
DATA NOTE

The genome sequence of Cory’s shearwater, Calonectris 

borealis (Cory, 1881) [version 1; peer review: awaiting peer 

review]

Guillem Izquierdo Arànega0, Joan Ferrer Obiol 0, Raül Ramos Garcia 0, 
Marta Riutort León0, Julio Rozas Liras 0, Jacob González-Solís Bou 0, 
Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory 
team,  
Wellcome Sanger Institute Scientific Operations: Sequencing Operations, 
Wellcome Sanger Institute Tree of Life Core Informatics team, 
Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

First published: 12 Nov 2024, 9:678  
https://doi.org/10.12688/wellcomeopenres.23354.1
Latest published: 12 Nov 2024, 9:678  
https://doi.org/10.12688/wellcomeopenres.23354.1

v1

 
Abstract 
We present a genome assembly from an individual female Calonectris 
borealis (Cory’s shearwater; Chordata; Aves; Procellariiformes; 
Procellariidae). The haplotype-resolved assembly contains two 
haplotypes with total lengths of 1,366.19 megabases and 1,211.47 
megabases, respectively. Most of the assembly for haplotype 1 is 
scaffolded into 41 chromosomal pseudomolecules, including the Z 
and W sex chromosomes. Haplotype 2 has 39 autosomes. The 
mitochondrial genome has also been assembled and is 19.95 
kilobases in length.
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Species taxonomy
Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria;  
Deuterostomia; Chordata; Craniata; Vertebrata; Gnathostomata; 
Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomor-
pha; Tetrapoda; Amniota; Sauropsida; Sauria; Archelosauria;  
Archosauria; Dinosauria; Saurischia; Theropoda; Coelurosauria; 
Aves; Neognathae; Neoaves; Aequornithes; Procellariiformes;  
Procellariidae; Calonectris; Calonectris borealis (Cory, 1881) 
(NCBI:txid1323832).

Background
The Cory’s shearwater (Calonectris borealis) (Figure 1a) is 
a medium-sized pelagic seabird that acts as an apex predator 
across the temperate Atlantic Ocean. The species breeds colo-
nially on sea cliffs of islands and islets in the Macaronesian 
archipelagos: the Canary Islands, Madeira, and the Azores. 
There are also smaller colonies on islets off the coast of the  
Iberian Peninsula (del Hoyo et al., 2020). After breeding, 
most populations embark on a trans-equatorial migration to 
the Southern Hemisphere, where they winter off the coast 
of Africa and South America, primarily on the Benguela,  
Agulhas and Brazil currents (De Felipe et al., 2019). In the  
UK, the species is a regular migrant during late summer (July  
to October), mostly off headlands in south-western England.

During the breeding period, from March to October, Cory’s 
shearwaters visit their colonies at night. These monogamous 
birds raise a single chick in underground burrows and caves 
(Figure 1b). When at sea, the species wanders over oceanic  
waters near the continental shelf, where it feeds on pelagic fish  
and cephalopods (Brooke, 2004).

During the last decades, the species has suffered population 
declines in several colonies linked to anthropogenic activities 
(Fontaine et al., 2011). In their breeding colonies, shearwaters 
are particularly vulnerable to predation by introduced rats 
and cats, and at sea, they are impacted by fisheries bycatch  
(Soriano-Redondo et al., 2016), which kills hundreds of  
thousands of seabirds globally each year through incidental 
capture (Dias et al., 2019). In addition, during the 20th  
century, the species faced a serious threat from poaching for 
its meat and down, with some colonies recording the harvesting 
of up to 12,000 birds per year (Lopez-Darias et al., 2011). More  
recently, collisions caused by light pollution in coastal areas 
have become an important concern (Rodríguez et al., 2022). 
Despite its vulnerability to these threats and its unknown  
demographic trends, the species is listed as Least Concern by the  
IUCN Red List.

