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This thesis aimed to advance the understanding of Alzheimer’s disease (AD) using computational
modelling tools rooted in statistical physics. Specifically, pseudo-likelihood maximisation of a spin-
glass model was employed to extract coupling matrices J from fMRI-BOLD data of elderly subjects
diagnosed with AD and healthy controls (HC). Data was sourced from participants in the European
Project Neurotwin’s clinical trial, where AD patients undergo brain stimulation as a potential treat-
ment, and from the AD Neurological Initiative (ADNI) database for the healthy controls. The derived
coupling matrices were then compared between conditions to identify differences in brain connectiv-
ity. The research also explored the criticality of these systems using Metropolis simulations to assess
phase transitions and critical temperatures. First, the focus was on extracting and analysing the J
matrices. It was found that the J homotopic connectivity decreased in the AD subjects compared
to the healthy ones with weak statistical significance (p = 0.0496), a finding consistent with other
studies on inter-hemispheric connectivity disruption in AD. Moreover, the J matrices’ standard de-
viation significantly differed between the HC and AD groups (p = 0.0039). Additionally, brain areas
with the highest change in J across conditions aligned with regions previously identified in functional
connectivity studies of AD. Then, the spin-glass systems — defined by the condition-specific J ’s —
were simulated with the Metropolis algorithm. The critical temperature was found to be lower in the
AD spin lattice compared to the HC spin lattice, suggesting that the AD state is closer to a disor-
dered (paramagnetic) phase, which aligns with the hypothesis that weaker inter-parcel connections in
AD may lead to a state nearer to the paramagnetic phase transition. The research highlighted the
potential of the J coupling matrix to capture structural features and homotopic connections, which
can serve as a synthetic brain connectome when dMRI is unavailable. Future work will include using
longer data and other type of data (e.g. new healthy controls, and pre- and post-stimulation data),
and the optimisation of the sparsity value in the extraction of J . Also, the criticality analysis may
be improved by building a theoretical phase diagram based on J characteristics.

I. INTRODUCTION

Alzheimer’s disease (AD) is a complex neurodegener-
ative disorder that impairs cognitive functions [1]. Re-
searchers have extensively studied the disease in genet-
ics, molecular biology, and neuroimaging [2], producing
valuable data for understanding the disease and defining
its biomarkers [1]. Functional MRI (fMRI) has identi-
fied significant changes in brain signals associated with
AD. The most common fMRI method is blood oxygena-
tion level-dependent (BOLD) imaging. fMRI-BOLD uses
haemoglobin as an endogenous contrast agent, exploit-
ing the magnetisation difference between oxyhemoglobin
and deoxyhemoglobin to generate the signal. In other
words, fMRI-BOLD measures neuronal activity indi-
rectly through its hemodynamic correlate [3]. Resting-
state fMRI-BOLD experiments aim to map functional
communication between brain regions by measuring the
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correlation of fMRI time-series dynamics [4]. This pro-
cess, known as functional connectivity (FC), refers to the
relationship between the neuronal activation patterns of
anatomically distinct brain regions, indicating the level
of functional communication between them [4]. Numer-
ous studies have shown alterations in resting-state FC
in AD. Generally, there is a decrease in FC within the
hippocampal [5, 6] and posterior cingulate regions [7, 8].
Conversely, increased FC has been observed between the
prefrontal cortex and hippocampus [5], and between the
prefrontal and posterior cingulate cortices [7, 8], suggest-
ing a potential compensatory mechanism driven by the
prefrontal cortex, particularly in the early stages of AD
[9–11].

While fMRI provides insights into functional brain
activity, anatomical MRI (aMRI) and diffusion MRI
(dMRI) contain information on the brain structure and
connections. Both functional and anatomical data types
are necessary for computational models, as these mod-
els investigate the relationship between structure and
function [12]. An aMRI scanner delivers a specific ra-
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dio frequency that excites the hydrogen atoms in water
molecules, which return some of this energy as a distinc-
tive nuclear magnetic resonance signal [13]. Therefore,
this technique can be used to discover the presence of
abnormal tissue through the changes in tissue density or
composition, including brain volume loss (atrophy) ob-
served in AD patients [14]. In this thesis, aMRI data was
only used for brain parcellation, i.e., assigning each MRI
voxel to a brain sub-area. A voxel, short for ”volumet-
ric pixel,” is the smallest unit of volume in 3D imaging,
similar to a pixel in 2D images. It represents data about
the tissue within that specific space in MRI scans. dMRI
is a technique used to quantify the random motion of
water molecules within biological tissues. This motion,
influenced by tissue microstructure, can reveal insights
into the orientation and integrity of cellular fibres in the
brain. By applying gradients of varying directions and
strengths to the magnetic field during image acquisition,
dMRI generates data that can be analysed to infer the
presence and orientation of these fibres, a process known
as tractography. Diffusion tensor imaging (DTI) is a spe-
cific application of dMRI that models diffusion as a ten-
sor to provide maps of white matter architecture and
connectivity [15]. This thesis used dMRI data to pro-
vide the brain’s physical connections as a reference for
the features extracted from fMRI-BOLD data.

Several methods exist to analyse the dynamics in
fMRI-BOLD data, including sliding-window functional
connectivity analysis, dynamic causal modelling, oscil-
lation analysis, and biophysical modelling. This study
explores the potential of a different approach: spin-glass
modelling, based on the critical brain hypothesis.

The brain is a complex system which can be anal-
ysed with tools from statistical physics [16–24]. Simi-
lar to how materials transition between ordered (solid)
and disordered (gas) phases, neural networks can switch
between synchronised and unsynchronised states. Near
phase transitions, or critical points, a balance of order
and disorder is maintained, which is considered crucial
for living organisms [25]. At the critical point, complex
collective patterns emerge, resulting in rich long-range
correlations across the system. Here, fluctuations are
structured according to fundamental physical principles
and symmetries, leading to ’universality classes’ of coor-
dinated activity [26].

Theoretical work suggests that computation and infor-
mation dynamics in complex systems exhibit unique fea-
tures at critical points [27–31]. Criticality is proposed as
a key principle to explain the brain’s complexity, allow-
ing it to process diverse information sources and guide
behaviour in complex environments [17, 32–38]. Addi-
tionally, systems in nature often tune themselves to a
critical state, a concept known as ’self-organised criti-
cality’ [39–41]. Building on this pioneering work, this
thesis uses tools from statistical physics to study brain
dynamics that support different states of consciousness,
specifically the conditions of AD and healthy.

The aim of this thesis was first to extract features from

the fMRI-BOLD time series of Alzheimer’s patients and
healthy controls using pseudo-likelihood maximisation of
a spin-glass model (coupling matrix J and personalised
temperatures) and Metropolis simulations of spin sys-
tems (criticality metrics). Then, we compared these fea-
tures by condition and subject. Finally, the coupling
matrix J was compared to the fMRI-BOLD-derived func-
tional connectivity and to the physical brain connectome
derived from dMRI data.
This thesis is part of the Neurotwin project (neu-

rotwin.eu), which aims to develop brain models for char-
acterising individual pathology, predicting the physiolog-
ical effects of transcranial electromagnetic stimulation,
and designing optimal stimulation protocols for AD. This
work contributes by creating macroscale brain models for
AD and healthy conditions. Future research will explore
whether stimulation can induce changes in the AD model
to resemble the healthy model.
For this thesis, I processed the Neurotwin clinical trial

data, selected and processed healthy controls (HC) data
from the ADNI database [42], maintained, used and de-
veloped parts of the software for fMRI-BOLD preprocess-
ing, spin model fitting, and Metropolis simulations. I was
also responsible for the analysis and writing. The meth-
ods presented here were used in previous work [43] (with
some modifications), in which we analysed fMRI-BOLD
data from a within-subject study, where the individuals
were observed during different sessions under the influ-
ence of lysergic acid diethylamide (LSD) or a placebo.

II. METHODS

An overview of the methods used in this thesis is shown
in Figure 1.

