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Abstract

The main goal of is to indruce the basic techniques and results of numerical analysis for spectral methods.
The required prerequisites to understand this text are basic knowledge of numerical methods, a introductory
course on PDEs, on Real and Functional analysis, and on Sobolev spaces. For instance, chapters 1-2 from
[Bre08] covers most of the necessary background on functional analysis and Sobolev spaces. A more thorough
treatment of those topics can be found in [Eva22] or [BB11]. As a refresher, we will include the most important
results in the Appendix.

We will study the basics of spectral methods for elliptic boundary value problems and briefly discuss possible
extension to more complicated geometries. Every method described will be implemented in MATLAB®.

In finite element methods, the approximation spaces are usually piecewise polynomials with a fixed degree
(normally linear or quadratic), and convergence is achieved by refining the mesh, in other words by h — 0
and convergence is usually O(h?). Moreover the linear systems obtained by the discretizations are usually very
large but sparse. The finite element method also has the advantage that it can be used for very complicated
geometries.

In spectral methods, convergence is achieved by having one (or more) fixed domain and increasing the
degree of polynomial approximation (by taking N — o0). In this case, convergence depends on the regularity
of the solution. A typical result is that convergence is O(N~¥) where the k depends on the smoothness of
the solution. When the solution is C*, then convergence is spectrally fast : it is faster than O(N~¥) for any
k! Spectral methods are much faster when the solution is known to be very regular. In many applications
where the solution is known to be very regular and high precision is needed, spectral methods are very useful.
Spectral methods lead to dense matrices but since convergence is fast, good precision can be obtained with
small matrices. However, spectral methods are not as efficient when the solutions are not that regular, and the
extension to complicated geometries is more complicated to that of finite elements.

Other methods like the Spectral Element or Spectral - ip Finite element methods combine both approaches

Introduction

Some conventions:

¢ d will always denote the dimension we are working on
¢ () will always denote an bounded Lipschitz domain.
¢ Every function will be assumed to be (Lebesgue) measurable

* We denote by Py the space of polynomials in one variable of degree less or equal than N, and by Pn(I)
the space of said polynomials restricted to an interval I.

e n,m,k,N,i,j always denote positive integers, and s,r nonegative real numbers. C or ¢ always denote
positive constants. When we write, for instance, ¢ = c(s), it means that the constant only depends on s.
We allow ourselves to constantly abuse notation by not renaming ¢ when scaling the constant.



III

Our goal: We will restrict our attention to second-order linear elliptic boundary value problems. The prototyp-
ical elliptic operator is the Laplacian L = —A , where A = Y4, %. Our model equation is therefore Poisson’s

equation with homogeneous boundary conditions:

—Au=f in Q

1
u=0 on 90 @

Once we have understood the convergence and implementation of the numerical method, one can move on to
more general elliptic operators and boundary conditions.
Multiplying the PDE 1 by any function v and integrating over () gives

—/QvAu:/va

by taking v € H}(Q), supposing momentarily u € H?(Q)) and integrating by parts the left-hand side we obtain

./QVqu:/va

and by taking into account the Dirichlet conditions from 1 we have derived the variational formulation of 1:

{ Find u € H}(Q) such that )

a(u,v) = (f,v) Vv e H{(Q)

where a(u,v) = [ VuVvand (f,v) = [, fo

Observe that if f € LZ(Q), then the above integrals are well defined and finite. Moreover, note that for
point-wise formulation 1 to hold a.e in () requires u to be two times (weakly) differentiable. However, the weak
formulation 2 only assumes u € H'(Q)). In fact, many elliptic problems don’t have solutions in H?

However, the Lax-Milgram Lemma states that the problem in the variational formulation is unique, and its
easy to see that if the solution is u € H?(Q), then u satisfies —Au = f a.e. in Q.

The general strategy to approximate the PDE numerically will be to consider a finite dimensional space
Vi, C H}(Q) and attempt to solve 2 in Vj,, that is

Find uj, € V}, such that
{ ©)

a(uy,vp) = (f,on) Vor €V

Agradecimientos

Quiero agradecer a mis padres por su apoyo ininterrumpido y por inculcarme el valor del esfuerzo, entrega
y pasion por lo que a uno se dedica.

2020 Mathematics Subject Classification. 65M60, 65N06, 65N35



Chapter 1

Legendre Polynomials and applications

1.1 Basic facts about Legendre Polynomials

We denote I = (—1,1) our reference interval, chosen to obtain nice symmetric properties.

Suppose {pn}u is a basis for the space of polynomials P. Since P is dense in L?(a,b) we can write any
function v € LZ(a,b), as v = Y o @upPn. A numerical approximation to # may be obtained by truncating the
series v = Y oo &npPn. If we take the basis {L,}, to be orthogonal with respect to the L2(I) inner product, then
the inner product like that ones we need to compute in 3 become easy:

1 N

(on(t) un(t) dt = ) il |Lnllfzg,
n=0

N N
UN = ZanLn, Uy = Z BnL, then /
n=0 n=0

Applications of orthogonal polynomials such as numerical integration or polynomial interpolation that
avoids the Runge’s phenomenon will be presented.
We recall that a weight is a function w : (—1,1) — [0, 00) such that

/1 p(t) w(t) dt < oo

J-1

for any polynomial p.

For each weight w, L?(I,w) denotes the inner product with respect to the measure dw = w(t)dt. From the
Gram-Schmidt process, we can construct a family of orthogonal polynomials with respect to that inner product,
and by imposing that leading coefficient is 1, the family is unique. We denote it by {gq%¥ },>0, where deg(q¥) = n.
The next statements are classic results and hold for a family orthogonal polynomials {4% },—o,1,.. with respect
to any weight.

e For any n, g% has n distinct zeros in (—1,1)
e If n is even (resp. odd) then g% is an even (resp. odd) function (This is why we take I = (—1,1) )

We now define the Legendre polynomials and describe their properties.

1



Legendre Polynomials and applications

Definition 1.1 (Legendre Polynomials). The Legendre polynomials {L, }, is the (unique) family of orthogonal polyno-
mials with respect to the weight w = 1 and such that

deg(L,) =n,L,(1) =1, foralln=01,...
We denote the leading coefficient of L, by ¢,

The next formula is fundamental in the theory of Legendre polynomials.

Theorem 1.2 (Fundamental ODE). For all n > 0, L, satisfies

(1-t)L) = —n(n+1)L,

(1.1)
Proof. First, note that (1 — #2)L},)’ has degree n. If we integrate ((1 — #?)L)’ against any polynomial p € P,_1,
we see that (integrating by parts)

[ (=P pl d

' 1
- /_1(1 — )L, (H)p'(t) dt = /

-1
Because ((1 —

Lu(B)(1 - 2)p'Y dt =0
t2)p’) has degree < n — 1. So ((1 — #?)L},) is orthogonal to P,_; and therefore we must have
(1-P)LL) = AL,

for some A € R. The leading coefficient of (1 — t?)L!)" is —n(n + 1)c,, so we obtain that A = —n(n +1)
Some immediate consequences are

O

Corollary 1.3. The polynomials {L!,}, form a family of orthogonal polynomials with respect to the weight w(t) = 1 — 2

/11 L (DL, (H)(1 = 2) dt = n(n+1) /11 Ly (F)La(t) dt (1.2)
and L,(1) = "0

Theorem 1.4 (Rodrigues” Formula).

_ (_1)71 a" n
L, = gyl 'ﬁ((l_tz) )

(1.3)
Remark 1.5. Before proving the formula, we expand 47 ((1 — #2)") for m < n using Leibniz’s formula.
TPy = T = kio (’Z)jfk@ sy B
= L0 G e |
So we see that ;;; (1—¢

)") vanishes at +1 when m < n and its equal to (—1)"2"n! when t =1and m =n



1.1 Basic facts about Legendre Polynomials 3

Proof.
Observe that 4 ((1 — #2)") is a polynomial of degree n. Integrating it against any polynomial p € P,_; gives,

n

/_11 ;;((1 — tz)n) P(t) dt = (_1);1 /_11(1 _ tZ)n Wp(t) df =0

where we have integrated by parts n times and used that 45 ((1 — #2)") vanishes at =1 when m < n.

Therefore we must have that 4 ((1 — t?)") = AL, for some A € R. Computing both sides at t = 1 gives the
result. O

Corollary 1.6. From Rodrigues’ formula we directly obtain

(2n)!

= ()2

Corollary 1.7. Let 0 < m < N.
Then ;%LN is orthogonal to Pn_, with respect to the weight (1 — t2)™ . So %Lj}j:m,...,N is family of orthogonal
polynomials with respect to the weight (1 — 2)™

Proof.
For any p € Pn—m

dm

[y pna ey a = [ ey S a2 a=o

_q dgntm 1 dtn

where we have used 1.5 and that 4 (p(t)(1 — £2)™) has degree < N O

We now list some properties about Legendre Orthogonal polynomials which can be proven by elementary
techniques and the previous results:

Theorem 1.8 (Properties about Legendre Orthogonal polynomials).

1. Forn > 0, the L% norm is given by

1 1
/ Lo(F)? dt = (1.5)

2. Forany n >0
(2n+ 1)Ly = Ly = Ly (1.6)



Legendre Polynomials and applications

3. Legendre Iduction Formula

The family of Legendre polynomials can be computed by

Lo(t) =1,Lq(t) =t

(n+1)Lyt1(t) = (2n + 1)tLy(t) — nL,_1(t) a7
4.
nLy 1 (t) = 2n+ 1)tL; (1) — (n+ 1)Ly, (1) (1.8)
5. Christoffel - Darboux formulas
Forany x,y € 1
n—1 —
(20 + DL (1)1 ) = n £ ) = et () (19)
j=0

and

= 2i+1 oo 1Ly (0)L, 4 (y) — Ly(y)L, 4 (x)
i J'(J'+1)Lf(x)Lf(y) T Xy (1.10)

1.2 Quadrature

The inner products at 3 must be computed to obtain an approximate solution. Since computing integrals
analytically is costly and most times not possible, we must integrate numerically.