The Cory’s shearwater is a model species for studies on move-
ment ecology and seabird migration (González-Solís et al., 
2007; Ramos & González-Solís, 2012). Specifically, these stud-
ies have elucidated the differences in migratory behaviour 
between the Cory’s shearwater and its sister taxon, the Scopoli’s 
shearwater (C. diomedea). These two species occasionally  
hybridise in the Western Mediterranean (De Felipe et al., 2019; 
Gómez-Díaz et al., 2009). The generation of a chromosome-
level reference genome for the species is a key step for combin-
ing genomic data with large tracking databases to investigate 
the genetic basis for the differences in migratory behaviour 
among Cory’s shearwater populations and between closely 
related species. It may also enable further whole-genome  
resequencing studies to characterise hybridisation pat-
terns across the contact zone between Cory’s and Scopoli’s  
shearwaters.

Genome sequence report
The genome of a female Calonectris borealis was sequenced 
using Pacific Biosciences single-molecule HiFi long reads, 
generating a total of 83.84 Gb (gigabases) from 6.46 million 
reads, providing approximately 66-fold coverage. Primary  
assembly contigs were scaffolded with chromosome confor-
mation Hi-C data, which produced 68.13 Gb from 451.21  
million reads. Specimen and sequencing details are provided  
in Table 1.

Both haplotypes were combined for assembly. Manual assem-
bly curation corrected 115 missing joins or mis-joins, increas-
ing the assembly length by 4.2% and reducing the scaffold  
number by 6.08%.

The final assembly for haplotype 1 has a total length of 
1,366.20 Mb in 354 sequence scaffolds, with 525 gaps, and 
a scaffold N50 of 86.0 Mb (Table 2). The snail plot in Figure 2  
provides a summary of the assembly statistics, while the  
distribution of assembly scaffolds on GC proportion and  
coverage is shown in Figure 3. The cumulative assembly plot 
in Figure 4 shows curves for subsets of scaffolds assigned  
to different phyla. Most (95.07%) of the assembly sequence 
was assigned to 41 chromosomal-level scaffolds, representing 
39 autosomes and the Z and W sex chromosomes.  

Figure 1. (a) Adult Cory’s shearwater approaching the breeding 
colony of Selvagens Islands (Portugal) at sunset. Credit: Raül Ramos. 
(b) A recently hatched chick and one of its parents in a burrow on 
the colony of Veneguera, Gran Canaria (Spain). The specimen used 
for the genome assembly was sampled in the same colony. Credit: 
Raül Ramos.
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Chromosome-scale scaffolds confirmed by the Hi-C data are 
named in order of size (Figure 5; Table 3). The mitochondrial 
genome was also assembled and can be found as a  
contig within the multifasta file of the genome submission.

Haplotype 2 was also assembled to chromosome level, with 
a total length of 1,211.47 Mb in 281 sequence scaffolds, 
with a scaffold N50 of 86.7 Mb (Table 2). Both sex chromo-
somes were submitted as part of the haplotype 1 assembly,  
following the INSDC convention.

The estimated Quality Value (QV) of the haplotype 1 assem-
bly is 66.4 with k-mer completeness of 100.0%. For haplo-
type 2, the estimated Quality Value (QV) of the final assembly 
is 66.6 with k-mer completeness of 100.0%. BUSCO (v5.4.3) 
analysis using the vertebrata_odb10 reference set (n = 8,338),  
indicated a completeness of 97.3% (single = 95.9%,  
duplicated = 1.4%) for haplotype 1, while the haplotype 2  
assembly has a BUSCO v5.4.3 completeness of 93.0% (single = 
92.7%, duplicated = 0.3%).

Metadata for specimens, BOLD barcode results, spectra  
estimates, sequencing runs, contaminants and pre-curation 
assembly statistics are given at https://links.tol.sanger.ac.uk/spe-
cies/1323832.

Methods
Sample acquisition
Blood was sampled from an adult female Cory’s shearwater 
(specimen ID SAN00002916; ToLID bCalBor7) from the 
colony of Veneguera, Gran Canaria (Spain) on 2022-10-13. 
The blood sample was collected from the bird’s leg using a  
1 ml syringe and stored in a 2 ml vial with 100% ethanol in a  
refrigerator. The sample was transferred to a –80 °C freezer 
upon arrival at the Universitat de Barcelona, five days 
later. The specimen was collected and identified by Jacob  
González-Solís.

