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Abstract The renormalization of the vacuum energy in
quantum field theory (QFT) is usually plagued with theoret-
ical conundrums related not only with the renormalization
procedure itself, but also with the fact that the final result
leads usually to very large (finite) contributions incompati-
ble with the measured value of � in cosmology. As a conse-
quence, one is bound to extreme fine-tuning of the parameters
and so to sheer unnaturalness of the result and of the entire
approach. We may however get over this adversity using
a different perspective. Herein, we compute the zero-point
energy (ZPE) for a nonminimally coupled (massive) scalar
field in FLRW spacetime using the off-shell adiabatic renor-
malization technique employed in previous work. The on-
shell renormalized result first appears at sixth adiabatic order,
so the calculation is rather cumbersome. The general off-shell
result yields a smooth function ρvac(H) made out of powers
of the Hubble rate and/or of its time derivatives involving dif-
ferent (even) adiabatic orders ∼ HN (N = 0, 2, 4, 6, . . .),
i.e. it leads, remarkably enough, to the running vacuum model
(RVM) structure. We have verified the same result from the
effective action formalism and used it to find the β-function
of the running quantum vacuum. No undesired contributions
∼ m4 from particle masses appear and hence no fine-tuning
of the parameters is needed in ρvac(H). Furthermore, we
find that the higher power ∼ H6 could naturally drive RVM-
inflation in the early universe. Our calculation also eluci-
dates in detail the equation of state of the quantum vacuum:
it proves to be not exactly −1 and is moderately dynamical.
The form of ρvac(H) at low energies is also characteristic
of the RVM and consists of an additive term (the so-called
‘cosmological constant’) together with a small dynamical
component ∼ νH2 (|ν| � 1). Finally, we predict a slow
(∼ ln H ) running of Newton’s gravitational coupling G(H).
The physical outcome of our semiclassical QFT calculation

a e-mail: cristian.moreno@fqa.ub.edu
b e-mail: sola@fqa.ub.edu (corresponding author)

is revealing: today’s cosmic vacuum and the gravitational
strength should be both mildly dynamical.
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1 Summary

After the general introduction in Sect. 2, wherein we try
to motivate and contextualize the framework of this cal-
culation, in Sects. 3 and 4 we define our quantum field
theoretical model under study, which consists of a neu-
tral scalar field nonminimally coupled to gravity and with
no self-interactions. We assume a spatially flat Friedmann–
Lemaître–Robertson–Walker (FLRW) background and solve
for the mode functions of the scalar field using the WKB
approximation up to 4th and 6th adiabatic orders. This
enables us to compute, in Sects. 5 and 6, the vacuum expec-
tation value of the energy–momentum tensor (EMT) within
QFT in curved spacetime up to the same orders. For renormal-
ization purposes, however, the calculation up to 4th order suf-
fices. We employ an off-shell generalization of the usual adi-
abatic renormalization procedure to compute the zero-point
energy (ZPE) of the quantum fluctuations and show that the
scaling evolution of the vacuum energy density (VED), ρvac,

is free from quartic powers of the masses. We discuss the
absence of fine-tuning. Remarkably, we find that ρvac carries
a dynamical component ∼ H2 which is characteristic of the
running vacuum model (RVM) at low energies. In Sect. 7
we compute the trace of the EMT up to 6th adiabatic order,
which will be used to extract the quantum vacuum pressure
at the same adiabaticity order. In passing we verify, as a use-
ful cross-check, that our results correctly reproduce the trace
anomaly. The vacuum pressure is used in Sect. 8 to find out
the equation of state (EoS) of the quantum vacuum. We dis-
cover that it is not exactly equal to −1, in contrast to the usual
situation. Owing to the quantum effects, the EoS becomes
moderately dynamical and can mimic quintessence in the
current universe. Our 6th order calculation is instrumental to
unveil a generalized form of the RVM at high energies with
potential implications for the physics of the very early uni-
verse. Indeed, in Sect. 9 we show that the RVM amounts to
a new mechanism of inflation triggered by the higher order
term ∼ H6. Next, with the purpose of bolt securing the renor-
malization results for the EMT that have been obtained from
direct calculation of the expansion modes in the previous
sections, we recompute them anew in Sect. 10 within the
effective action formalism using the heat-kernel expansion
of the propagator with the DeWitt–Schwinger technique. We
use the effective action to compute the running couplings, in
particular the β-function and renormalization group equa-
tion (RGE) for the vacuum energy density (VED) itself,
ρvac(H), showing it to be consistent with the absence of
quartic mass scales in the running. To our knowledge, this
is the first time that the dynamical VED is derived from
first principles. Finally, in Sect. 11 we study Friedmann’s
equation in the presence of the running ρvac(H) and observe
that the gravitational coupling G is also a running quantity,
although evolving only logarithmically with the expansion
rate: G = G(ln H). We compute the local conservation law
for ρvac and verify (as a robust check of our calculation) that
it only depends on the 4th adiabatic terms (all of the 6th order
effects cancel nontrivially in it). In Sect. 12 we provide some
discussion on the possible phenomenological implications
of the RVM. Our conclusions are delivered in Sect. 13. Four
appendices at the end furnish specific technical details and
complementary materials, such as our conventions and other
useful formulas which are referred to from the main text.