A. MRI data for Alzheimer’s patients and healthy
controls

This thesis used two datasets: one for patients diag-
nosed with Alzheimer’s disease (AD) and one for healthy
controls (HC). The AD dataset is from an ongoing clin-
ical trial with AD patients part of the European project
Neurotwin, and it includes 17 subjects (8 women, mean
sample age 72.9 ± 5.5 years old). The trial aims to de-
termine whether brain stimulation can improve patients’
conditions and slow down the progression of the neurode-
generative disease. The data used in this thesis is from
pre-treatment scans.
Both datasets included data from the imaging modali-

ties fMRI (functional information), dMRI (information
on the physical structure of brain connections), and
aMRI (anatomical information needed for the preprocess-
ing of the other two modalities). fMRI images were ac-
quired using blood oxygenation level-dependent (BOLD)
imaging (repetition time TR = 0.98 s, echo time TE =
30.41 ms, flip angle FA = 63°, slice thickness = 2.8 mm,
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FIG. 1: Methods overview: fMRI-BOLD data from AD and
healthy control (HC) conditions (1) was preprocessed,

assigned to brain areas and binarised (2). Then, we found
the J that best matched the data with pseudo-likelihood

maximisation, with system temperature T = 1 (3). Then the
”average J” was scaled to match individual data using

”personalised temperatures” (4). Step 4 was skipped when
individual data was directly used in Step 3. Metropolis

simulations were run with J at different temperatures to find
the critical temperature (5). Condition- and subject-specific
features were extracted from J and compared to functional
connectivity (FC) and dMRI connectomes. Personalised and
critical temperatures were compared across conditions (6).

number of time points = 487, total duration = 8 min).
Diffusion Tensor Images (DTI) were acquired using a to-
tal of 121 diffusion sampling directions (b-value: b0 x 10,
b300 x 8, b1000 x 32, b2500 x 71; TR: 3400 ms; TE: 80
ms; FA: 90°; voxel size: 1.79x1.79 mm; slice thickness:
1.79 mm).

The HC dataset is sourced from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database [42],
which includes data from elderly individuals with and
without AD. Subject data for 17 healthy elderly individ-
uals (8 women, mean sample age 73.0±5.2 years old) was
selected to match the mean age and sex distribution of
the AD dataset. The specific acquisition parameters for
this data vary by subject and are detailed in Appendix
A.

B. Parcellated fMRI-BOLD time series and
functional connectivity

The fMRI-BOLD data was preprocessed to remove
artefacts (e.g. caused by head motion or fluctuations
in the MRI scanner’s hardware) and extract the mean
fMRI-BOLD activity per brain region (or parcel) at each
time point. The preprocessing steps included:

1. Minimal preprocessing of the fMRI-BOLD im-
ages using fMRIPrep [44] software, which involved
coregistration to the anatomical MRI, application
of slice timing correction, and estimation of head
motion artefacts.

2. Division of the functional image into 84 brain
parcels and registration to a standard coordinate
system using Freesurfer [45] and ANTs [46] soft-
ware, followed by further cleaning to remove the
head motion artefacts estimated by fMRIPrep.

3. Extraction of the fMRI-BOLD signal for each brain
parcel by averaging the activity of the voxels within
each parcel, using in-house code.

4. Application of global signal regression (GSR) to re-
duce global fluctuations by regressing out the av-
erage signal intensity across all brain parcels from
each parcel’s time series.

The fMRI-BOLD signal is represented as a matrix with
dimensions (brain parcel × time slice) for each subject.
Brain parcels were defined according to the Desikan84
parcellation scheme [47]. Parcel names and indices are in
Appendix B, and the methods used to create the brain
atlas can be found in Desikan et al. (2006) [47].
The functional connectivity, FC, was computed from

the fMRI-BOLD time series as the Pearson correlation
between the activity of each pair of parcels across time
and is represented as a matrix with dimensions (brain
parcel × brain parcel). Pearson correlation is a statisti-
cal measure that quantifies the strength and direction of
the linear relationship between two continuous variables.
It ranges from −1 to 1, where 1 (−1) indicates a perfect
positive (negative) linear relationship and 0 indicates no
linear relationship. It assumes that the variables are nor-
mally distributed and have a linear relationship.

C. Parcellated dMRI connectome

The dMRI data was preprocessed to remove noise and
artefacts, e.g. image distortions caused by magnetic
field gradients. Using Freesurfer [45] and MRTrix [48],
a tractogram was generated based on the Desikan84 par-
cellation scheme [47]. A tractogram models the three-
dimensional pathways of white matter tracts in the brain.
For each subject, a dMRI connectome was derived from
the tractogram. This connectome, represented as a ma-
trix with dimensions (brain parcel × brain parcel), con-
tains the sum of connections between each pair of parcels.

D. Down-sampling and adjustment of fMRI-BOLD
data

Initially, the analysis was conducted using the prepro-
cessed fMRI-BOLD data, as described above. However,
we observed significant differences in acquisition param-
eters between the two fMRI-BOLD datasets. The main
parameters that differed between the two datasets were
the repetition time and the number of time points. Rep-
etition time refers to the time that passes between con-
secutive acquired brain volumes. It determines how fre-
quently data are acquired, impacting the scan’s temporal
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resolution. Number of time points refers to the number
of brain volume acquisitions in time. These parameters
influence the balance between scan duration and the tem-
poral resolution of the scans.

The AD data had consistent scan parameters across
subjects, including repetition time, number of time
points, and total duration. In contrast, the HC data
had heterogeneous scan parameters, lower temporal res-
olution and fewer time points than the AD data.

To reduce this technical variability, we adjusted the
AD data (and data from a few HC subjects) to match
the lowest-resolution scan parameters of the HC data.
The adjustments included:

• Increasing the repetition time (time between fMRI-
BOLD volume samples in time) of the AD data
from 1 s to 3 s, which is the largest repetition time
in the HC data.

• Reducing the number of time points in the AD data
from 487 to 139, the lowest number of time points
in the HC data.

Data was down-sampled using the decimate func-
tion from the scipy.signal module, which reduced the
signal’s sampling rate while minimising aliasing effects
through low-pass filtering, and maintaining zero phase
distortion. These adjustments improved comparability
between the datasets but also reduced the temporal reso-
lution of the AD data. Finally, two subjects from the HC
group were excluded due to preprocessing issues, where
excessive image noise led to zero activity in some parcels.
After this exclusion, the HC sample contained data from
7 women with a mean sample age of 72.8± 5.4 years old.

E. fMRI-BOLD data binarisation

The fMRI-BOLD data was normalised and binarised so
it could be modelled with binary Ising spins. For every
brain parcel, the median of the time signal was used as a
threshold for binarisation. All the values above (below)
the median of the signal were assigned to 1 (-1).

F. Spin models

Spin models from statistical physics can describe the
emergence of collective phenomena — such as phase
transitions — in large systems composite of smaller
parts, e.g., spins or brain parcel activity, which inter-
change information under the assumptions of the max-
imum entropy principle [49–51]. Complex systems can
be analysed through coarse-graining variables describ-
ing macrostates. Continuous phase transitions happen at
the so-called critical points, where the system macrostate
changes qualitatively. Here, observable quantities such as
heat capacity, correlation length or susceptibility to ex-
ternal perturbations diverge in the thermodynamic limit,

i.e., as the number of spins goes to infinity. At these tran-
sitions, from order to disorder, the system is scale-free,
with fractal properties in energy and information flow.
In this context, elements such as brain regions are mod-

elled by spins (i.e., with two states, up or down, active
or inactive) with pair interactions. The statistical prop-
erties of large spins systems are studied under different
conditions determined by varying the control parame-
ter, i.e., the temperature. The prototypical simplest sys-
tem in this context is the classical two-dimensional Ising
model, which features nearest-neighbour interactions and
a phase transition. Also, the fact the brain exhibits char-
acteristics of criticality that may be modelled by systems
such as spin models is now well established, with ideas
that go back to pioneers such as Turing [52], Bak [16, 53],
and Hopfield [54]. There is further evidence that the dy-
namics of the healthy brain occupy a sub-critical zone
([55],[56] and references therein).
The spin model used in this thesis is essentially

the Sherrington-Kirkpatrick (SK) spin-glass model [57],
which was introduced as an extension of the original Ising
model in the presence of disordered interactions. The SK
model allows for a random J with values specific for each
pair of spins, at any distance, i.e., all spins are intercon-
nected with an arbitrary weight, in contrast to the orig-
inal Ising model, where J is constant with only nearest-
neighbour interactions.
The SK model is defined by the energy or Hamiltonian

of the lattice of N spins with pairs of parcels i and j (i,
j ϵ [1, N ], i ̸= j), given by