The goal of this section is to find nodes ¢; and weights w; so that the approximation

1 N
/ NIOEES WO
_ =
is as precise as possible. An approximation as above is called a quadrature.

Theorem 1.9. Let 0 < m < N. There exist
* A unique set of nodes C]’.", 1<j<N-minl
* A unique set of weights, w}”, 1<j<N-m,

such that the quadrature formula with is exact for Pon_om—1 and the weight (1 — t2)™ . In other words, if p € Pon—om—1
then:

1 N-—m
[ poa—eyra= 3, p) (1.1
g L

Furthermore, the nodes g;.“, 1<j< N —mthe N—m zeros of %LN
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Proof.
Denote by 1/)}” the Lagrange polynomials associated with the nodes (", for j = 1,..., N — m. They are of degree
N —m — 1. Plugging into 1.11 gives

_ /1 Pr(t) (1—12)" dt
-1

and so the quadrature formula is exact for p = 7" which in turn implies that it is exact for Py_;—1. Now, for
any p € Pon-_2m—1, We can write it as

p(t) = q(H)(E=C1) - (= EXom) +7(5)

with ¢,7 € Pny_m—1 . So we have that

1
Z (") ): / r(b) (1= )" dt

j=1 -1

since the quadrature formula is exact for Py_,,—1. To be exact for p we need to look for nodes such that

1
W9 € Pyt [ g (=R ) (1= )" dt =0

This means that (¢t — ¢}*) -...- (t — ¢¥_, ) is orthogonal Py_,,—1 with respect to the measure (1 — #2)"™. So from

1.7 (or definition 1.1) we have that this nodes {§ }i=1,...N—m are the zeros of 4 o Ly O

Since we are going to use numerical integration to approximate boundary value problems, it makes sense
to look for a quadrature formula that involves the endpoints of the interval, namely +1.

Theorem 1.10. Let 0 < m < N. There exist
o A unique set of N —m nodes (', 1 <j < N —m
. B " , B
* Aunique set of N — m real numbers pj', 1 < j < N —m
A unique set of 2m real numbers p" K and p+k ,0<k<m-—1

such that for all p € Pan_1
1 _
/ Z (¢7)pj"
_1 =1
+ Z —1)-p"* + ap (1) - pl2*
dtk - dtk +

Moreover, they {* , 1 < j < N — m are given by the zeros of %LN

(1.12)
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Proof.
Every polynomial p € Pon_1 can be written as

where g € Pon_om—1 and 7 € Poy_1.
By applying 1.12 to the first summand, and making use of 1.5, then Theorem 1.9 gives us that necessarily

o =(1— () "Wl V1I<j<N-—m (1.13)

So we deduce that the quadrature is exact when applied to the first term g(#)(1 — t?)™. Therefore we only have
to see that the formula is exact for Po,;,—1.

Plugging {1,x,x2,...,x""1} into 1.12 gives a square 2m x 2m linear system for the {p"*, 0"} with coeffi-
cients given by (%xf) (£1).
If this system was singular, there would exist a linear combination ag +a;x + ... + Ay 1X¥" 1 for which the
derivatives of order 0 to m — 1 would vanish at £1. From 7.3 we now that the only polynomial of degree 2m — 1
to satisfy that is p = 0, so we conclude that a9 = a1 = ... = az,-1 = 0 and therefore the linear system is
non-singular, which means that the {pm’k, pf’k } can be determined uniquely. O

Remark 1.11. It’s easy to see that the weights w}" and therefore the pj' are stricly positive.

Indeed if we apply 1.11 to the squares (lp]m)z of the Lagrange polynomials associated with the nodes ",
j=1,...,N —m, and use the exactness for Pyy_2,—1, then the property easily follows.

1.3 Weights and Nodes

From now on, we are only interested on the cases m = 0 of Theorem 1.9 and m = 1 of 1.10.

Definition 1.12.

We denote by (j, j = 1,..., N the zeros of Ly and by w; their associated weights of 1.9. The {;}; are called the N-th
Gauss-Legendre nodes.

We denote by 17;, j = 0,..., N the zeros of (1 — t*)Ly,. We also denote p; = pj' forj =1,...,N—1and py = o™,
01 = pi’o. The {n;}; are called the N-th Gauss-Legendre-Lobatto nodes.

So now the quadrature formulas read as

-1

1 N 1 N
[ e ar~ Yoy and [ gt dt~ Y oln)e
j=1 - j=0

For practical numerical computation we must compute the previous weights and nodes. And for polynomial
interpolation we must understand how are these nodes distributed along I.
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First we study the case m = 0 of the Gauss-Legendre nodes Cj From the formula 1.9, and recalling that the
gj are the zeros of Ly,

Lo(x)Lo(Zj) +- .-+ (2N = 1)Ly-1(x)Ln-1(j) = N (1.14)

Integrating both sides, and applying the orthogonality relations as well as the exactness of the quadrature

2 = NLy-1(gj) /1 Ln(x) g NLy-1(gj) = NLy-1(j)Ln(gj)wj

Jaax—¢ j
so we have an explict formula for the weights in term of the nodes

2
~ NLn-1(Z)LL(Z))

wj (1.15)

By defining L} = /n+1/2L,, now the {L}}, form a family of orthonormal polynomials and we can adapt
the induction formula to

n+1 "
= ; b
tL (1) J@n+1)(2n +3) L (B) V(@2n+ 11)1(211 -1) i (1.16)

= an+1LZ+1 + “HLZ—l where Ky = ﬁ
n J—

(The reason why we introduced {L; }, will soon follow) We can write the previous equation in matrix form :

- Lé — 0 5] 0 - Lé - _ )
L* o1 0 1 %) L* 0
.1 0 [1%) 0 3 .1
t = +an |
: 0
L} Ly_ .
Li\lfz ON—2 0 ON—1 Li\[ 2 _LN_
L=N-14 _0 0 aN_1 0 I N-14
So the {; are the the eigenvalues of the matrix
0 L5
L5 0
A= (1.17)
0  an—
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This matrix is tridiagonal with a zero diagonal and symmetric, so its eigenvalues can be computed numerically
very fast and precisely with an iterative algorithm. If x — ; in 1.14,

Lo(Zj)* +3L1(;)* + ...+ (2N = 1)Ly -1(Zj)* = NLy-1(g;) Ly (Z))
From 1.15 and the L? norm of L, we find that

wj = (L5(g)* + ..+ Ly (5)*) ™ (1.18)
This means we can compute the weight w; from the components of the eigenvector with eigenvalue {; (with
first coordinate Ly = 1/ V2 )
To study how the weights behave as N — oo, we derive another expression for w;.

Using 1.7 we get, (N +1)Ln1(lj) = —NLn-1({;) . Integrating both sides of the fundamental ODE 1.1 and of
1.6 we obtain

(1—)Ly(t) = =N(N +1) [1 Ly(x) dx = —m

so (1— CJZ)L&(Q']) = NLy-1(¢;) and finally,

(Lny1(t) — Ln-1(f)

2
w; = (1.19)
I a-nEy
We suppose that the {; are in increasing order and we define
0; = arccos({;)
Theorem 1.13 (Location of nodes).
The nodes 6; are located in:
When N = 2m
2j—1)rm (2j+1)m ,
T<9N_j+l<T when 1<j<m-—1
(2j—-3)m (2j—1)m .
— ; —~ <i< 1.20
N < On_jy1 < N when m+2<j<N (1.20)
N-1)m N+1)m
(2]\])<9m+1<n/2<0m<(21\])
When N =2m + 1
2j—1)m (2j+1)m .
T<9N_j+l<T when 1<j<m-1
(2j—-3)m (2j—1)m .
. <i< 1.21
N < On—jm1 < N when m+3<j<N (1.21)
(N-1)r (N+1)n

< 9m+2 < 9m+1 = 7T/2 < Qm,1 <

2N 2N
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Proof.
Consider the functions

p(t) = ((1— tz))l/z Ly(t) and 9y(t) = (1— t2)1/4 arccos(t)
From the Fundamental ODE 1.1, we can check that

,,+N(N+1)(1—t2)+1 N2(1—#2)+1/2+1/4t2

(1—1£2)2 ¢=0 and 7+ 1- 1) p=0
So
(9" —9'9)" = noy (1.22)
where ( 2) y Y
N(1-t)+1/2—-t/4
u(t) = 1-p) >0 for tel

cos(Narccos(t)) is the N-th Chebysev polynomial in it's N zeros are cos <(2]2+7I\})”> for j=0,...,N—1

Let a and b be two consecutive zeros of 1. Integrating both sides of 1.22 yields

Now we are going to prove by contradiction that ¢ necessarily has a zero in (a,b). First, remember that the
zeros of 1 are simple.
Suppose ¢ does not vanish in (a,b); denote by s the sign of ¢ on [a,b]. Then s > 0 or s < 0. Since the zeros
of i are simple, we suppose that iy > 0 on [a,b] (the case ¢ < 0 is analogous) . So it follows that ¢'(b) < 0,
¥'(a) >0

Then

s —s(+) = [[(Hs(H) = (5= [ (s

where (+) represents a number greater or equal than and (—) a number smaller or equal than zero. Thus we
have a contradiction and ¢ must have a zero in (a,b). So we have located N — 1 of the zeros of ¢, more precisely,
we have proven that for all 1 < j < N — 1 there exists some {; such that

cos <(2];—Nl)7'c> < {; < cos <(2]2—Nl)7'c>

To find the missing one, we recall that :

When N is even, {n/2+1 and {n/» = —(n/24+1 are both in between [cos (N;;\})n,cos (Nz_l\})ﬂ]

When N is odd, then {(n1)/2 = 0. So this zero is the right endpoint of {cos( (N;I\p”),cos(n/ 2)} and the left

endpoint of [cos7t/2,cos (N;I\})n} O



10 Legendre Polynomials and applications

Observe that the cosine of the nodes are equally distributed along [0, 7r]. This means that as N — oo, the
nodes cluster along the ends of the interval. This is one of the characterizations of good interpolation nodes, as
explained in [Tre00, Chapter 5].