2 Introduction

The vacuum energy in cosmology is a most subtle concept
which has challenged theoretical physicists and cosmologists
for many decades, specially with the advent of Quantum The-
ory. The problem stems from the interpretation of the cosmo-
logical constant (CC) term, �, in Einstein’s equations as a
term being connected with the notion of vacuum energy den-
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sity (VED), ρvac, a fundamental concept in quantum field
theory (QFT). The precise connection with the current value
is ρ0

vac = �/(8πGN ), where GN is the locally measured
Newton’s constant. The CC term is 104 years old and was
introduced by Einstein in order to make the universe static
[1]. This is possible for � > 0, but even then the equilibrium
is unstable and hence the proposed solution is not admissible
(as it was proven later on by Eddington [2]). It goes without
saying that such a static solution was soon ruled out also by
Hubble’s discovery of the expansion of the universe. But even
so the �-term remained unscathed, because the most impor-
tant achievement of Einstein at this point was actually quite
another, namely the fact that the tensorial structure � gμν is
another fundamental ingredient to be added as an indispens-
able completion of the gravitational field equations that he
had found just two years before. Such a structure is indeed
fully allowed by the general covariance inherent to General
Relativity (GR). There is, therefore, no reason to withdraw
such a term only because it cannot serve a particular phe-
nomenological purpose. Once we realize it is there, only a
supreme theoretical reason can overrule its existence. But
such reason has not been found. In fact, quite the opposite:
the same �-term that was later (groundlessly) rejected by
Einstein in 1931 [3] on account of Hubble’s finding of the
expansion of the universe, and which was resuscitated shortly
afterwards by Lemaître in 1934 [4,5] only to be dismissed
anew by others, is still fully alive and kicking with us. After
a long checkered history, currently it has been rescued from
oblivion and promoted to be the simplest possible explana-
tion for the observed acceleration of the universe. Such a
groundbreaking discovery, made almost a quarter of century
ago from the luminosity measurements of distant supernovae
[6,7], is fully borne out at present after collecting a lot more
of supernovae data [8] and from precision cosmology mea-
surements of the anisotropies of the cosmic microwave back-
ground (CMB) [9–11]. Thus, beyond reasonable doubt, the
�-term is there after all, and we have every reason to want it
be there, even if its introduction was categorized by Einstein
himself as the “biggest blunder” he ever made in his life [12].
However, as a famous proverb wisely says, once the genie is
let out of the bottle there is no turning back!

In spite of its current phenomenological success, the �-
term and the very notion of vacuum energy keeps on being the
most challenging theoretically ingredient of GR and maybe
the most daring problem in the realm of Fundamental Physics
[13,14]. The reason for that is the preposterous disagreement
between QFT and GR when we consider the notion of quan-
tum vacuum. The connection between vacuum energy and
� had already been glimpsed by Lemaître in 1934 [4,5]
who proposed for the first time the famous EoS of vacuum
Pvac = −ρvac together with the aforementioned VED rela-
tion ρvac = �/(8πGN ), although accompanied with a pecu-
liar association of � > 0 with a negative energy density

of vacuum (sic), and still without hinting at any relation-
ship with the quantum theory at this point. Such a connec-
tion first appeared with the work of Gliner [15] and the more
elaborated considerations by Zeldovich [16,17] in 1967, just
fifty years after the �-term was first introduced by Einstein.
Retaking and promoting old Planck’s Nullpunktsenergie to
the QFT arena, he noted that the zero-point energy (ZPE)
caused by the vacuum fluctuations of all quantized (mas-
sive) fields induce a value of ρvac of order of the quartic
power of the mass of such a particle (∼ h̄m4). This is usually
many orders of magnitude above the observational value,
ρ0

vac ∼ 10−47 GeV4. Notice that the ZPE effects are of
pure quantum origin since they are associated to vacuum-
to-vacuum diagrams. At one loop they are all proportional to
h̄. The fact that we usually set h̄ = 1 in natural units should
not mislead us. Following Zeldovich, an estimate of the ZPE
contribution from the top quark should be of order m4

t ∼ 109

GeV4, which is 56 orders of magnitude larger than ρ0
vac. But

even the electron, whose ZPE is of order m4
e ∼ 6 × 10−14

GeV4, generates a discordance of ‘only’ 33 − 34 orders of
magnitude. Except for a tiny neutrino mass in the meV range,
all of the particles of the SM afford devastatingly large con-
tributions to the ZPE which are many orders of magnitude
away from the measured value of ρ0

vac. This is of course the
famous Cosmological Constant Problem (CCP) [13,14], on
which so many efforts have been invested. Yet, it remains
constantly debated and is perhaps the biggest and toughest
enigma faced by modern theoretical physics over time [18–
25]. Many of these attempts involved scalar fields in different
ways, such as quintessence and phantom dark energy (DE),
see e.g. [19] for a review. But other ideas can also be con-
templated and will be revived here on a more solid base,
cf. [24–28] and references therein. Part of the CCP is that
the pure quantum effects ∼ h̄m4 pointed out by Zeldovich
lead to intolerable fine-tuning among the parameters. For this
reason even the Higgs boson discovery at CERN [29,30],
which was celebrated almost a decade ago as the crowning
event in the history of particle physics and the most deci-
sive endorsement to the Standard Model (SM) of the strong
and electroweak interactions, becomes deeply involved in
the gory details of this story. This is both because of the
huge ∼ M4

H ∼ 108 GeV4 contribution to the ZPE owing
to its large mass (MH ∼ 125 GeV), and also because of
its induced contribution to the VED from the ground state
or vacuum expectation value (VEV) of the Higgs potential,
which is of order < VH >∼ M2

Hv2 ∼ 109 GeV4 and neg-
ative (where v ∼ 246 GeV is the Higgs VEV). Taken sepa-
rately or together, the two contributions (which are indepen-
dent and uncorrelated, in principle) amount to an outrageous
mismatch of 55–56 orders of magnitude with respect to the
measured cosmic vacuum energy density associated to the
CC, viz. ρ0

vac ∼ 10−47 GeV4, not to mention the quantum
contributions to the effective potential [24,25]. Other vac-
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uum effects, such as the QCD quark and gluon condensates,
are smaller but still go more than 43 orders of magnitude
astray from observation, although these strong interacting
contributions have been disputed in the literature, see e.g.
[31,32]. The CCP has been looked upon as being a reflex of
the in-depth clash between elementary particle physics and
GR at a most fundamental level. If so, one should expect
that among the virtues of the promised ‘third cosmological
paradigm’ – which is foreseen to come to rescue (hopefully)
in the near future [33] – will be to throw shining light on
the resolution of such a longstanding conundrum of modern
theoretical physics and cosmology.

