
GRAU DE MATEMÀTIQUES

Treball final de grau

Spectral Methods For PDEs

César Colmenero Martinez

Director: Dr Angel Jorba

Realitzat a: Universitat de Barcelona

Barcelona, 10 de juny de 2024



Contents

Table of contents I

Abstract and Introduction II

1 Legendre Polynomials and applications 1
1.1 Basic facts about Legendre Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Weights and Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Orthogonal projections and other operators 15
2.1 Polynomial Approximations in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Polynomial Approximations in Hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Approximation by interpolation 25
3.1 Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Interpolation Operator errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Interpolation Operators in Hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Spectral-NI approximation of PDEs 33
4.1 The Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Implementation and Numerical examples 39

6 Some extensions to Complicated Geometries 42

7 Appendix 44
7.1 Polynomial Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 Coercivity and Lax-Milgram lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Interpolation spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Fractional Order Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography I

I



Abstract

The main goal of is to indruce the basic techniques and results of numerical analysis for spectral methods.
The required prerequisites to understand this text are basic knowledge of numerical methods, a introductory
course on PDEs, on Real and Functional analysis, and on Sobolev spaces. For instance, chapters 1-2 from
[Bre08] covers most of the necessary background on functional analysis and Sobolev spaces. A more thorough
treatment of those topics can be found in [Eva22] or [BB11]. As a refresher, we will include the most important
results in the Appendix.
We will study the basics of spectral methods for elliptic boundary value problems and briefly discuss possible
extension to more complicated geometries. Every method described will be implemented in MATLAB®.

In finite element methods, the approximation spaces are usually piecewise polynomials with a fixed degree
(normally linear or quadratic), and convergence is achieved by refining the mesh, in other words by h −→ 0
and convergence is usually O(h2). Moreover the linear systems obtained by the discretizations are usually very
large but sparse. The finite element method also has the advantage that it can be used for very complicated
geometries.

In spectral methods, convergence is achieved by having one (or more) fixed domain and increasing the
degree of polynomial approximation (by taking N −→ ∞). In this case, convergence depends on the regularity
of the solution. A typical result is that convergence is O(N−k) where the k depends on the smoothness of
the solution. When the solution is C∞, then convergence is spectrally fast : it is faster than O(N−k) for any
k ! Spectral methods are much faster when the solution is known to be very regular. In many applications
where the solution is known to be very regular and high precision is needed, spectral methods are very useful.
Spectral methods lead to dense matrices but since convergence is fast, good precision can be obtained with
small matrices. However, spectral methods are not as efficient when the solutions are not that regular, and the
extension to complicated geometries is more complicated to that of finite elements.

Other methods like the Spectral Element or Spectral - hp Finite element methods combine both approaches

Introduction

Some conventions:

• d will always denote the dimension we are working on

• Ω will always denote an bounded Lipschitz domain.

• Every function will be assumed to be (Lebesgue) measurable

• We denote by PN the space of polynomials in one variable of degree less or equal than N, and by PN(I)
the space of said polynomials restricted to an interval I.

• n, m, k, N, i, j always denote positive integers, and s, r nonegative real numbers. C or c always denote
positive constants. When we write, for instance, c = c(s), it means that the constant only depends on s.
We allow ourselves to constantly abuse notation by not renaming c when scaling the constant.



III

Our goal: We will restrict our attention to second-order linear elliptic boundary value problems. The prototyp-
ical elliptic operator is the Laplacian L = −∆ , where ∆ = ∑d

i=1
∂2

∂x2
i
. Our model equation is therefore Poisson’s

equation with homogeneous boundary conditions:

−∆u = f in Ω

u = 0 on ∂Ω
(1)

Once we have understood the convergence and implementation of the numerical method, one can move on to
more general elliptic operators and boundary conditions.

Multiplying the PDE 1 by any function v and integrating over Ω gives

−
∫

Ω
v∆u =

∫
Ω

f v

by taking v ∈ H1
0(Ω), supposing momentarily u ∈ H2(Ω) and integrating by parts the left-hand side we obtain∫

Ω
∇u∇v =

∫
Ω

f v

and by taking into account the Dirichlet conditions from 1 we have derived the variational formulation of 1:{
Find u ∈ H1

0(Ω) such that

a(u, v) = ( f , v) ∀v ∈ H1
0(Ω)

(2)

where a(u, v) =
∫

Ω ∇u∇v and ( f , v) =
∫

Ω f v
Observe that if f ∈ L2(Ω), then the above integrals are well defined and finite. Moreover, note that for

point-wise formulation 1 to hold a.e in Ω requires u to be two times (weakly) differentiable. However, the weak
formulation 2 only assumes u ∈ H1(Ω). In fact, many elliptic problems don’t have solutions in H2

However, the Lax-Milgram Lemma states that the problem in the variational formulation is unique, and its
easy to see that if the solution is u ∈ H2(Ω), then u satisfies −∆u = f a.e. in Ω.

The general strategy to approximate the PDE numerically will be to consider a finite dimensional space
Vh ⊂ H1

0(Ω) and attempt to solve 2 in Vh, that is{
Find uh ∈ Vh such that

a(uh, vh) = ( f , vh) ∀vh ∈ Vh
(3)
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Chapter 1

Legendre Polynomials and applications

1.1 Basic facts about Legendre Polynomials

We denote I = (−1, 1) our reference interval, chosen to obtain nice symmetric properties.
Suppose {pn}n is a basis for the space of polynomials P . Since P is dense in L2(a, b) we can write any

function v ∈ L2(a, b), as v = ∑∞
n=0 αn pn. A numerical approximation to u may be obtained by truncating the

series vN = ∑N
n=0 αn pn. If we take the basis {Ln}n to be orthogonal with respect to the L2(I) inner product, then

the inner product like that ones we need to compute in 3 become easy:

vN =
N

∑
n=0

αnLn, uN =
N

∑
n=0

βnLn then
∫ 1

−1
vN(t) uN(t) dt =

N

∑
n=0

αnβn||Ln||2L2(I)

Applications of orthogonal polynomials such as numerical integration or polynomial interpolation that
avoids the Runge’s phenomenon will be presented.

We recall that a weight is a function w : (−1, 1) −→ [0, ∞) such that∫ 1

−1
p(t) w(t) dt < ∞

for any polynomial p.
For each weight w, L2(I, w) denotes the inner product with respect to the measure dw = w(t)dt. From the

Gram-Schmidt process, we can construct a family of orthogonal polynomials with respect to that inner product,
and by imposing that leading coefficient is 1, the family is unique. We denote it by {qw

n }n≥0, where deg(qw
n ) = n.

The next statements are classic results and hold for a family orthogonal polynomials {qw
n }n=0,1,... with respect

to any weight.

• For any n, qw
n has n distinct zeros in (−1, 1)

• If n is even (resp. odd) then qw
n is an even (resp. odd) function (This is why we take I = (−1, 1) )

We now define the Legendre polynomials and describe their properties.

1



2 Legendre Polynomials and applications

Definition 1.1 (Legendre Polynomials). The Legendre polynomials {Ln}n is the (unique) family of orthogonal polyno-
mials with respect to the weight w ≡ 1 and such that

deg(Ln) = n, Ln(1) = 1, for all n = 0,1, . . .

We denote the leading coefficient of Ln by cn

The next formula is fundamental in the theory of Legendre polynomials.

Theorem 1.2 (Fundamental ODE). For all n ≥ 0, Ln satisfies

((1 − t2)L′
n)

′ = −n(n + 1)Ln (1.1)

Proof. First, note that (1 − t2)L′
n)

′ has degree n. If we integrate ((1 − t2)L′
n)

′ against any polynomial p ∈ Pn−1,
we see that (integrating by parts)∫ 1

−1
((1 − t2)L′

n)
′p(t) dt = −

∫ 1

−1
(1 − t2)L′

n(t)p′(t) dt =
∫ 1

−1
Ln(t)((1 − t2)p′)′ dt = 0

Because ((1 − t2)p′)′ has degree ≤ n − 1. So ((1 − t2)L′
n)

′ is orthogonal to Pn−1 and therefore we must have

((1 − t2)L′
n)

′ = λLn

for some λ ∈ R. The leading coefficient of (1 − t2)L′
n)

′ is −n(n + 1)cn, so we obtain that λ = −n(n + 1)

Some immediate consequences are

Corollary 1.3. The polynomials {L′
n}n form a family of orthogonal polynomials with respect to the weight w(t) = 1 − t2

∫ 1

−1
L′

n(t)L′
m(t)(1 − t2) dt = n(n + 1)

∫ 1

−1
Lm(t)Ln(t) dt (1.2)

and L′
n(1) =

n(n+1)
2

Theorem 1.4 (Rodrigues’ Formula).

Ln =
(−1)n

2nn!
· dn

dtn ((1 − t2)n) (1.3)

Remark 1.5. Before proving the formula, we expand dm

dtm ((1 − t2)n) for m ≤ n using Leibniz’s formula.

dm

dtm ((1 − t2)n) =
dm

dtm ((1 − t)n(1 + t)n) =
m

∑
k=0

(
m
k

)
dk

dtk (1 − t)n dm−k

dtm−k (1 + t)n

=
m

∑
k=0

(−1)k (n!)3

(k!)2((n − k)!)2 (1 − t)n−k(1 + t)k
(1.4)

So we see that dm

dtm ((1 − t2)n) vanishes at ±1 when m < n and its equal to (−1)n2nn! when t = 1 and m = n
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Proof.
Observe that dn

dtn ((1 − t2)n) is a polynomial of degree n. Integrating it against any polynomial p ∈ Pn−1 gives,

∫ 1

−1

dn

dtn ((1 − t2)n) p(t) dt = (−1)n
∫ 1

−1
(1 − t2)n dn

dtn p(t) dt = 0

where we have integrated by parts n times and used that dm

dtm ((1 − t2)n) vanishes at ±1 when m < n.
Therefore we must have that dn

dtn ((1 − t2)n) = λLn for some λ ∈ R. Computing both sides at t = 1 gives the
result.

Corollary 1.6. From Rodrigues’ formula we directly obtain

cn =
(2n)!

2n(n!)2

Corollary 1.7. Let 0 ≤ m ≤ N.
Then dm

dtm LN is orthogonal to PN−m with respect to the weight (1 − t2)m . So { dm

dtm Lj}j=m,...,N is family of orthogonal
polynomials with respect to the weight (1 − t2)m

Proof.
For any p ∈ PN−m∫ 1

−1

dn+m

dtn+m ((1 − t2)n) · p(t)(1 − t2)m dt = (−1)m
∫ 1

−1

dn

dtn ((1 − t2)n) · dm

dtm (p(t)(1 − t2)m) dt = 0

where we have used 1.5 and that dm

dtm (p(t)(1 − t2)m) has degree ≤ N

We now list some properties about Legendre Orthogonal polynomials which can be proven by elementary
techniques and the previous results:

Theorem 1.8 (Properties about Legendre Orthogonal polynomials).

1. For n ≥ 0, the L2 norm is given by ∫ 1

−1
Ln(t)2 dt =

1
n + 1/2

(1.5)

2. For any n > 0
(2n + 1)Ln = L′

n+1 − L′
n−1 (1.6)



4 Legendre Polynomials and applications

3. Legendre Iduction Formula

The family of Legendre polynomials can be computed by

L0(t) = 1, L1(t) = t

(n + 1)Ln+1(t) = (2n + 1)tLn(t)− nLn−1(t)
(1.7)

4.
nL′

n+1(t) = (2n + 1)tL′
n(t)− (n + 1)L′

n−1(t) (1.8)

5. Christoffel - Darboux formulas

For any x, y ∈ I
n−1

∑
j=0

(2n + 1)Lj(x)Lj(y) = n
Ln(x)Ln−1(y)− Ln(y)Ln−1(x)

x − y
(1.9)

and
n−1

∑
j=1

2j + 1
j(j + 1)

L′
j(x)L′

j(y) =
1
n

L′
n(x)L′

n−1(y)− L′
n(y)L′

n−1(x)
x − y

(1.10)

1.2 Quadrature

The inner products at 3 must be computed to obtain an approximate solution. Since computing integrals
analytically is costly and most times not possible, we must integrate numerically.

The goal of this section is to find nodes tj and weights wj so that the approximation

∫ 1

−1
f (t) dt =

N

∑
j=1

f (tj)wj

is as precise as possible. An approximation as above is called a quadrature.