H(σ) = −
∑
i<j

Jijσiσj −
∑
i

hi σi − γ
∑
i<j

|Jij | (1)

where the sum over i < j denotes a sum over all pairs
of spins (with pairs counted once), σi denotes the orien-
tation of spin i in the lattice (±1), Jij is the coupling
matrix or Ising connectivity, and hi is an external mag-
netic field applied independently at site i. We assume
that self-connections are zero (Jii = 0) and that J is
symmetric (Jij = Jji). N.B. The last term was added
to the original SK Hamiltonian to force the sparsity of
the matrix when extracting J (see subsection II F 1). We
use the L1 norm with γ being the sparsity value and |...|
denoting the absolute value.
In the context of analysis of parcellated fMRI-BOLD

data, σi represents the binarised state of each brain par-
cel and is equal to +1 (−1) when the parcel is active
(inactive), hi is a parameter that modulates the mean
activity in a single parcel, and Jij ∈ R is a parame-
ter that accounts for the interactions between parcels i
and j (activity correlations), and which can be positive
or negative. Here, H is not a physical energy but is a
mathematical construct which allows to rationalise the
frequency (or probability distribution) of finding a given
activity pattern σ. If an activity pattern rarely occurs in
the data, it will correspond to high energy and vice versa.
It is worth noting that in the original SK model, the in-
teractions Jij are independent random variables from the
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same distribution defined by its mean and standard devi-
ation. In contrast, in this work, Jij was inferred from the
data (see subsection II F 1). From this point forward, we
set h = 0 in the Hamiltonian, as the h term did not reveal
any significant system properties or affect the results.

An essential point in the context of spin models is that
there is a competition between the tendency to order
and disorder, or in other words, between the spin-spin
interactions (determined by the coupling matrix J , which
gives the system structure and order) and the thermal
agitation that drives the system towards disorder. At low
temperatures, spin-spin interactions will prevail, whereas
thermal agitation will prevail at high temperatures.

The so-called order parameter is used to evaluate the
system macrostate, i.e., in which phase the system hap-
pens to be. In the two-dimensional Ising model, it is
common to use the magnetisation (average net spin align-
ment) as the order parameter. In the paramagnetic phase
(disordered, no correlation between spin alignment), the
magnetisation is zero, whereas in the ferromagnetic phase
(ordered, all spins aligned), this is different than zero, as
shown in Figure 2.

FIG. 2: As the system temperature T is decreased, the mag-
netisation M abruptly changes from 0 (paramagnetic phase)
to 1 (ferromagnetic phase) at the critical temperature TC .

On the other hand, a spin-glass allows for transitions
between three different phases: ferromagnetic (spin over-
lap > 0, magnetisation different than 0), paramagnetic
(spin overlap = 0, magnetisation = 0), spin-glass (spin
overlap > 0, magnetisation = 0) [58]. The spin overlap
is the average equilibrium configuration obtained from
the equilibrium configurations of different realisations of
a spin lattice with the same bonds (more details in the
subsection II F 5) [58].

1. Maximum entropy principle derivation of spin models

Spin models can be derived using the Maximum En-
tropy Principle (MEP) [49], which finds the most suitable
probability distribution given certain constraints, such as
data-derived spin correlation values. According to the
MEP, the optimal probability distribution maximises en-
tropy while obeying these constraints. The probability
of observing a specific spin configuration σ in thermal
equilibrium at temperature T is given by the Boltzmann

distribution [20]:

P (σ, T |J) = e−H(σ|J)/KBT∑
{σ′} e

−H(σ′|J)/KBT
(2)

where KB is the Boltzmann constant, which will be set
to 1 from here onwards to simplify notation, and since
we do not deal with physical temperatures. Also, T = 1
without loss of generality, H is defined in Equation 1,
and

∑
{σ′} is a sum over all the 2N possible spin config-

urations.

2. Estimation of the coupling matrix J using maximum
pseudo-likelihood

We estimate the coupling matrix J using an approxi-
mation to maximum likelihood as described in Ezaki et
al. (2017) [20]. Briefly, we find the J that maximises the
probability of observing the data given the model,

J = argmax
J

L(J) = argmax
J

logL(J) (3)

where L(J) is defined as

L(J) =
tmax∏
t=1

P (σ(t)|J) (4)

where P (σ(t)|J) is the Boltzmann distribution of the σ
pattern at a specific time point t, and tmax is the maxi-
mum time point. The likelihood maximum can be found
by gradient ascent, with

Jnew
ij = Jold

ij + η
(
⟨σiσj⟩empirical − ⟨σiσj⟩model

)
(5)

where the old/new superscripts refer to the values before
and after updating, and with η a small positive constant,
which represents the mean error between the old and
new J . In Equation 3, we use logL(J) since the function
maximum value is the same as the one of the original,
but allows us to have sums instead of products, which is
more convenient for gradient ascent.
When the number of spins in the system is very large,

calculating the likelihood from the model is computation-
ally expensive. For this reason, we use an approximation
known as the pseudo-likelihood, a mean-field approxima-
tion that approaches the true likelihood as the number
of time points, t, approaches infinity [20, 59],

L(J) =
tmax∏
t=1

P (σ(t)|J) ≈
tmax∏
t=1

N∏
i=1

P̃ (σi(t)|J ,σ/i(t)) (6)

where P̃ (σi|J ,σ/i) is the modelled probability distribu-
tion for a specific spin given the states of all the others,
a quantity much easier to compute, defined as

P̃ (σi|J ,σ/i) =
e−Hi(σ|J)∑

σ′
i
e−Hi(σ′

i|J,σ/i)
(7)
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with Hi(σ|J) from Equation 1.

Using this approximation, the gradient ascent rule be-
comes

Jnew
ij = Jold

ij + η
(
⟨σiσj⟩empirical − ⟨σiσj⟩P̃

)
(8)

where ⟨σiσj⟩P̃ is the two-point correlation function

with respect to distribution P̃ [20],

⟨σiσj⟩P̃ =
1

tmax

tmax∑
t=1

σj(t) tanh

 N∑
j′=1
j′ ̸=i

Jij′σj′(t)

 (9)

Coupling matrices J were generated for every partici-
pant, from their individual binarised fMRI-BOLD data.
A global coupling matrix J was estimated based on con-
catenated data from all the participants. We similarly
derived condition-specific coupling matrices J based on
concatenated data for the AD and HC conditions, sepa-
rately.

3. Personalisation of model with individual temperatures

When a global coupling matrix J is generated using the
entire dataset, we adapt J for each subject and condition
by changing the model temperature T = 1/β, that is, by
writing

P (σ|J , β) = e−βH(σ|J)∑
{σ′} e

−βH(σ′|J)
(10)

In this case, the gradient ascent algorithm becomes

βnew = βold − η
(
⟨H⟩empirical − ⟨H⟩P̃

)
(11)

with a fixed point at ⟨H⟩empirical = ⟨H⟩P̃ . This, as in the
prior equations, can be seen by taking the derivative of
the approximate log-likelihood

logL(J) =

tmax∑
t=1

logP (σ(t)|J)

=

tmax∑
t=1

(
−βH(σ(t)|J)− logZ(J ,σ/i(t), β)

)
(12)

with respect to the inverse temperature β, with the
partition function, Z(J , β, t) =

∑
σ′
i
e−βHi(σ

′
i|J,σ/i(t)) .

The first term becomes the average of the empirical
Hamiltonian, while the second term is the average model
energy. This can be computed from Equation 9 and from

⟨H⟩P̃ = −
∑
i<j

Jij⟨σiσj⟩P̃ (13)

4. Analysis of coupling matrix J

Once the coupling matrix J is found, we can extract
several features, such as the mean connectivity, evalu-
ated over the whole network, only the intra-hemispheric
(within the same hemisphere), inter-hemispheric (be-
tween the two hemispheres), and homotopic network (the
same areas in the two hemispheres – mirror areas). Then
we can also analyse the absolute value of the connections
or only the positive/negative portions. It is interesting
to compare the coupling matrix to the raw and binary
functional connectivity (obtained from the correlations
of the fMRI-BOLD activity between parcels), and to the
dMRI-derived connectome with the number of physical
connections between pairs of parcels. The former cap-
tures the functional properties of the brain, whereas the
latter captures the brain’s structure. When J is deter-
mined separately for the AD and HC groups/subjects,
this allows for comparison of these features across condi-
tions.