The above situation shows that even if � has the virtue of
maximal simplicity and is a core ingredient of the ‘concor-
dance’ �CDM model of cosmology [34–37], we do not have
an explanation for it based on first principles. Not surpris-
ingly, theoretical physicists and cosmologists have invented
all kinds of ersatz concepts somehow replacing the notion of
vacuum energy in an attempt to escape from such a phe-
nomenal ‘cul de sac’. But there is no escape if the ZPE
strictly follows Zeldovich’s interpretation. As it should be
obvious by now, the CCP is much more than just the waver-
ing phenomenological use of the CC term in cosmology and
astrophysics over the years [38], it is a profound fundamen-
tal theoretical problem. If the ∼ m4 contributions are there
and are alive for all the (massive) fields, we have to under-
stand how to eschew or at least how to renormalize away
their implications. On top of it we have the vacuum contribu-
tions emerging from every single mechanism of spontaneous
symmetry breaking (SSB), starting from the Brout–Englert–
Higgs mechanism [39–41] of the SM of particle physics.
We may change the name of this nightmare, we may call it
CCP, quintessence or DE riddle, but the issue of the value
of � and the abhorrent fine-tuning problem being implied
stay both fully upright. It all suggests that we might be doing
something which is not quite right in our endeavour at giving
a sense to the energy density of the quantum vacuum, even
after the manyfold efforts devoted to this important subject
and after devising all its poor DE substitutes.1

The first inkling of the problem at a fundamental level
comes from a simple observation. The concordance �CDM
model is formulated in the FLRW context and the latter is
deeply ingrained in the heart of the General Relativity (GR)
paradigm. However, one of the most important drawbacks
of GR is that it is a non-renormalizable theory. This can be
considered a serious theoretical objection for GR to be the
ultimate theory of gravity, and hence it adversely impacts on
the �CDM status too. GR cannot properly describe the short

1 We point out that sophisticated dynamical adjustment mechanisms
can be concocted in QFT to dodge fine-tuning issues [42,43], but unfor-
tunately lacking at the moment of a connection with known fundamental
theories.

distance effects of gravity (the ultraviolet regime, UV), only
the large distance effects (or infrared regime, IR). As a conse-
quence, GR cannot furnish by itself a framework for quantiz-
ing gravity (the spacetime metric field) along with the rest of
the elementary interactions (assuming of course that gravity
is amenable to be quantized on conventional grounds). In this
sense, a first (rougher but effective) approach is to treat grav-
ity as a classical (external or background) field and quantize
the matter fields only. This is the essence of the semiclassical
approach, namely the point of view of QFT in curved space-
time, see e.g. [44–47] for textbook materials on the subject.
Herein it will be our approach too, and despite its limitations
it will still allow us to compute meaningful quantum effects
of matter on top of that classical gravitational background.

On the other hand, winds of change also blow on the phe-
nomenological side. In the last few years, issues of more prac-
tical nature hint at the prospect that the concordance model of
cosmology might not be such an immaculate model border-
ing perfection, not even at the phenomenological level. The
�CDM is known to be currently in tension in different obser-
vational fronts, e.g. with the structure formation data (the so-
called σ8-tension) and most significantly with the local value
of the Hubble parameter H0 as compared to its determina-
tion from the CMB, cf. e.g. [48–54] and quoted references
for a review of these tensions. The possibility that these (per-
sisting) discrepancies may be a serious symptom of physics
beyond the �CDM model remains perfectly sound [55]. As
it has been shown in different works, models mimicking in
different ways a time-evolving � (or dynamical DE) could
help in alleviating these problems [56–77], see especially the
most recent analysis [78]. In point of fact, a wide assort of
different proposals aiming at curing the current challenges
for the �CDM are available in the literature, cf. [50,79,80]
and the long list of references therein. Many of these models
are just phenomenological and are designed ad hoc for this
particular purpose, and hence lacking a formal support from
QFT or string theory. Here we would like to show that the
methods of QFT in curved spacetime can give a hand and can
be applied to the context of the cosmological FLRW metric
to find out a possible clue on these problems.

In our previous work [81], we found that such a QFT
approach can indeed be used to derive a particular form of
dynamical vacuum energy density called in the literature
‘running vacuum model’ (RVM) – cf. [24–28] along with
[82,83] containing ample bibliography –, in which the effec-
tive vacuum density ρvac (feeded by the quantum effects
of the quantized matter fields) appears as an expansion in
powers of the Hubble function and its time derivatives, i.e.
ρvac = ρvac(H, Ḣ , Ḧ , . . .). Such a VED form has been
tested previously on strict phenomenological grounds and has
implications both for the early universe (inflation) as well as
for the current (slowly accelerated) universe. The first hints
and additional support on such possible dynamical charac-
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ter of the VED in the QFT context actually appeared early
on along the idea of � being a running quantity following a
renormalization group equation [84], which was linked later
on with a possible action functional [85] and other implica-
tions [86] – for a review see [24–28]. A variety of studies bear
relation in different ways with these investigations, see e.g.
[87–108] and corresponding references. However, it was only
recently, in the aforementioned work [81], where an explicit
form of the RVM vacuum density could be derived within
the QFT context. Here we shall revisit and reinforce such
a derivation by extending these calculations up to a point
enabling us to investigate for the first time the EoS of the
quantum vacuum and show that it is not exactly equal to −1.
Interestingly enough, we will also argue that the mentioned
quantum effects (in the extended form computed here, which
accounts up to the ∼ H6 contributions) can produce infla-
tion in the early universe without invoking the existence of
an inflaton field mechanism. This was not discussed in Ref.
[81], since only renormalization issues were addressed in it
and hence it was sufficient to consider the adiabatic expansion
up to 4th order. The more complete results involve the non-
trivial calculation of a plethora of (finite) 6th-order effects.
These are now disclosed in the current comprehensive pre-
sentation. The low energy form of the RVM includes the
terms H2 and Ḣ only (on top of a dominant constant term)
and they mimic quintessence, without need of introducing
an explicit quintessence field. In addition, very recently it
has been shown that the RVM can help mitigating in a very
significant way the aforementioned σ8 and H0 tensions [78].