Nucleic acid extraction
The workflow for high molecular weight (HMW) DNA extrac-
tion at the Wellcome Sanger Institute (WSI) Tree of Life Core 
Laboratory includes a sequence of core procedures: sample 
preparation and homogenisation, DNA extraction, fragmen-
tation and purification. Detailed protocols are available on  
protocols.io (Denton et al., 2023c).

The bCalBor7 blood sample was prepared for DNA extrac-
tion on dry ice (Jay et al., 2023), and was homogenised using 
a PowerMasher II tissue disruptor (Denton et al., 2023a). 
HMW DNA was extracted using the Manual Nucleated Blood 
Nanobind® protocol (Denton et al., 2023b). DNA was sheared 

Table 1. Specimen and sequencing data for Calonectris borealis.

Project information

Study title Calonectris borealis (Cory’s shearwater)

Umbrella BioProject PRJEB75561

Species Calonectris borealis

BioSample SAMEA114294356

NCBI taxonomy ID 1323832

Specimen information

Technology ToLID BioSample 
accession

Organism part

PacBio long read sequencing bCalBor7 SAMEA114294382 Blood

Hi-C sequencing bCalBor7 SAMEA114294382 Blood

Sequencing information

Platform Run 
accession

Read count Base count (Gb)

Hi-C Illumina NovaSeq 6000 ERR13093660 8.18e+08 123.5

Hi-C Illumina NovaSeq X ERR13093661 4.51e+08 68.13

PacBio Sequel IIe ERR13071485 2.93e+05 2.55

PacBio Revio ERR13071484 6.46e+06 83.84
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into an average fragment size of 12–20 kb in a Megaruptor  
3 system (Bates et al., 2023). Sheared DNA was purified by 
solid-phase reversible immobilisation, using AMPure PB 
beads to eliminate shorter fragments and concentrate the 
DNA (Oatley et al., 2023). The concentration of the sheared  
and purified DNA was assessed using a Nanodrop spectro-
photometer and Qubit Fluorometer using the Qubit dsDNA  
High Sensitivity Assay kit. Fragment size distribution was  
evaluated by running the sample on the FemtoPulse system.

Hi-C preparation
The bCalBor7 blood sample was processed at the WSI Sci-
entific Operations core, using the Arima-HiC v2 kit. In brief, 
frozen tissue (stored at –80 °C) was fixed, and the DNA 
crosslinked using a TC buffer with 22% formaldehyde. After 
crosslinking, the tissue was homogenised using the Diagnocine 
Power Masher-II and BioMasher-II tubes and pestles. Following 

the kit manufacturer’s instructions, crosslinked DNA was 
digested using a restriction enzyme master mix. The 5’-overhangs 
were then filled in and labelled with biotinylated nucleotides 
and proximally ligated. An overnight incubation was carried 
out for enzymes to digest remaining proteins and for crosslinks 
to reverse. A clean up was performed with SPRIselect beads  
prior to library preparation.

Library preparation and sequencing
Library preparation and sequencing were performed at the 
WSI Scientific Operations core. Pacific Biosciences HiFi cir-
cular consensus DNA sequencing libraries were prepared 
using the PacBio Express Template Preparation Kit v2.0  
(Pacific Biosciences, California, USA) as per the manufacturer’s 
instructions. The kit includes the reagents required for removal  
of single-strand overhangs, DNA damage repair, end repair/
A-tailing, adapter ligation, and nuclease treatment. Library 

Table 2. Genome assembly data for Calonectris borealis, haplotype 1 and haplotype 2.