Theorem 1.9. Let 0 ≤ m ≤ N. There exist

• A unique set of nodes ζm
j , 1 ≤ j ≤ N − m, in I

• A unique set of weights, wm
j , 1 ≤ j ≤ N − m,

such that the quadrature formula with is exact for P2N−2m−1 and the weight (1− t2)m . In other words, if p ∈ P2N−2m−1

then: ∫ 1

−1
p(t)(1 − t2)m dt =

N−m

∑
j=1

p(ζm
j ) wm

j (1.11)

Furthermore, the nodes ζm
j , 1 ≤ j ≤ N − m the N − m zeros of dm

dtm LN
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Proof.
Denote by ψm

j the Lagrange polynomials associated with the nodes ζm
j , for j = 1, . . . , N − m. They are of degree

N − m − 1. Plugging into 1.11 gives

wm
j =

∫ 1

−1
ψm

j (t) (1 − t2)m dt

and so the quadrature formula is exact for p = ψm
j which in turn implies that it is exact for PN−m−1. Now, for

any p ∈ P2N−2m−1, we can write it as

p(t) = q(t)(t − ξm
1 ) · . . . · (t − ξm

N−m) + r(s)

with q, r ∈ PN−m−1 . So we have that

N−m

∑
j=1

p(ζm
j ) wm

j =
N−m

∑
j=1

r(ζm
j ) wm

j =
∫ 1

−1
r(t) (1 − t2)m dt

since the quadrature formula is exact for PN−m−1. To be exact for p we need to look for nodes such that

∀q ∈ PN−m−1

∫ 1

−1
q(t)(t − ξm

1 ) · . . . · (t − ξm
N−m) (1 − t2)m dt = 0

This means that (t − ξm
1 ) · . . . · (t − ξm

N−m) is orthogonal PN−m−1 with respect to the measure (1 − t2)m. So from
1.7 (or definition 1.1) we have that this nodes {ξm

j }j=1,...,N−m are the zeros of dm

dtm LN

Since we are going to use numerical integration to approximate boundary value problems, it makes sense
to look for a quadrature formula that involves the endpoints of the interval, namely ±1.

Theorem 1.10. Let 0 ≤ m ≤ N. There exist

• A unique set of N − m nodes ζm
j , 1 ≤ j ≤ N − m

• A unique set of N − m real numbers ρm
j , 1 ≤ j ≤ N − m

• A unique set of 2m real numbers ρm,k
− and ρm,k

+ , 0 ≤ k ≤ m − 1

such that for all p ∈ P2N−1

∫ 1

−1
p(t) dt =

N−m

∑
j=1

p(ζm
j )ρ

m
j

+
m−1

∑
k=0

((
dk p
dtk

)
(−1) · ρm,k

− +

(
dk p
dtk

)
(1) · ρm,k

+

) (1.12)

Moreover, they ζm
j , 1 ≤ j ≤ N − m are given by the zeros of dm

dtm LN
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Proof.
Every polynomial p ∈ P2N−1 can be written as

p(t) = q(t)(1 − t2)m + r(s)

where q ∈ P2N−2m−1 and r ∈ P2m−1.
By applying 1.12 to the first summand, and making use of 1.5, then Theorem 1.9 gives us that necessarily

ρm
j = (1 − (ζm

j )
2)−mwm

j ∀1 ≤ j ≤ N − m (1.13)

So we deduce that the quadrature is exact when applied to the first term q(t)(1 − t2)m. Therefore we only have
to see that the formula is exact for P2m−1.

Plugging {1, x, x2, . . . , x2m−1} into 1.12 gives a square 2m × 2m linear system for the {ρm,k
− , ρm,k

+ } with coeffi-

cients given by
(

dk

dtk xj
)

(±1).

If this system was singular, there would exist a linear combination a0 + a1x + . . . + a2m−1x2m−1 for which the
derivatives of order 0 to m − 1 would vanish at ±1. From 7.3 we now that the only polynomial of degree 2m − 1
to satisfy that is p = 0, so we conclude that a0 = a1 = . . . = a2m−1 = 0 and therefore the linear system is
non-singular, which means that the {ρm,k

− , ρm,k
+ } can be determined uniquely.

Remark 1.11. It’s easy to see that the weights wm
j and therefore the ρm

j are stricly positive.
Indeed if we apply 1.11 to the squares (ψm

j )
2 of the Lagrange polynomials associated with the nodes ζm

j ,
j = 1, . . . , N − m, and use the exactness for P2N−2m−1, then the property easily follows.

1.3 Weights and Nodes

From now on, we are only interested on the cases m = 0 of Theorem 1.9 and m = 1 of 1.10.

Definition 1.12.
We denote by ζ j, j = 1, . . . , N the zeros of LN and by wj their associated weights of 1.9. The {ζ j}j are called the N-th
Gauss-Legendre nodes.
We denote by ηj, j = 0, . . . , N the zeros of (1 − t2)L′

N . We also denote ρj = ρm
j for j = 1, . . . , N − 1 and ρ0 = ρ1,0

− ,

ρ1 = ρ1,0
+ . The {ηj}j are called the N-th Gauss-Legendre-Lobatto nodes.

So now the quadrature formulas read as

∫ 1

−1
ϕ(t) dt ≈

N

∑
j=1

ϕ(ζ j)wj and
∫ 1

−1
ϕ(t) dt ≈

N

∑
j=0

ϕ(ηj)ρj

For practical numerical computation we must compute the previous weights and nodes. And for polynomial
interpolation we must understand how are these nodes distributed along I.
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First we study the case m = 0 of the Gauss-Legendre nodes ζ j From the formula 1.9, and recalling that the
ζ j are the zeros of LN ,

L0(x)L0(ζ j) + . . . + (2N − 1)LN−1(x)LN−1(ζ j) = N
LN(x)LN−1(ζ j)

x − ζ j
(1.14)

Integrating both sides, and applying the orthogonality relations as well as the exactness of the quadrature

2 = NLN−1(ζ j)
∫ 1

−1

LN(x)
x − ζ j

dx = NLN−1(ζ j) = NLN−1(ζ j)L′
N(ζ j)wj

so we have an explict formula for the weights in term of the nodes

wj =
2

NLN−1(ζ j)L′
n(ζ j)

(1.15)

By defining L∗
n =

√
n + 1/2 Ln , now the {L∗

n}n form a family of orthonormal polynomials and we can adapt
the induction formula to

tLn(t) =
n + 1√

(2n + 1)(2n + 3)
L∗

n+1(t) +
n√

(2n + 1)(2n − 1)
L∗

n−1(t)

= αn+1L∗
n+1 + αnL∗

n−1 where αn =
n√

4n2 − 1

(1.16)

(The reason why we introduced {L∗
n}n will soon follow) We can write the previous equation in matrix form :

t



L∗
0

L∗
1
...
...

L∗
N−2

L∗
N−1


=



0 α1 0
α1 0 α2

0 α2 0 α3
...
...

αN−2 0 αN−1

0 0 αN−1 0





L∗
0

L∗
1
...
...

L∗
N−2

L∗
N−1


+ αN



0
...
...
0

L∗
N



So the ζ j are the the eigenvalues of the matrix

A =



0 α1

α1 0
. . .

. . . . . . . . .
. . . 0 αN−1

αN−1 0


(1.17)
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This matrix is tridiagonal with a zero diagonal and symmetric, so its eigenvalues can be computed numerically
very fast and precisely with an iterative algorithm. If x −→ ζ j in 1.14,

L0(ζ j)
2 + 3L1(ζ j)

2 + . . . + (2N − 1)LN−1(ζ j)
2 = NLN−1(ζ j)L′

N(ζ j)

From 1.15 and the L2 norm of Ln we find that

wj = (L∗
0(ζ j)

2 + . . . + L∗
N−1(ζ j)

2)−1 (1.18)

This means we can compute the weight wj from the components of the eigenvector with eigenvalue ζ j (with
first coordinate L∗

0 = 1/
√

2 )
To study how the weights behave as N −→ ∞, we derive another expression for wj.
Using 1.7 we get, (N + 1)LN+1(ζ j) = −NLN−1(ζ j) . Integrating both sides of the fundamental ODE 1.1 and of
1.6 we obtain

(1 − t2)L′
N(t) = −N(N + 1)

∫ t

−1
LN(x) dx = −N(N + 1)

2N + 1
(LN+1(t)− LN−1(t)

so (1 − ζ2
j )L′

N(ζ j) = NLN−1(ζ j) and finally,

wj =
2

(1 − ζ2
j )L′

N(ζ j)2
(1.19)

We suppose that the ζ j are in increasing order and we define

θj = arccos(ζ j)

Theorem 1.13 (Location of nodes).
The nodes θj are located in:
When N = 2m

(2j − 1)π
2N

< θN−j+1 <
(2j + 1)π

2N
when 1 ≤ j ≤ m − 1

(2j − 3)π
2N

< θN−j+1 <
(2j − 1)π

2N
when m + 2 ≤ j ≤ N

(N − 1)π
2N

< θm+1 < π/2 < θm <
(N + 1)π

2N

(1.20)

When N = 2m + 1

(2j − 1)π
2N

< θN−j+1 <
(2j + 1)π

2N
when 1 ≤ j ≤ m − 1

(2j − 3)π
2N

< θN−j+1 <
(2j − 1)π

2N
when m + 3 ≤ j ≤ N

(N − 1)π
2N

< θm+2 < θm+1 = π/2 < θm−1 <
(N + 1)π

2N

(1.21)
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Proof.
Consider the functions

φ(t) =
(
(1 − t2)

)1/2
LN(t) and ψ(t) =

(
1 − t2)1/4

arccos(t)

From the Fundamental ODE 1.1, we can check that

φ′′ +
N(N + 1)(1 − t2) + 1

(1 − t2)2 φ = 0 and ψ′′ +
N2(1 − t2) + 1/2 + 1/4t2

(1 − t2)2 ψ = 0

So
(φψ′ − φ′ψ)′ = µφψ (1.22)

where

µ(t) =
N(1 − t2) + 1/2 − t2/4

(1 − t2)2 > 0 for t ∈ I

cos(Narccos(t)) is the N-th Chebysev polynomial in it’s N zeros are cos
(
(2j+1)π

2N

)
for j = 0, . . . , N − 1

Let a and b be two consecutive zeros of ψ. Integrating both sides of 1.22 yields

φ(b)ψ′(b)− φ(a)ψ′(b) =
∫ b

a
µ(t)φ(t)ψ(t) dt

Now we are going to prove by contradiction that φ necessarily has a zero in (a, b). First, remember that the
zeros of ψ are simple.
Suppose φ does not vanish in (a, b); denote by s the sign of φ on [a, b]. Then s ≥ 0 or s ≤ 0. Since the zeros
of ψ are simple, we suppose that ψ ≥ 0 on [a, b] (the case ψ ≤ 0 is analogous) . So it follows that ψ′(b) < 0 ,
ψ′(a) > 0

Then

s(−)− s(+) =
∫ b

a
(+)s(+) =⇒ (−)s =

∫ b

a
(+)s

where (+) represents a number greater or equal than and (−) a number smaller or equal than zero. Thus we
have a contradiction and φ must have a zero in (a, b). So we have located N − 1 of the zeros of φ, more precisely,
we have proven that for all 1 ≤ j ≤ N − 1 there exists some ζi such that

cos
(
(2j + 1)π

2N

)
< ζi < cos

(
(2j − 1)π

2N

)
To find the missing one, we recall that :

When N is even, ζN/2+1 and ζN/2 = −ζN/2+1 are both in between
[
cos (N+1)π

2N , cos (N−1)π
2N

]
When N is odd, then ζ(N+1)/2 = 0 . So this zero is the right endpoint of

[
cos( (N+1)π

2N ), cos(π/2)
]

and the left

endpoint of
[
cosπ/2, cos (N−1)π

2N

]
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Observe that the cosine of the nodes are equally distributed along [0, π]. This means that as N −→ ∞, the
nodes cluster along the ends of the interval. This is one of the characterizations of good interpolation nodes, as
explained in [Tre00, Chapter 5].

Theorem 1.14 (Weight estimates).
The weights wj satisfy the following inequalities for some c independent of N:

wj ≤ cN−1(1 − ζ2
j )

1/2 (1.23)

Proof.
Since the LN and L′

N are even or odd, and from formula 1.19, we automatically have that

wj = wN+1−j ∀j = 1, . . . , N

So it’s enough to prove the result for the nonnegative ζ j. For this purpose, consider the function

f (θ) = (sinθ)1/2LN(cos(θ))

From the fundamental ODE 1.1 we can see that

f ′′(θ) + µ(θ) f (θ) = 0 with µ(θ) = N(N + 1) + 1/4 + (sin(θ))−2/4 (1.24)

Observe that from 1.19,

( f ′)2(θj) = (sin(θj))
3 L′

N(cos(θj)) =
2 (1 − ζ2

j )
1/2

wj
(1.25)

Take two zeros ζi and ζ j, where 0 ≤ ζi < ζ j, owing to 1.24 we get that

( f ′(θi))
2 − ( f ′(θj))

2

=
∫ θi

θj

(( f ′)2)′(θ) dθ = 2
∫ θi

θj

f ′(θ) f ′′(θ) dθ = −2
∫ θi

θj

µ(θ) f (θ) f ′(θ) dθ

= −
∫ θi

θj

µ(θ)( f 2)′(θ) dθ =
∫ θi

θj

µ′(θ) f 2(θ) dθ

(1.26)

Since µ′(θ) ≤ 0 when θ ∈ (0, π), we have that ( f ′)2(θj) > ( f ′)2(θi) , which in turn implies from 1.25 that , for
ζ j ≥ 0 the numbers wj(1 − ζ2

j )
−1/2 decrease as j increases.