The leitmotif of the calculation put forward in the current
study is the renormalization of the stress-energy–momentum
tensor using the adiabatic regularization prescription (ARP)
[44,45] and to explore the implications for the cosmic evo-
lution. The method is based on the WKB expansion of the
field modes in the FLRW background. By using an off-shell
variant of this subtraction method, fully along the lines of the
4th-order calculation presented in [81], we find that the evo-
lution of the properly renormalized VED does not depend on
the unwanted contributions proportional to the fourth power
of the particle masses (∼ m4) and hence it is free from fine-
tuning. The extension to the next adiabaticity order (6th) is
a rather cumbersome ulterior step in this calculational pro-
cedure. But it is a necessary step, as only in this way we are
able to compute the renormalized on-shell ZPE of a quan-
tized scalar field of mass m nonminimally coupled to grav-
ity. The final result turns out to be not only free of unde-
sirable ∼ m4 contributions, it appears entirely harmless for
the fate of the present universe (in contrast to the traditional
outcome of more conventional calculations within simpler
renormalization schemes). To strengthen the robustness of
our approach, we have cross-checked these results also in
the effective action formalism using the heat-kernel expan-
sion of the propagator. It is noteworthy that our results have

implications both for the current and for the early universe. As
indicated, apart from predicting a mild dynamics of the VED
today that can mimic quintessence, the full result up to ∼ H6

order has the power to trigger inflation in the early universe.
In this respect we point out the resemblance (albeit not at all
identification) of this mechanism with a stringy version of
the RVM-inflationary mechanism which has recently been
developed [109–113], see also [114–117] for more details
and interesting spin-off possibilities. Whether our approach
may contribute in some way to resolve the CCP in the future
is difficult to say, but the kind of results obtained here are
unprecedented in the literature (to the best of our knowl-
edge). Even though overcoming fine tuning issues should
have an impact on the CCP, we should not forget that the
latter is a multifarious theoretical challenge that involves not
only the fine-tuning ordeal, but also calls for an eventual
understanding of the value itself of the measured CC and its
physical origin, which should gather contributions not only
from the ZPE of all the quantum matter fields but also from
the different SSB mechanisms.

There is, of course, still a long trail to solve the quantum
vacuum problem. In this paper, we have just tried to pave
the way within a simplified framework. Specifically, since
the calculation of the ZPE in QFT requires renormalization,
it must be a scale-dependent quantity. Using an appropri-
ate renormalization scheme based on adiabatic regularization
we have produced a renormalized ZPE in the cosmological
spacetime free of fine-tuning oddities, and then used it to
investigated a variety of implications for the current as well
as for the early universe. What we have found is that the VED
evolves with the expansion and that it depends only on the
Hubble rate and its time derivatives. Obviously, much more
work will be needed to substantiate the reach of these con-
siderations. Renormalization theory, however, stops at this
precise point since its job is to relate renormalized quantities
at different scales; it is not its business to predict the value
of the VED at some particular point, for example the VED
at present. The latter may be taken as an experimental input,
which can then be used in our approach as a boundary con-
dition to predict the evolution of the VED at other expansion
history epochs. What we have found is that such an evolu-
tion should be free from unnatural adjustments among the
parameters of the theory.

3 Vacuum energy for a scalar field in the FLRW
background

In this paper, we are addressing the QFT calculation of the
VED of a quantized free scalar field nonminimally coupled
to FLRW spacetime. The corresponding VED involves the
cosmological term � (or, more precisely, the parameter ρ�)
in the Einstein–Hilbert (EH) action and the zero-point energy
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(ZPE) of the quantum matter fluctuations. We should empha-
size from the beginning that we do not address here the issues
of quantum gravity (QG) and the functional integration over
metrics, with or without the � term, see e.g. [118–121].
While these are potentially important matters, in the current
context gravity is treated as a classical background field and
hence the QG considerations in connection to quantizing the
metric lie out of the scope of our semiclassical approach. We
take a scalar field only as the simplest representative of the
kind of results and difficulties we expect to encounter when
dealing with generic quantized fields in a curved background.
Calculational details for fermions or vector bosons do not
change in any essential way our approach to computing the
vacuum fluctuations in the gravitational context [122]. Need-
less to say, the QFT calculation of vacuum-to-vacuum dia-
grams implies to perform renormalization since we meet UV-
divergent integrals. The usual procedures to account for the
regularization and renormalization of divergent quantities in
QFT, such as e.g. the minimal subtraction (MS) scheme [123,
124], do not yield a sensible answer for the VED. Despite
producing finite results, these are useless and incongruent
with the physical facts. They lead to a quartic dependence on
the mass of the fields (∼ m4) and this enforces a very serious
(in fact incommensurable) fine-tuning among the parameters,
this being so both in Minkowski and in curved spacetime.2

In this paper, we forgo making use of such an unsuccessful
method and rather adhere to the adiabatic renormalization
procedure (ARP) [44–46]. However, we adopt a more recent
variant of this method, which we used extensively in our pre-
vious paper [81] in order to renormalize the ZPE in a more
meaningful way and to connect the results with the general
framework of the running vacuum model (RVM) mentioned
in the introduction.3 In this section, we shall summarize the
approach followed in [81] in view of fixing the notation and
also to prepare the ground to extend the results previously
obtained in that reference to higher adiabatic orders. Such an
ascension in the adiabatic order is mandatory if we are inter-
ested to compute the on-shell renormalized zero-point energy
(ZPE) of a scalar field in FLRW spacetime. Recall that in the
momentum subtraction scheme, the renormalized Green’s
functions and running couplings are obtained by subtracting
their values at a renormalization point p2 = M2 (space-
like in our metric, which becomes an Euclidean point after
Wick rotation) or at the time-like one p2 = −M2 (depend-
ing on the kinematical region involved). Here the situation is
similar, but since for vacuum diagrams we do not have exter-