5. Metropolis algorithm and spin model features

The coupling matrix J can be used in Monte Carlo sim-
ulations with the Metropolis algorithm to generate syn-
thetic data. This allows us to determine the phase space
position for each subject or condition (characterised by
their specific J), observe potential phase transitions by
varying the temperature, and identify the system’s criti-
cal point.
In the Metropolis algorithm, a random spin is chosen

and flipped with a probability p = min(1, exp[−∆H/T ]),
where ∆H is the change in energy caused by the flip, and
T is the system temperature. In other words, when the
spin flip causes the system to go to a state with lower
energy, the spin flip is accepted (p = 1). On the other
hand, when this causes the system to go to a state with
higher energy, the flip depends on how the Boltzmann
factor compares to a uniform random number between
0 and 1. This process samples the system’s probability
distribution at a given temperature. If the temperature is
high, it is more likely that the spin flip will be accepted.
The algorithm is iterated sufficiently to reach a steady
state, and macroscopic variables are averaged over many
steady-state configurations. To evaluate ∆H, we express
the system’s energy (Hamiltonian) as:

H(σ) = −1

2

∑
i,j

Jijσiσj (14)

= −1

2

∑
i ̸=k

∑
j ̸=k

Jijσiσj −
∑
i

Jikσiσk (15)

In the second line, the contribution from spin σk is sep-
arated out. The energy associated with the k-th spin
is Ei = −σk

∑
i Jikσi. After flipping this spin, its en-

ergy contribution becomes Ef = σk

∑
i Jikσi. Thus, the
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energy change ∆E is:

∆E = Ef − Ei = 2σk

∑
i

Jikσi (16)

The main global observables are the average magnetisa-
tion and the spin overlap. The average magnetisation
M over the spin lattice of N spin configurations σi is
computed as

M =
1

N

N∑
i=1

σi (17)

and the spin overlap, q, is defined as [58]

q =
1

N

∑
i

S
(k)
i (18)

where S
(k)
i is the equilibrium spin configuration (of spin

i) from copy k of the system. The magnetic susceptibil-
ity χ and heat capacity Cv are computed by applying a
uniform external field hext:

H(σ, hext) = −
∑
i<j

Jijσiσj − hext

∑
j

σj (19)

The partition function Z is given by:

Z(β, hext) =
∑
σ

e−βH(σ,hext) (20)

The average magnetisation ⟨M⟩ is:

⟨M⟩ = 1

Z

∑
σ

Me−βH(σ,hext) (21)

It can be shown that [60]:

⟨M⟩ = 1

βZ

∂Z

∂hext
(22)

The global susceptibility χ and heat capacity Cv are:

χ =
∂⟨M⟩
∂hext

∣∣∣∣
T

=
σ2
M

T
, Cv =

∂⟨H⟩
∂T

∣∣∣∣
hext

=
σ2
H

T 2
(23)

where σ2
M and σ2

H are respectively the variances in the
magnetisation and energy.

The global susceptibility measures the sensitivity of
the lattice state (represented by the magnetisation) to
uniform perturbations.

When computing quantities in Metropolis simulations,
fluctuations of the order of 1/

√
N are expected. When

evaluating magnetisation and global susceptibility, we
use M → |M | = M sign(M), which helps smooth results
near the critical point [61]. To ensure steady measure-
ments, we average quantities after discarding the first 105

steps to exclude transients, and each simulation runs for

over 106 Monte Carlo steps, with each step represent-
ing a single spin flip. At low temperatures, the accep-
tance rate of spin flips is very low, causing the lattice to
evolve slowly. To mitigate these long equilibration times,
the lattice is initialised in an ordered state, i.e., all spins
pointing up. While each simulation starts from the same
initial conditions, stochasticity comes from how spins are
flipped in the Metropolis algorithm, as described above.
Due to a more complex energy landscape, simulations

for spin-glasses are more complex than for the classical
Ising model. The system can get stuck in local minima
and may never escape to reach the global minimum, i.e.,
it may never overcome the necessary energy barrier to
get to the global minimum of the system.
To address this, several approaches can be used:

• Parallel tempering: Simulate the system at dif-
ferent temperatures in parallel. Then, after a cer-
tain number of iterations, swap configurations (i.e.
change the spin states obtained for one tempera-
ture with the spin configuration obtained for an-
other temperature) [62].

• Spin overlap and replicas of the system:
- Start from the same initial configuration (all spins
pointing up) for quicker convergence to equilibrium
at low temperatures. At low temperatures, the sys-
tem resists change, and the J coupling between
parcels mainly determines the final configuration.
Starting from an ordered state saves time compared
to starting from a disordered state.
- Average quantities from each simulation, such as
magnetisation, susceptibility, energy, and heat ca-
pacity.
- Compute spin overlap (average spin configuration
at equilibrium over different replicas).

Parallel tempering was not implemented due to time con-
straints but will be explored in future work.
Once we find the critical temperature for each sub-

ject or condition (from averaging group data), we can
compare the critical temperatures across conditions. A
higher critical temperature means the system enters a
more disordered state or phase at a higher temperature
and, therefore, requires a higher temperature to disrupt
its structure, determined by the coupling matrix J .

III. RESULTS

A coupling matrix J was determined for each subject
individually, from the data of each condition group and
all of the data.
Initially, data with the original fMRI-BOLD acquisi-

tion parameters was used (subsection IIIA). Then, the
AD data (and part of the HC data) was down-sampled
and truncated to match the highest repetition time and
lowest number of time points in the HC data, ensuring
better comparability of the results (subsection III B). The
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analysis was repeated with the down-sampled and trun-
cated data (subsection III C). Since this individual data
was quite short, average AD and HC J coupling matrices
were built by concatenating all data by condition (sub-
section IIID).

The results show many symmetric matrices with di-
mensions (parcel × parcel). Due to the order of the brain
parcels, detailed in Appendix B, the matrices’ upper tri-
angle can be read as shown in Figure 3. The lower tri-
angle is the same but mirrored across the main diagonal.
Also, since the matrices are symmetric, we often show the
coupling matrix J on the upper triangle of the matrix,
and another feature on the lower triangle.

FIG. 3: Guide to interpret matrix plots: full connectivity
in blue (outer triangle), intra-hemispheric in green (smaller
triangles on diagonal), inter-hemispheric in red (top right
square), and homotopic in yellow (square diagonal).

A. Personalised coupling matrix J from data with
original acquisition parameters

The J coupling matrix was extracted from individual
subject data, specifically with the original fMRI-BOLD
acquisition parameters. Here, we used a sparsity value
of 0.1, a time step of 0.025, and a maximum number
of gradient ascent iterations of 4000 (Equation 8). The
J coupling matrices (upper triangle) and the binarised
functional connectivity (FC) matrices (lower triangle) are
shown for all subjects in Appendix C (Figures 21 and
20), and the mean µ and standard deviation σstd values
of the J matrices are shown in Figure 4. Their difference
was statistically different (respectively p = 0.009 and
p = 7.7× 10−9) due to the different acquisition parame-
ters across condition. Here, we show an example for two
subjects, one from each condition, in Figure 5. The AD
matrix is more sparse than the HC one (both for J and
the binarised FC), and this was consistent across all sub-
jects (Figure 21 and 20). The J coupling matrices were
compared to the individual dMRI connectomes, as shown
in Figure 6. The dMRI connectome indicates the num-
ber of connections between pairs of parcels, hence it only
contains positive values. For comparability, the absolute
value of J was plotted, and both triangles were divided
by their respective maximum values (here, the highest
maximum of J and of the connectome between the two
subjects). The AD J coupling matrix reconstructs to
some degree the intra-hemispheric connections shown in

FIG. 4: Mean and standard deviation of non-zero elements
of J coupling matrices for AD and HC groups (original

data) (** for p < 0.01, and *** for p < 0.001).