So if m = [N/2] + 1 and we check that
wm(1 − ζ2)−1/2

is bounded by cN−1 for some c > 0 independent of N, then we will have proved the estimate 1.23 for all j. We
distinguish cases:

When N = 2k + 1 :
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Then ζm = ζk+1 = 0 and from 1.19 we have that wm = 2/L′
n(0)2. So from the induction formula 1.8 we

deduce that

L′
N(0) = − N

N − 1
L′

N−2(0) = . . . = (−1)(N−1)/2 N(N − 2) · . . . · 3
(N − 1)(N − 3) · . . . · 2

L′
1(0) =

(−1)(N−1)/2 N!
(N − 1)2(N − 3)2 · . . . · 22 = (−1)(N−1)/2 N!

2N−1(N−1
2 )2(N−3

2 )2 · . . . · 1

= (−1)(N−1)/2 N!
2N−1(

(N−1
2

)
!)2

We now use Stirling’s formula k ∼
√

2π e−k k(k+1/2) So

N!
2N−1(

(N−1
2

)
!)2

∼ e−N NN+1/2

2N−1 (N−1
2 )N e−N+1

∼ N1/2 NN

2N−1 (N−1
2 )N

∼ N1/2

So we deduce that |L′
N(0)| ≥ cN1/2 , which proves the bound.

When N = 2k :
Then integrating as before, this time between θm and π/2

( f ′)2(π/2)− ( f ′)2(θm) = −
∫ π/2

θm

µ(θ) ( f 2)′(θ) dθ

= −µ(π/2) f 2(π/2) +
∫ π/2

θm

µ′(θ) f 2(θ) dθ

Since µ′(θ) ≤ 0 when θ ∈ (0, π) , we conclude that

2(1 − ζ2
m)

1/2

wm
= ( f ′)2(θm) ≥ µ(π/2) f 2(π/2) = (N2 + N + 1/2)L2

N(0)

Now apply the induction formula 1.7 as well as Stirling’s formula to deduce that LN(0)2 ≥ cN−1 for some
c

It can also be proven that the estimate above is optimal, in the sense that there exists a c′ such that wj ≥
c′N−1(1 − ζ2

j )
1/2

We now consider the case m = 1, which involves the endpoints of the interval, η0 = −1 and η = 1, and the
zeros of L′

N ∫ 1

−1
ϕ(t) dt ≈

n

∑
j=0

ϕ(ηj)ρj

To numerically compute the nodes and weights we are going to proceed analogously as before. Firstly, we are
going to define

Q∗
n =

√
n + 1/2
n(n + 1)

L′
n
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which are orthonormal polynomials with respect to to the weight (1− t2)dt = dw. Using the induction formula
1.8, we have that

2t Q∗
n =

√
n(n + 2)

(n + 1/2)(n + 3/2)
Q∗

n+1 +

√
(n − 1)(n + 1)

(n + 1/2)(n − 1/2)
Q∗

n−1

= γn Q∗
n+1 + γn−1 Q∗

n−1 γn =

√
n(n + 2)

(n + 1/2)(n + 3/2)

(1.27)

Writing the above expression in matrix form:

2t



Q∗
1

Q∗
2

...

...
Q∗

N−2
Q∗

N−1


=



0 γ1 0
γ1 0 γ2

0 γ2 0 γ3
...
...

γN−3 0 γN−2

0 0 γN−2 0





Q∗
0

Q∗
1

...

...
Q∗

N−2
Q∗

N−1


+ γN−1



0
...
...
0

Q∗
N



So the ηj are the eigenvalues of the matrix

B =



0 γ1

γ1 0
. . .

. . . . . . . . .
. . . 0 γN−2

γN−2 0


(1.28)

We recall from 1.13 that the weights ρj can be computed in terms of the w1
j . But we want an expression to

compute them in terms of the eigenvectors of B.

Lemma 1.15. For 1 ≤ ρj ≤ N − 1

w1
j =

2N
L′′

N(ηj)L′
N−1(ηj)

(1.29)

Proof. Use formula 1.10 with y = ηj to obtain

N−1

∑
j=1

2j + 1
j(j + 1)

L′
j(x)L′

j(ηj) =
1
n

L′
N(x)L′

N−1(ηj)

x − ηj
(1.30)
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Integrate both sides against (1 − t2), and use the exactness property of the quadrature

2 =
1
N

L′
N−1(ηj)L′′

N(ηj)w1
j

Now from 1.13,

ρj = w1
j (1 − ηj)

−1 =
2N

(1 − η2
j )L′′

N(ηj)L′
N(ηj)

Now, letting x −→ ηj in 1.29 gives

N−1

∑
k=1

2k + 1
k(k + 1)

L′
k(t)

2 =
1
N

L′
N−1(ηj)L′′

N(ηj) (1.31)

and thus

ρj = (1 − η2
j )

−1

(
N−1

∑
k=1

Q∗
k (ηj)

2

)−1

(1.32)

So we have a way of computing the weights in terms of the eigenvalues of the matrix B with first component

Q∗
1 =

√
3/2

By substituting in the formula 1.12, we have that∫ 1

−1
L′

N(t)(1 − t) dt = 2 ρ0 L′
N(−1)

∫ 1

−1
(1 + t)L′

N(t) dt = 2 ρN L′
N(1)

Integrating by parts, using 1.3 and the parity of orthogonal polynomials

ρ0 =
−2 LN(−1)
2 ρ0 L′

N(−1)
=

2
N(N + 1)

and ρN =
2LN(1)
2L′

N(1)
=

2
N(N + 1)

With a little bit more of work we can show that

ρj =
2

N(N + 1)LN(ηj)2 0 ≤ j ≤ N (1.33)

Since the zeros of LN are simple, and by Rolle’s theorem we easily deduce that

ζ j < ηj < ζ j+1 0 ≤ j ≤ N (1.34)

So the location of the Legendre-Gauss-Lobatto nodes is contained in theorem 1.13.
Moreover, using 1.33 we can prove similarly to theorem 1.23 that
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Theorem 1.16 (Legendre-Gauss-Lobatto Weight Estimates ).

ρj ≤ cN−1
(

1 − η2
j

)1/2
(1.35)

Remark 1.17. Most of the statements in this chapter can be further generalized (after making the suitable
adaptations) to more general classes of orthogonal polynomials, like the Jacobi or Chebysev polynomials. And
for example, owing to the Peano Kernel Theorem, the quadrature error can be precisely estimated for sufficiently
regular functions (see [DB08, Section 5.3.2]). We have only presented the results for the Legendre polynomials
to now focus to our PDE applications and we refer to [STW11, Chapter 3] or [BM97, Chapter 4] for such
generalizations.

Figure 1.1: Tensor product grid of the LGL points. Observe the "clustering" close to the border



Chapter 2

Orthogonal projections and other operators

Motivated by the results from Proposition 7.9, we first study some orthogonal projections and other op-
erators, which will later be used to estimate the error of a discretization of a PDE. Our finite dimensional
"approximation space" will be spaces of polynomials. So we have to find approximation results for such spaces.

2.1 Polynomial Approximations in One Dimension

When trying to understand polynomial approximation on an interval, its natural is to try to understand the
orthogonal projection from L2 to PN , since it gives the best L2 polynomial approximation. Denote by πN the
projection from L2(I) onto PN(I)

Theorem 2.1. For s ≥ 0, there exists c = c(s) > 0 such that, for φ ∈ Hs(I),

||φ − πN φ|| ≤ cN−s||φ|| (2.1)

We first need a lemma to understand the operator L from the Fundamental ODE 1.1, which is defined on
H2(I)

Lv = − d
dt
((1 − t2)v′)

Lemma 2.2. The operator L, defined in H2(I) is

• Positive with respect to the L2 inner product
(
(Lv, v) > 0 ∀v ∈ H2(Ωd)/{0}

)
• Self adjoint with respect to the L2 inner product

(
(Lu, v) = (u,Lv) ∀u, v ∈ H2(Ωd)

)
• Continuous from Hn+2(Ωd) to Hn(Ωd)

15
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Proof. The first two properties are easily derived integrating by parts
By induction we can check that

dk

dtk (Lv) = −
(
1 − t2) dk+2v

dtk+2 + 2(k + 1)t
dk+1v
dtk+1 + k(k + 1)

dkv
dtk

So for any k, 0 ≤ k ≤ n

||d
k(Lv)
dtk ||L2(I) ≤ C

(
||d

k+2v
dtk+2 ||L2(I) + ||d

k+1v
dtk+1 ||L2(I) + ||d

kv
dtk ||L2(I)

)
where C = C(n)

Proof. (Of the theorem)
First we prove when s = 2m. If φ ∈ L2(I) then

φ =
∞

∑
n=0

αnLn and πN φ =
N

∑
n=0

αnLn

so

||φ − πN φ||2L2(I) =
∞

∑
n=N+1

α2
n||Ln||2L2(I)

We can compute the coefficients using Theorem 1.1 and that the operator is self-adjoint:

αn =
1

||Ln||2L2(I)

∫ 1

−1
φ(t)Ln(t) dt =

1
n(n + 1)||Ln||2L2(I)

∫ 1

−1
φ(t)(LLn)(t) dt =

1
n(n + 1)||Ln||2L2(I)

∫ 1

−1
(Lφ)(t)Ln(t) dt

Again, using the Fundamental ODE and the self adjoint property

1
n(n + 1)||Ln||2L2(I)

∫ 1

−1
(Lφ)(t)Ln(t) dt =

1
(n(n + 1)2||Ln||2L2(I)

∫ 1

−1
(Lφ)(t)(LLn)(t) dt =

1
(n(n + 1)2||Ln||2L2(I)

∫ 1

−1
(L2φ)(t)Ln(t) dt

Repeating this procedure and using that φ ∈ H2m(I)

αn =
1

(n(n + 1))m||Ln||2L2(I)

∫ 1

−1
(Lm φ)(t)Ln(t) dt

From there, we have

||φ − πN ||2L2(I) =
∞

∑
n=N+1

1
(n(n + 1))2m

(∫ 1
−1(L

m φ)(t)Ln(t) dt
||Ln||2L2(I)

)2

||Ln||2L2(I)
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And since n(n + 1) > N2,

||φ − πN ||2L2(I) ≤ N−4m
∞

∑
n=0

(∫ 1
−1(L

m φ)(t)Ln(t) dt
||Ln||2L2(I)

)2

||Ln||2L2(I) = N−4m||Lm φ||2L2(I)

So
||φ − πN ||2L2(I) ≤ N−4m||Lm φ||2L2(I)

Owing to the last lemma, we have that

||Lm φ||L2(I) ≤ C||φ||H2m(I)

So ||φ − πN ||L2(I) ≤ CN−2m||φ||H2m(I) , with C = C(s).
Now, to prove for general s we use a interpolation argument. This time we explain it in detail.
The operator id − πN is continuous from L2(I) to L2(I) with norm 1 :

||φ − πN ||L2(I) ≤ ||φ||L2(I)

And id − πN is also continuous from H2m(I) to L2(I) with norm ≤ CN−2m

||φ − πN ||L2(I) ≤ CN−2m||φ||H2m(I)

By application of the Theorem 7.10, we obtain that id − πN is also continuous from

H2m(1−θ)(I) = [H2m(I), L2(I)]θ to [L2(I), L2(I)]θ = L2(I)

with norm
≤ C′N−2m(1−θ)

this completes the proof

However one problem arises with this orthogonal projection, which is that despite that it gives the best L2

approximation in PN , it does not give optimal estimates in the H1 norm. In fact, it may be proven that the best
possible estimate when s ≥ r ≥ 1 is

||φ − πN φ||Hr(I) ≤ C N2r−1/2−s ||φ||Hs(I)

To obtain better estimates in the Hk norms, we introduce other operators.

Definition 2.3. For any k ≥ 0, we define

P k,0
N (I) = Hk

0(I) ∩ PN(I)

So P k,0
N (I) = {p ∈ PN(I) : p(m)(±1) = 0 for m = 0, . . . , k − 1} We also denote P0

N = P1,0
N

And πk,0
N is the orthogonal projection operator from Hk

0(I) to P k,0
N (I) with respect to the inner product | · |Hk(I)
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Remark 2.4. We recall that, owing to the Sobolev imbedding theorem [Bre08, Theorem 1.4.6] (or the trace
theorem [EG04, Theorem B.52]), the values and derivatives of order ≤ k − 1 of a function φ ∈ Hk(I) at the
endpoints ±1 are well defined. And Hk

0(I) is the subspace of Hk(I) wich contains the functions whose values
and derivatives up to order ≤ k − 1 vanish at ±1.