Genome assembly Haplotype 1 Haplotype 2

Assembly name bCalBor7.hap1.2 bCalBor7.hap2.2

Assembly accession GCA_964195595.2 GCA_964196065.2

Assembly level chromosome chromosome

Span (Mb) 1,366.19 1,211.47

Number of contigs 879 759

Number of scaffolds 354 281

Longest scaffold (Mb) 221.11 220.95

Assembly metrics 
(Benchmark)*

Haplotype 1 Haplotype 2

Contig N50 length  
(≥ 1 Mb)

4.1 Mb 4.1 Mb

Scaffold N50 length  
(= chromosome N50)

86.0 Mb 86.7 Mb

Consensus quality (QV) (≥ 40) 66.4 66.6

k-mer completeness (≥ 95%) 100.0% 100.0%

BUSCO**  
(S > 90%; D < 5%)

C:97.3%[S:95.9%,D:1.4%], 
F:0.5%,M:2.2%,n:8,338

C:93.0%[S:92.7%,D:0.3%], 
F:0.5%,M:6.5%,n:8,338

Percentage of assembly mapped to 
chromosomes (≥ 90%)

95.07% 94.91%

Sex chromosomes (localised 
homologous pairs)

W and Z

Organelles  
(one complete allele)

Mitochondrial genome: 
19.95 kb

* Assembly metric benchmarks are adapted from Rhie et al. (2021) and the Earth BioGenome Project 
Report on Assembly Standards September 2024.

** BUSCO scores based on the vertebrata_odb10 BUSCO set using version 5.4.3. C = complete [S = single 
copy, D = duplicated], F = fragmented, M = missing, n = number of orthologues in comparison.
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preparation also included a library purification step using 
0.8X AMPure PB beads and a size selection step to remove  
templates < 3 kb using AMPure PB modified SPRI. Samples 
were sequenced using the Sequel IIe system (Pacific Biosciences,  
California, USA). The concentration of the library loaded onto 
the Sequel IIe was within the manufacturer’s recommended  
loading concentration range of 40–100 pM. The SMRT link  

software, a PacBio web-based end-to-end workflow manager,  
was used to set-up and monitor the run, as well as perform  
primary and secondary analysis of the data upon completion.

Pacific Biosciences SMRTbell libraries were also constructed 
using the Revio HiFi prep kit, according to the manufactur-
ers’ instructions, and DNA sequencing was performed by the  

Figure 2. Genome assembly of Calonectris borealis, bCalBor7.hap1.2: metrics. The BlobToolKit snail plot shows N50 metrics and 
BUSCO gene completeness. The main plot is divided into 1,000 bins around the circumference with each bin representing 0.1% of the 
1,366,205,003 bp assembly. The distribution of sequence lengths is shown in dark grey with the plot radius scaled to the longest sequence 
present in the assembly (221,108,703 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 sequence lengths (86,023,716 
and 9,973,482 bp), respectively. The pale grey spiral shows the cumulative sequence count on a log scale with white scale lines showing 
successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N 
percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the aves_
odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/GCA_
964195595.2/dataset/GCA_964195595.2/snail.
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Scientific Operations core at the WSI on a Pacific Biosciences 
Revio instrument.

For Hi-C library preparation, DNA was fragmented to a size of 
400 to 600 bp using a Covaris E220 sonicator. The DNA was 
then enriched, barcoded, and amplified using the NEBNext Ultra 
II DNA Library Prep Kit following manufacturers’ instruc-
tions. The Hi-C sequencing was performed using paired-end  

sequencing with a read length of 150 bp on an Illumina NovaSeq 
X instrument.

Genome assembly, curation and evaluation
Assembly
The HiFi reads were first assembled using Hifiasm (Cheng 
et al., 2021), which was run in the Hi-C phasing mode. 
The Hi-C reads were mapped to the primary contigs using  

Figure 3. Genome assembly of Calonectris borealis: Blot plot of base coverage in the raw data against GC proportion for 
sequences in bCalBor7.hap1.2. Sequences are coloured by phylum. Circles are sized in proportion to sequence length. Histograms show 
the distribution of sequence length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.
org/view/GCA_964195595.2/dataset/GCA_964195595.2/blob.
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bwa-mem2 (Vasimuddin et al., 2019). The contigs were further 
scaffolded using the provided Hi-C data (Rao et al., 2014) in  
YaHS (Zhou et al., 2023) using the --break option. The  
scaffolded assemblies were evaluated using Gfastats (Formenti  
et al., 2022), BUSCO (Manni et al., 2021) and MERQURY.FK 
(Rhie et al., 2020).