FIG. 5: J coupling matrices (upper triangle) and binarised
FC (lower triangle) for two subjects from the HC (left) and

AD (right) conditions (original data).

the dMRI connectome, however it also has strong homo-
topic and some inter-hemispheric connections which are
not captured in the connectome, as these come mainly
from functional data. The correlation between the J

FIG. 6: Comparison between J in absolute value (upper
triangle) and dMRI connectome (lower triangle) for an HC
patient (left) and an AD subject (right), with original data.

coupling matrices and, respectively, the binarised FC,
raw FC (FC before data binarisation), and dMRI con-
nectome are shown in Figure 7, divided by condition. As
expected, the correlation with the binarised FC was the
highest since it was used for extracting J , followed by the
raw FC and the dMRI connectome. The violin plots show
the AD distribution in blue (left) and the HC one in or-
ange (right). The two distributions seem quite different,
especially for the binarised FC and dMRI connectome.
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FIG. 7: Correlation between J and binarised/raw functional
connectivity and dMRI, divided by condition with AD in

blue (left) and HC in orange (right) (original data).

B. Down-sampling and cut

Since both the binarised FC and J coupling matrices
for the two condition groups were visibly different (Fig-
ures 20 and 21), we down-sampled and truncated the
data to match the HC data, to ensure better compara-
bility. The data used here was adjusted to have a repe-
tition time of 3 s and 139 time points (respectively the
highest repetition time and lowest number of time points
in the HC data). The top plot shows the fMRI-BOLD
time signal in a parcel. The original signal (grey) was
down-sampled by a factor of 3 and cut. The plot shows
the final down-sampled and cut signal in green, where its
actual points (circles) were interpolated to be displayed
on the original signal. The bottom plot shows the signal
in the frequency domain. As expected, the Fourier trans-
form (FT) amplitude was reduced for all frequencies, and
the original spectrum shape was preserved.

FIG. 8: fMRI-BOLD signal of an AD patient after
down-sampling and truncation, in the time (top) and
frequency (bottom) domains. FT: Fourier transform.

C. Personalised coupling matrix J from
down-sampled data

The J coupling matrix was extracted from individual
subject data, which now has the same fMRI-BOLD ac-
quisition parameters for the whole data. For the J ex-
traction, we used a sparsity value of 0.1, a time step of
0.025, and a maximum number of iterations of 4000. The
J coupling matrices (upper triangle) and the binarised
FC matrices (lower triangle) are shown for all subjects
in Figures 23 and 22 (Appendix D). Here, we show an
example for two subjects, one from each condition, in
Figure 10. After down-sampling, the AD matrix is less
sparse and more similar to the HC one. This was con-
sistent across all subjects (Figures 23 and 22). Figure
9 shows that the differences between the mean µ and
standard deviations σstd of the J matrices decreased, as
expected with the downsampling. However, the σstd still
show a statistically significant difference (p = 0.0039),
possibly due to condition, since the data comparability
was improved.

FIG. 9: Mean and standard deviation of non-zero elements
of J coupling matrices for AD and HC groups

(down-sampled data) (** for p < 0.01, and ’ns’ indicates a
non-significant result, p ≥ 0.05).

FIG. 10: J coupling matrices (upper triangle) and binarised
FC (lower triangle) for two subjects from the HC (left) and
AD (right) conditions (down-sampled data).

The J coupling matrices in absolute value (upper trian-
gle) were compared to the individual dMRI connectomes
(lower triangle), as shown in Figure 11 for one healthy
subject (left) and one AD subject (right). For visualisa-
tion purposes, the J matrix was scaled with respect to
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the highest maximum from the J ’s of the two subjects,
and same for the dMRI connectome. The correlation

FIG. 11: Comparison between J in absolute value (upper
triangle) and dMRI connectome (lower triangle) for an HC
patient (left) and an AD subject (right), with original data.

between the J coupling matrices and, respectively, the
binarised FC, raw FC, and dMRI connectome are shown
in Figure 12, divided by condition. The correlation be-
tween J and the binarised and raw FC did not vary much
compared to the one in Figure 7, as all three quantities
were computed on the same down-sampled and cut data.
The correlation with the dMRI connectome is lower here,
especially for the AD group, than with the original data
(Figure 6). This is expected as the J matrices are now
less sparse.

FIG. 12: Correlation between J and binarised/raw
functional connectivity and dMRI, divided by condition with
AD in blue (left) and HC in orange (right) (original data).

Since comparability between the J coupling matrices
was improved, we compared J statistics, such as the
mean connectivity in the whole network, in the intra-
hemispheric, inter-hemispheric and homotopic networks,
and the proportion of negative connections in the same
networks, across conditions.

The only weakly significant difference was in homo-
topic connections (p = 0.0496), which decreased in
AD. Inter-hemispheric connectivity decreased in AD
(p = 0.09), and a higher percentage of negative inter-
hemispheric connections was observed in AD (p = 0.13).
The mean connectivity of J , the latter divided by its
standard deviation, and the mean intra-hemispheric con-
nections were lower in AD but not significantly (respec-
tively p = 0.13, p = 0.27 and p = 0.68). Also, the per-
centage of negative connections in the whole J (p = 0.26),
intra-hemispheric (p = 0.93), and homotopic (p = 0.20)

FIG. 13: Comparison between J statistics of AD and HC
subjects, from top left to bottom right: mean connectivity of

J : full (scaled by 10−3), homotopic, intra-hemispheric
(scaled by 10−2), inter-hemispheric (scaled by 10−3);

percentage of negative connections in J : full,
intra-hemispheric, inter-hemispheric, homotopic. Mean

connectivity of J divided by its standard deviation. (* for
p < 0.05, ’ns’ indicates a non-significant result, p ≥ 0.05).

connections does not differ significantly by condition.

D. Average coupling matrix J from concatenated
down-sampled data

The results from the previous section revealed some
interesting trends. However, they were obtained from
short individual data (only 139 time points). For the
pseudo-likelihood approximation to be valid, longer data
is needed. For this reason, we combined all of the down-
sampled data to build an average J and combined data
from each condition to build average AD and HC J ma-
trices. The off-diagonal elements of the coupling matrices
J had the following means µ(J) and standard deviations
σstd(J) (here for T = 1): for all data, µ(J) = 4.6× 10−3

and σstd(J) = 2.9 × 10−2; for the HC group, µ(J) =
4.9 × 10−3 and σstd(J) = 3.1 × 10−2; and for the AD
group, µ(J) = 4.3×10−3 and σstd(J) = 2.8×10−2. Their
distributions are shown in Figure 14 and are quite similar
across conditions: all centred at zero with few negative
values and with tails up to 0.05. Figure 15 shows the J
coupling matrices and binarised FC for an average model
of all of the data (left), only HC (centre) and AD (right).
The fit parameters were the same as in the previous simu-
lations. The Pearson correlation coefficients between the
J coupling matrices and the binarised FC for all data,
HC and AD were 0.63, 0.63 and 0.63 respectively.
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FIG. 14: Histograms of J extracted from all the data (left),
HC (middle) and AD (right) data, with a zoom on the less

frequent values (Densitymax = 1).

FIG. 15: J coupling matrices (upper triangle) and binarised
FC (lower triangle) for an average model of all of the data
(left), only HC (centre) and AD (right).

Figure 16 shows the difference between HC and AD in
the J coupling matrices and binarised FC. Figures 24 and
25 in Appendix E show the relative difference in respec-
tively J and the binarised FC from HC to AD. Parcels
with a change higher than 70% of maximum change (in
absolute value) were highlighted and labelled.

FIG. 16: Difference HC - AD in J coupling matrices (left)
and binarised FC (right).

The Pearson correlation coefficients between the delta
J coupling matrices and the delta binarised FC (HC -
AD) are 0.38 (original matrices), 0.41 (absolute value),
0.50 (positive part) and 0.34 (negative part). The largest
changes (HC - AD) in J connection strength between
parcels are presented in Table I.