2 See e.g. [24,25] for a pedagogical introduction to the ZPE calculation
in flat and curved spacetime.
3 The method was introduced for the study of the running couplings
in curved spacetime in [101], although it was not applied to the VED
nor to the study of the running of this quantity throughout the cosmic
evolution. This was done for the first time in [81]. We shall comment
on some differences with respect to our approach later on.

nal momenta, we renormalize the ZPE by subtracting (to its
on-shell value) the corresponding value computed to 4th adi-
abatic order but at an arbitrary mass scale M . This suffices
both to eliminate the divergent terms in the first four adiabatic
orders, which are the only ones that can be divergent in the
renormalization of the EMT [81] and to relate the ZPE at dif-
ferent scales. However, if we wish to compute the zero-point
energy at the value of the particle mass m, then the renormal-
ization is to be performed on-shell, i.e. at M = m. In such a
case it is evident that a subtraction at 4th-order would give a
vanishing result. Therefore, since general covariance of the
effective action requires that the vacuum energy can only be
expanded in even adiabatic orders, the leading contribution
to the on-shell renormalized ZPE must appear at the sixth
order of adiabaticity. The main aim of this work is to per-
form such a nontrivial calculation and extract some interest-
ing consequences. But prior to undertaking this rather heavy
task we prepare our basic framework, starting with the clas-
sical action, energy–momentum tensor and field equations.

3.1 Classical field equations for a scalar field nonminimally
coupled to gravity

We start from the EH action for gravity plus matter:

SEH+m = SEH + Sm = 1

16πG

∫
d4x

√−g R

−
∫

d4x
√−g ρ� + Sm. (3.1)

The (constant) term ρ� has dimension of energy density and
is usually called the vacuum energy density. However, we will
not call it that way here since it is not yet the physical vacuum
energy density, ρvac, as we shall see. The term ρ� is at this
point just a bare parameter of the EH action, as G itself. We
prefer not to introduce special notations by now. The physical
values will be identified only after renormalizing the bare
theory.4 Varying the part involving the ρ� term yields

δS� = −
∫

d4x δ
√−g ρ�

= −1

2

∫
d4x

√−g
(−ρ� gμν

)
δgμν. (3.2)

Together with the variation of the EH and matter terms of
(3.1), the gravitational field equations can be put in the con-
venient form

1

8πG
Gμν = −ρ�gμν + Tm

μν, (3.3)

4 If we would write ρ� = �/(8πGN ) the parameter � could not be
interpreted as a physical cosmological constant, but just as the bare
cosmological term. As mentioned in the introduction, the quantity that
can be associated with the physically measured cosmological constant,
�, is defined through ρvac = �/(8πGN ), where ρvac and GN are the
physical quantities. The latter, however, can only be identified after
properly renormalizing the QFT calculation.
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where Gμν = Rμν − (1/2)gμνR is the usual Einstein ten-
sor and Tm

μν is the stress-energy–momentum tensor, or just
energy–momentum tensor (EMT for short) of matter5:

Tm
μν = − 2√−g

δSm

δgμν
. (3.4)

For simplicity we will assume that there is only one (matter)
quantum field contribution to the EMT on the right hand side
of (3.3) in the form of a real scalar field, φ, with mass m.
Such a contribution will be denoted T φ

μν . We neglect for the
moment the incoherent matter contributions from dust and
radiation. They can be added a posteriori without altering the
pure QFT aspects on which we wish to focus right now. We
assume that φ is nonminimally coupled to gravity and with
no potential V (φ). Thus, the part of the action involving φ

reads

S[φ] = −
∫

d4x
√−g

(
1

2
gμν∂μφ∂νφ

+1

2
(m2 + ξ R)φ2

)
. (3.5)

Here, ξ is the nonminimal coupling of φ to gravity. For
ξ = 1/6, the massless (m = 0) classical action is confor-
mally invariant in 4 spacetime dimensions. Since no classical
potential for φ is present in our analysis we need not consider
the quantum corrections and corresponding renormalization
of the effective potential. Under these conditions ξ is not
necessary for renormalizing the theory. Even so, by keeping
ξ �= 0 we can obtain more general results, which will be
particularly useful for the connection with the RVM frame-
work. Furthermore, it allows us to perform a nontrivial test
of our calculations by reproducing the conformal anomaly
for the quantum corrected action. In general, the presence of
a nonminimal coupling is expected in a variety of contexts,
e.g. in extended gravity theories [125–128] and in models of
Higgs-induced inflation [129]. However, as previously indi-
cated, even in the absence of V (φ) the presence of ξ can be
very useful. From hereon in, we will exclusively target the
adiabatic renormalization of the ZPE of φ, which in itself is
already quite involved in curved spacetime.

The classical energy–momentum tensor can be obtained
by computing the functional derivative with respect to the
metric, Eq. (3.4). For the specific action (3.5), we obtain

T φ
μν = − 2√−g

δS[φ]
δgμν

= (1 − 2ξ)∂μφ∂νφ

+
(

2ξ − 1

2

)
gμν∂

σ φ∂σ φ

−2ξφ∇μ∇νφ + 2ξgμνφ�φ + ξGμνφ
2

−1

2
m2gμνφ

2. (3.6)

5 Our conventions and other formulas of interest for this calculation are
collected in the Appendix A.1.

For ξ = 0 we recover the trivial result for the free and mini-
mally coupled scalar field.