The mitochondrial genome was assembled using MitoHiFi 
(Uliano-Silva et al., 2023), which runs MitoFinder (Allio et al., 
2020) and uses these annotations to select the final mitochondrial  
contig and to ensure the general quality of the sequence.

Assembly curation
The assembly was decontaminated using the Assembly Screen 
for Cobionts and Contaminants (ASCC) pipeline (article in 
preparation). Flat files and maps used in curation were gener-
ated in TreeVal (Pointon et al., 2023). Manual curation was 
primarily conducted using PretextView (Harry, 2022), with  
additional insights provided by JBrowse2 (Diesh et al., 2023) 
and HiGlass (Kerpedjiev et al., 2018). Scaffolds were visu-
ally inspected and corrected as described by Howe et al. (2021). 
Any identified contamination, missed joins, and mis-joins were 
corrected, and duplicate sequences were tagged and removed.  

Figure 4. Genome assembly of Calonectris borealis bCalBor7.hap1.2: BlobToolKit cumulative sequence plot. The grey line shows 
cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes 
taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/GCA_964195595.2/dataset/GCA_
964195595.2/cumulative.
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Table 3. Chromosomal pseudomolecules in both haplotypes of the 
genome assembly of Calonectris borealis, bCalBor7.

Haplotype 1 Haplotype 2

INSDC 
accession

Name Length 
(Mb)

GC% INSDC 
accession

Name Length 
(Mb)

GC%

OZ077811.1 1 221.11 41 OZ077772.1 1 220.95 41

OZ077812.1 2 171.79 41 OZ077773.1 2 171.96 41

OZ077813.1 3 129.33 41 OZ077774.1 3 129.08 41

OZ077814.1 4 86.02 40.5 OZ077775.1 4 86.67 40.5

OZ077815.1 5 52.55 42.5 OZ077776.1 5 52.33 42

OZ077817.1 6 44.95 42 OZ077777.1 6 44.82 42

OZ077816.1 7 44.82 42.5 OZ077778.1 7 44.93 42.5

OZ077818.1 8 40.15 42.5 OZ077779.1 8 39.28 42

OZ077819.1 9 30.47 43 OZ077780.1 9 30.59 43

OZ077820.1 10 27.21 44 OZ077781.1 10 27.8 44

OZ077821.1 11 26.25 43.5 OZ077782.1 11 26.13 43.5

Figure 5. Genome assembly of Calonectris borealis bCalBor7.hap1.2: Hi-C contact map of the bCalBor7.hap1.2 assembly, 
visualised using HiGlass. Chromosomes are shown in order of size from left to right and top to bottom. An interactive version of this 
figure may be viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=AejNTOCAQHGrm7r429cL-A.
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The curation process is documented at https://gitlab.com/wtsi- 
grit/rapid-curation (article in preparation).

Evaluation of the final assembly
The final assembly was post-processed and evaluated 
using the three Nextflow (Di Tommaso et al., 2017) DSL2  

pipelines: sanger-tol/readmapping (Surana et al., 2023a), sanger-
tol/genomenote (Surana et al., 2023b), and sanger-tol/blob-
toolkit (Muffato et al., 2024). The readmapping pipeline aligns 
the Hi-C reads using bwa-mem2 (Vasimuddin et al., 2019) and  
combines the alignment files with SAMtools (Danecek 
et al., 2021). The genomenote pipeline converts the Hi-C  

Haplotype 1 Haplotype 2

INSDC 
accession

Name Length 
(Mb)

GC% INSDC 
accession

Name Length 
(Mb)