Statistics from the HC and AD J coupling matrices
and binarised FC were computed, and their differences
are shown in Figure 17 (left). All percentage relative
differences were calculated with respect to the value in
HC. The mean of J was 11.7% higher in HC than in
AD. The J homotopic and inter-hemispheric connections
were 21.2% and 22.7% stronger in HC than in AD, respec-

Parcel connection ∆J

LH Entorhinal - RH Entorhinal 0.17

LH Lingual - RH Lingual 0.15

LH Middle Temporal - LH
Superior Temporal

0.13

LH Posterior Cingulate - RH
Posterior Cingulate

0.12

LH Precuneus - RH Precuneus 0.13

LH Rostral Middle Frontal - LH
Superior Frontal

-0.14

LH Frontal Pole - RH Frontal Pole -0.17

LH Insula - RH Insula 0.15

LH Thalamus - RH Thalamus 0.15

LH Hippocampus - RH
Hippocampus

0.13

LH Amygdala - RH Amygdala 0.12

LH Cerebellum - RH Cerebellum 0.13

RH Middle Temporal - RH
Superior Temporal

0.14

RH Inferior Temporal - RH Middle
Temporal

0.16

TABLE I: Parcel links with |∆J | ≥ 0.12 (70% of max ∆J)

tively. In the AD J matrix, there were more negative con-
nections in the entire matrix (16.5% more than in HC), as
well as in the inter- (27.6%) and intra-hemispheric (4.9%)
portions. The change in J from HC to AD was negligible
for the ratio of mean to standard deviation (1.2%) and
for the intra-hemispheric connections (0.3%). The dif-
ference between the HC and AD binarised FC was posi-
tive for the mean of the whole matrix (92.6%, and 92.8%
when divided by the standard deviation) and for the ho-
motopic connections (11.5%). The mean inter- and intra-
hemispheric connections were higher in AD by 21.7% and
86.0%, respectively. The difference in the percentage of
negative connections from HC to AD was small for the
whole matrix (1.3% higher in HC), and for the inter-
(1.6% higher in AD) and intra-hemispheric connections
(4.4% higher in HC). The results between J and the bi-
narised FC agree (in sign) only on the difference between
their means and in the homotopic connections.

Figure 17 also shows the personalised temperatures
(right), which were obtained by scaling the average J
(from all of the data) to match the individual subject
data (see Methods subsection II F 3). There is no statis-
tically significant difference in personalised temperatures
between the AD and HC groups (p = 0.30).

The absolute values of the J coupling matrices were
compared to the dMRI connectomes, which were aver-
aged over the same datasets used for extracting the J
matrices (Figure 18). The Pearson correlation coeffi-
cients were found to be 0.38 for all data, 0.37 for HC,
0.36 for AD, and 0.28 for the difference between HC and
AD.
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FIG. 17: Left: Difference in metrics obtained from J (green)
and the binarised FC (blue) from HC to AD. Labels from
left to right: mean of A (either J or binarised FC), mean of
A divided by its standard deviation, mean of homotopic,
inter-hemispheric and intra-hemispheric part of A, portion

of negative connections in A, and its inter- and
intra-hemispheric parts. Right: Personalised subject

temperatures for the AD and HC groups. σstd(J): standard
deviation of average J from all data, ns: non-significant

p-value.

E. Metropolis simulations with average coupling
matrix J from concatenated down-sampled data

First, the code for the Metropolis simulations was
validated for a homogeneous J = 1 and with nearest-
neighbour interactions as it reproduced the results of the
classical Ising model in a square lattice.

Then, Metropolis simulations were run for each aver-
age J (from all data, HC and AD). For each J , we ran 10
independent realisations, where each realisation had the
same parameters, but different random noise (e.g. which
spin was randomly selected, or with what random prob-
ability the spin flip was accepted or not with a positive
energy change).

Figure 19 shows the average magnetisation ⟨M⟩,
susceptibility ⟨χ⟩/N and spin overlap q obtained in
Metropolis simulations with J from all the data (top)
and each condition (middle and bottom), as functions of
temperature T . Each point of ⟨M⟩ and ⟨χ⟩/N is the av-
erage value of the equilibrium M and χ obtained for each
realisation, with Equations 17 and 23. For each realisa-
tion, the spin system was simulated for 31 temperatures
(from 0.05 to 0.2 in steps of 0.005). The simulations were
run for 108 steps and the average quantities (M and χ)
were computed excluding the first 105 steps. Equilibrium
was assessed by plotting the magnetisation as a function
of time. The dynamics failed to converge to a stable
equilibrium value close to the critical point. However,
this was mitigated by having multiple copies of the same
system. The average equilibrium configuration of spins
was extracted from each realisation for each T and brain
parcel to compute the spin overlap. Then, the spin over-
lap was calculated using Equation 18. The plot shows
the average data points as circles and the interpolated
data as lines. The interpolation was performed using the
Savitzky-Golay filter, which smooths the data by fitting
a polynomial (here of order 6) to successive subsets of the

FIG. 18: Comparison between the J coupling matrix in
absolute value (upper triangle) and the dMRI connectome
(lower triangle) for HC (top left), AD (top right), all data

(bottom left) and the difference HC-AD (bottom right). The
latter was computed as the difference of the absolute value
of the HC J and AD J , since the dMRI connectome only

contains positive values. The dMRI connectomes were scaled
with respect to the maximum value of the three matrices

(2.4× 105). The same was applied to the J matrices, where
the maximum value was 0.52, and the difference matrices.

The maximum difference values in J and dMRI were
respectively 0.17 and 5.5× 104.

dataset. The error bars for ⟨M⟩ and ⟨χ⟩/N were com-
puted from the standard deviation of the average mag-
netisation and susceptibility from each realisation. It is
worth noting that the susceptibility error bars near the
critical temperature were very large, as the phase transi-
tion was happening at slightly different critical temper-
atures for each realisation. Both the magnetisation and
the spin overlap go from a non-zero value to zero, sug-
gesting a phase transition from the ferromagnetic phase
to the paramagnetic phase. The susceptibility reaches its
highest value in the vicinity of this change in the mag-
netisation and spin overlap, although the peak is not very
sharp for the simulations with the J from all data and
HC J . Smooth susceptibility is expected as our system
is quite small (N = 84). The temperature in Metropolis
simulations is in units of 1/σstd(J) where σstd(J) is the
standard deviation of J .

Critical temperatures TC were computed as the
Metropolis temperature for which the susceptibility was
at maximum. The TC were 0.08 (all data), 0.09 (HC)
and 0.07 (AD) in units of 1/σstd(J). To make the TC ’s
independent of the specific J used in the simulations, we
multiplied them by σstd(J) for each respective J . Now,
the TC ’s are 0.23 (all data), 0.28 (HC) and 0.20 (AD)
10−2. These results should be interpreted in a qualitative
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FIG. 19: Average magnetisation ⟨M⟩ (red), susceptibility
(divided by N) ⟨χ⟩/N (green), and spin overlap q (blue) as a
function of temperature T from Metropolis simulations run
with different J . Simulations were run with J extracted

from all the data (top), with HC J (middle), and with AD J
(bottom). Error bars were plotted based on the standard
deviation of the results from the 10 Metropolis realisations.
Metropolis T units are 1/σstd(J) for each respective J .

manner rather than quantitatively. The important result
here is that the spin system with the AD J reached the
criticality at a lower T than the HC J , with and without
the rescaling with respect to J .

IV. DISCUSSION

In this study, we first found the coupling matrix J
from the data with the original fMRI-BOLD acquisition
parameters. This resulted in very different J and bina-
rised FC matrices across conditions, which was due to the
difference in how the data was acquired (sampling rate
and length) rather than from patients’ conditions. For
this reason, we adapted the data to the shortest avail-
able acquisition time and with the lowest sampling rate
data. This decreased the overall quality and length of
the data but eliminated a potential source of bias in
the analysis across conditions. The coupling matrices
J showed a good correlation with the binarised FC and
a lower correlation with the dMRI connectome of each
subject (as the matrices were not as sparse as the con-
nectome). Comparing conditions, the only (weak) sta-
tistically significant difference was in the homotopic con-
nections. Then, we decided to build average J matrices
since the previous results were based on short individual
data. This resulted in J matrices, which resembled the

dMRI connectomes (more sparse), with a strong homo-
topic diagonal and good correlation with the binarised
FC. The parcels with higher changes in J from HC to
AD were, again, mainly homotopic connections. Com-
pared to HCs, in the AD group, the J homotopic con-
nectivity was lower for subcortical areas (insula, thala-
mus, hippocampus, amygdala, cerebellum) and for the
entorhinal, lingual, precuneus, and posterior cingulate
areas. The J connectivity was also lower for AD be-
tween the middle and superior temporal areas (in both
hemispheres). In AD, the J homotopic connectivity of
the frontal poles and the connectivity between the ros-
tral middle frontal and superior frontal areas in the LH
were higher. Comparing the J matrices by condition, we
observed an overall decrease in homotopic connectivity
(21%) and the mean connectivity (12%), and more nega-
tive connections in AD. These overall changes in J were
very dependent on the sparsity value used in the J ex-
traction, apart from homotopic connections, which were
consistently higher in HC for both J and binFC. A more
thorough optimisation of the sparsity value should also
be conducted. In this study, the sparsity parameter was
adjusted to balance the correlation of J with both bi-
narised FC and the dMRI-derived connectome and kept
constant at 0.1 for both individual and average analyses.
Also, the personalised temperatures — obtained by scal-
ing the average J to match individual data — did not
differ significantly across conditions. This may be due to
the individual data being too short.