Also, the functional

|v|Hk(Ω) =

(∫
Ω
(v(k)(x))2 dx

)1/2

is a seminorm Hk(Ω), but it’s a norm in Hk
0(Ω), we for v ∈ Hk

0(Ω) have the inequality

|v|Hk(Ω) ≤ c||v||Hk(Ω) (c = c(Ω, k)) (2.2)

And so,
(

Hk
0(Ω), (·, ·)Hk

0(Ω)

)
is a Hilbert space where the inner product is given by

(u, v)Hk
0(Ω) =

∫
Ω

v(k)(x) u(k)(x) dx

For briefness we denote (u, v)Hk
0(Ω) = ak(u, v). Then the projection operator πk,0

N can be characterized by :

∀φ ∈ Hk
0(I), πk,0

N φ ∈ P k,0
N (I)

and
∀ψN ∈ P k,0

N (I) , ak(φ − πk,0
N φ, ψN) = 0 (2.3)

Theorem 2.5. Set k ≥ 1 . For any 0 ≤ r ≤ k ≤ s, there exist c = c(r, s, k) such that for any φ ∈ Hs(I) ∩ Hk
0(I), we

have the estimate
||φ − πk,0

N φ||Hr(I) ≤ cNr−s||φ||Hs(I) (2.4)

Proof.
First of all, since this is an asymptotic estimate in terms of the growth of N, we may assume that N ≥ 2k − 1.
To prove the theorem we distinguish between the cases r = k, r = 0 and 0 < r < k.

Case r = k

Let π0,0
N = πN . We are going to prove the following equality

∀φ ∈ Hk
0(I), (πk,0

N φ)(t) =
∫ t

−1
(πk−1,0

N−1 φ′)(x) dx (2.5)

First of all note that since φ′ ∈ Hk−1
0 (I), then both sides of the expression are well defined. To prove that

the equality holds, we first see that the relation 2.3 is true for the function in the right-hand side of 2.5. Let
ψN ∈ P k,0

N , then
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∫ 1

−1

dk φ

dtk −
dk
(∫ t

−1

(
(πk−1,0

N−1 φ′)(x) dx
))

dtk

 (t) ·
[

dkψN

dtk

]
(t) dt =

∫ 1

−1

[
dk−1(φ′)

dtk−1 −
dk−1(πk−1,0

N−1 φ′)

dtk−1

]
(t) ·

[
dk−1(ψ′

N)

dtk−1

]
(t) dt = 0

where the last equality holds by definition of πk−1,0
N−1 . Now we only have to see that the function in the right-

hand side of 2.5 belongs to P k,0
N (I).

First of all its clear that it belongs to PN(I), that it has a zero at t = −1 and that the first k − 1 derivatives vanish
at ±1. So it only remains to check that it has a zero in t = 1. We prove this now. Since N ≥ 2K − 1, we may
apply the relation 2.3 to πk−1,0

N−1 with ψN = (1 − t2)k−1 :

∫ 1

−1

[
dk−1

dtk−1 (π
k−1,0
N−1 φ′)

]
(t)
[

dk−1

dtk−1

(
(1 − t2)k−1

)]
(t) dt =

∫ 1

−1

[
dk−1

dtk−1 φ′
]
(t)
[

dk−1

dtk−1

(
1 − t2)k−1

)]
(t) dt

Integrate by parts both sides k − 1 times , use that φ ∈ Hk
0(I) and the definition of πk−1,0

N−1

(2(k − 1))!
∫ 1

−1
(πk−1,0

N−1 φ′)(t) dt = (2(k − 1))!
∫ 1

−1
φ′(t) dt

= (2(k − 1))! (φ(1)− φ(0)) = 0

So we have proven 2.5. Now the estimate follows easily from Theorem 2.1

|φ − πk,0
N φ|Hk(I) = |φ − πk−1,0

N−1 φ|Hk−1(I) = . . . = ∥dk φ

dtk − πN−k

(
dk φ

dtk

)
∥L2(I)

≤ c(N − k)k−s ||d
k φ

dtk ||Hs−k(I) ≤ c′Nk−s ||φ||Hs(I)

Case r = 0

We use what is called a duality argument. We know that

||φ − πk,0
N φ||L2(I) = sup

g∈ L2(I)

∫ 1
−1(φ − πk,0

N )(t)g(t)
||g||L2(I)

= sup
g∈C∞(I)

∫ 1
−1(φ − πk,0

N )(t)g(t)
||g||L2(I)

where we have used the density of C∞(I) in L2(I).
Now, for any g ∈ C∞(I), consider the problem of finding u ∈ Hk

0(I) such that

∀ψ ∈ Hk
0(I),

∫ 1

−1

[
dku
dtk

]
(t)
[

dkψ

dtk

]
(t) dt =

∫ 1

−1
g(t)ψ(t) dt (2.6)
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The existence and uniqueness is guaranteed by the Lax-Milgram Lemma 7.7. Also, it’s easy to see that the
solution is u ∈ C∞(I) and that it’s given by the ODE

d2k

dt2k u = (−1)k g

plus imposing the corresponding boundary conditions.
By plugging ψ = v into 2.6, we see that ||u||Hk(I) ≤ c|u|HK(I) ≤ ||g||L2(Ωd)

. Also |u|H2k(I) = ||g||L2(I). Now,
using inequality 7.11 repeatedly, we deduce that

||u||H2k(I) ≤ c||g||L2(I)

So now, ∫ 1

−1
(φ − πk,0

N φ)(t)g(t) dt =
∫ 1

−1

[
dk

dtk

(
φ − πk,0

N φ
)]

(t)
[

dku
dtk

]
(t) dt (from 2.6)

=
∫ 1

−1

[
dk

dtk

(
φ − πk,0

N φ
)]

(t)
[

dk

dtk

(
u − πk,0

N u
)]

(t) dt (from 2.3)

≤ |φ − πk,0
N φ|Hk(I) |u − πk,0

N u|Hk(I)

Now, apply the previous case, r = k,∫ 1

−1
(φ − πk,0

N φ)(t) g(t) dt ≤ c Nk−s ||φ||Hs(I) N−k ||u||H2k(I) ≤ cN−s||φ||Hs(I)||g||L2(I)

Which finally proves that ||φ − πk,0
N φ|| ≤ N−s||φ||Hs(I)

Case r = 0

This case is a consequence of the last two cases and the interpolation inequality

||φ − πk,0
N φ||Hr(I) ≤ ||φ − πk,0

N φ||1−r/k
L2(I) ||φ − πk,0

N φ||r/k
Hk(I)

from Theorem 7.8.

As a particular case from this theorem, observe that, for φ ∈ Hk
0(I), despite that ||φ − πN φ||L2(I) ≤ ||φ −

πk,0
N φ||L2(I) , the asymptotic convergence is equally as fast. However, in the Hr(I) norms, the error of φ − πk,0

N φ

is asymptotically faster than the error of φ − πN φ .
We don’t just want to approximate functions in Hk

0 , so, since we got a good estimate in the previous theorem,
we want to adapt that estimate to other boundary conditions, so from any function φ ∈ Hk(I) , we define a
function φ̃k ∈ Hk

0 . For this sake, consider we construct the Hermite polynomials Υk,j

Definition 2.6. For any k ≥ 1, and 0 ≤ j ≤ k − 1, the polynomials Υk,j are defined by

Υk,j is the unique polynomial in P2k−1 that satisfies :(
dj

dtj Υk,j

)
(−1) = 1 and

(
dm

dtm Υk,j

)
(−1) = 0 for 0 ≤ m ≤ k − 1, m ̸= j

and

Υk,j(1) = Υ′
k,j(1) = . . . =

(
dk−1

dtk−1 Υk,j

)
(1) = 0

(2.7)
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In other words, Υk,j is the only polynomial with degree ≤ 2k − 1 whose values and derivatives up to order k − 1 vanish
on ±1, except for the j-th order derivative at t = −1, which is 1.

Now for any function φ ∈ Hk(I), we define φ̃k by

φ̃k(t) = φ(t) −
k−1

∑
j=0

(
dj φ

dtj

)
(−1) · Υk,j(t) −

k−1

∑
j=0

(−1)j
(

dj φ

dtj

)
(1)Υk,j(−t) (2.8)

Observe that φ̃k along with its derivatives of order ≤ k − 1 vanish at ±1, moreover, owing to the Sobolev
Embedding theorem ∣∣∣∣dm φ

dtm (1)
∣∣∣∣+ ∣∣∣∣dm φ

dtm (−1)
∣∣∣∣ ≤ c||φ||Hk(I) for 0 ≤ m ≤ k − 1

so for any s ≥ k
||φ̃k||Hs(I) ≤ c||φ||Hs(I) where c = c(s) (2.9)

Now that we have φ̃k ∈ Hk
0(I), we apply the operator πk,0

N to this function.

Definition 2.7. For any k ≥ 0, the operator π̃k
N acts on Hk(I) and is defined by

π̃k
N φ =

(
πk,0

N φ̃k

)
+

k−1

∑
j=0

(
dj φ

dtj

)
(−1) Υk,j(t) +

k−1

∑
j=0

(−1)j
(

dj φ

dtj

)
(1) Υk,j(−t) (2.10)

Observation 2.8.
Note that, since πk,0

N φ̃k ∈ Hk
0 , the values and derivatives up to order ≤ k − 1 of π̃k

N φ and φ coincide at ±1
Also, by definition

φ − π̃k
N φ = φ̃k − πk,0

N φ̃ (2.11)

Theorem 2.9. Set k ≥ 1 and 0 ≤ r ≤ k ≤ s.
There exists c = c(r, s, k) such that for all φ ∈ Hs(I)

||φ − π̃k
N φ||Hr(I) ≤ cNr−s ||φ||Hs(I) (2.12)

Proof.
From the last observation, Theorem 2.3, and 2.9

||φ − π̃k
N φ||Hr(I) = ||φ̃k − πk,0

N φ̃|| ≤ cNr−s ||φ̃k||Hs(I) ≤ cNr−s ||φ||Hs(I)

The last result in this section is
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Theorem 2.10. For k ≥ 1, let πk
N be the orthogonal projection operator from Hk(I) to PN(I) (with respect to the Hk

norm). Set 0 ≤ r ≤ k ≤ s. There exists c = c(r, s, k) such that for any φ ∈ Hs(I),

||φ − πk
N φ||Hr(I) ≤ cNr−s||φ||Hs(I) (2.13)

Proof.
When r = k, this is a consequence of the last theorem

||φ − πk
N φ||Hk(I) ≤ ||φ − π̃k

N φ||Hk(I) ≤ cNk−s||φ||Hs(I)

When r = 0 we use a duality argument similar to that of the proof of Theorem 2.3
When 0 < r < k we use a interpolation inequality.

2.2 Polynomial Approximations in Hypercubes

We now want to extend the previous results to the domain Ωd = (−1, 1)d. The main takeaway from this
section is that by considering such simple geometries (tensor products of intervals), the approximation results
of last section remain true. Since Ωd is a tensor product of intervals, it is reasonable to take the tensor product
of polynomials in one dimension as an approximation space.

Definition 2.11. For any n ≥ 0 , Qn(Ωd), is the space of polynomials in d variables and degree ≤ n in each variable xj,
restricted to Ωd. More explicitly:

Qn(Ωd) = {v = p|Ωd : p = ∑
i1,...,id≤ n
i1,...,id ≥ 0

αi1,...,id xi1
1 · . . . · xid

d

Naturally, we are going take as a basis of QN(Ωd) the tensorized basis

{Ln1(x1) · . . . · Lnd(xd), 0 ≤ n1, . . . nd ≤ N}

which is also orthogonal in L2(Ωd).
We denote by ΠN the orthogonal projection form L2(Ωd) to QN(Ωd). We also denote π

(j)
N the orthogonal

projection applied to the j − th variable, that is

π
(j)
N v(x1, . . . , xd) = π

(j)
N vj(x1, . . . xj−1, xj+1, . . . , xd)(t)

where
vj(x1, . . . xj−1, xj+1, . . . , xd)(t) : t 7−→ v(x1, . . . xj−1, t, xj+1, . . . , xd)

They key observation is that each function v ∈ C(Ωd) satisfies for 1 ≤ j ≤ d,∫ 1

−1
v(x)Lmj(xj) dxj =

∫ 1

−1
(π

(j)
N v)Lmj(xj) dxj for 0 ≤ mj ≤ N
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And from here we can see that∫ 1

−1
v(x) Lm1 · . . . · Lmd dx =

∫ 1

−1
Ln1(x1)dx1 · . . . ·

∫ 1

−1
Lmd(xd)v(x) dxd =∫

Ωd

(π
(1)
N ◦ . . . ◦ π

(d)
N v(x)) Ln1(x1) · . . . · Lmd(xd) dx

So we infer that the following holds in C(Ωd)

ΠN = π
(1)
N ◦ . . . ◦ π

(d)
N (2.14)

and it’s clear the the π
(j)
N commute. Note that the previous expression makes sense and is true in C(Ωd), but it

doesn’t make sense to apply π
(j)
N to a function v ∈ L2(Ωd)