Theorem 1.14 (Weight estimates).
The weights w; satisfy the following inequalities for some ¢ independent of N:

w; <eN~H1 =732 (1.23)

Proof.
Since the Ly and LY}, are even or odd, and from formula 1.19, we automatically have that

wj=wNny1-j Vj=1,...,N
So it’s enough to prove the result for the nonnegative ;. For this purpose, consider the function
£(8) = (sin8)Y%Ly(cos(0))
From the fundamental ODE 1.1 we can see that
'(0) +u(0)f(6) =0 with u(8) = N(N+1)+1/4+ (sin(6))%/4 (1.24)
Observe that from 1.19,

2(1-g3)2
(F)2(6)) = (sin(6))) Liv(cos(8;)) = 20-e) (1.25)

wj

Take two zeros {; and {;, where 0 < {; < {j, owing to 1.24 we get that
(f'(6:))* — (f’(f?j))2
0;
= / ) do =2 / £(0)£"(6) 40 = =2 [ " p(0)f(6)f(0) do 1.26)

= [ ko >de=/9. W(0)£2(0) do
] ]
Since 3/(0) < 0 when 6 € (0, ), we have that (f')2(6;) > (f)*(6;), which in turn implies from 1.25 that , for
j > 0 the numbers w;(1 — g]?)*l/ 2 decrease as j increases.
So if m = [N/2] + 1 and we check that
wa(1 - 7)712

is bounded by cN~! for some ¢ > 0 independent of N, then we will have proved the estimate 1.23 for all j. We
distinguish cases:

When N =2k +1:
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Then Z,; = {x4+1 = 0 and from 1.19 we have that w,, = 2/L},(0)2. So from the induction formula 1.8 we
deduce that

A - ) N(N-2)-....3 ,
_ N! _ N!
S (N—1)2(N=3)2-...-22 SO NI (NF2(RF2)2. 1
_ N!
= (- 1)/22N_1<(N21)!)2

We now use Stirling’s formula k ~ v/27r e ¥ k(k¥1/2) So

N! e—N NN+1/2 N1/2 NN

2N—1((¥)!)2 oN-1 (%)N e—N+1 aN-1 (%)N

~ Nl/z

So we deduce that |L},(0)] > cN'/2, which proves the bound.

When N = 2k :
Then integrating as before, this time between 0,, and 77/2

1\2 o 2 - _ /2 2N/
(f)7(/2) = (f1)"(6m) /9 () (f7)'(6) do

/2
= k(2D + [ W 0)f(0) do
Since p’'(6) <0 when 0 € (0,71) , we conclude that

2(1-g3)'"?

0, (f)2(Om) > p(m/2) f2(7/2) = (N? + N +1/2)L{(0)

Now apply the induction formula 1.7 as well as Stirling’s formula to deduce that Ly(0)?> > ¢cN~! for some
C O

It can also be proven that the estimate above is optimal, in the sense that there exists a ¢’ such that w; >

C’N_l(l _ ng)l/z

We now consider the case m = 1, which involves the endpoints of the interval, 77p = —1 and 7 = 1, and the
zeros of L

/11 P(t) dt ~ ifl’('?j)f?j
~ =

To numerically compute the nodes and weights we are going to proceed analogously as before. Firstly, we are

. n+1/2,

going to define
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which are orthonormal polynomials with respect to to the weight (1 — #?)dt = dw. Using the induction formula
1.8, we have that

2tQ, = \/( nin +2) Qui1 + \/( n-1)n+1) Qn1

n+1/2)(n+3/2) n+1/2)(n—1/2)
(1.27)
N ] n(n+2)
= Qi T Qoo T = \/(n +1/2)(n +3/2)
Writing the above expression in matrix form:
— 7 [ O ’)/1 0 ] — %
gi m 0 m QS 0
2 0 72 0 73 ! :
2t =|: N1 |
*: : *. O
85_2 -3 0  IN-2 N-=2 %9
L=N-1. i 0 0 YN—2 0 I N-14
So the 7; are the eigenvalues of the matrix
0 m
710
B= (1.28)
0 N2

N2 O

We recall from 1.13 that the weights p; can be computed in terms of the w!

;- But we want an expression to

compute them in terms of the eigenvectors of B.

Lemma 1.15. For1 < pj < N-1
2N

w! = (1.29)
P LR () Ly (1)
Proof. Use formula 1.10 with y = 7; to obtain
N-—1 . L/ L/ .
Y AL ) = L) (1.30

DR noxo
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Integrate both sides against (1 — 2), and use the exactness property of the quadrature

1
2= NLEV_l(’?j)L%('?f)wfl

Now from 1.13,
o 2N

(=)L () Ly ()

pj = w;(1—1;)

O
Now, letting x — 7; in 1.29 gives
N 2k +1 1
Z kk+1) (k+1) Li(t) NLQ\I—I(W]‘)LKI(W) (1.31)

and thus .
pi=Q1—n})" ( Y Qi) ) (1.32)
So we have a way of computing the weights in terms of the eigenvalues of the matrix B with first component
=3/2
By substituting in the formula 1.12, we have that
1 1
L Liy(8)(1— £) dt = 2 pg Liy(—1) [1(1 OLA(E) dt =2 o Ly(1)

Integrating by parts, using 1.3 and the parity of orthogonal polynomials

=2 Ln(-1) 2 and ~ 2Ln(1) 2
PO 2oy Li(=1) ~ N(N+1) PN =90 ,1) T N(N+1)
With a little bit more of work we can show that
2
= 0<i<N 1.33
o= NN DL 0SS (%9

Since the zeros of Ly are simple, and by Rolle’s theorem we easily deduce that
Gj<ni<giy1 0<j<N (1.34)

So the location of the Legendre-Gauss-Lobatto nodes is contained in theorem 1.13.
Moreover, using 1.33 we can prove similarly to theorem 1.23 that
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Theorem 1.16 (Legendre-Gauss-Lobatto Weight Estimates ).

1/2
oj <cN! (1 - ;7]2> (1.35)

Remark 1.17. Most of the statements in this chapter can be further generalized (after making the suitable
adaptations) to more general classes of orthogonal polynomials, like the Jacobi or Chebysev polynomials. And
for example, owing to the Peano Kernel Theorem, the quadrature error can be precisely estimated for sufficiently
regular functions (see [DB08, Section 5.3.2]). We have only presented the results for the Legendre polynomials
to now focus to our PDE applications and we refer to [STW11, Chapter 3] or [BM97, Chapter 4] for such
generalizations.

Figure 1.1: Tensor product grid of the LGL points. Observe the "clustering" close to the border



Chapter 2

Orthogonal projections and other operators

Motivated by the results from Proposition 7.9, we first study some orthogonal projections and other op-
erators, which will later be used to estimate the error of a discretization of a PDE. Our finite dimensional
"approximation space" will be spaces of polynomials. So we have to find approximation results for such spaces.

2.1 Polynomial Approximations in One Dimension

When trying to understand polynomial approximation on an interval, its natural is to try to understand the
orthogonal projection from L? to Py, since it gives the best L? polynomial approximation. Denote by 7y the
projection from L2(I) onto Py(I)

Theorem 2.1. For s > 0, there exists ¢ = c(s) > 0 such that, for ¢ € H*(I),

g — ingl] < cN7°|o]| (2.1)
We first need a lemma to understand the operator £ from the Fundamental ODE 1.1, which is defined on

H2(I)

d /
Ly = _E((l —12)7')

Lemma 2.2. The operator L, defined in H*(I) is
e Positive with respect to the L* inner product ((Lv,v) > 0 Vv € H*(Q,)/{0})
e Self adjoint with respect to the L* inner product ((Lu,v) = (u, Lv) Yu,v € H*(Qy))
e Continuous from H"t2(Qy) to H"(Qy)

15
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Proof. The first two properties are easily derived integrating by parts
By induction we can check that

dk ) dk+22) k+1 dkv
Soforany k, 0 <k <mn
dk(ﬁv) dk+20 qk+1 dk

v v
HTHU(D <C (HWHU(I) + HWHU(I) + HdtkHLZ(I)>
where C = C(n) O

Proof. (Of the theorem)
First we prove when s = 2m. If ¢ € L?(I) then

0o N
Q= Z anL, and mNg = Z a,Ly,
n=0

n=0
SO
g — 7TN<PH%2(1) = ) “%zHLnH%Z([)
n=N+1

We can compute the coefficients using Theorem 1.1 and that the operator is self-adjoint:

1 ! 1 1 1 1
oy = ||LnHZLZ(I)/_lq)(t)Ln(t) dt = ERS [T /_1 @(t)(LLy)(t) dt = TRy [T /_1(£q))(t)Ln(t) dt

Again, using the Fundamental ODE and the self adjoint property

Lo [ (C)OLa(e) dt = : [ copeL) e at =

”(”‘f’l)HLnHizm -1 (”(”+1)2“LHH%2(1)

r [ (GO0 d

CICESVE

Repeating this procedure and using that ¢ € H>"(I)

1 o
T T D)L R /—1(£ P)()Lu(t) dt

From there, we have

2
S 1 Lot )"
1Ll 2, e
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And since n(n +1) > N?,

ﬁm q(t) d
P L(E) t) 1Ll oy = N1 ] 2

o — 7wl F2py < N_4m2 P
[ Lall72(
So
g — 7TNH%2(1) < N_4m|‘£m§‘"|%2(1)
Owing to the last lemma, we have that
L™ 9|21y < Cll@l[p2n(1)

So H(P — 7TN| |L2(I) S CN—Zm‘ ’§D| ‘HZ"’(I) , with C = C(S)
Now, to prove for general s we use a interpolation argument. This time we explain it in detail.
The operator id — 7ty is continuous from L?(I) to L?(I) with norm 1 :

e = 7enllizy < ol
And id — 7y is also continuous from H?"(I) to L?(I) with norm < CN~2"
ll9 = 7l < CNT2"[lgl | n(r)
By application of the Theorem 7.10, we obtain that id — 7ty is also continuous from
H2M0-0(1) = (1), LDy to [L2(1), L(D)]y = L2(1)

with norm
< C/Nfzm(lfe)

this completes the proof [

However one problem arises with this orthogonal projection, which is that despite that it gives the best 12
approximation in Py, it does not give optimal estimates in the H! norm. In fact, it may be proven that the best
possible estimate whens > r > 1is

[l = anellmr(y < CN*7V27 || g s

To obtain better estimates in the H* norms, we introduce other operators.