Finally, the magnetisation and spin overlap results
from the Metropolis simulations suggest that, for all J ’s,
the system transitioned from the ferromagnetic to the
paramagnetic state. The peak in susceptibility was not
very sharp (especially for the simulations with J from all
of the data and HC J), which is expected for a small sys-
tem (N = 84 parcels), as the susceptibility is expected
to diverge in an infinite spin lattice, not in a finite sys-
tem. The results from the simulations also revealed that
the spin system simulated with the AD J had a lower
critical temperature than the one with the HC J . This
means that the AD state is closer to the transition with
the paramagnetic (disordered) state, compared to the HC
state, and that in the AD spin system, thermal agitation
prevails over the parcel-parcel interactions (determined
by J) at a lower temperature than HC. Our results can
be compared to the work of Palutla et al. (2023) [63],
who also investigated the distance from the criticality of
AD and healthy using spin models with slightly different
methods. They detected (second-order) phase transitions
by looking at the spatiotemporal correlation lengths over
the spin lattice – which are expected to diverge at the
critical point – and used them to determine the type of
criticality (whether spin-glass or ”Ising-like”). They con-
clude that both conditions seem to be in the spin-glass
phases, and that longer relaxation times (in temporal cor-
relations) observed in HC suggest increased proximity to
the phase boundary. However, they state that they need
more sophisticated order parameters to explain the weak
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distinction between spatial correlations across conditions.
The analysis of spatiotemporal correlations could be in-
vestigated in future work to have additional insights on
the criticality analysis. Also, since Palutla et al. (2023)
[63] found the system to be in the spin-glass phase, it is
difficult to compare the results about which condition is
closer to the criticality.

This should be interpreted in the framework of the crit-
ical brain hypothesis, which suggests that the brain oper-
ates near a critical state, where it balances between differ-
ent dynamical regimes, allowing for optimal responses to
internal and external stimuli. This hypothesis proposes
that the brain’s structural and functional architecture
enables it to function effectively at phase transitions, fa-
cilitating efficient neural computations and information
processing capacities. Recent research has increasingly
supported this idea, emphasising the importance of criti-
cality in understanding the healthy brain’s dynamics and
its ability to transition between cortical states for en-
hanced cognitive functions [21, 64–70].

One of the main findings of this thesis was the de-
crease in homotopic connectivity in AD. This agrees with
the literature, as several studies claim that the disease is
linked to disruptions in the FC of homotopic brain areas,
indicating both deterioration of the corpus callosum (the
white matter structure connecting the two hemispheres)
and changes in inter-hemispheric FC [71–74]. Our re-
sults showed a decrease in AD J homotopic connectiv-
ity in subcortical areas (including the hippocampus) and
posterior cingulate cortex (PCC), and an increase in
AD in J connections in temporal areas (in both hemi-
spheres). We did not see a decrease in the hippocampus-
PCC connection, and increase in prefrontal-hippocampus
and prefrontal-PCC connections (as affirmed by litera-
ture [5–10, 75]), but we observed a change in the homo-
topic connections of these regions. Frontal areas mainly
present increased connections in AD, whereas the hip-
pocampus and PCC show decreased connections in AD.
Also, a higher percentage of negative connections was
found in AD. Negative connections can be interpreted as
negative correlations in FC, i.e., as anti-correlated parcel-
s/networks.

This work may be useful in the context of the Neu-
rotwin project (neurotwin.eu), where digital twins of pa-
tients are created to design stimulation protocols. A spin-
glass digital twin (spintwin) can be used to assess the
pathology of the subject (as deviating from a normative
healthy J) and to design a stimulation treatment that
can bring the AD J matrix closer to the healthy one.
This would involve representing stimulation effects in the
spin-glass model and using the model to generate data
and derive a perturbed J matrix, which could then be
compared to the normative one. In the clinical trial, the
stimulation target comprises the areas of the inferior pari-
etal lobule, prefrontal cortex, temporal lobes, precuneus
and hippocampus, based on evidence from previous stud-
ies [76–79]. These areas (apart from the inferior parietal
lobule) seemed relevant in the changes in J due to con-

dition. As another application, when fMRI-BOLD data
is available (with good enough acquisition parameters),
the J coupling matrix could be computed and potentially
used as a substitute for the dMRI connectome when it
is not available. The J matrix is quick to compute and
is quite similar to the dMRI-derived brain connectome,
but it also captures the homotopic connections and nega-
tive (inhibitory) connections, which are missing in dMRI
(dMRI can only quantify the presence of fibres at the mo-
ment, but not directionality or their nature, excitatory
or inhibitory).

One of the main limitations of the study was the length
(number of time points), quantity (number of subjects),
sampling rate (repetition time), and the homogeneity of
these parameters across conditions of the fMRI-BOLD
data. Ezaki et al. (2017) [20] state that the accuracy of
the pseudo-likelihood maximisation (used to extract J)
is proportional to tmax/2

N . Their argument was based
on the probability that each of the 2N possible activity
patterns appears compared between the empirical data
and the estimated spin model. This suggests that the
accuracy for the individual J was low due to the limited
data length to accommodate for N = 84 parcels. In our
study, the sparsity parameter was introduced to be able
to work with shorter data by forcing the matrix to be
sparse. With sparsity, we control the noise in the estima-
tion, but we ”bias” the result (to lower sparsity), which
may be correct or not. Hence, further work should assess
the validity of this prior, and the minimum data length
required to get a robust J . In this study, the criteria to
accept the J matrix was based on the correlation with
the original binarised FC.

A limitation regarding the Metropolis simulations to
determine the critical temperature for each J , was that
we did not build a theoretical phase diagram for J based
on its mean µ and standard deviation σstd as Ezaki et al.
(2020) [21] did in their study. They did this by defin-

ing Jij = (Ĵij − µ̂)σstd

σ̂std
+ µ (where µ̂ and σ̂std are de-

termined from the data) and then exploring the phase
space (with the calculation of the magnetisation, suscep-
tibility etc.) varying σstd and µ (in their work T = 1 al-
ways). Using higher resolution and longer data, sparser
J matrices can be obtained (as we did with the origi-
nal AD data, see Figure 20), and each subject could be
located on the phase diagram simply by using their J
mean and standard deviation. This would give a more
complete picture of the position of each J in the phase
diagram. In Ezaki et al. (2020) [21] they state that
subjects with lower σstd(J) (at a fixed J mean) are
closer to the ferromagnetic-paramagnetic phase transi-
tion, whereas the paramagnetic-spin-glass transition hap-
pens for higher σstd(J) (at a fixed J mean). In our study,
even after downsampling, we found that there was a sta-
tistically significant (p = 0.0039) difference between the
standard deviation of J , σstd(J), across conditions, with
the HC σstd(J) being higher than in AD. The same trend
was observed for their means, although this was not sta-
tistically significant. The results depended on the spar-
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sity value (set to 0.1 in the whole study), which affected
the standard deviation of J (higher sparsity gives lower
standard deviation) — which changes the critical tem-
perature. However, AD always had a lower critical tem-
perature than HC.

V. CONCLUSIONS

In the first part of this thesis, pseudo-likelihood max-
imisation based on formalism from the Sherrington-
Kirkpatrick spin-glass model was used to extract cou-
pling matrices J from fMRI-BOLD data acquired from
elderly subjects diagnosed with AD and healthy controls.
Comparing the J from the AD and healthy subjects, the
main and most robust result was the decrease in homo-
topic connectivity in the AD J (p = 0.0496 with indi-
vidual subject data), which agrees with other studies on
the inter-hemispheric and homotopic connectivity disrup-
tion in AD. Also, the difference between the HC and AD
J ’s standard deviation values was statistically significant
(p = 0.0039). Further statistical analysis, e.g., bootstrap-
ping and leave-one-out methods, may be employed in fu-
ture work to assess the robustness of these results. Also,
these results depended on the sparsity value, apart from
homotopic connections which were consistently higher in
HC for both J and binFC. A more thorough optimisa-
tion of the sparsity value should also be conducted. In
this study, the value was adjusted to balance the correla-
tion of J with both binarised FC and the dMRI-derived
connectome. Additionally, some of the brain areas with
the highest change in J between HC and AD (subcorti-
cal, frontal and temporal areas) seemed relevant in the
literature on FC changes in AD.