Theorem 2.12. For any s ≥ 0, there exists c = c(s) such that for all v ∈ Hs(Ωd), we have the estimate

||v − ΠNv||L2(Ωd)
≤ cN−s||v||Hs(Ωd) (2.15)

Proof. We prove it for s = m ≥ 0. For other values of s it follows by a standard interpolation inequality
argument. Since id − ΠN is a continuous linear operator from Hm(Ωd) to L2(Ωd), and using the density of
C(Ωd) ∩ Hm(Ωd) in Hm(Ωd), we may assume v ∈ C(Ωd) ∩ Hm(Ωd) . For simplicity we assume d = 2. Then,
from 2.14,

||v − ΠNv||L2(Ωd)
≤ ||v − π

(1)
N v||L2(Ωd)

+ ||π(1)
N (v − π

(2)
N v)||L2(Ωd)

We bound the two terms:

||v − π
(1)
N v||2L2(Ωd)

=
∫ 1

−1

∫ 1

−1
(v(x, y)− π

(1)
N (x, y))2 dxdy

≤ cN−2m
∫ 1

−1

∫ 1

−1

m

∑
k=0

(
dk

dxk v(x, y)
)2

dxdy (from Theorem 2.1)

≤ cN−2m||v||2Hm(Ωd)

||π(1)
N (v − π

(2)
N v)||2L2(Ωd)

=
∫ 1

−1

∫ 1

−1

(
π
(1)
N (v − π

(2)
N )(x, y)

)2
dydx

≤
∫ 1

−1

∫ 1

−1

(
(v − π

(2)
N )(x, y)

)2
dxdy (using that the operator norm of π

(1)
N is 1)

≤ cN−2m
∫ 1

−1

∫ 1

−1

m

∑
k=0

(
dk

dyk v(x, y)
)2

dydx (from Theorem 2.1)

≤ cN−2m||v||2Hm(Ωd)

This proves the theorem.
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We now define rest of the analogous operators to those of Section 2. The proofs of the following theorems
use similar arguments to the previous proof so we omit them.

Definition 2.13. For k > 0, we define
Q

k,0
N (Ωd) = QN(Ωd) ∩ Hk

0(Ωd)

and Πk,0
N is the orthogonal projection operator from Hk

0(Ωd) to Q
k,0
N (Ωd) with respect to the norm | · |Hk(Ωd)

Theorem 2.14. Set k ≥ 1 and s ≥ k.
There exists c = c(s) such that for all φ ∈ Hs(Ωd) ∩ Hk

0(Ωd), we have

||φ − Πk,0
N φ||Hk(Ωd)

≤ cNk−s||φ||Hs(Ωd) (2.16)

Definition 2.15. For any N > 0, Πk
N denotes the orthogonal projection from Hk(Ωd) to QN(Ωd) with respect to the

|| · ||Hk(Ωd)
norm.

Theorem 2.16. Set k > 0 and s ≥ k.
There exists a constant c = c(s) such that for all φ ∈ Hk(Ωd),

||φ − Πk
N φ||Hk(Ωd)

≤ cNk−s||φ||Hs(Ωd) (2.17)



Chapter 3

Approximation by interpolation

3.1 Technical Lemmas

Before studying the approximation properties of the polynomial interpolation we need some technical lem-
mas.

Lemma 3.1 (Polynomial Inverse Inequality 1). For any N > 0 and for any pN ∈ PN(I) we have(∫ 1

−1
p′N(t)

2 (1 − t2) dt
)1/2

≤
√

2N||pN ||L2(I) (3.1)

Proof. Write pN = ∑N
m=0 αmLm , so from 1.3∫ 1

−1
p′N(t)

2 (1 − t2) dt =
N

∑
m=0

N

∑
j=0

αmαj

∫ 1

−1
L′

m(t) L′
n(t) (1 − t2) dt =

N

∑
m=0

α2
m m(m + 1)

∫ 1

−1
Lm(t)2 dt

≤ 2N2
N

∑
m=0

α2
m

∫ 1

−1
Lm(t)2 dt = 2N2 ||pN ||2

Lemma 3.2 (Polynomial Inverse Inequality 2).
For any pN ∈ P0

N(I) the following inequality is true

|pN |H1(I) ≤
√

2 N
(∫ 1

−1
p2

N(t) (1 − t2)−1 dt
)1/2

(3.2)

Proof.
Since pN has zeros in ±1, we can write it as

pN = (1 − t2)
N−1

∑
m=1

βmL′
m

25
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So now, we simply compute using 1.1 and 1.3.

|pN |2H1(I) =
N−1

∑
m=1

β2
m m2 (m + 1)2 ||Lm||2L2(I)

and ∫ 1

−1
pN(t)2 (1 − t2)−1 dt =

N−1

∑
m=1

β2
m m (m + 1) ||Lm||2L2(I)

so
N−1

∑
m=1

β2
m m2(m + 1)2 ||Lm||2L2(I) ≤ 2N2

N−1

∑
m=1

β2
m m(m + 1) ||Lm||2L2(I)

Lemma 3.3 (Multiplication by (1 − t2)1/2 ).
Multiplication by (1 − t2)1/2 is a continuous operation from H1

0(I) to L2(I) . More precisely, there exists a constant C
such that for any φ ∈ H1

0(I)
||φ (1 − t2)−1/2||L2(I) ≤ C||φ||L2(I)

Proof. The proof may be consulted in [LM12, Theorem 11.3]

Lemma 3.4 (Scaled Sobolev Embedding Inequality).
Let c1 be the constant on the Sobolev embedding inequality from H1(I) to L∞(I) when applied on the interval (0, 1). Then
for any ψ ∈ H1(a, b)

max
a<θ<b

|ψ(θ)|2 ≤ c1

(
1

b − a
||ψ||2L2(a,b) + (b − a)|ψ|2H1(a,b)

)
(3.3)

Proof.
The estimate is easily derived by applying the Sobolev inequality

max
0<t<1

|φ(θ)|2 ≤ c1

(
||φ||2L2(0,1) + |φ|2H1(0,1)

)
to the function φ(t) = ψ(a + t(b − a))

3.2 Interpolation Operator errors

We now study how good a polynomial approximation can we achieved by interpolation with respect to
the Gauss-Legendre and Gauss-Legendre-Lobatto nodes. Since pointwise interpolation only makes sense for
continuous, and owing to Sobolev’s inequality, throughout this chapter it will be assumed that all functions are
in Hr(I) for some r > 1/2
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Definition 3.5 (Gauss-Legendre Interpolant). The Gauss-Legendre Interpolant operator is defined by{
For any φ ∈ C(I) , GN is the only polynomial in PN−1(I) such that

(GN φ)(ζ j) = φ(ζ j) ∀ 1 ≤ j ≤ N
(3.4)

where the ζ j are the N-th Gauss-Legendre nodes

We now estimate the norm of GN as an operator from H1(I) to L2(I).

Theorem 3.6. There exists a constant c such that for all φ ∈ H1(I) we have the estimate

||GNu||L2(I) ≤ c(||u||L2(I) + N−1||u′ (1 − t2)1/2||L2(I)) (3.5)

Proof.
Let t = cosθ and û(θ) = u(cosθ) where θ ∈ (0, π) and θj = ζ j.

By the exactness property of the quadrature and the weight estimates 1.23,

||GNu||2L2(I) =
N

∑
j=1

u(ζ j)
2 wj ≤ cN−1

N

∑
j=1

û(θj)
2 sin θj

From Theorem 1.13, there exist intervals Kj, 1 ≤ j ≤ N of length π/N such that θj ∈ Kj and the intersection
between them is empty except possibly the cases j = i − 1 , i, i + 1. So by changing c to 3c, we have

||GNu||L2(I) ≤ c N−1/2
N

∑
j=1

max
θ∈Kj

|û(θ)(sinθ)1/2|

From Lemma 3.4,

||GNu|| ≤ c
N

∑
j=1

(
||û · (sinθ)1/2||L2(Kj) + N−1|û · (sinθ)1/2|H1(Kj)

)
Now, we note that

⋃
j Kj ⊂ [a0, a1] ⊂ [0, π] with a0 = 2π

N and a1 = π − π
2N and since each point of I belongs to

at most two Kj,

||GNu|| ≤ c
(
||û · (sinθ)1/2||L2(0,π) + N−1 || d

dθ
û · (sinθ)1/2||L2(0,π) + N−1 ||û · cosθ

(sinθ)1/2 ||L2(a0,a1)

)
Change variables again

||û · (sinθ)1/2||L2(0,π) =
∫ π

0
û(θ)2 sinθ dθ =

∫ 1

−1
u(x)2 dx

|| d
dθ

û · (sinθ)1/2||L2(0,1) =
∫ π

0
(sinθ)3 u′(cosθ)2 dθ =

∫ 1

−1
(1 − x2)u′(x)2 dx
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N−1||û · cosθ

(sinθ)1/2 ||L2(a0,a1) = N−1
∫ a1

a0

û(θ)2 cos2θ

sinθ
dθ ≤

(
sup

a0<θ<a1

1
Nsinθ

) ∫ a1

a0

û(θ)2 cos(θ) dθ

Now use that since a0 = O(N−1) and a1 = π −O(N−1) to obtain that,

sup
a0≤θ≤a1

1
Nsinθ

≤ c

to conclude that the last term is ≤ c||u||L2(I)

Theorem 3.7. There exists a constant c = c(s) such that for any u ∈ Hs(I),

||GNu − u||L2(I) ≤ cN−s ||u|||Hs(I) (3.6)

Proof.
||GNu − u||L2(I) ≤ ||GNu − π1

N−1u||L2(I) + ||π1
N−1u − u||L2(I)

We bound the two terms

||π1
N−1u − u||L2(I) ≤ CN−s||u||Hs(I) (from Theorem 2.1)

and

||GNu − π1
N−1u||L2(I) = ||GN(u − π1

N−1u)||L2(I)

≤ c

(
||u − π1

N−1u||L2(I) + N−1
(∫ 1

1

(((u − π1
N−1u)′)2 (1 − t2) dt

)1/2
)

(from last theorem)

≤ c
(

N−s||u||Hs(I) + N−1||u − πN−1u||H1(I)

)
(from Theorem 2.3 and 1 − t2 ≤ 1)

≤ cN−s||u||Hs

However, and similarly to what occurred in Section 2.1, the fact that GN does not interpolate the endpoints
implies that the H1 norm of the error is not optimal. In fact it may be proven that for s ≥ r, s ≥ 1, the best
possible estimate is {

||φ − GN φ||H1(I) ≤ CN3r/2−s when 0 ≤ r ≤ 1

||φ − GN φ||H1(I) ≤ CN2r−1/2−s when r ≥ 1
(3.7)

Now we study the polynomial interpolation on the Legendre-Gauss-Lobatto nodes ηj.
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Definition 3.8 (Legendre-Gauss-Lobatto Interpolant). The Legendre-Gauss-Lobatto Interpolant operator is defined by{
For any φ ∈ C(I) , iN φ is the only polynomial in PN(I) such that

(iN φ)(ηj) = φ(ηj) ∀ 0 ≤ j ≤ N
(3.8)

where the ηj are the N-th Legendre-Gauss-Lobatto nodes

Lemma 3.9. For every polynomial pN ∈ PN , we have that

||pN ||2L2(I) ≤
N

∑
j=0

pN(ηj)
2 ρj ≤ 3 ||pN ||2L2(I) (3.9)

Proof.
We may write pN = ∑N

m=0 αmLM , so ||pN ||L2(I) = ∑N
m=0 α2

m||Lm||2L2(I) Also,

N

∑
j=0

pN(ηj)
2 ρj =

N

∑
j=0

(
N

∑
m=0

αmLM(ηj)

)2

ρj =
N

∑
j=0

(
N−1

∑
m=0

αmLM(ηj) + αN LN(ηj)

)2

ρj

=
N

∑
j=0

(
N−1

∑
m=0

αmLM(ηj)

)2

ρj + 2
N

∑
j=0

(
N−1

∑
m=0

αmLM(ηj)

)
αN LN(ηj) ρj +

N

∑
j=0

α2
N L2

N(ηj) ρj

The first term is ∑N−1
m=0 α2

m ||Lm||2 by the exactness property of the quadrature. By the exactness property
of the quadrature again, and the orthogonality of the polynomials, the second term is 0 . For the third term,

α2
N

N

∑
j=0

L2
N(ηj) ρj = α2

N

N

∑
j=0

2
N(N + 1)

= α2
N

2
N

= (2 +
1
N
) α2

N ||LN ||2L2(I)

by 1.33 and 1.5. The result now easily follows.