Definition 2.3. For any k > 0, we define

PN(1) = Hi(1) N Py(1)
So PYO(I) = {p € Pn(I): p"™(£1) =0 for m=0,...,k—1} Wealso denote PY, = Py

And nll‘\’,o is the orthogonal projection operator from HE(I) to Pi}o(l ) with respect to the inner product | - |y
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Remark 2.4. We recall that, owing to the Sobolev imbedding theorem [Bre08, Theorem 1.4.6] (or the trace
theorem [EG04, Theorem B.52]), the values and derivatives of order < k — 1 of a function ¢ € H¥(I) at the
endpoints +1 are well defined. And Hf(I) is the subspace of H*(I) wich contains the functions whose values
and derivatives up to order < k — 1 vanish at 1.

ol = ( [ (0902 i)

is a seminorm H¥(Q), but it’s a norm in HE(Q), we for v € H5(Q) have the inequality

Also, the functional
1/2

9y < cllollprq) (e =c(Q,k)) (2.2)

And so, (H’O‘ (), () H5(0)> is a Hilbert space where the inner product is given by

(1,0) gy = [0 1) (x) ax

For briefness we denote (u,v) HEQ) = a(u,v). Then the projection operator 75’ can be characterized by :

Vo € HE(I), 7P € PYO(I)

and
Vpn € PRI, a¥(o — g, pn) =0 2.3)

Theorem 2.5. Set k > 1. Forany 0 < r < k <'s, there exist ¢ = c(r,s, k) such that for any ¢ € H*(I) N H’g(I), we
have the estimate

19 = 9l < N[l (24)

Proof.
First of all, since this is an asymptotic estimate in terms of the growth of N, we may assume that N > 2k — 1.
To prove the theorem we distinguish between the cases r =k, r =0 and 0 < r < k.

Caser =k

Let 7(?\’,0 = mty. We are going to prove the following equality

t
vg € Hi(D,  (MPo)(®) = [ (K ¢)(x) dx @5

First of all note that since ¢/ € H '(I), then both sides of the expression are well defined. To prove that
the equality holds, we first see that the relation 2.3 is true for the function in the right-hand side of 2.5. Let
PN € PO then
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tlatg (0 () () dx -

/4 dT‘f B ( : ( Nd,;c >> (t) - [ dﬁN} (t) dt =
1 :dk—l / Jk-1 k—},O / A=1(y!

/_1 i dtk(ql)> B (017:15\]11 d )] (t)- [dtk(lpl]\l)] (t)dt=0

where the last equality holds by definition of 7tk 10 Now we only have to see that the function in the right-

hand side of 2.5 belongs to P} (I).

First of all its clear that it belongs to Pn(I), that it has a zero at t = —1 and that the first k — 1 derivatives vanish
at £1. So it only remains to check that it has a zero in t = 1. We prove this now. Since N > 2K — 1, we may

apply the relation 2.3 to 7rk 1 0 with yy = (1

dk—l

k-1
a ( 11(\11104’/)} (t) [dt"l

1 -
/—1 [dt‘k1

Integrate by parts both sides k — 1 times , use that ¢ € HE(I) and the definition of 7

Gk~ 1) [ (e 1)

tz)kfl .
(1-er Y- £ [2re) 0[5 -
k—1,0
N-1
— 2k — 1))!/11 ¢'(t) dt

20k =1)! (¢(1) — ¢(0)) =0

So we have proven 2.5. Now the estimate follows easily from Theorem 2.1

dk dk
¢ — 7-(;(\’]0([)|Hk( \(P 7TN 1 (P|Hk Wy =---= Hde TIN—k (dtf> 21y
< (N = 1Ll a) < N gl
Caser =0
We use what is called a duality argument. We know that
1 k,0 1 k,0
Ty )(t)g(t ) (£)g(t
om0l = sup La@ =080 e A 050
ge12(I) |181lr2(n) gec(T) |1811e2(r)
where we have used the density of C*(I) in L?(I).
Now, for any g € C*(I), consider the problem of finding u € H5(I) such that
1 dku dklIJ 1
HE(D), / g - = / t
wwemm, [ |5 0[5 wa=[ sopw s
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The existence and uniqueness is guaranteed by the Lax-Milgram Lemma 7.7. Also, it’s easy to see that the
solution is u € C*(I) and that it's given by the ODE

d2k "
Rt = (-1)"¢

plus imposing the corresponding boundary conditions.
By plugging ¢ = v into 2.6, we see that |[u|| ;) < clulpx(y < |18ll12(q,)- Also [ulpa(py = |Igllr2()- Now,
using inequality 7.11 repeatedly, we deduce that

[l ey < ellg iz

So now,
dk

/1 (¢ — 00) (Hg(t) dt = /11 [dtk (p- ﬁl;vloqo)} ) {‘;kt:‘} (t) dt (from 2.6)

1 dk k0 dk kO
_/ [dt" @ — 1Ty (pﬂ (1) thk (u — 7y )} (t) dt (from 2.3)
< o —my (P|Hk |”—7(Iz<\'10”|Hk(1)

Now, apply the previous case, r = k,

1
/_1(4’— N ) (1) g() dt < ¢ N ||l gsry N7 [[ul |y < Nl sl 121y
Which finally proves that ||¢ — i ¢|| < N~%||¢] | Fs(1)

Caser =0
This case is a consequence of the last two cases and the interpolation inequality
k0 k k
o = Xl < llo — ol o — el

from Theorem 7.8. O

As a particular case from this theorem, observe that, for ¢ € HE(I), despite that ||¢ — mno| 2y < e —
|| 12(1) - the asymptotic convergence is equally as fast. However, in the H"(I) norms, the error of ¢ — e
is asymptotically faster than the error of ¢ — TN ¢.

We don’t just want to approximate functions in HY, so, since we got a good estimate in the previous theorem,

we want to adapt that estimate to other boundary conditions, so from any function ¢ € H¥(I) , we define a
function @, € HE . For this sake, consider we construct the Hermite polynomials Yk,

Definition 2.6. Forany k > 1, and 0 < j < k — 1, the polynomials Yy ; are defined by
Yy, is the unique polynomial in Poy_q that satisfies :
(dt/Yk]) (=1)=1 and (j;i,Yk]> (=1)=0 for 0<m<k—1m=#j

and
k—
Yii(1) = Yg,(1) = .. = (£ Yks) (1) =0

(2.7)
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In other words, Yy, is the only polynomial with degree < 2k — 1 whose values and derivatives up to order k — 1 vanish
on %1, except for the j-th order derivative at t = —1, which is 1.
Now for any function ¢ € H*(I), we define ¢ by

~ k—1 d]q) k—1 ) d](P
o) =9t) — Y | 5 ) (1) -Yei(t) — Y (1) =5 ) ()Yx(—t) (2.8)
= dt/ = dt/
Observe that ¢, along with its derivatives of order < k — 1 vanish at +1, moreover, owing to the Sobolev
Embedding theorem
dam dm
dﬂf(l)‘ + ‘dtn(f(—l)‘ < CHq)||Hk(I) for 0<m<k-1
so for any s > k
@kl [ms(r) < cll@l|psy where ¢ = c(s) (2.9)

Now that we have @, € HE5(I), we apply the operator ”1\'{ to this function.

Definition 2.7. For any k > 0, the operator 7T&, acts on H*(I) and is defined by

Ao = (07 + Z (40 00 + Z 0 (52 (@) vig(- @10

Observation 2.8.
Note that, since 7'[];\',0 @ € HE, the values and derivatives up to order < k — 1 of 7%, and ¢ coincide at &1
Also, by definition

¢ — 7Ng = ¢k — T P 2.11)
Theorem 2.9. Setk > 1and 0 <r <k <s.

There exists ¢ = c(r,s, k) such that for all ¢ € H*(I)

o — Al < N @l (2.12)

Proof.
From the last observation, Theorem 2.3, and 2.9

o — 7ol = 1ge — 5 @Il < N [|@ellmery < N |91y

The last result in this section is
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Theorem 2.10. For k > 1, let 7Tk, be the orthogonal projection operator from H¥(I) to Pn(I) (with respect to the H
norm). Set 0 < r < k <'s. There exists c = c(r,s,k) such that for any ¢ € H*(I),

o — 7X@l 1y < eN""*||ol s (2.13)

Proof.
When r = k, this is a consequence of the last theorem

g =l < llo = Aol < N[l

When r = 0 we use a duality argument similar to that of the proof of Theorem 2.3
When 0 < r < k we use a interpolation inequality. O

2.2 Polynomial Approximations in Hypercubes

We now want to extend the previous results to the domain Q; = (—1,1)%. The main takeaway from this
section is that by considering such simple geometries (tensor products of intervals), the approximation results
of last section remain true. Since (); is a tensor product of intervals, it is reasonable to take the tensor product
of polynomials in one dimension as an approximation space.

Definition 2.11. For any n > 0, Q,(Qy), is the space of polynomials in d variables and degree < n in each variable x;,
restricted to ()y. More explicitly:

Q) ={v="pla, : P = E ucil,"_,idx;l-...-x;"’

i1,0esig <1
i1yerig >0

Naturally, we are going take as a basis of Qx(()y) the tensorized basis
{Lyp,(x1) ... Ly, (xq), 0<my,...n3 <N}

which is also orthogonal in L2(Q)).

We denote by Iy the orthogonal projection form L?(Q);) to Qn(Qy). We also denote 77%) the orthogonal
projection applied to the j — th variable, that is

(j) ()

TN (X1, e, Xg) = T 05X, X, X1, e, Xa) (2)

where
v]-(xl,...x]-_l,xj+1,...,xd)(t): t —> v(xl,...xj_l,t,xj+1,...,xd)

They key observation is that each function v € C(ﬁd) satisfies for 1 <j <d,

/1 0(x) L (x;) dx; = /1

B _1(711(\],)0)Lmj(x]') dxj for 0<m; <N
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And from here we can see that

1 1 1
/ (%) Ly - ..+ Ly, dx = / Ly, (x1)dxq - ... / Ly, (xg)v(x) dxg =
-1 -1

~1
/Q (1 o 0@ 0(x)) Luy(x1) ... - L, (xg) dc
d

So we infer that the following holds in C(Q);)

[y =my o...0omy (2.14)
and it’s clear the the n%) commute. Note that the previous expression makes sense and is true in C(Q);), but it

doesn’t make sense to apply n%) to a function v € L?(Q)y)

Theorem 2.12. For any s > 0, there exists ¢ = c(s) such that for all v € H*(Q);), we have the estimate
o = TINo[| 200 < eNTF[|0]| () (2.15)

Proof. We prove it for s = m > 0. For other values of s it follows by a standard interpolation inequality
argument. Since id — Iy is a continuous linear operator from H™(Q);) to L?(Q);), and using the density of
C(Qy) NH™(Qy) in H™(Qy), we may assume v € C(Qy) N H™(Qy) . For simplicity we assume d = 2. Then,
from 2.14,

|0 —TINo|12(q,) < [0 — Ty UHLZ Q) T 17 (0 — 7o 0)|lr2 ()

We bound the two terms:

o= mlelitny = [ [ (o) — 2l (x,9)? dudy

2
<cN~ 2’”/ / ( v(x, y)) dxdy (from Theorem 2.1)
=

< N[0,

2
H7TN (U_”N L2Qd / / nz(\} U‘”A?))(x y)) dydx

2
< / / (v— TtN )(x,y)> dxdy (using that the operator norm of ng\}) is 1)

2
<c¢N~ 2’”/ /1 < (x, y)> dydx (from Theorem 2.1)
k=0

< N[0 n(e

This proves the theorem. O
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We now define rest of the analogous operators to those of Section 2. The proofs of the following theorems
use similar arguments to the previous proof so we omit them.

