laplacian terms in the
case of a purely viscous fluid. This important difference
and its consequences would deserve a deeper study, that
falls however beyond the scope of this Thesis.

VI. CONCLUSIONS

Having discussed the limitations of the method used in
solving our problem, we still believe that some meaning-
ful conclusions can be extracted from the work done. The
equations that govern the perturbed flow have been de-
rived from the momentum balance and continuity equa-
tions via the upper-convected Maxwell model. Its further
study and attempts in solving them also give some qual-
itative knowledge of the behaviour of the flow.

Before attempting to solve the equations we made a
couple of assumptions. First, we thought that the ini-
tially rectilinear flow would undergo a transition and
give rise to a secondary flow with the emergence of
loop-shaped vortices. We thought this transition would
happen for any given frequency of oscillation at a suf-
ficiently large oscillation amplitude. We also assumed
that at resonant oscillating frequencies, those frequen-
cies in which the shear waves emitted from the two facing
walls would generate constructive interference, the flow
would become unstable at lower forcing amplitudes, since
the resonant nature of the oscillation would amplify all
instability-generating mechanisms. These assumptions,
supported by the experiments that have been done in
similar set-ups [12], would allow us to validate any re-
sults we could find by solving the governing equations of
the flow.

The main results that were found during the work can

be seen in figure 4 and are coherent with both the as-
sumptions and the experiments. We explored the be-
haviour of the flow in extreme cases of constructive and
destructive interference in order to analyse resonant and
non-resonant values of frequency. As we expected, we
found that for both cases the flow would become unstable
at a given critical amplitude and mode of perturbation.
We also found that, for the resonant case, the necessary
amplitude of oscillation before the flow became unsta-
ble was around 20 times lower than for the non-resonant
case. This shows that, as predicted, the constructive in-
terference phenomena that leads to a resonant condition
amplifies all instability driving mechanisms, thus result-
ing in an unstable flow at a lower amplitude of the oscilla-
tion. Ideally, we would have liked to explore more values
of the oscillation frequency, but due to the limited time
and computational resources available we had to select
these two values to study.

In the future, one could try to solve the equations pre-
sented in section III by tackling the problem in a different
way. Blennerhassett and Bassom [11] studied a very sim-
ilar problem, namely the stability of a Newtonian fluid in
an oscillating wall-bounded setup. In their work they fol-
lowed a similar procedure than us, using Floquet analysis
to study the stability of the flow. However, unlike most
relevant works on the field done before them, they did not
attempt to solve the temporal evolution of the flow using
a numerical integrator as has been done in this work. In-
stead, they discretized time as well as space using Fourier
series expansions and made the system evolve from a set
of initial conditions.
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Meseguer and Francisco Marquès for their helping me
these months with the different numerical techniques that
have been implemented.

Finally, I would like to thank my family and friends
for their continuous support.

[1] Ku, D.N. (1997). “Blood flow in arteries,” Annu. Rev.
Fluid Mech. 29, 399–434.

[2] Grotberg, J.B. (2001). “Respiratory fluid mechanics and
transport processes,” Annu. Rev. Biomedical Engineer-
ing 3, 421–457.

[3] Mittal, R., Erath, B.D., and Plesniak, M.W. (2013).
“Fluid dynamics of human phonation and speech,” Annu.
Rev. Fluid Mech. 45, 437–467.

[4] Margot, G. G. and Durlofsky, L. J. (2005). “Modeling

fluid flow in oil reservoirs,” Annu. Rev. Fluid Mech. 37,
211–238.

[5] Jaffrin, M. Y. (2012). “Hydrodynamic techniques to en-
hance membrane filtration,” Annu. Rev. Fluid Mech. 44,
77–96.

[6] Selverov, K.P. and Stone, H.A. (2001). ”Peristaltically
driven channel flows with applications towards micro-
mixing”, Phys. Fluids 13, 1837-1859.

[7] Balmforth, N.J., Forterre, Y., and Pouliquen, O. (2009).

12



Floquet stability analysis of a wall-bounded oscillatory flow of a viscoelastic fluid Arnau Codina

The viscoplastic Stokes layer. Journal of Non-Newtonian
Fluid Mechanics, 158, 46-53.

[8] Von Kerczek, C. and Davis, S.H. (1974). ”Linear stability
theory of oscillatory Stokes layers,” J. Fluid Mech. 62,
753-773.

[9] Akhavan, R., Kammz, R. D., and Shapiro, A.H. (1991).
”An investigation of transition to turbulence in bounded
oscillatory Stokes flows Part 2. Numerical simulations,”
J. Fluid Mech. 225, 423-444 .

[10] Blennerhassett, P.J. and Bassom, A.P. (2002). The linear
stability of flat Stokes layers. J. Fluid Mech. 464, 393-
410.