GC%

OZ077823.1 12 25.22 43 OZ077783.1 12 25.06 43

OZ077822.1 13 24.83 43.5 OZ077784.1 13 25.1 43.5

OZ077825.1 14 23.81 43 OZ077785.1 14 22.8 43

OZ077824.1 15 23.79 45 OZ077786.1 15 23.46 45

OZ077826.1 16 21.86 45.5 OZ077787.1 16 21.99 45.5

OZ077827.1 17 18.31 46 OZ077788.1 17 18.21 46

OZ077828.1 18 17.53 46 OZ077789.1 18 17.48 46

OZ077829.1 19 15.47 47 OZ077790.1 19 15.47 47

OZ077830.1 20 14.89 47 OZ077791.1 20 14.91 47

OZ077831.1 21 13.17 48 OZ077792.1 21 13.02 48

OZ077832.1 22 11.06 50.5 OZ077793.1 22 10.99 51

OZ077833.1 23 9.97 47 OZ077794.1 23 9.9 46.5

OZ077834.1 24 9.17 49 OZ077795.1 24 9.0 49

OZ077835.1 25 8.84 50 OZ077796.1 25 8.81 50

OZ077836.1 26 8.73 51.5 OZ077797.1 26 7.82 51.5

OZ077837.1 27 7.81 49 OZ077798.1 27 7.02 48.5

OZ077838.1 28 6.86 53 OZ077799.1 28 6.7 52.5

OZ077840.1 29 5.1 57 OZ077800.1 29 4.73 57.5

OZ077839.1 30 4.59 56.5 OZ077801.1 30 4.98 57.5

OZ077841.1 31 1.79 62.5 OZ077802.1 31 1.5 63.5

OZ077843.1 32 1.34 62.5 OZ077803.1 32 1.15 64

OZ077842.1 33 1.2 62 OZ077804.1 33 1.27 62.5

OZ077846.1 34 0.96 68 OZ077805.1 34 0.72 67

OZ077844.1 35 0.93 63.5 OZ077806.1 35 0.83 64

OZ077845.1 36 0.73 64.5 OZ077807.1 36 0.74 63.5

OZ077847.1 37 0.71 66.5 OZ077808.1 37 0.6 66.5

OZ077848.1 38 0.63 62.5 OZ077809.1 38 0.55 63

OZ077849.1 39 0.51 65.5 OZ077810.1 39 0.47 65

OZ122107.1 W 56.73 44.5

OZ122106.1 Z 87.72 41

OZ077850.1 MT 0.02 42.5
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Table 4. Software tools: versions and sources.

Software tool Version Source

BEDTools 2.30.0 https://github.com/arq5x/bedtools2

BLAST 2.14.0 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

BlobToolKit 4.3.7 https://github.com/blobtoolkit/blobtoolkit

BUSCO 5.4.3 and 5.5.0 https://gitlab.com/ezlab/busco

bwa-mem2 2.2.1 https://github.com/bwa-mem2/bwa-mem2

Cooler 0.8.11 https://github.com/open2c/cooler

DIAMOND 2.1.8 https://github.com/bbuchfink/diamond

fasta_windows 0.2.4 https://github.com/tolkit/fasta_windows

FastK 427104ea91c78c3b8b8b49f1a7d6bbeaa869ba1c https://github.com/thegenemyers/FASTK

Gfastats 1.3.6 https://github.com/vgl-hub/gfastats

GoaT CLI 0.2.5 https://github.com/genomehubs/goat-cli

Hifiasm 0.19.8-r603 https://github.com/chhylp123/hifiasm

HiGlass 44086069ee7d4d3f6f3f0012569789ec138f42b84
aa44357826c0b6753eb28de

https://github.com/higlass/higlass

Merqury.FK d00d98157618f4e8d1a9190026b19b471055b22e https://github.com/thegenemyers/MERQURY.FK

MitoHiFi 3 https://github.com/marcelauliano/MitoHiFi

MultiQC 1.14, 1.17, and 1.18 https://github.com/MultiQC/MultiQC

NCBI Datasets 15.12.0 https://github.com/ncbi/datasets

Nextflow 23.04.0-5857 https://github.com/nextflow-io/nextflow

samtools 1.16.1, 1.17, and 1.18 https://github.com/samtools/samtools

sanger-tol/ascc - https://github.com/sanger-tol/ascc

sanger-tol/genomenote 1.1.1 https://github.com/sanger-tol/genomenote

sanger-tol/readmapping 1.2.1 https://github.com/sanger-tol/readmapping

alignments into a contact map using BEDTools (Quinlan &  
Hall, 2010) and the Cooler tool suite (Abdennur & Mirny, 2020). 
The contact map is visualised in HiGlass (Kerpedjiev et al., 
2018). This pipeline also generates assembly statistics using 
the NCBI datasets report (Sayers et al., 2024), computes k-mer  
completeness and QV consensus quality values with FastK  
and MERQURY.FK, and runs BUSCO (Manni et al., 2021)  
to assess completeness.