Definition 2.13. For k > 0, we define
QX (Q) = Qn(Qu) N HY(Q)

and 11X is the orthogonal projection operator from HE(Qy) to Q%0 (Qy) with respect to the norm | - | HE(O)

Theorem 2.14. Set k > 1 and s > k.
There exists ¢ = c(s) such that for all ¢ € H¥(Q) N H5(Qy), we have

o — Hl;\}OGOHHk(Qd) < cNF|g] Hs () (2.16)

Definition 2.15. For any N > 0, I1X; denotes the orthogonal projection from H*(Q) to Qn(Qy) with respect to the

1+ [,y morm.

Theorem 2.16. Set k > 0 and s > k.
There exists a constant ¢ = c(s) such that for all ¢ € H*(Qy),

1o = TN o1, < N*llollksa,) (2.17)



Chapter 3

Approximation by interpolation

3.1 Technical Lemmas

Before studying the approximation properties of the polynomial interpolation we need some technical lem-

mas.

Lemma 3.1 (Polynomial Inverse Inequality 1). For any N > 0 and for any pn € Pn(I) we have
1/2

(f P02 a=myar) < VaNliplliag,

Proof. Write pn = Y N_o&mLy , so from 1.3

1 1
/71,9&() (1—£)d Zz(xma]/ (1) LL () (1) dt = th mm+1)[1Lm(t)2dt

m=0j=0 =0

< 2N? Z / )2 dt = 2N? ||pw |2

Lemma 3.2 (Polynomial Inverse Inequality 2).
For any pn € PY(I) the following inequality is true

by < VAN ([ o - ar)

Proof.
Since pn has zeros in £1, we can write it as

N-1
pn = (1 - tz) E BinLoy
m=1

25

(3.1)

(3.2)
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So now, we simply compute using 1.1 and 1.3.

N-1
By = X B i (m 4+ 1)? [|Lul g
m=1

and

1

[ puer a-)7 2 B m (1) || Lu [
SO

Eﬁm (4172 || Ll <2N22ﬁm m(m+1) [|Ln |72,

Lemma 3.3 (Multiplication by (1 — 2)1/2).
Multiplication by (1 — t2)1/2 is a continuous operation from H{(I) to L?>(I). More precisely, there exists a constant C
such that for any ¢ € H}(I)

e (1—=)"2[| 12y < Cllgll 12y
Proof. The proof may be consulted in [LM12, Theorem 11.3] O

Lemma 3.4 (Scaled Sobolev Embedding Inequality).
Let cq be the constant on the Sobolev embedding inequality from H'(I) to L®(I) when applied on the interval (0,1). Then
for any ¥ € H'(a,b)

1
max [(0) ] < c; (buszLz . <b—a>r¢ré1(a,b)) (33)

a<f<b

Proof.
The estimate is easily derived by applying the Sobolev inequality

max |p(60)> < c1 (11l 00) + 92001 )

0<t<1

to the function ¢(t) = ¢(a + (b —a)) O

3.2 Interpolation Operator errors

We now study how good a polynomial approximation can we achieved by interpolation with respect to
the Gauss-Legendre and Gauss-Legendre-Lobatto nodes. Since pointwise interpolation only makes sense for
continuous, and owing to Sobolev’s inequality, throughout this chapter it will be assumed that all functions are
in H"(I) for some r > 1/2
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Definition 3.5 (Gauss-Legendre Interpolant). The Gauss-Legendre Interpolant operator is defined by

{For any ¢ € C(I), Gy is the only polynomial in Py_1(I) such that (3.4)
(GN @)(§j) = 9(g) VI<j<N
where the {; are the N-th Gauss-Legendre nodes
We now estimate the norm of Gy as an operator from H'(I) to L*(I).
Theorem 3.6. There exists a constant c such that for all p € H'(I) we have the estimate
[1Gnulliay < e(llull iz + N7Hu (1= £2)12]]12) (3.5)

Proof.
Let t = cosf and i(6) = u(cos)) where 6 € (0,7) and 0; = ;.
By the exactness property of the quadrature and the weight estimates 1.23,

N N
||GNuH%2(I) = Zu(gj)z w; < cN~! ) ﬁ(Gj)z sin 6;
j=1 j=1

From Theorem 1.13, there exist intervals Kj, 1 < j < N of length 77/N such that 6; € K; and the intersection
between them is empty except possibly the cases j =i —1, i, i + 1. So by changing c to 3¢, we have

N
[[Gnull2y < ¢ N2y max |i(0) (sinf)"/?|

From Lemma 3.4,
N

[Grll < ¢ Y (11 (5in8) /224y + N1 (5in6) 2|1 i)
j=1

Now, we note that J; K; C [ag, 1] C [0, 7] with a9 = 21 and 4y = 1 — 7 and since each point of I belongs to

at most two K]-,

- ) _ d . IR cos@
1G]] < ¢ <Hu (sin8)" /2|20,y + N7V (|50 (sin8) 2] 3 0y + N I Wumm)

Change variables again

1

T
17+ (sin) /2| o) = / 72(8)? sind d6 = / u(x)? dx
0 -1

- 1
- €in0) 2l = [ (sind)° ' (cost)? do = [ (1= ) (x)? d
, 0 -1
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TN cosf cos?
N 1|| ( n9)1/2||L2 a,a1) =N / 2 deg < sup

ap<0<aq

1 " 500)2 cos(0) do
Nsinf /ao (0)” cos(6)

Now use that since a9 = O(N~!) and a; = m — O(N 1) to obtain that,

sup

— <
a0<0<a; Nsin6

to conclude that the last term is < c[u||;2( O

Theorem 3.7. There exists a constant ¢ = c(s) such that for any u € H*(I),
|G = ul[ 2y < eNT* [ul[]asqry (3.6)

Proof.
[[Gnu — ul| 2 < ||Gnu — my_ 1|2 +H7T}\I—1M_HHL2(I)

We bound the two terms

|7y a1t = ull2(ry < CNT*[Ju|

ps(1) (from Theorem 2.1)

and
||Gnu — 7y qul|p2ery = |G (u — 7ty qw)] |12y
1 1/2
<||u — i 1|2y + N (/ ((u— 7l _qu))* (1 —12) dt> > (from last theorem)
1

<c (N_SHuHHs(I) + N Yu— 7TN—1”HH1(I)) (from Theorem 2.3 and 1 — #* < 1)

< eN7%||u|| g

O

However, and similarly to what occurred in Section 2.1, the fact that Gy does not interpolate the endpoints
implies that the H 1 norm of the error is not optimal. In fact it may be proven that for s > r, s > 1, the best
possible estimate is

{H(P Nl < CN¥/27 when 0<r<1 37)

l¢ =GNl < CN¥71/275 when r>1

Now we study the polynomial interpolation on the Legendre-Gauss-Lobatto nodes 7;.
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Definition 3.8 (Legendre-Gauss-Lobatto Interpolant). The Legendre-Gauss-Lobatto Interpolant operator is defined by

{For any ¢ € C(I),in¢ is the only polynomial in Py(I) such that (3.9)
(in @) (nj) = ¢(nj) VO<j<N
where the 11; are the N-th Legendre-Gauss-Lobatto nodes
Lemma 3.9. For every polynomial pn € Py, we have that
N
w2y < Y pn@? 0 < 3 lpnllEaa (3.9)
j=0
Proof.
We may write py = YN_oamLy , s0 PNz = YN a2 ||l H ;) Also,
N ) N /N 2 N /N-1 2
Y en(m)pi= ) (Z ‘xmLM(Wj)> pi= 2 <E (1) + “NLN(U]')> 0j
j=0 j=0 \m=0 j=0 \m=0
N /N-1 2 N /N-1 N
=) (Z DémLM(ﬂj)> o+ 2) (Z "‘mLM(Wj)> anLn(rp) o+ ) an Li(n)) pj
j=0 m=0 j=0 m=0 j=0
The first term is N=3 a2 ||Lu||*> by the exactness property of the quadrature. By the exactness property

of the quadrature again, and the orthogonality of the polynomials, the second term is O . For the third term,

2 1
2( a2 2 2
“NZL (m7) o D‘NZ N+1 TANN T (2+N)0‘N||LNHL21
by 1.33 and 1.5. The result now easily follows. O
Lemma 3.10. There exists a constant ¢ such that for all u € H'(I),
1 1/2

liwullia < C (Nl (D) + N D]+ el + N ([ w0202 ) ) 610)
Proof.
From the last lemma ,

[linulli2ry < w(=1)%0 + Z 2mp)ej + u(1)%p;

Using exactly the same argument as in the last Theorem 3.6 we can see

N-1

Y 2(p) 0 < H“H N (/_11M,(t>2(1_t2>>

=1
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The next inequality is key to derive the error for the Lobatto interpolation. Its necessity comes from 3.2.