[11] Blennerhassett, P.J. and Bassom, A.P. (2002). The linear
stability of high-frequency oscillatory flow in a channel.
J. Fluid Mech. 556, 1-25.

[12] Casanellas, L. (2013) Oscillatory pipe flow of wormlike
micellar solutions [PhD Thesis, Universitat de Barcelona]

[13] Torralba, M., Castrejón-Pita, J., Castrejón-Pita, A.,
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APPENDIX A

In order to integrate equations (9), (11) and (12),
we will create a grid in time and space (using non-

dimensional variables) with time step ∆t = 0.001 and
fitting points in the x axis {x} = (x1, x2, ..., xn) (as the
stresses do not depend on y or z) that will be useful when
attempting to solve the final equations. We can then ap-
proximately write equations (9), (11) and (12) as

τn+∆t
xx,i =

(
1 +

∆t

2

)−1 [
τnxx,i −

∆t

2
τnxx,i

]
(53)

τn+∆t
xz,i =

(
1 +

∆t

2

)−1 [
τnxz,i +

∆t

2

(
∂xu

n+∆t
z,i − τnxz,i + ∂xu

n
z,i

)]
(54)

τn+∆t
zz,i =

(
1 +

∆t

2

)−1 [
τnzz,i +

∆t

2

(
2τn+∆t

xz,i ∂xu
n+∆t
z,i − τnzz,i + 2τnxz,i∂xu

n
z,i

)]
(55)

where the subscript i represents the point in space (i =
x1, x2, ..., xn) and the superscript n represents the point
in time (n = 0,∆t, 2∆t, ...). By iterating equations (54)
and (55) in space and time we will be able to obtain the
solutions in the desired points in space for all times. In
order to do so, we will need to set the initial conditions.
We have chosen that, for t = 0, we will use the stress
values for a Newtonian fluid. To do so we solve equations
(11) and (12) setting λ = 0 at t = 0 and obtain

τxz(x, t = 0) = ∂xuz(x, t = 0) (56)

τzz(x, t = 0) = 0 (57)

as our initial conditions. For equation (9) we have chosen
an arbitrary initial value as the aim of figure 1 was to
show the decay of the τxx stress.
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APPENDIX B

In order to solve equations (11) and (12) analytically to
use these solutions when using a Runge-Kutta integration
we will ignore the initial transient phase.

We will first solve the following differential equation
that will serve as guidance

(1 + λ∂t)v = A0 +A1 cosωt+A2 sinωt. (58)

We will consider solutions of the form

v(t) = C0 + C1 cosωt+ C2 sinωt. (59)

By substituting in equation (58) and solving we obtain

C0 = A0, C1 =
A1 − λωA2

1 + λ2ω2
, C2 =

λωA1 +A2

1 + λ2ω2
(60)

We will now start solving for the stresses

(1 + λ∂t)τzx = −η∂xuz. (61)

To solve it we will need to rewrite the base flow in the
following ways:

uz(x, t) = U0ℜ
(coshκx
coshκa

eiω0t
)
= u1(x) cosω0t+u2(x) sinω0t.

(62)
where u1(x) and u2(x) are real functions so that

u1(x) = U0ℜ
(coshκx
coshκa

)
, u2(x) = −U0ℑ

(coshκx
coshκa

)
.

(63)

We will then rewrite equation (61) as

(1 + λ∂t)τzx = −ηu′
1 cosω0t− ηu′

2 sinω0t = f1 cosω0t+ f2 sinω0t. (64)

Now we have the equation in the form of equation (58)
with ω = ω0, A0 = 0, A1 = f1 = −ηu′

1 i A2 = f2 = −ηu′
2

so its permanent solution is

τzx(x, t) = D1 cosω0t+D2 sinω0t, (65)

D1 =
f1 − λω0f2
1 + λ2ω2

0

, D2 =
λω0f1 + f2
1 + λ2ω2

0

. (66)

We will now solve for

(1 + λ∂t)τzz = −2λτzx∂xuz, (67)

We substitute in expression (66) and obtain:

(1 + λ∂t)τzz = −2λτzx∂xuz = −2λ(D1 cosω0t+D2 sinω0t)(u
′
1 cosω0t+ u′

2 sinω0t) (68)

= g0 + g1 cos 2ω0t+ g2 sin 2ω0t, (69)

g0 = −λ(D1u
′
1 +D2u

′
2), g1 = −λ(D1u

′
1 −D2u

′
2), g2 = −λ(D1u

′
2 +D2u

′
1), (70)

Now we have the equation in the form of equation (58) with ω = 2ω0, A0 = g0, A1 = g1 iA2 = g2. Its permanent
solution is therefore:

τzz(x, t) = E0 + E1 cos 2ω0t+ E2 sin 2ω0t, (71)

E0 = g0, E1 =
g1 − 2λω0g2
1 + 4λ2ω2

0

, E2 =
2λω0g1 + g2
1 + 4λ2ω2

0

. (72)
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