The field φ obeys the Klein-Gordon (KG) equation in
curved spacetime, which follows from varying the action
(3.5) with respect to φ:

(� − m2 − ξ R)φ = 0, (3.7)

where �φ = gμν∇μ∇νφ = (−g)−1/2∂μ

(√−g gμν∂νφ
)

is the standard box operator in curved spacetime. As it is
well-known, the time and space variables in the KG equa-
tion can be separated, i.e. placed in the form φ(t, x) ∼∑

k ψk(x)φk(t) (the sum usually being in the continuum
limit) provided the metric is conformally static [46], which
means ds2 = −dt2 + a2(t)γi j (x)dxidx j , where a(t) is the
scale factor and γi j is the metric of any three-dimensional
Riemannian manifold as its basic spatial section. The space-
time metric can then be put in the form ds2 = C(τ )(−dτ 2 +
γi j (x)dxidx j ), where the conformal scale factor C(τ ) =
a2(τ ) is a function of the conformal time τ . The latter is
connected to the cosmic time through τ = ∫

dt/a. The
separability condition certainly holds for any FLRW met-
ric. In the following, however, we will focus on the spa-
tially flat three-dimensional case, γi j = δi j . The FLRW
line element is then conformally static and even conformally
flat, and can be written ds2 = a2(τ )ημνdxμdxν , where
ημν = diag(−1,+1,+1,+1) is the Minkowski metric in our
conventions (cf. Appendix A.1). The derivative with respect
to the conformal time will be denoted ′ ≡ d/dτ and thus
the Hubble rate in conformal time reads H(τ ) ≡ a′/a. Since
dt = adτ , the relation between the Hubble rate in cosmic
and conformal times is H(τ ) = aH(t), where H(t) = ȧ/a
(with˙≡ d/dt) is the usual Hubble rate.

In conformally flat coordinates, the KG equation (3.7)
reads explicitly as follows:

φ′′ + 2Hφ′ − ∇2φ + a2(m2 + ξ R)φ = 0, (3.8)

where �φ = −a−2
(
φ′′ + 2Hφ − ∇2φ

)
(with H = a′/a)

and the Ricci scalar reads R = 6a′′/a3 (cf. Appendix A.1) .
The separability condition in these coordinates, namely the
factorization φ(τ, x) ∼ ∫

d3k Akψk(x)φk(τ ) + cc, can be
implemented with ψk(x) = eik·x, but in contradistinction to
the Minkowskian case we cannot take φk(τ ) = e±iωkτ since
the frequencies of the modes are no longer constant. The
precise form of the modes φk(τ ) in the curved spacetime
case are determined by the KG equation. In fact, starting
from the Fourier expansion with separated space and time
variables

φ(τ, x) =
∫

d3k
[
Akuk(τ, x) + A∗

ku
∗
k(τ, x)

]

=
∫

d3k

(2π)3/2

[
Ake

ik·xφk(τ ) + A∗
ke

−ik·xφ∗
k (τ )

]
(3.9)
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(Ak and A∗
k being the Fourier coefficients, treated still clas-

sically at this point) and substituting it into (3.8) we find that
the mode functions φk(τ ) are determined by the nontrivial
differential equation

φ′′
k + 2Hφ′

k +
(
ω2
k (m) + a2ξ R

)
φk = 0. (3.10)

Because ω2
k (m) ≡ k2 + a2m2, the mode functions depend

only on the modulus k ≡ |k| of the momenta, where k is the
comoving momentum and k̃ = k/a the physical one. The
frequencies are seen to be functions of the time-evolving
scale factor a = a(τ ). This is the first unmistakable sign that
a particle interpretation will become hard in this context, or
in other words, it amounts to the phenomenon of particle
creation in a time-dependent gravitational field [130–133] –
for a review see e.g. [134–136]. If we perform the change of
field mode variable φk = ϕk/a the above equation simplifies
to a more amenable one in which the damping term is absent:

ϕ′′
k +

(
ω2
k (m) + a2 (ξ − 1/6)R)

)
ϕk = 0. (3.11)

Despite it being the equation of an harmonic oscillator, it has a
time-dependent frequency and cannot be solved analytically
except in a few cases. For example, for conformally invariant
matter, i.e. for massless scalar field (m = 0) and conformal
coupling (ξ = 1/6), the above equation boils down to the
form ϕ′′

k + k2ϕk = 0, whose positive- and negative-energy
solutions are just e−ikτ and e+ikτ , respectively. These are the
very same solutions as in the massless Minkowskian case
(for which R = 0), which is ultimately the reason why no
particles are created in the quantized version of the theory
(in which Ak and A†

k – the latter replacing A∗
k – become

the annihilation and creation operators) in the conformally
invariant case. In the massless case with minimal coupling
(ξ = 0) Eq. (3.11) takes on the form

ϕ′′
k + (k2 − a2R/6)ϕk = 0. (3.12)

In the radiation epoch (a ∝ τ , thus R = 6a′′/a3 = 0)
we find once more the trivial modes ϕk(τ ) = e±ikτ . On
the other hand, both in the de Sitter (a = −1/(Hτ),
H =const.) and matter-dominated (a ∝ τ 2) epochs we have
a2R = 12/τ 2, which leads to ϕ′′

k + (k2 − 2/τ 2)ϕk = 0.

This equation is nontrivial but admits an exact (positive-
energy) solution in terms of Bessel functions. In the de
Sitter case (τ < 0) one may impose the Bunch–Davies
vacuum limit ∼ e−ik|τ | in the far remote past (τ →
−∞)6 and one finds the solution in terms of Bessel/Hankel
functions: ϕ(τ) ∝ √

k|τ | (
J3/2(k|τ |) − i J−3/2(k|τ |)) =

6 For a given mode k this condition insures k|τ | 
 1 and hence the
modes can be thought of as being essentially insensitive to curvature
effects, since a2R = 12/τ 2 → 0 in this limit. In this way we are free
to fix the convenient initial condition φk(τ ) ∼ eikτ = e−ik|τ | in the
remote past.

√
k|τ |H (2)

3/2(k|τ |). Because of the half-integer order of these
functions in this case, it leads to a close analytic form:
ϕk(τ ) ∝ (1 − i/(k|τ |))e−ik|τ |. The same solution is valid
for the matter-dominated era (for which τ > 0). The corre-
sponding solutions for φk are of course φk(τ ) = ϕk(τ )/a(τ )

for each relevant epoch. For m �= 0 and/or ξ �= 1/6 a solu-
tion in terms of modified Bessel functions is also possible in
the de Sitter epoch. In general, however, there is no analytic
solution of (3.11) for the whole cosmic expansion history
of the universe up to the current DE epoch. Therefore, we
are generally led to search for a WKB (Wentzel–Kramers–
Brillouin) expansion of the solution. But before doing that
let us take up the quantization of the scalar field φ, since we
are mainly interested in computing the vacuum fluctuations.