Lemma 3.11. There exists a constant C such that for all u € H}(I),
i) (L= )2y < € (1) (L= By + Nl G.11)

Proof.
Since (iyu) (1 —1t*)"! is a polynomial of degree < 2N — 2, from the exactness property of the quadrature,
we deduce that

N N-1
[ O =27 e = L) =)oy = L ) (=) g
j= j=

Now , using 1.16, we obtain

N-1
[ 00 =27 < N ) (1) T w0 0) (1)
L

—1 ]_

Now, denoting #(6) = u(cosf) and by similar arguments as before,

-1

r. _ ~ . o d o[ . av—
[ -2 at :§C<||u(9) (sin) 2| (g, + N2 || 5 (06) (sind) 7)) |12, )
Reversing the change of variables,
17(9) (sin0) 72| T2,y = llu(t) (1= )72 |12y)

7T
ZH ( i) (sing)~1/? lr20,7) = N’Z/O u' (cos8)? cosb d9:N’2|u]H1(I)

d N—2 [m cos(0) 1
2|5 1/2 _ 02 < / _2y-1/2
N 21a(0) g5 (5in) )z = 5= [ AOP Crgr o < [ (1)
O
This is the principal result
Theorem 3.12. For any real numbers s > 1 > r > 0, there exists ¢ = c(s,r) such that for any u € H%(I) ,
e — ity < N utl ey (3.12)
Proof.
Caser =0

~1,0
[l —inu | 21y < = 72 ul |2y + 117257 = inel |2
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The first term has the estimate from 2.9. For the second term

||ﬁ}\'10” —inul| 2y = [[in( ﬁ}\}ou —u)||2(p
<c (\ |ﬁ}\}0u —ul|p2p) + Nﬁllﬁ}\’,ou — ”|Hl(1)) (Using the stability theorem 3.10)
< N7 ||ul[ps(ry  (Using 2.9)

Caser =1
|u — iNu|H1(I) < |u - ﬁ'}\,M|H1(1) + |ﬁ}\,u - iNu|H1(I)

The first term is estimated using 2.9. We now bound the second term

|7k u — iNt|g < cN || (7thu — inu) (1 — tz)_l/zHLz(I) (Using 3.2 since (7inu — inu) € PY)
= N [lin(Ru —u) (1= 2)"2]| 2

< cN||(7ihu —u) (1 —2)71/2| lr2(ry + 1 — n}\]ulHl(I) (From last lemma)

The estimate now follows by applying 3.3 to the term  ||(7Tyu —u) (1 — ) /2|| ;2

The case 0 < r < 1is derived by an standard interpolation argument. O

The next result is an immediate consequence

Corollary 3.13 (H! Stability of the iy operator). There exists a constant c such that for u € H'(I)

inul [pnory < ellullgp
We can also give a bound on the co-norm by applying directly the Sobolev embedding theorem and last
Theorem
Corollary 3.14. For any s > 1 there exists ¢ = c(s) such that for u € H*(Q)y)

[ — Inul|poy < N[ Jul sy (3.13)

3.3 Interpolation Operators in Hypercubes

We now extend the results of last section to domains Q; = (—1,1)? . We only mention the case of Legendre-
Gauss-Lobatto nodes, since its the one that concern us in terms of our applications. But the case for Gauss-
Legendre is analogous. Since (); is a tensor product of intervals, it is reasonable to take as our interpolation
points the grid formed by tensor the tensor products of Legendre-Gauss-Lobatto Nodes
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Definition 3.15. The N -th Legendre-Gauss-Lobatto grid (see image 1.1) in Q) is denoted by Q4 N and is defined by

Qd,N:{(Wiv'“/md) : Ogil,...,idSN} (314)

where the 1;; are the zeros of (1 —*)Li(t)
Forany o = (i1,...,i4), we denote 11, = (4;y, ..., 1i,) and po, = Pj, - ... - Py,

Definition 3.16. For any « = (iy,...,i5) with 0 <iy,...,iy < N, we define the a-th Lagrange polynomial by
la(x) = li1 (xl) ‘e lid(xd)
where I; is the (1D) Lagrange polynomial defined by 1;(17;) = d;;

Its clear that the polynomials {/, }, define a basis for the space Qn(();) and that

lﬂt(ﬂhf . "77jd) = 5i1j1 Tt 5i1j1
Definition 3.17. The Legendre-Gauss-Lobatto polynomial interpolation operator 1%, is the defined by
Forany u € C(Qy) I%u is defined as the only polynomial in Qy(Qy) such that
(Idu)(x) = u(x) forall x € Qpn

Note that we have

Iﬁ,:ig)o...oig\?)

Using 3.12, we can also prove, with the same technique to what we did in Theorem 2.15

Theorem 3.18. Suppose s > d/2 and 1 > r > 0. There exists a constant ¢ = c¢(r,s) such that for every u € H*(Q)y),
11 = ul[ g, < N7l gs(ay) (3.15)

Note that the assumption s > d/2 guarantees the continuity of u.

From now on, we assume that we are working on a fixed dimension d and we abuse notation by denoting
IN = Ig] and QN = Qd,N



Chapter 4

Spectral-NI approximation of PDEs

We finally have all the necessary tools to discuss our application to PDEs

4.1 The Poisson equation

We first consider the homogeneous Poisson equation

—AM:f in Qd (41)
u=0 on 090y '

The variational formulation is

{ Find u € H}(Qy) such that 42)

a(u,v) = (f,0) Vo € H}(Qy)
Where a(u,v) = (Vu, Vo)
For the discrete problem, we take as our finite dimensional subspace Q%(Q4) C H}(Q4). So we have the

following spectral problem
{ Find uy € Q%(Qy) such that 43)
a(un,vn) = (f,on) Yoy € QY () '

However, the inner products displayed in the variational formulation may be too complicated or even impossible
to compute analytically. For that we define the numerical quadrature on (); by naturally extending the one on
one dimension. Let ¢, € C(Q)4) . We consider the quadrature defined by

/ o(x) dx =) ¢(u)pa (4.4)
Qa la|<N
And is clear that the quadrature is exact for Qan_1(Q)y) .The discrete inner product is defined as
(¢, )N = Z @ (1) (1) Pa (4.5)
|| <k

33
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and, similarly,

an(e, ) = (Vo, V)N (4.6)

for ¢, € C1(Qy)
So now we derive the following Spectral - NI (Numerical Integration) formulation

{ Find iy € Q% (Qy) such that 4.7)

lZN(LTN,UN) = (f,ZJN)N VZJN (S Q(])\](Qd)

We begin with with analysis of problems 4.2 and 4.3.

Theorem 4.1 (Existence and uniqueness of the variational formulations). Suppose that f € L?(Qy) . Then the
problems 4.2 and 4.3 have each a unique solution

Proof. This is simply the Lax-Milgram lemma, since a(-,-) is a inner product in H} () O

From the orthogonal relation 7.4 we deduce that uy, the solution of problem 4.3, coincides with H}\}O. So the
error u — uyn comes from Theorem 2.14.

Theorem 4.2. Suppose the solution u to 4.2 is in H*(Q)y). Then there exists a constant ¢ = c(s) such that, for all N,
= unlin(a,) < eN'[ulf3(Qa) (4.8)

Now, we give a stability result

Theorem 4.3. The norm of the discrete solution uy is uniformly controlled by the norm of f:
Hunlle < 11z (4.9)
Proof. From a(uy,un) = (f,vn) the proof is immediate. O

Now, we give an estimate in the L? norm.

Theorem 4.4. Suppose the solution u to 4.2 is in H*(Q)y). Then there exists a constant ¢ = c(s) such that, for all N
[ —unllr20,) < eN7*[[ullgsqy) (4.10)

In particular, the method is convergent.
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Proof. The proof relies on a duality argument. Consider the problem

—Aw=g in
w=0 on d0y

where ¢ = u —uy

The problem (in its variational form) has a unique solution. Moreover differentiating the equation, we can
see that w € H?(Q)). It can also be proven ( [Grill, Chapter 3] ) that

wl|g2a,) < cllgllizy
where the constant ¢ does not depend on w nor on u — uy ). From, here, taking wy = 1%
( 1% N g& WN N

||u — MNH%Z(Qd) =u—un,u—uy)=a(lw,u—uy)=a(w—wy,u—uy)
<l = unll i o, 1w = ol o) < Nl s o) N HIwl 120
< cN7¥|u|

HS(Qd)Hu - “NHLZ(Q,,)

O

We now study the problem 4.7. We will basically have to check that, by employing numerical integration,
we are not introducing errors that grow with N. We first check the well-posedness of the problem. From now
on, for the quadrature rules to make sense, we assume f € C(ﬁd).

Lemma 4.5. We have that, for every un,vn € Qn(Qy)

(fron)n <3 |Inflli2ap lonl 2oy (4.11)
Also, an (-, ) is continuous
la(un, on)| < 37 unlmay lonTm(ay) (4.12)
and coercive on H} (Qy)
a(“N/vN) > ’UN’%p(Qd) (413)

Therefore, problem 4.7 has a unique solution. Moreover, the solution is stable

lunllma, < ellInflliza,) (4.14)

Proof.
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We prove the inequalities in order. We assume d = 2. The only complication in d > 2 is notation

(f,on)n = (INf,on)N

Y Inf (i, ) on (7, 1) ik
=0 \U=

172 / 1/2
( (Z Inf(nj, k) ) (Z on (775, ;7k)2pk> ) p; (Cauchy - Schwartz inequality)
= k=0 k=0
E [Inf (1M ey

N N N N
Z Z Inf (nj, me)on (g, m)ejox = ) ( ) 0j
j=0k=0 k=0

|Mz

Z

HUN(W]',')HLz(I) 0j (from 3.9)

]|INf| 2o lonlli2@,)  (Again using Cauchy-Schwarz and 3.9)

For the next inequality,consider the first term of a(uy, vy), which is (dxun, 0xUN)N. Since dyu and d,vy are of
degree < N — 1 in the variable x, from the exactness property on the variable x we deduce that
N

N N
Y 0xun (i, ;) Oxon (i) pipj = Y, (E oxun (i, 1;) 9xon (i, 1;) p
ij=0 =0

N 1
) i) =y ( / KRNCTNCENERS dx> o;
i= =

[ (@xun) (i) | 2

™=

<

0

I) H(axUN)(‘/Uj)HLZ(I) Oj
j

(Holder’s Inequality)

Now simply apply the Cauchy-Schwarz inequality and then 3.9 like we did in the previous inequality. The term
(ayu N, ayvN) N is completely analogous. For the last inequality, consider again only the first term (dxun, OxUN)N
Using again the exactness property

N N
Z (Z(ax”N(’%/ 7))

) Zl\axuw o) = 11xunlliq,)  (from 3.9)
j=0 \i=0

The existence and uniqueness is guaranteed by the Lax-Milgram Lemma. The stability inequality by placing
vn = Uy in 4.7 and the inequalities just proven

O

Note that we are constantly making use of the geometry of (); to compute the integrals. Also, observe that
the continuity constant and coercivity constant do not depend on N

We now use an adaptation of Strang’s First lemma (see [EG04, Lemma 2.27])

Lemma 4.6 (Strang).