Lemma 3.10. There exists a constant c such that for all u ∈ H1(I),

||iNu||L2(I) ≤ C

(
N−1 |u(1)|+ N−1 |u(−1)|+ ||u||L2(I) + N−1

(∫ 1

−1
(u′(t)2(1 − t2) dt

)1/2
)

(3.10)

Proof.
From the last lemma ,

||iNu||2L2(I) ≤ u(−1)2ρ0 +
N−1

∑
j=1

u2(ηj)ρj + u(1)2ρj

Using exactly the same argument as in the last Theorem 3.6 we can see

N−1

∑
j=1

u2(ηj) ρj ≤ ||u||2L2(I) + N−2
(∫ 1

−1
u′(t)2(1 − t2)

)
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The next inequality is key to derive the error for the Lobatto interpolation. Its necessity comes from 3.2.

Lemma 3.11. There exists a constant C such that for all u ∈ H1
0(I),

||(iNu) (1 − t2)−1/2||L2(I) ≤ C
(
||u(t) (1 − t2)−1/2||L2(I) + N−1|u|H1(I)

)
(3.11)

Proof.
Since (iNu) (1 − t2)−1 is a polynomial of degree ≤ 2N − 2, from the exactness property of the quadrature,
we deduce that∫ 1

−1
(iNu)2(t)(1 − t2)−1 dt =

N

∑
j=0

(iNu)2(ηj) (1 − η2
j )

−1 ρj =
N−1

∑
j=1

(iNu)2(ηj) (1 − η2
j )

−1 ρj

Now , using 1.16, we obtain

∫ 1

−1
(iNu)2(t)(1 − t2)−1 dt ≤ cN−1

N−1

∑
j=1

(iNu)2(ηj) (1 − η2
j )

−1/2
N−1

∑
j=1

(u)2(ηj) (1 − η2
j )

−1/2

Now, denoting û(θ) = u(cosθ) and by similar arguments as before,∫ 1

−1
(iNu)2(t)(1 − t2)−1 dt = ≤ c

(
||û(θ) (sinθ)−1/2||2L2(0,π) + N−2 || d

dθ

(
û(θ) (sinθ)−1/2)

)
||2L2(a0,a1)

)
Reversing the change of variables,

||û(θ) (sinθ)−1/2||2L2(0,π) = ||u(t) (1 − t2)−1/2||L2(I)

N−2|| d
dθ

(û) (sinθ)−1/2||L2(0,π) = N−2
∫ π

0
u′(cosθ)2 cosθ dθ = N−2|u|H1(I)

N−2||û(θ) d
dθ

((sinθ)−1/2)||L2(a0,a1) =
N−2

4

∫ a1

a0

û(θ)2 cos(θ)
(sinθ)3 dθ ≤ c

∫ 1

−1
u(t)(1 − t2)−1/2

This is the principal result

Theorem 3.12. For any real numbers s ≥ 1 ≥ r ≥ 0, there exists c = c(s, r) such that for any u ∈ Hs(I) ,

||u − iNu||Hr(I) ≤ cNr−s||u||Hs(I) (3.12)

Proof.

Case r = 0
||u − iNu||L2(I) ≤ ||u − π̃1,0

N u||L2(I) + ||π̃1,0
N u − iNu||L2(I)
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The first term has the estimate from 2.9. For the second term

||π̃1,0
N u − iNu||L2(I) = ||iN( π̃1,0

N u − u )||L2(I)

≤ c
(
||π̃1,0

N u − u||L2(I) + N−1|π̃1,0
N u − u|H1(I)

)
(Using the stability theorem 3.10)

≤ cN−s||u||Hs(I) (Using 2.9)

Case r = 1
|u − iNu|H1(I) ≤ |u − π̃1

Nu|H1(I) + |π̃1
Nu − iNu|H1(I)

The first term is estimated using 2.9. We now bound the second term

|π̃1
Nu − iNu|H1(I) ≤ cN ||(π̃1

Nu − iNu) (1 − t2)−1/2||L2(I) (Using 3.2 since (π̃1
Nu − iNu) ∈ P0

N)

= cN ||iN(π̃
1
Nu − u) (1 − t2)−1/2||L2(I)

≤ cN||(π̃1
Nu − u) (1 − t2)−1/2||L2(I) + |u − π1

Nu|H1(I) (From last lemma)

The estimate now follows by applying 3.3 to the term ||(π̃1
Nu − u) (1 − t2)−1/2||L2(I)

The case 0 < r < 1 is derived by an standard interpolation argument.

The next result is an immediate consequence

Corollary 3.13 (H1 Stability of the iN operator). There exists a constant c such that for u ∈ H1(I)

||iNu||H1(I) < c||u||H1(I)

We can also give a bound on the ∞-norm by applying directly the Sobolev embedding theorem and last
Theorem

Corollary 3.14. For any s ≥ 1 there exists c = c(s) such that for u ∈ Hs(Ωd)

||u − INu||L∞(I) ≤ cN1−s||u||Hs(I) (3.13)

3.3 Interpolation Operators in Hypercubes

We now extend the results of last section to domains Ωd = (−1, 1)d . We only mention the case of Legendre-
Gauss-Lobatto nodes, since its the one that concern us in terms of our applications. But the case for Gauss-
Legendre is analogous. Since Ωd is a tensor product of intervals, it is reasonable to take as our interpolation
points the grid formed by tensor the tensor products of Legendre-Gauss-Lobatto Nodes
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Definition 3.15. The N -th Legendre-Gauss-Lobatto grid (see image 1.1) in Ωd is denoted by Ωd,N and is defined by

Ωd,N = {(ηi1 , . . . , ηid) : 0 ≤ i1, . . . , id ≤ N} (3.14)

where the ηij are the zeros of (1 − t2)L′
N(t)

For any α = (i1, . . . , id), we denote ηα = (ηi1 , . . . , ηid) and ρα = ρi1 · . . . · ρid

Definition 3.16. For any α = (i1, . . . , id) with 0 ≤ i1, . . . , id ≤ N , we define the α-th Lagrange polynomial by

lα(x) = li1(x1) . . . lid(xd)

where li is the (1D) Lagrange polynomial defined by li(ηj) = δij

Its clear that the polynomials {lα}α define a basis for the space QN(Ωd) and that

lα(ηj1 , . . . , ηjd) = δi1 j1 · . . . · δi1 j1

Definition 3.17. The Legendre-Gauss-Lobatto polynomial interpolation operator Id
N is the defined by{

For any u ∈ C(Ωd) Id
Nu is defined as the only polynomial in QN(Ωd) such that

(Id
Nu)(x) = u(x) for all x ∈ Ωd,N

Note that we have
Id
N = i(1)N ◦ . . . ◦ i(d)N

Using 3.12, we can also prove, with the same technique to what we did in Theorem 2.15

Theorem 3.18. Suppose s > d/2 and 1 ≥ r ≥ 0. There exists a constant c = c(r, s) such that for every u ∈ Hs(Ωd),

||Id
Nu − u||Hr(Ωd) ≤ cNr−s||u||Hs(Ωd) (3.15)

Note that the assumption s > d/2 guarantees the continuity of u.
From now on, we assume that we are working on a fixed dimension d and we abuse notation by denoting

IN = Id
N and ΩN = Ωd,N



Chapter 4

Spectral-NI approximation of PDEs

We finally have all the necessary tools to discuss our application to PDEs

4.1 The Poisson equation

We first consider the homogeneous Poisson equation{
−∆u = f in Ωd

u = 0 on ∂Ωd
(4.1)

The variational formulation is {
Find u ∈ H1

0(Ωd) such that

a(u, v) = ( f , v) ∀v ∈ H1
0(Ωd)

(4.2)

Where a(u, v) = (∇u,∇v)
For the discrete problem, we take as our finite dimensional subspace Q0

N(Ωd) ⊂ H1
0(Ωd). So we have the

following spectral problem {
Find uN ∈ Q0

N(Ωd) such that

a(uN , vN) = ( f , vN) ∀vN ∈ Q0
N(Ωd)

(4.3)

However, the inner products displayed in the variational formulation may be too complicated or even impossible
to compute analytically. For that we define the numerical quadrature on Ωd by naturally extending the one on
one dimension. Let φ, ψ ∈ C(Ωd) . We consider the quadrature defined by∫

Ωd

φ(x) dx = ∑
|α|≤N

φ(ηα)ρα (4.4)

And is clear that the quadrature is exact for Q2N−1(Ωd) .The discrete inner product is defined as

(φ, ψ)N = ∑
|α|≤k

φ(ηα)ψ(ηα)ρα (4.5)

33
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and, similarly,

aN(φ, ψ) = (∇φ,∇ψ)N (4.6)

for φ, ψ ∈ C1(Ωd)

So now we derive the following Spectral - NI (Numerical Integration) formulation{
Find ũN ∈ Q0

N(Ωd) such that

aN(ũN , vN) = ( f , vN)N ∀vN ∈ Q0
N(Ωd)

(4.7)

We begin with with analysis of problems 4.2 and 4.3.

Theorem 4.1 (Existence and uniqueness of the variational formulations). Suppose that f ∈ L2(Ωd) . Then the
problems 4.2 and 4.3 have each a unique solution

Proof. This is simply the Lax-Milgram lemma, since a(·, ·) is a inner product in H1
0(Ωd)

From the orthogonal relation 7.4 we deduce that uN , the solution of problem 4.3, coincides with Π1,0
N . So the

error u − uN comes from Theorem 2.14.

Theorem 4.2. Suppose the solution u to 4.2 is in Hs(Ωd). Then there exists a constant c = c(s) such that, for all N,

|u − uN |H1(Ωd)
≤ cN1−s||u||sH(Ωd) (4.8)

Now, we give a stability result

Theorem 4.3. The norm of the discrete solution uN is uniformly controlled by the norm of f :

||uN ||H1(Ωd)
≤ || f ||L2(Ωd)

(4.9)

Proof. From a(uN , uN) = ( f , vN) the proof is immediate.

Now, we give an estimate in the L2 norm.

Theorem 4.4. Suppose the solution u to 4.2 is in Hs(Ωd). Then there exists a constant c = c(s) such that, for all N

||u − uN ||L2(Ωd)
≤ cN−s||u||Hs(Ωd) (4.10)

In particular, the method is convergent.
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Proof. The proof relies on a duality argument. Consider the problem{
−∆w = g in Ωd

w = 0 on ∂Ωd

where g = u − uN

The problem (in its variational form) has a unique solution. Moreover differentiating the equation, we can
see that w ∈ H2(Ωd). It can also be proven ( [Gri11, Chapter 3] ) that

||w||H2(Ωd)
≤ c||g||L2(Ωd)

(where the constant c does not depend on w nor on u − uN ). From, here, taking wN = Π1,0
N w

||u − uN ||2L2(Ωd)
= (u − uN , u − uN) = a(w, u − uN) = a(w − wN , u − uN)

≤ ||u − uN ||H1(Ωd
||w − wN ||H1(Ωd)

≤ cN1−s||u||Hs(Ωd)N
−1||w||H2(Ωd

≤ cN−s||u||Hs(Ωd)||u − uN ||L2(Ωd)

We now study the problem 4.7. We will basically have to check that, by employing numerical integration,
we are not introducing errors that grow with N. We first check the well-posedness of the problem. From now
on, for the quadrature rules to make sense, we assume f ∈ C(Ωd).

Lemma 4.5. We have that, for every uN , vN ∈ QN(Ωd)

( f , vN)N ≤ 3d ||IN f ||L2(Ωd)
||vN ||L2(Ωd)

(4.11)

Also, aN(·, ·) is continuous

|a(uN , vN)| ≤ 3d−1|uN |H1(Ωd)
|vN |H1(Ωd)

(4.12)

and coercive on H1
0(Ωd)

a(uN , vN) ≥ |vN |2H1(Ωd)
(4.13)

Therefore, problem 4.7 has a unique solution. Moreover, the solution is stable

||ũN ||H1(Ωd)
≤ c||IN f ||L2(Ωd)

(4.14)

Proof.
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We prove the inequalities in order. We assume d = 2. The only complication in d > 2 is notation.