3.2 Quantum fluctuations and expansion modes

The previous equations are classical. To account for the quan-
tum fluctuations of the fieldφ we must consider the expansion
of the field around its background value φb:

φ(τ, x) = φb(τ ) + δφ(τ, x). (3.13)

We wish to compute the vacuum expectation value (VEV)
of the EMT of φ, i.e. 〈T φ

μν〉 ≡ 〈0|T φ
μν |0〉. But for this we

need to define a useful vacuum state for the QFT in a curved
background, |0〉, called the adiabatic vacuum [137]. The
VEV of the field is identified with the background value,
〈0|φ(τ, x)|0〉 = φb(τ ), whereas the VEV of the fluctuation
is zero: 〈δφ〉 ≡ 〈0|δφ|0〉 = 0. Not so, of course, the VEV of
the bilinear products of fluctuations, e.g. 〈δφ2〉 �= 0. These
and other bilinear VEV’s will be responsible for the zero-
point energy (ZPE) of the field. For an appropriate definition
of the ZPE, we first decompose 〈T φ

μν〉 = 〈T φb
μν 〉 + 〈T δφ

μν 〉,
where 〈T φb

μν 〉 = T φb
μν is the contribution from the classical

background part, whilst 〈T δφ
μν 〉 ≡ 〈0|T δφ

μν |0〉 is the genuine
vacuum contribution from the field fluctuations δφ. Because
ρ� is also part of the vacuum action (3.1), the full vacuum
contribution is not only the expectation value of the EMT
but the sum of these two terms in the form prescribed on the
r.h.s. of Eq. (3.3):

〈T vac
μν 〉 = −ρ�gμν + 〈T δφ

μν 〉. (3.14)

This is an important point, which will play a role in our calcu-
lation: the total vacuum part receives contributions from both
the cosmological term as well as from the quantum fluctua-
tions of the field. However, since these quantities are formally
UV-divergent, the physical vacuum contribution can only be
identified upon suitable regularization and renormalization
of our calculation. Rather than using minimal subtraction, as
it has been customary in addressing the vacuum problem in
QFT, we will use the adiabatic method along the lines of our
previous work [81].
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We start by noting that the classical and quantum parts of
the field (3.13) obey the curved spacetime KG equation (3.11)
separately. Similarly for ϕ = ϕb + δϕ (where φ = ϕ/a).
Denoting the frequency modes of the fluctuating part δϕ by
hk(τ ), we can write

δϕ(τ, x) =
∫

d3k

(2π)3/2

[
Ake

ik·xhk(τ )

+A†
ke

−ik·xh∗
k(τ )

]
. (3.15)

Here Ak and A†
k are no longer the classical Fourier coeffi-

cients but are now promoted to be (time-independent) anni-
hilation and creation quantum operators, which satisfy the
commutation relations

[Ak, A′†
k ] = δ(k − k′), [Ak, A′

k] = 0. (3.16)

The frequency modes of the fluctuations, hk(τ ), observe the
same differential equation (3.11):

h′′
k + �2

k(τ )hk = 0, (3.17)

where �2
k(η) ≡ ω2

k (m) + a2 (ξ − 1/6) R.

Except in the simple cases mentioned above, the solution
of that equation can only be found approximately through a
recursive self-consistent iteration. The starting point is the
phase integral

hk(τ ) = 1√
2Wk(τ )

exp

(
−i

∫ τ

Wk(τ̃ )d τ̃

)
. (3.18)

The normalization factor satisfies the Wronskian condition
hkh

∗′
k − h∗

kh
′
k = i , which preserves the standard equal-time

commutation relations. The effective frequency function Wk

in the above ansatz follows from inserting (3.18) into (3.17),
with the result

W 2
k (τ ) = �2

k(τ ) − 1

2

W ′′
k

Wk
+ 3

4

(
W ′

k

Wk

)2

. (3.19)

This (non-linear) equation can be solved using the WKB
expansion, or Carlini–Liouville–Green approximation [46].
For a sufficiently differentiable function �(τ), such an
expansion takes the form

Wk(τ ) = �k

[
1 + δ2(τ )�−2

k + δ4(τ )�−4
k + · · ·

]
. (3.20)

The leading term holds when the time variation of the fre-
quency Wk(τ ) is supposed to be very small as compared to k.
In that case, the derivative terms on the r.h.s of (3.20) can be
neglected and the phase integral (3.18) with Wk(τ ) � �k(τ )

furnishes a sufficient approximation. The remaining terms
of (3.20) improve the accuracy and can be computed by
iterating the procedure in what is known as the adiabatic
expansion. The implementation in the gravitational context
is well-known since long [45,46]. The WKB approximation
is applicable for large k, hence short wave lengths (as e.g.
in geometrical Optics), and weak gravitational fields. In our

case such a regime is appropriate to study the short-distance
behavior of the theory, i.e. the UV-divergences and the renor-
malization procedure. Because the general mode functions
hk(τ ) are not the canonical ϕk(τ ) = e±iωkτ anymore, parti-
cles with definite frequencies cannot be strictly defined in a
curved background. Yet an approximate Fock space interpre-
tation is still feasible if the vacuum is defined as the quantum
state which is annihilated by all the operators Ak of the above
Fourier expansion. This defines the adiabatic vacuum [137],
see also [44–47].7 Our VEV’s actually refer to that adiabatic
vacuum. The Bunch–Davies vacuum mentioned above was
a particular form of adiabatic vacuum for the case of the de
Sitter space. In the general case and in the absence of a clear-
cut particle interpretation, a more physical approach to the
vacuum effects of the expanding universe can be obtained
by computing the vacuum part of the EMT of the scalar field
in the cosmologically expanding background. To accomplish
this task, we need to insert the above Fourier expansions in
(3.6) and compute the VEV in Fourier space, hence integrat-
ing over all modes,

∫ d3k
(2π)3 (. . .). In the process we must use

the expansion (3.20) in order to compute the explicit form
of the modes (3.18), and this yields UV-divergent integrals
up to fourth adiabatic order. Therefore, at this point we need
to renormalize the VEV of the EMT (sometimes referred
to here as ‘vacuum EMT’) by appropriately subtracting the
first four (UV-divergent) adiabatic orders. The orders higher
than 4 decay sufficiently quick at large momentum k (short-
distances) so as to make the corresponding integrals conver-
gent. This is a reflex of the Appelquist–Carazzone decoupling
theorem [139].