Let u be the solution of the variational problem 7.2. And consider the following discretization of said problem

{ find uy such that

(4.15)
Vs € Hs, as(us,v5) = F5(vs)
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where Hs C H is a finite dimensional subspace, and as is a bilinear form defined on Hs and Fj is a linear form defined on
H;. Suppose that as is coercive and continuous on Hy C H

Vus,vs € Hs  as(us, us) > of||us||ty and |as(us,vs)| < Csllus||ul|vs||u

Then we have the following estimate

Hu_u(SHH Sl sup |F(w5)_P§(w5)’

lx(g w,;EH,; ||w(5||H (4 16)
' ¢ 1 a(ws, v5) — as(ws, v ’

+ inf <1+5>H“_w(5HH+Sup ’ ( J 5) (5( 5 &)|
wsEH; 1% 5 vgeH; HvdHH

Theorem 4.7 (Sepctral - NI convergence). Suppose f € H*(Qy) with y > d/2 and that u, the solution of 4.2 is in
H*(Qy), for s > 1. Then we have the following estimate

= Bl < € (N1l (Qa) + N7HI £l ey 417)

where C = C(s, u)

Proof. We simply have to make a smart choice of terms in Strang’s Lemma. Since the ellipticity and continuity
constant from 4.5 are independent of N, we deduce that

~ a(vn, wy) — an(on, wN)|
[lu — N[, < C | llu—onllmo,) +  sup | TwoT]
wnEQY () NTIH Q)

P AT (f,wmw)

wneQY(Qy) |[wn] ‘Hl(Qd)

For any vy € Q% ().
Now the key step is to choose vy € Q% _,(€), since the exactness property of the quadrature implies that

Vwy € QY (Q), Yon € Q%_1(Q)  an(vn, wn) = an(vn, wn)

So the second term vanishes and so we take vy = H}\}(llu.

We now deal with the third term. Let wy € Qn(Q)y), from a similar argument as before, (IIx_1f,wyn) =

(TIn_1f,wN)N, SO NOW

(f,wn) = (f,wn)n = (f —=TIn-1f,wn) + (TIn—1f, wn) — (Inf,wn)n = (f — v f, wn) — (f = - f, wn)n
< (H!f—HN—lfHLZ(Qd) +3d|UNf—HN—1fHL2(Qd)) llwn |20, (Using 3.9)



38 Spectral-NI approximation of PDEs

Using the triangle inequality again, we obtain that

sup |(f,wn) — (f, wn)N]
wn QY (Qy) [N )

< C (IIf = My fllizg,) +11f = Infllzay)
So we finally obtain

i —inl gy < C (I =T ul +11f = T fllioy) + 11 = Lfllizay)

and now simply apply Theorem 2.14, 2.15 and 3.18. O



Chapter 5

Implementation and Numerical examples

We briefly describe some possible implementations. First of all, the weights and nodes {j, w;} and {7;,0;}
can be computed in terms of the eigenvectors and eigenvalues of 1.17 and 1.28, as explained in Section 1.3. Since
the matrix is sparse and symmetric, this can be done efficiently with an iterative algorithm.As a first example,
observe in Figure 5.1 how the LGL nodes avoid the classic Runge’s counterexample.

To implement 4.7 we take into account the boundary condition and write the solution in the Lagrange basis

{Zz]\;% un (17, 17) li(xi)1j(xj) when d =2 -

Z%,kzl un—1(1i,1j, 1) Li(xi) 1(x;) Ix(xx) when d =3

and we solve for uy/(77;,7;) (or un(7i,7;,7) ). So the unknown is the vector U with (N —1)¢ components, and
its components are u(x) with x € Qv . Also, we denote by F the vector whose components are f(x) with

x € Qn . So if let the test function in 4.7 run through the Lagrange basis associated with the interior nodes we
obtain that we can express 4.7 equivalently as
AU = MF (5.2)

The matrix M its diagonal, and its components are p;p; if d = 2 and p;p;jpx if d = 3. A is the stiffness matrix,

Figure 5.1: Equispaced nodes (left) v.s. LGL nodes (right)

39
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and its components are
EIN( llZ] , li/l]'/ ) ifd=2 and EIN( lll]Zk , li’ljllk' ) ifd=3

. To compute the mass matrix A we shall make some observations. The first one is how to compute the I!. The
following lemma is from [Tre00].

Lemma 5.1. If xo, ..., Xy, are distinct, we know the j-th Lagrange interpolant is
1 m m
pj(x) = — (x — x]-) where a; = (xj — x¢)
Bj k=0, k+j k=0, k#j

Then (taking logarithms and differentiating)

m

pi(x)) = k ()Z;(#(xj—xk)‘l (53)
=0, ]
/ _ a; . .
Pj(xi) = 761],(39 ) when i # | (54)

Secondly, the matrix A is symmetric positive definite ( from 4.5 ) so we should use linear solvers that take
advantage of this (for example the conjugate gradient method). Moreover, we observe that when d = 2

an(Lilj, lnly ) = aip b0 pj + ay i

where a;; = Z;i\[:o ()l (1) oi
Andifd =3

an( Lilili , Tlply) = wip Oy Skp j Pk + &jj O O Pipk + ki Siir Ojp i

This allows a reduction in the computation of the matrix-vector product Ab

Lemma 5.2. The product Ab can be computed with O(N“*1) operations instead of O(N?*)

Proof. We show it for d = 2. The coefficient ij of Ab is given by
N-1 N-1 N-1
Z LZZ‘]', i bi’j’ = Z (L% p] bi’j + Z Dc]-j/ Oi bi]"
i, j'=1 =1 =1

and this requires 4(N — 1) multiplications and 2N — 3 additions. O
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Figure 5.2: Structure of the matrix in the collocation method

Finally, we mention out that the matrix A is dense and somewhat ill-possed. It can be proven that the
condition number of A is x(A) = O(N?®). This could not be an issue since convergence is fast. However, if
a preconditioner is used, then the condition number of A can be uniformly bounded with respect to end by
a constant, so solving the linear system with this preconditioner is very fast. The preconditioner used is the
Finite-element stiffness matrices constructed on piecewise linear affine shape functions centered at LGL nodes.
We refer to [Can+07a, Section 5.3.4 and 5.3.5] for a more detailed explanation.

Another equivalent formulation to 4.7 is the collocation formulation. For simplicity, let d = 2.
Take uy € Qn(Qy4) and vy € Q% (Qy), by the exactness property in the x variable and integrating by parts,

N 1 1
Y xun (7, 1:)0xon (5, 1) p; = /18xuN(x,17i)8va(x,m) dx = —/18§uw(x,m)vw(x,m) dx
j=0 - -

So we deduce that
an(un,onN) = (—Aun, oN)N (5.5)

So again, by letting vy run through the Lagrange basis [; [;, with 1 <ij,i; < N — 1 we obtain that

it iy

—Au(niy, 1i,) = f (i, 13,) (5.6)

so —Auy conicides with f at the (N — 1)? interior nodes (O) And, since the polynomials [;1;, with1 <iy, iz <
N — 1 form a basis of Q%(Q), we see that 5.5 and 5.6 imply a(un, vn)n = (f,vn) for all vy € Q% (Qy).

Now, if uy vanishes at the boundary nodes dQy , then it means that it vanishes along the (N + 1) points
on each edge of d();, and since vy restricted to each edge is a degree N polynomial in one variable, we deduce
that vy = 0 along the edges. In other words vn(x) =0 Vx € 0Qy = on(x) =0 V x € 0Q); So we have
deduced the following equivallent "collocation" formulation

find uny € Qn(Qy) such that
—Aun(x) = f(x) x€Qp (5.7)
un(x) =0 x€dQy

To implement this, we have followed the collocation method implementation explained on [Tre00, chapter 9]

with its use of tensor products of matrices. We have adapted it to LGL nodes and constructed a differentiation
matrix based on 5.1.



Chapter 6

Some extensions to Complicated Geometries

To deal with PDEs in domains Q C R4 (d = 2,3) with more complicated geometries, some extensions exist,
and we briefly mention two.

The Spectral Element Method :
In the Spectral Element Method we have a mesh 7 = {Qy, }m

Q:Uﬁm and O;NQ; = @ wheni#j (6.1)
m

We assume that all the (), (which are called elements) are affine images of our reference domain, the hypercube
;. However, the elements can also be affine images of triangles to handle with complicated boundaries. In
this method we also have that the partition 7 is conforming, that is for any i,j, Q;N(); is either empty or a
whole edge or a whole face. Our approximation space is a space of piecewise polynomials:

Xn={peC(Q) : ¢la, € On(Q)}

Now, the Lobatto-Gauss-Legendre nodes in (,, are denoted by #' , where « = (i3, ...,i;) 1 < with i< N.In
XN we consider the basis formed by the following basis functions:
If ny is a interior node in (),, or its a point in the boundary 0Q2 , and l,im) is its associated Lagrange polynomial

in Qn(Qy,) then we define

(M e
wz{u(@ if x € Qy ©2)

0 elsewhere

and its clear that (x) € Xy . If ' € Q) is a node in the interior of a edge (or face if d = 3) of (},, then since the
domain is conformal, 7' is also the node in the interior of an edge for another element, say (), and 7y’ = 77,.
Then we define
1 (x)if x € Q
P(x) = la(f)(x) if x € Q) (6.3)

0 elsewhere
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And from the conformality assumption we deduce that i € Xy. Finally, if ;' is a node that is shared between
many domains, for a example a corner node in d = 2 or an edge node in d = 3, then the basis function
associated with that node is defined analogously, but taking into account all of the domains that share that
node. Convergence in the spectral element can be obtained by taking N — oo or by refining the mesh
(h — 0), that is, by considering meshes formed by more and smaller elements. The classical reference is
[KSO05].

The Mortar Element Method :

Consider the same setting as before were we have a mesh such as 6.1, but this time, we don’t assume that it
is conformal and we allow for different domains to have different polynomial degrees. To simplify matters,
assume d = 2. Denote by I'y;, 1 <[ < L the edges of () that are not in dQ). We define as S = U0} /() the
skeleton of the decomposition. We can define S as the union of elementary components called mortars

S=UMy; with 9jNy =@ if k#j (6.4)

where each mortar <; is a whole edge of a specific element denoted by (2,,(;). And this specific edge is then
denoted by I'y(;) u(j)- We emphasize that each mortar +y; is related to a specific edge of a specific element ().
So even if two distinct domains €),,(; and (), share an edge, say ¢, the mortar <y; will be associated to the edge
"on the side" of ),,(;).