In the second part of this thesis, the spin-glass systems
(defined by the average J ’s specific to the condition) were
simulated with the Metropolis algorithm at different sys-
tem temperatures to assess the presence of phase transi-
tions, the type of criticality and the critical temperature,
for every condition. The main result was that the simu-
lations of the spin lattice using the AD J showed a lower
critical temperature than those with the healthy J . We
hypothesise that both the AD and HC spin lattices un-
derwent a phase transition from the ferromagnetic to the
paramagnetic states (due to the changes in magnetisa-
tion, spin overlap and susceptibility). This may mean
that the AD state is closer to the transition with the
paramagnetic (disordered) state than the HC state, with
weaker connections between parcels. However, a more
thorough investigation of the phase space of J should
be carried out in future work to shed more light on the
criticality findings.

Generally, the J coupling matrix seems to capture
structural features and homotopic connections, and it
could be used as a synthetic brain connectome when
dMRI data is unavailable. The data length (after down-
sampling and trimming) influenced the results when
analysing individual datasets. The fit of the coupling ma-

trix improved when constructing an average model that
combined all data by condition. However, longer data se-
quences are necessary for the pseudo-likelihood approx-
imation to be valid, as the accuracy is proportional to
tmax/2

N [20].
Future work includes conducting a criticality analysis

based on longer individual data by using the Metropo-
lis algorithm, along with implementing parallel temper-
ing. Additionally, we could test the pipeline with other
HC fMRI-BOLD data, particularly those with acquisi-
tion parameters similar to the AD data. It is also impor-
tant to compare pre- and post-stimulation data from the
Neurotwin clinical trial to determine if post-stimulation
features shift towards those of a healthy state. Another
key step involves comparing the J coupling matrix to
positron emission tomography (PET) maps once they be-
come available for AD patients. PET data is also very
valuable in AD as it shows the accumulation of proteins
(amyloid beta and tau) associated with the presence of
the disease [80]. It may be interesting to check the corre-
lation between J and the PET maps, as the protein ag-
glomerations could potentially disrupt connectivity be-
tween brain regions. To improve the statistical analy-
sis, we should consider using data from more subjects
(this was limited due to time constraints), bootstrapping
methods, and repeating the analysis leaving out part of
the sample. Network analysis on J could also be interest-
ing. This would involve assigning parcels to main brain
networks to check the overall difference from HC to AD
in these networks. Finally, we plan to examine struc-
tural changes from MRI, such as parcel size changes due
to atrophy and check how this affects the percentage of
functional signals in a brain region.
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Appendix A: fMRI-BOLD acquisition parameters

The fMRI-BOLD scan parameters, specifically repetition time and number of time points, are shown for each
subject in Table II.

ID Repetition Time (s) Time points
AD 7 1.0 487
AD 4 1.0 487
AD 8 1.0 487
AD 9 1.0 487
AD 10 1.0 487
AD 14 1.0 487
AD 15 1.0 487
AD 6 1.0 487
AD 3 1.0 487
AD 16 1.0 487
AD 18 1.0 487
AD 25 1.0 487
AD 29 1.0 487
AD 30 1.0 487
AD 31 1.0 487
AD 1 1.0 487
AD 2 1.0 487
HC 58 3.0 196
HC 9 3.0 196
HC 59 3.0 199
HC 63 3.0 196
HC 13 3.0 139
HC 14 3.0 139
HC 4 3.0 139
HC 18 0.6 975
HC 62 3.0 199
HC 17 0.6 975
HC 24 3.0 196
HC 60 3.0 196
HC 26 3.0 199
HC 3 3.0 139
HC 61 3.0 196

TABLE II: fMRI scan parameters for all subjects.
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Appendix B: Desikan84 Parcellation Scheme

Table B shows the Desikan84 parcellation scheme. ’LH’ and ’RH’ stand respectively for left and right hemispheres,
and ’Idx’ is the parcel index.

Idx LH Parcel Idx RH Parcel
0 LH Banks STS 42 RH Cerebellum
1 LH Caudal Anterior Cingulate 43 RH Accumbens
2 LH Caudal Middle Frontal 44 RH Amygdala
3 LH Cuneus 45 RH Hippocampus
4 LH Entorhinal 46 RH Pallidum
5 LH Fusiform 47 RH Putamen
6 LH Inferior Parietal 48 RH Caudate
7 LH Inferior Temporal 49 RH Thalamus
8 LH Isthmus Cingulate 50 RH Insula
9 LH Lateral Occipital 51 RH Transverse Temporal
10 LH Lateral Orbito Frontal 52 RH Temporal Pole
11 LH Lingual 53 RH Frontal Pole
12 LH Medial Orbito Frontal 54 RH Supra Marginal
13 LH Middle Temporal 55 RH Superior Temporal
14 LH Parahippocampal 56 RH Superior Parietal
15 LH Paracentral 57 RH Superior Frontal
16 LH Pars Opercularis 58 RH Rostral Middle Frontal
17 LH Pars Orbitalis 59 RH Rostral Anterior Cingulate
18 LH Pars Triangularis 60 RH Precuneus
19 LH Pericalcarine 61 RH Precentral
20 LH Postcentral 62 RH Posterior Cingulate
21 LH Posterior Cingulate 63 RH Postcentral
22 LH Precentral 64 RH Pericalcarine
23 LH Precuneus 65 RH Pars Triangularis
24 LH Rostral Anterior Cingulate 66 RH Pars Orbitalis
25 LH Rostral Middle Frontal 67 RH Pars Opercularis
26 LH Superior Frontal 68 RH Paracentral
27 LH Superior Parietal 69 RH Parahippocampal
28 LH Superior Temporal 70 RH Middle Temporal
29 LH Supra Marginal 71 RH Medial Orbito Frontal
30 LH Frontal Pole 72 RH Lingual
31 LH Temporal Pole 73 RH Lateral Orbito Frontal
32 LH Transverse Temporal 74 RH Lateral Occipital
33 LH Insula 75 RH Isthmus Cingulate
34 LH Thalamus 76 RH Inferior Temporal
35 LH Caudate 77 RH Inferior Parietal
36 LH Putamen 78 RH Fusiform
37 LH Pallidum 79 RH Entorhinal
38 LH Hippocampus 80 RH Cuneus
39 LH Amygdala 81 RH Caudal Middle Frontal
40 LH Accumbens 82 RH Caudal Anterior Cingulate
41 LH Cerebellum 83 RH Banks STS

TABLE III: Desikan84 parcellation scheme with indices.
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Appendix C: J coupling matrices for data with original fMRI-BOLD scan parameters

Here are the J coupling matrices (upper triangle) and binarised FC (lower triangle) for AD (Figure 20) and HC
subjects (Figure 21), from the data with original scan parameters.

FIG. 20: J coupling matrices (upper triangle) and binarised FC (lower triangle) for individual original AD data.
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FIG. 21: J coupling matrices (upper triangle) and binarised FC (lower triangle) for individual original HC data.

Appendix D: J coupling matrices for down-sampled and truncated data

Here are the J coupling matrices (upper triangle) and binarised FC (lower triangle) for AD (Figure 22) and HC
subjects (Figure 23), from the down-sampled and cut data.
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FIG. 22: J coupling matrices (upper triangle) and binarised FC (lower triangle) for individual down-sampled AD data.
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FIG. 23: J coupling matrices (upper triangle) and binarised FC (lower triangle) for individual down-sampled HC data.
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Appendix E: Average J and binarised FC difference from HC to AD with brain parcel names

Figures 24 and 25 show respectively the relative difference in J and the binarised FC from HC to AD. Parcels with
a change higher than 70% of maximum change (in absolute value) were highlighted and labelled.

FIG. 24: Difference HC - AD in J coupling matrices. Brain parcels were highlighted if the change was higher than 70% of
maximum change (in absolute value).
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FIG. 25: Difference HC - AD in binarised FC. Brain parcels were highlighted if the change was higher than 70% of maximum
change (in absolute value).
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