( f , vN)N = (IN f , vN)N =
N

∑
j=0

N

∑
k=0

IN f (ηj, ηk)vN(ηj, ηk)ρjρk =
N

∑
j=0

(
N

∑
k=0

IN f (ηj, ηk)vN(ηj, ηk)ηk

)
ρj

≤
N

∑
j=0

 (
N

∑
k=0

IN f (ηj, ηk)
2ρk

)1/2( N

∑
k=0

vN(ηj, ηk)
2ρk

)1/2
 ρj (Cauchy - Schwartz inequality)

≤ 3
N

∑
j=0

||IN f (ηj, ·)||L2(I) ||vN(ηj, ·)||L2(I) ρj (from 3.9)

≤ 32||IN f ||L2(Ωd)
||vN ||L2(Ωd)

(Again using Cauchy-Schwarz and 3.9)

For the next inequality,consider the first term of a(uN , vN), which is (∂xuN , ∂xvN)N . Since ∂xu and ∂xvN are of
degree ≤ N − 1 in the variable x , from the exactness property on the variable x we deduce that

N

∑
i,j=0

∂xuN(ηi, ηj) ∂xvN(ηi, ηj) ρiρj =
N

∑
j=0

(
N

∑
i=0

∂xuN(ηi, ηj) ∂xvN(ηi, ηj) ρi

)
ρj =

N

∑
j=0

(∫ 1

−1
∂xuN(x, ηj)∂xvN(x, ηj) dx

)
ρj

≤
N

∑
j=0

||(∂xuN)(·, ηj)||L2(I) ||(∂xvN)(·, ηj)||L2(I) ρj (Holder’s Inequality)

Now simply apply the Cauchy-Schwarz inequality and then 3.9 like we did in the previous inequality. The term
(∂yuN , ∂yvN)N is completely analogous. For the last inequality, consider again only the first term (∂xuN , ∂xuN)N .
Using again the exactness property

N

∑
j=0

(
N

∑
i=0

(∂xuN(ηi, ηj))
2 ρi

)
ρj =

N

∑
j=0

||∂xuN(·, ηj)||2L2(I)ρj ≥ ||∂xuN ||2L2(Ωd)
(from 3.9)

The existence and uniqueness is guaranteed by the Lax-Milgram Lemma. The stability inequality by placing
vN = ũN in 4.7 and the inequalities just proven.

Note that we are constantly making use of the geometry of Ωd to compute the integrals. Also, observe that
the continuity constant and coercivity constant do not depend on N

We now use an adaptation of Strang’s First lemma (see [EG04, Lemma 2.27])

Lemma 4.6 (Strang).
Let u be the solution of the variational problem 7.2. And consider the following discretization of said problem{

find uδ such that

∀ vδ ∈ Hδ, aδ(uδ, vδ) = Fδ(vδ)
(4.15)



4.1 The Poisson equation 37

where Hδ ⊂ H is a finite dimensional subspace, and aδ is a bilinear form defined on Hδ and Fδ is a linear form defined on
Hδ. Suppose that aδ is coercive and continuous on Hδ ⊂ H

∀uδ, vδ ∈ Hδ aδ(uδ, uδ) ≥ α2
δ||uδ||2H and |aδ(uδ, vδ)| ≤ Cδ||uδ||H ||vδ||H

Then we have the following estimate

||u − uδ||H ≤ 1
αδ

sup
wδ∈Hδ

|F(wδ)− Fδ(wδ)|
||wδ||H

+ inf
wδ∈Hδ

[(
1 +

Cδ

αδ

)
||u − wδ||H +

1
αδ

sup
vδ∈Hδ

|a(wδ, vδ)− aδ(wδ, vδ)|
||vδ||H

] (4.16)

Theorem 4.7 (Sepctral - NI convergence). Suppose f ∈ Hµ(Ωd) with µ > d/2 and that u, the solution of 4.2 is in
Hs(Ωd), for s ≥ 1. Then we have the following estimate

||u − ũN ||H1(Ωd)
≤ C

(
N1−s||u||sH(Ωd) + N−µ|| f ||Hµ(Ωd)

)
(4.17)

where C = C(s, µ)

Proof. We simply have to make a smart choice of terms in Strang’s Lemma. Since the ellipticity and continuity
constant from 4.5 are independent of N, we deduce that

||u − ũN ||H1(Ωd)
≤ C

||u − vN ||H1(Ωd)
+ sup

wN∈Q0
N(Ωd)

|a(vN , wN)− aN(vN , wN)|
||wN ||H1(Ωd)

+ sup
wN∈Q0

N(Ωd)

|( f , wN)− ( f , wN)N |
||wN ||H1(Ωd)


For any vN ∈ Q0

N(Ωd).
Now the key step is to choose vN ∈ Q0

N−1(Ωd), since the exactness property of the quadrature implies that

∀wN ∈ Q0
N(Ωd), ∀vN ∈ Q0

N−1(Ωd) aN(vN , wN) = aN(vN , wN)

So the second term vanishes and so we take vN = Π1,0
N−1u.

We now deal with the third term. Let wN ∈ QN(Ωd), from a similar argument as before, (ΠN−1 f , wN) =

(ΠN−1 f , wN)N , so now

( f , wN)− ( f , wN)N = ( f − ΠN−1 f , wN) + (ΠN−1 f , wN)− (IN f , wN)N = ( f − ΠN−1 f , wN)− ( f − ΠN−1 f , wN)N

≤
(
∥| f − ΠN−1 f ||L2(Ωd)

+ 3d||IN f − ΠN−1 f ||L2(Ωd)

)
||wN ||L2(Ωd

(Using 3.9)
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Using the triangle inequality again, we obtain that

sup
wN∈Q0

N(Ωd)

|( f , wN)− ( f , wN)N |
||wN ||H1(Ωd)

≤ C
(
|| f − ΠN−1 f ||L2(Ωd)

+ || f − IN f ||L2(Ωd)

)
So we finally obtain

||u − ũN ||H1(Ωd)
≤ C

(
|u − Π1,0

N−1u|+ || f − Πn−1 f ||L2(Ωd)
+ || f − In f ||L2(Ωd)

)
and now simply apply Theorem 2.14, 2.15 and 3.18.



Chapter 5

Implementation and Numerical examples

We briefly describe some possible implementations. First of all, the weights and nodes {ζ j, wj} and {ηj, ρj}
can be computed in terms of the eigenvectors and eigenvalues of 1.17 and 1.28, as explained in Section 1.3. Since
the matrix is sparse and symmetric, this can be done efficiently with an iterative algorithm.As a first example,
observe in Figure 5.1 how the LGL nodes avoid the classic Runge’s counterexample.

To implement 4.7 we take into account the boundary condition and write the solution in the Lagrange basis∑N−1
i,j=1 uN(ηi, ηj) li(xi)lj(xj) when d = 2

∑N
i,j,k=1 uN−1(ηi, ηj, ηk) li(xi) lj(xj) lk(xk) when d = 3

(5.1)

and we solve for uN(ηi, ηj) ( or uN(ηi, ηj, ηk) ). So the unknown is the vector U with (N − 1)d components, and

its components are u(x) with x ∈
◦
ΩN . Also, we denote by F the vector whose components are f (x) with

x ∈
◦
ΩN . So if let the test function in 4.7 run through the Lagrange basis associated with the interior nodes we

obtain that we can express 4.7 equivalently as
AU = MF (5.2)

The matrix M its diagonal, and its components are ρiρj if d = 2 and ρiρjρk if d = 3. A is the stiffness matrix,

Figure 5.1: Equispaced nodes (left) v.s. LGL nodes (right)
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and its components are

aN( lilj , li′ lj′ ) if d = 2 and aN( liljlk , li′ lj′ lk′ ) if d = 3

. To compute the mass matrix A we shall make some observations. The first one is how to compute the l′i . The
following lemma is from [Tre00].

Lemma 5.1. If x0, . . . , xm are distinct, we know the j-th Lagrange interpolant is

pj(x) =
1
aj

m

∏
k=0, k ̸=j

(x − xj) where aj =
m

∏
k=0, k ̸=j

(xj − xk)

Then (taking logarithms and differentiating)

p′j(xj) =
m

∑
k=0, k ̸=j

(xj − xk)
−1 (5.3)

p′j(xi) =
ai

aj(xi − xj)
when i ̸= j (5.4)

Secondly, the matrix A is symmetric positive definite ( from 4.5 ) so we should use linear solvers that take
advantage of this (for example the conjugate gradient method). Moreover, we observe that when d = 2

aN( lilj , li′ lj′ ) = αii′ δj,j′ ρj + αjj′ δii′ ρi

where αii′ = ∑N
k=0 l′i(ηk)l′i′ (ηk)ρi

And if d = 3

aN( liljlk , li′ lj′ lk′) = αii′ δj,j′ δk,k′ ρj ρk + αjj′ δii′ δkk′ ρiρk + αkk′ δii′ δjj′ ρiρj

This allows a reduction in the computation of the matrix-vector product Ab

Lemma 5.2. The product Ab can be computed with O(Nd+1) operations instead of O(N2d)

Proof. We show it for d = 2. The coefficient ij of Ab is given by

N−1

∑
i′, j′=1

aij, i′ j′ bi′ j′ =
N−1

∑
i′=1

αii′ ρj bi′ j +
N−1

∑
j′=1

αjj′ ρi bij′

and this requires 4(N − 1) multiplications and 2N − 3 additions.
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Figure 5.2: Structure of the matrix in the collocation method

Finally, we mention out that the matrix A is dense and somewhat ill-possed. It can be proven that the
condition number of A is κ(A) = O(N3). This could not be an issue since convergence is fast. However, if
a preconditioner is used, then the condition number of A can be uniformly bounded with respect to end by
a constant, so solving the linear system with this preconditioner is very fast. The preconditioner used is the
Finite-element stiffness matrices constructed on piecewise linear affine shape functions centered at LGL nodes.
We refer to [Can+07a, Section 5.3.4 and 5.3.5] for a more detailed explanation.
Another equivalent formulation to 4.7 is the collocation formulation. For simplicity, let d = 2.

Take uN ∈ QN(Ωd) and vN ∈ Q0
N(Ωd), by the exactness property in the x variable and integrating by parts,

N

∑
j=0

∂xuN(ηj, ηi)∂xvN(ηj, ηi)ρj =
∫ 1

−1
∂xuN(x, ηi)∂xvN(x, ηi) dx = −

∫ 1

−1
∂2

xuN(x, ηi)vN(x, ηi) dx

So we deduce that
aN(uN , vN) = (−∆uN , vN)N (5.5)

So again, by letting vN run through the Lagrange basis li1 li2 with 1 ≤ i1, id ≤ N − 1 we obtain that

−∆u(ηi1 , ηi2) = f (ηi1 , ηi2) (5.6)

so −∆uN conicides with f at the (N − 1)2 interior nodes
◦
Ω. And, since the polynomials li1 li2 with 1 ≤ i1, id ≤

N − 1 form a basis of Q0
N(Ωd), we see that 5.5 and 5.6 imply a(uN , vN)N = ( f , vN) for all vN ∈ Q0

N(Ωd).
Now, if uN vanishes at the boundary nodes ∂ΩN , then it means that it vanishes along the (N + 1) points

on each edge of ∂Ωd, and since vN restricted to each edge is a degree N polynomial in one variable, we deduce
that vN = 0 along the edges. In other words vN(x) = 0 ∀ x ∈ ∂ΩN =⇒ vN(x) = 0 ∀ x ∈ ∂Ωd So we have
deduced the following equivallent "collocation" formulation

find uN ∈ QN(Ωd) such that

−∆uN(x) = f (x) x ∈ ΩN

uN(x) = 0 x ∈ ∂ΩN

(5.7)

To implement this, we have followed the collocation method implementation explained on [Tre00, chapter 9]
with its use of tensor products of matrices. We have adapted it to LGL nodes and constructed a differentiation
matrix based on 5.1.



Chapter 6

Some extensions to Complicated Geometries

To deal with PDEs in domains Ω ⊂ Rd (d = 2, 3) with more complicated geometries, some extensions exist,
and we briefly mention two.

The Spectral Element Method :
In the Spectral Element Method we have a mesh T = {Ωm}m

Ω =
⋃
m

Ωm and Ωi ∩ Ωj = ∅ when i ̸= j (6.1)

We assume that all the Ωm (which are called elements) are affine images of our reference domain, the hypercube
Ωd. However, the elements can also be affine images of triangles to handle with complicated boundaries. In
this method we also have that the partition T is conforming, that is for any i, j , Ωi ∩ Ωj is either empty or a
whole edge or a whole face. Our approximation space is a space of piecewise polynomials:

XN = {φ ∈ C(Ω) : φ|Ωm ∈ QN(Ωm)}

Now, the Lobatto-Gauss-Legendre nodes in Ωm are denoted by ηm
α , where α = (i1, . . . , id) 1 ≤ with ij ≤ N . In

XN we consider the basis formed by the following basis functions:
If ηm

α is a interior node in Ωm or its a point in the boundary ∂Ω , and l(m)
α is its associated Lagrange polynomial

in QN(Ωm) then we define

ψ =

{
l(m)
α (x) if x ∈ Ωm

0 elsewhere
(6.2)

and its clear that ψ(x) ∈ XN . If ηm
α ∈ Ω is a node in the interior of a edge (or face if d = 3) of Ωm then since the

domain is conformal, ηm
α is also the node in the interior of an edge for another element, say Ωn and ηm

α = ηn
α′ .

Then we define

ψ(x) =


l(m)
α (x) if x ∈ Ωm

l(n)α′ (x) if x ∈ Ωn

0 elsewhere

(6.3)
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And from the conformality assumption we deduce that ψ ∈ XN . Finally, if ηm
α is a node that is shared between

many domains, for a example a corner node in d = 2 or an edge node in d = 3, then the basis function
associated with that node is defined analogously, but taking into account all of the domains that share that
node. Convergence in the spectral element can be obtained by taking N −→ ∞ or by refining the mesh
(h −→ 0), that is, by considering meshes formed by more and smaller elements. The classical reference is
[KS05].