On each subdomain (), we look for a discrete solution belongs to Qy;, (). We also denote by W(s(k)’(l) =
Qn, (Tk;) the space of traces of Y5 on I'y; . Finally we define W(gk)’(l) = Qn,—2(Tx;) Now, our approximation
space X; is defined by the space of functions v; such that

* Vsl € QN ()
¢ they vanish on 0Q)

¢ They satisfy the mortar conditions : let ¢ be the mortar function associated with v; , that is, the function
that on each 7; = I'y(j)m(j), ¢ coincides with the restriction to <; of U5]q, ; then for every I'y; that
is contained in S but is not one of the mortars (so T'x; # T m) for any m ) we have the following
matching condition
(k) (1
Ve M [ (vlo, —9) (x) y(x) dx =0
k1
The mortar element method can also be coupled with triangular "mortar elements". For many more details, see
[BMRO5].



Chapter 7

Appendix

7.1 Polynomial Interpolation

Given a set of distinct nodes {&,...,¢n} C R, and a set of values {fo,..., fn} C R, our goal is to construct
a polynomial p such that

p(&)=f Vi=1,...,N

Definition 7.1 (Lagrange polynomials). Let {Co,...,én} C R. For1 < i < N, we define the i-th Lagrange polynomial
associated to the nodes {(o, ..., ¢N}

N 5_¢
li(s) = —7
j=1 gz - (:]
j#i
Observe that [; has degree N and
1i(Gj) = d; (7.1)

Theorem 7.2. Given a set of nodes {Co,...,én} C R, and a set of values {fo,..., fn} C R, there exists a unique
polynomial p € Py such that

p(&)=fi Vi=0,1,...,N

We say that p is the interpolant for the given nodes and values.

Proof. Write

Its an immediate computation using 7.1 that p(&;) = f;. Suppose that there exists another polynomial p* € Py
such that p*(§;) = fi, then g = p — p* is a polynomial of degree < N that has N + 1 distinct roots {&o,...,¢n}-
Sog=0and p = p* O

44
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Similarly, we can prove

Theorem 7.3 (Hermite Interpolation). Suppose we have a set of nodes {C1,...,Cm}, a set non-negative integers
{r1,...,tm} such that n = Y ", r; and a set of values {fl.k’} fori=1,...,mand ki = 0,...,r; —1. Then there
exists a unique polynomial p of degree < n — 1 such that

pk) (@) =f5% vi=1,...,mVk=0,...,r—1

1

Where the superscript (k;) denotes the k; — th derivative.

7.2 Coercivity and Lax-Milgram lemma

Recall our variational problem 2. We’d like to prove the existence and uniqueness of such problem and
a more general class of problems. Four our purposes, we only need the symmetric form of the Lax-Milgram
theorem. The general setting is the following :

e (H,(-,-)) is a Hilbert space

V is a closed subspace of H

* a(-,-) is a symmetric bilinear form defined on H

F € V' (F is a continuous linear functional on V')

We would like to prove the existence and uniqueness of the problem

find u € V such that : 72)
a(u,v) = F(v) forallveV .
We first need a well-known result.
Lemma 7.4 (Riesz Representation Theorem).
Let L be a continuous linear functional defined on a Hilbert space H.
Then, there exists a unique u € V such that
L(v) = (u,v) forallveV
Furthermore, ||L||g = ||u||g (where || - || is the operator norm on H'). So we have an isometry between H and H'

If we could treat a(+,-) as a inner product on V, then we could apply the Riesz Representation theorem on
a(-,-) as a way to solve 7.2.
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Definition 7.5. We say that a bilinear form a(-,-) defined on a normed vector space X is continuous if there exists a
constant C < oo such that
|a(u,0)| < C[o][x[[ullx  Vu,veX

and it is called coercive on V C X if there exists a constant o > 0 such that
a(v,v) > a||v]|3¥ YoeV

C is usually called the continuity constant and « the coercivity constant.

Proposition 7.6. Let H be a Hilbert space and a(-,-) a symmetric linear form continuous on H and coercive on a closed
subspace V. C H. Then (V,a(-,-)) is a Hilbert space.

Proof.
First we see that a(-, -) is an inner product because, owing to the coercivity,

a(u,u) >0 and a(u,u)=0= ||lullpg=0=u=0

Now we see that V with with the associated norm ||v|||, = \/a(v,v) is a Banach space. We only need to check
that it’s complete.

Suppose that {v,}, is a Cauchy sequence on (V, || ||s) . By the coercivity assumption, {v,}, is also a
Cauchy sequence on H

00 = Omlla > «||vn — vml|H

So there exists v € H such that v, — v in H. Since V is closed, v € H . Now, by continuity,
[0 = vn[la < Cllo —oul[n

so v, — valsoin (V,]| -]|.) and therefore this space is complete. O

Theorem 7.7 (Lax-Milgram Lemma). Suppose that the assumptions from the general setting hold and that the bilinear
form a(-,-) is continuous and coercive. Then the problem 7.2 has a unique solution.

Proof. The last proposition implies that (V, a(-,-)) is a Hilbert space, and the coercivity that F is also a continu-
ous linear functional on (V,a(-,-)). Now apply the Riesz Representation theorem on (V,a(,-)) to find that 7.2
has a unique solution. O

Keeping the assumptions from the same general setting as before, consider now the discrete problem of
finding

find u;, € V such that : 7.3)
a(up,vy) = F(vy) forall v, €V, '
where V), C V is a finite-dimensional vector space. The following says that the problem above is well-posed if

a is coercive.
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Corollary 7.8. Suppose that a(-, -) is coercive and continuous on V and that the assumptions of the general setting hold.
Then the discrete problem 7.3 has a unique solution.

Proof. V), being finite dimensional implies that it is also closed. Since a(-,-) is coercive and continuous on V,
then it is also coercive on Vj,. So we can directly apply the Lax-Milgram lemma on 7.3. O

The general (non-symmetric) Lax-Milgram lemma is not difficult to prove (see [Bre08, Section 2.7]. A more
general statement than the Lax-Milgram lemma is the BNB (Banach - Necas - Babuska) theorem (see [EG04,
Theorem 2.6]).

Proposition 7.9 (Galerkin orthogonal relation and Cea’s Theorem).
Suppose that u is the solution of problem 7.2 and uy, is the solution of the discrete problem 7.3. Then, for every v, € Vj, ,

a(u — Uy, Uh) =0 (74)
And so
||u—up||a = min ||u — vy]|a (7.5)
vV,

Moreover if a(-, ) is coercive and continuous, then the following estimate holds
|| — ]| <Emin|\u—v|] (7.6)
IIH = X v,eVy h '

Proof.
If u and uy, are, respectively, the solutions of 7.2 and 7.3 then, for all v, € V},

a(u,vp) = F(op)
a(up,vp) = F(oy)
From here we deduce that a(u — u;,v,) =0
Inequality 7.5 now follows from the orthogonal relation, take v, € V},
[ — |3 = a(u — wp,u —up) = a(u —wy, u —o3) + a(u — uy, vy — up)

=a(u—uy,u—ovy) < ||lu—upllal|u — o4l

So [|u —uplla < [|u —onla-

Now we prove inequality 7.6. Take any v, € V),
wl i — up| 3 < a(u — uy, u — uy)
=a(u—up,u—ovy)+a(u—uy, v, —uy)
=a(u—uyp,u—ovy) (since vy, —uy € Vy)

< Cllu — uy||gllu —oul|H

We will make constant use of 7.4.
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7.3 Interpolation spaces

Interpolation spaces allow us to define Hilbert spaces " in between " two other Hilbert spaces. We won’t be
too rigorous defining some concepts and we refer to [LM12] to a more detailed treatment of this concepts and
the proofs. Later on, we will use this results to generalize inequalities to these " in between " spaces.

Suppose X and Y are two Hilbert spaces. We denote by || - ||x and || - ||y their respective norms. We say
that a Hilbert space is separable if it contains a dense countable subset (every Hilbert space that is mentioned
in this text is separable). We say that X is continuously or compactly embedded in Y if there exists a constant
C < oo such that ||v]ly < C||v||x for all v € X.

Suppose that X and Y are two separable Hilbert spaces, that X is dense and continuously embedded in Y .
Then, for each 0 < 6 < 1 its possible to rigorously define an "Interpolation space" denoted [X, Y]y and give it a
norm || - [|(x,y,-

We have that, for 0 <0 < ¢ <1

X = [XIY]O - [X/ Y]Q - [X/Y](P - [X/Y]l =Y (77)
So 0 measures " how much is [X, Y]y in between X and Y ". Moreover, for any 0 < 6 <1,
VoeX |ollxy, < ol ° lolly (7.8)
The main results of these section concerning to our applications are 7.10 and 7.12
Theorem 7.10. Let X and Y (respectively X* and Y*) be separable Hilbert spaces such that X (resp. X*) is continuously

embedded and dense in Y (resp. Y*). If a linear operator L is continuous from X into X* with norm « and from Y into Y*
with norm B, then L is continuous from [X, Y]y into [X*,Y*]g with norm < a'~%p°

For a example application of this results, see the proof of Theorem 2.1 or Corollary 7.13.

7.4 Fractional Order Sobolev spaces

We recall the definition of H*(Q)) when s is not an integer.

Definition 7.11 (Fractional order Sobolev spaces). For 0 < s < 1, the Sobolev space H*(Q}) is defined as

HY(Q) = {u € 12(Q) : W € 12(0 x )}

u() —u)P N
Hs(Q) = / u dx+/ / ’d+25 dxdy

When s = m + o,m a positive integer and 0 < ¢ < 1, we define

and we define the norm

[l

H(Q) = {u € H"(Q) : *u € H'(Q) V|a| =k}
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and
1/2
el e = (Hullﬂm(m + L Ha“ullﬂv(o)
la|=k
We also write H°(Q) = L?(Q)
Theorem 7.12. For any 0 < s < r, and forany 0 < 6 < 1, the following equality is true
[H'(Q), H*(Q)]p = HI () (7.9)
Moreover, both spaces have equivalent norms.
As an example of an application, we have
Corollary 7.13. There exists a constant C such that for all u € H*(Q))
[l ) < Cllullif2e 1l 7.10)
And Ve > 0, there exists C(€) such that
[IDul| 20y < el D?ull 120 + Cle)]|u] 12 (7.11)

Proof. For the first inequality simply apply 7.10 with 6 = 1/2 and 7.12.

For the second one, use the first inequality and Cauchy’s inequality (for real numbers) 2ab < Z—i + €2b? O
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