The blobtoolkit pipeline is a Nextflow port of the previous 
Snakemake Blobtoolkit pipeline (Challis et al., 2020). It aligns 
the PacBio reads in SAMtools and minimap2 (Li, 2018) and 
generates coverage tracks for regions of fixed size. In parallel, 
it queries the GoaT database (Challis et al., 2023) to identify 
all matching BUSCO lineages to run BUSCO (Manni et al., 
2021). For the three domain-level BUSCO lineages, the pipeline 
aligns the BUSCO genes to the UniProt Reference Proteomes 
database (Bateman et al., 2023) with DIAMOND (Buchfink 
et al., 2021) blastp. The genome is also split into chunks 
according to the density of the BUSCO genes from the closest 

taxonomic lineage, and each chunk is aligned to the UniProt Ref-
erence Proteomes database with DIAMOND blastx. Genome 
sequences without a hit are chunked with seqtk and aligned to 
the NT database with blastn (Altschul et al., 1990). The blobtools  
suite combines all these outputs into a blobdir for visualisation.

The genome assembly and evaluation pipelines were developed 
using nf-core tooling (Ewels et al., 2020) and MultiQC (Ewels 
et al., 2016), relying on the Conda package manager, the  
Bioconda initiative (Grüning et al., 2018), the Biocontainers 
infrastructure (da Veiga Leprevost et al., 2017), as well as  
the Docker (Merkel, 2014) and Singularity (Kurtzer et al.,  
2017) containerisation solutions.

Table 4 contains a list of relevant software tool versions  
and sources.

Wellcome Sanger Institute – Legal and Governance
The materials that have contributed to this genome note 
have been supplied by a Darwin Tree of Life Partner. The  
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Software tool Version Source

Seqtk 1.3 https://github.com/lh3/seqtk

Singularity 3.9.0 https://github.com/sylabs/singularity

TreeVal 1.0.0 https://github.com/sanger-tol/treeval

YaHS 1.2a.2 https://github.com/c-zhou/yahs

submission of materials by a Darwin Tree of Life Partner is  
subject to the ‘Darwin Tree of Life Project Sampling Code 
of Practice’, which can be found in full on the Darwin Tree of  
Life website here. By agreeing with and signing up to the 
Sampling Code of Practice, the Darwin Tree of Life Partner 
agrees they will meet the legal and ethical requirements and  
standards set out within this document in respect of all samples 
acquired for, and supplied to, the Darwin Tree of Life Project.

Further, the Wellcome Sanger Institute employs a process 
whereby due diligence is carried out proportionate to the nature 
of the materials themselves, and the circumstances under 
which they have been/are to be collected and provided for use. 
The purpose of this is to address and mitigate any potential  
legal and/or ethical implications of receipt and use of the  
materials as part of the research project, and to ensure that in 
doing so we align with best practice wherever possible. The  
overarching areas of consideration are:

•    Ethical review of provenance and sourcing of the material

•     Legality of collection, transfer and use (national and  
international)

Each transfer of samples is further undertaken according to a 
Research Collaboration Agreement or Material Transfer Agree-
ment entered into by the Darwin Tree of Life Partner, Genome 
Research Limited (operating as the Wellcome Sanger Insti-
tute), and in some circumstances other Darwin Tree of Life  
collaborators.

Data availability
European Nucleotide Archive: Calonectris borealis (Cory’s 
shearwater). Accession number PRJEB75561; https://identi-
fiers.org/ena.embl/PRJEB75561. The genome sequence is 

released openly for reuse. The Calonectris borealis genome 
sequencing initiative is part of the Darwin Tree of Life (DToL)  
project. All raw sequence data and the assembly have been depos-
ited in INSDC databases. The genome will be annotated using 
available RNA-Seq data and presented through the Ensembl 
pipeline at the European Bioinformatics Institute. Raw data  
and assembly accession identifiers are reported in Table 1 and 
Table 2.
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