The Mortar Element Method :
Consider the same setting as before were we have a mesh such as 6.1, but this time, we don’t assume that it
is conformal and we allow for different domains to have different polynomial degrees. To simplify matters,
assume d = 2. Denote by Γk,l , 1 ≤ l ≤ Lk the edges of Ωk that are not in ∂Ω. We define as S = ∪k∂Ωk/Ω the
skeleton of the decomposition. We can define S as the union of elementary components called mortars

S = ∪M
j=1γj with γj ∩ γk = ∅ if k ̸= j (6.4)

where each mortar γj is a whole edge of a specific element denoted by Ωm(j). And this specific edge is then
denoted by Γk(j),m(j). We emphasize that each mortar γj is related to a specific edge of a specific element Ωk.
So even if two distinct domains Ωm(j) and Ωl share an edge, say e, the mortar γj will be associated to the edge
"on the side" of Ωm(j).

On each subdomain Ωk we look for a discrete solution belongs to QNk(Ωk). We also denote by W(k),(l)
δ =

QNk(Γk,l) the space of traces of Yk,δ on Γk,l . Finally we define W̃(k),(l)
δ = QNk−2(Γk,l) Now, our approximation

space Xδ is defined by the space of functions vδ such that

• vδ|Ωk ∈ QNk(Ωk)

• they vanish on ∂Ω

• They satisfy the mortar conditions : let φ be the mortar function associated with vδ , that is, the function
that on each γj = Γk(j),m(j), φ coincides with the restriction to γj of vδ|Ωk ; then for every Γk,l that
is contained in S but is not one of the mortars (so Γk,l ̸= Γk(m),l(m) for any m ) we have the following
matching condition

∀ ψ ∈ W̃(k),(l)
δ

∫
Γk,l

(v|Ωk − φ)) (x) ψ(x) dx = 0

The mortar element method can also be coupled with triangular "mortar elements". For many more details, see
[BMR05].
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Appendix

7.1 Polynomial Interpolation

Given a set of distinct nodes {ξ0, . . . , ξN} ⊂ R, and a set of values { f0, . . . , fN} ⊂ R, our goal is to construct
a polynomial p such that

p(ξi) = fi ∀i = 1, . . . , N

Definition 7.1 (Lagrange polynomials). Let {ξ0, . . . , ξN} ⊂ R. For 1 ≤ i ≤ N, we define the i-th Lagrange polynomial
associated to the nodes {ξ0, . . . , ξN}

li(s) =
N

∏
j=1
j ̸=i

s − ξ j

ξi − ξ j

Observe that li has degree N and
li(ξ j) = δij (7.1)

Theorem 7.2. Given a set of nodes {ξ0, . . . , ξN} ⊂ R, and a set of values { f0, . . . , fN} ⊂ R, there exists a unique
polynomial p ∈ PN such that

p(ξi) = fi ∀i = 0, 1, . . . , N

We say that p is the interpolant for the given nodes and values.

Proof. Write

p(s) =
N

∑
i=1

fi · li(s)

Its an immediate computation using 7.1 that p(ξi) = fi. Suppose that there exists another polynomial p∗ ∈ PN

such that p∗(ξi) = fi , then q = p − p∗ is a polynomial of degree ≤ N that has N + 1 distinct roots {ξ0, . . . , ξN}.
So q = 0 and p = p∗

44
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Similarly, we can prove

Theorem 7.3 (Hermite Interpolation). Suppose we have a set of nodes {ξ1, . . . , ξm}, a set non-negative integers
{r1, . . . , rm} such that n = ∑m

i=1 ri and a set of values { f ki
i } for i = 1, . . . , m and ki = 0, . . . , ri − 1. Then there

exists a unique polynomial p of degree ≤ n − 1 such that

p(ki)(ξi) = f ki
i ∀i = 1, . . . , m ∀ki = 0, . . . , ri − 1

Where the superscript (ki) denotes the ki − th derivative.

7.2 Coercivity and Lax-Milgram lemma

Recall our variational problem 2. We’d like to prove the existence and uniqueness of such problem and
a more general class of problems. Four our purposes, we only need the symmetric form of the Lax-Milgram
theorem. The general setting is the following :

• (H, (·, ·)) is a Hilbert space

• V is a closed subspace of H

• a(·, ·) is a symmetric bilinear form defined on H

• F ∈ V ′ (F is a continuous linear functional on V )

We would like to prove the existence and uniqueness of the problem{
find u ∈ V such that :

a(u, v) = F(v) for all v ∈ V
(7.2)

We first need a well-known result.

Lemma 7.4 (Riesz Representation Theorem).
Let L be a continuous linear functional defined on a Hilbert space H.

Then, there exists a unique u ∈ V such that

L(v) = (u, v) for all v ∈ V

Furthermore, ||L||H′ = ||u||H (where || · ||H′ is the operator norm on H′). So we have an isometry between H and H′

If we could treat a(·, ·) as a inner product on V, then we could apply the Riesz Representation theorem on
a(·, ·) as a way to solve 7.2.
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Definition 7.5. We say that a bilinear form a(·, ·) defined on a normed vector space X is continuous if there exists a
constant C < ∞ such that

|a(u, v)| ≤ C||v||X||u||X ∀u, v ∈ X

and it is called coercive on V ⊆ X if there exists a constant α > 0 such that

a(v, v) ≥ α||v||2X ∀v ∈ V

C is usually called the continuity constant and α the coercivity constant.

Proposition 7.6. Let H be a Hilbert space and a(·, ·) a symmetric linear form continuous on H and coercive on a closed
subspace V ⊆ H. Then (V, a(·, ·)) is a Hilbert space.

Proof.
First we see that a(·, ·) is an inner product because, owing to the coercivity,

a(u, u) ≥ 0 and a(u, u) = 0 ⇒ ||u||H = 0 ⇒ u = 0

Now we see that V with with the associated norm ||v|||a =
√

a(v, v) is a Banach space. We only need to check
that it’s complete.

Suppose that {vn}n is a Cauchy sequence on (V, || · ||a) . By the coercivity assumption, {vn}n is also a
Cauchy sequence on H

||vn − vm||a ≥ α||vn − vm||H
So there exists v ∈ H such that vn → v in H. Since V is closed, v ∈ H . Now, by continuity,

||v − vn||a ≤ C||v − vn||H

so vn → v also in (V, || · ||a) and therefore this space is complete.

Theorem 7.7 (Lax-Milgram Lemma). Suppose that the assumptions from the general setting hold and that the bilinear
form a(·, ·) is continuous and coercive. Then the problem 7.2 has a unique solution.

Proof. The last proposition implies that (V, a(·, ·)) is a Hilbert space, and the coercivity that F is also a continu-
ous linear functional on (V, a(·, ·)). Now apply the Riesz Representation theorem on (V, a(·, ·)) to find that 7.2
has a unique solution.

Keeping the assumptions from the same general setting as before, consider now the discrete problem of
finding {

find uh ∈ V such that :

a(uh, vh) = F(vh) for all vh ∈ Vh
(7.3)

where Vh ⊆ V is a finite-dimensional vector space. The following says that the problem above is well-posed if
a is coercive.
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Corollary 7.8. Suppose that a(·, ·) is coercive and continuous on V and that the assumptions of the general setting hold.
Then the discrete problem 7.3 has a unique solution.

Proof. Vh being finite dimensional implies that it is also closed. Since a(·, ·) is coercive and continuous on V,
then it is also coercive on Vh. So we can directly apply the Lax-Milgram lemma on 7.3.

The general (non-symmetric) Lax-Milgram lemma is not difficult to prove (see [Bre08, Section 2.7]. A more
general statement than the Lax-Milgram lemma is the BNB (Banach - Nečas - Babuška) theorem (see [EG04,
Theorem 2.6]).

Proposition 7.9 (Galerkin orthogonal relation and Cea’s Theorem).
Suppose that u is the solution of problem 7.2 and uh is the solution of the discrete problem 7.3. Then, for every vh ∈ Vh ,

a(u − uh, vh) = 0 (7.4)

And so
||u − uh||a = min

vh∈Vh
||u − vh||a (7.5)

Moreover if a(·, ·) is coercive and continuous, then the following estimate holds

||u − uh||H ≤ C
α

min
vh∈Vh

||u − vh|| (7.6)

Proof.
If u and uh are, respectively, the solutions of 7.2 and 7.3 then, for all vh ∈ Vh

a(u, vh) = F(vh)

a(uh, vh) = F(vh)

From here we deduce that a(u − uh, vh) = 0
Inequality 7.5 now follows from the orthogonal relation, take vh ∈ Vh

||u − uh||2a = a(u − uh, u − uh) = a(u − uh, u − vh) + a(u − uh, vh − uh)

= a(u − uh, u − vh) ≤ ||u − uh||a||u − vh||a

So ||u − uh||a ≤ ||u − vh||a .
Now we prove inequality 7.6. Take any vh ∈ Vh

α||u − uh||2H ≤ a(u − uh, u − uh)

= a(u − uh, u − vh) + a(u − uh, vh − uh)

= a(u − uh, u − vh) (since vh − uh ∈ Vh)

≤ C||u − uh||H ||u − vh||H

We will make constant use of 7.4.
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7.3 Interpolation spaces

Interpolation spaces allow us to define Hilbert spaces " in between " two other Hilbert spaces. We won’t be
too rigorous defining some concepts and we refer to [LM12] to a more detailed treatment of this concepts and
the proofs. Later on, we will use this results to generalize inequalities to these " in between " spaces.

Suppose X and Y are two Hilbert spaces. We denote by || · ||X and || · ||Y their respective norms. We say
that a Hilbert space is separable if it contains a dense countable subset (every Hilbert space that is mentioned
in this text is separable). We say that X is continuously or compactly embedded in Y if there exists a constant
C < ∞ such that ||v||Y ≤ C||v||X for all v ∈ X.

Suppose that X and Y are two separable Hilbert spaces, that X is dense and continuously embedded in Y .
Then, for each 0 ≤ θ ≤ 1 its possible to rigorously define an "Interpolation space" denoted [X, Y]θ and give it a
norm || · ||[X,Y]θ .
We have that, for 0 < θ < φ < 1

X = [X, Y]0 ⊂ [X, Y]θ ⊂ [X, Y]φ ⊂ [X, Y]1 = Y (7.7)

So θ measures " how much is [X, Y]θ in between X and Y ". Moreover, for any 0 ≤ θ ≤ 1,

∀v ∈ X ||v||[X,Y]θ ≤ ||v||1−θ
X ||v||θY (7.8)

The main results of these section concerning to our applications are 7.10 and 7.12

Theorem 7.10. Let X and Y (respectively X∗ and Y∗) be separable Hilbert spaces such that X (resp. X∗) is continuously
embedded and dense in Y (resp. Y∗). If a linear operator L is continuous from X into X∗ with norm α and from Y into Y∗

with norm β, then L is continuous from [X, Y]θ into [X∗, Y∗]θ with norm ≤ α1−θ βθ

For a example application of this results, see the proof of Theorem 2.1 or Corollary 7.13.

7.4 Fractional Order Sobolev spaces

We recall the definition of Hs(Ω) when s is not an integer.

Definition 7.11 (Fractional order Sobolev spaces). For 0 < s < 1, the Sobolev space Hs(Ω) is defined as

Hs(Ω) = {u ∈ L2(Ω) :
u(x)− u(y)
||x − y||s+d/2 ∈ L2(Ω × Ω)}

and we define the norm

||u|||Hs(Ω) =

(∫
Ω

u2 dx +
∫

Ω

∫
Ω

|u(x)− u(y)|2
|x − y|d+2s dxdy

)1/2

When s = m + σ,m a positive integer and 0 < σ < 1, we define

Hs(Ω) = {u ∈ Hm(Ω) : ∂αu ∈ Hσ(Ω) ∀|α| = k}
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and

||u||Hs(Ω =

(
||u||2Hm(Ω) + ∑

|α|=k
||∂αu||2Hσ(Ω

)1/2

We also write H0(Ω) = L2(Ω)

Theorem 7.12. For any 0 ≤ s ≤ r, and for any 0 < θ < 1 , the following equality is true

[Hr(Ω), Hs(Ω)]θ = H(1−θ)r+θs(Ω) (7.9)

Moreover, both spaces have equivalent norms.

As an example of an application, we have

Corollary 7.13. There exists a constant C such that for all u ∈ H2(Ω)

||u||H1(Ω) ≤ C||u||1/2
H2(Ω)

||u||1/2
L2(Ω)

(7.10)

And ∀ϵ > 0, there exists C(ϵ) such that

||Du||L2(Ω) ≤ ϵ||D2u||L2(Ω + C(ϵ)||u||L2(Ω (7.11)

Proof. For the first inequality simply apply 7.10 with θ = 1/2 and 7.12.
For the second one, use the first inequality and Cauchy’s inequality (for real numbers) 2ab ≤ a2

ϵ2 + ϵ2b2
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