Sometimes the following notation is used in the litera-
ture. Let T be a dimensionless parameter and let us replace
�k → T�k . Then the above series (3.20) can be regarded as
an expansion in T−2 for T → ∞. The power of T−1 defines
the adiabaticity order. Upon rescaling, this is equivalent to
replace a(τ ) → a(τ/T ). Then the derivatives of �k(a(τ ))

with respect to τ all go to 0 for T → ∞. The number of
derivatives coincides with the power of T−1, i.e. the adi-
abaticity order. This shows that the condition of validity of
the expansion is that �k(a) varies slowly in time, whence the
name adiabatic expansion. In practice we need not keep T
explicitly, it suffices to count the number of time derivatives
of the various terms of the expansion. But the power T−N

of a given term serves as a practical book-keeping device to
identify the Nth adiabaticity order of such a term.

7 A simple physical example in hydrodynamics is that of small ampli-
tude adiabatic acoustic waves in an otherwise homobaric fluid (i.e.
whose unperturbed pressure is constant). If the equilibrium/background
state (the counterpart of the adiabatic “vacuum” in QFT) varies only lit-
tle over the characteristic lengthscale λ = 1/k of variation of the wave,
then a “wave-like solution” can be found through the WKB method for
the pressure perturbation δp [138].
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3.3 WKB expansion of the mode functions: systematics of
the procedure

In the gravitational context, the WKB approximation is orga-
nized through the mentioned adiabatic orders and constitutes
the basis for the adiabatic regularization procedure (ARP)
[140–143] and the definition of the adiabatic vacuum [137]
in QFT in curved spacetime. For a review, see e.g. the classic
books [44,45]. In the present study we make a systematic
use of it by extending our previous work [81] up to 6th adia-
batic order, i.e. O(T−6). Notice that the adiabatic expansion
is an asymptotic expansion, and therefore going to higher
and higher orders (which becomes extremely cumbersome in
practice) does not necessarily imply a degree of better con-
vergence of the series. Expanding up to 6th adiabatic order
is already cumbersome, but it is feasible and actually nec-
essary for the study of the on-shell renormalized theory and
other properties of the quantum vacuum, as we shall see. As
noted above, the counting of adiabatic orders follows in most
cases the number of time derivatives, so it goes as follows:
k2 and a are taken of adiabatic order 0; a′ and H = a′/a
of adiabatic order 1; a′′, a′2,H′ and H2 as well as R, are
of adiabatic order 2. Each additional derivative increases the
adiabatic order by one unit.

The form (3.20) of the WKB expansion was useful to
discuss the meaning of the adiabatic expansion. Let us now
rewrite it in a way in which we collect the different adiabatic
orders:

Wk = ω
(0)
k + ω

(2)
k + ω

(4)
k + ω

(6)
k + · · · , (3.21)

where the various ω
( j)
k are corrections of adiabatic order j .

The non-appearance of odd adiabatic orders can be explained
by the general covariance, which forbid tensors with an odd
number of derivatives of the scale factor in the effective action
and gravitational field equations. The ω

( j)
k can be expressed

in terms of �k(τ ) and its time derivatives. However, since
�k(τ ) in our case adopts the explicit form indicated in (3.17),
with R being of adiabatic order 2, to insure that the adia-
baticity order is preserved it suffices that the derivatives in
the terms on the r.h.s. of (3.19) are performed on ωk(τ ) only.
We will see this feature in the formulas given below.

Following [81] we adhere to an off-shell prescription
whereby the frequency ωk of a given mode is defined not
at the mass m of the particle but at an arbitrary mass scale M
generally different from the physical mass8:

8 We distinguish M from ’t Hooft’s mass unit μ in dimensional reg-
ularization (DR), which will be used together with M in Sect. 10 to
regularize the UV divergences of the effective action. The parameter
μ is unphysical and is used in the MS scheme with DR to define the
renormalization point. We should stress, however, that we do not use
such a scheme at all in our calculation, even if we make some (optional)
use of DR in certain parts. In our physical results, μ always cancels out
and the final renormalized quantities depend on M only.

ωk ≡ ωk(τ, M) ≡
√
k2 + a2(τ )M2. (3.22)

At the moment we will use just the notation ωk to indicate
such an off-shell value, and when necessary we will distin-
guish it from the on-shell one using the forms ωk(M) and
ωk(m), both being of course functions of τ (which we will
omit to simplify notation). At this stage the method coin-
cides with the proposal made in [101] (see, however, later on
in Sect. 10.2).

Upon working out the second and fourth terms of (3.21),
we find

ω
(0)
k = ωk,

ω
(2)
k = a2�2

2ωk
+ a2R

2ωk
(ξ − 1/6) − ω′′

k

4ω2
k

+ 3ω′2
k

8ω3
k

,

ω
(4)
k = − 1

2ωk

(
ω

(2)
k

)2 + ω
(2)
k ω′′

k

4ω3
k

− ω
(2)′′
k

4ω2
k

−3ω
(2)
k ω′2

k

4ω4
k

+ 3ω′
kω

(2)′
k

4ω3
k

. (3.23)

As in [81], the quadratic mass differences �2 ≡ m2 − M2

must be counted as being of adiabatic order 2 since they
appear in the WKB expansion along with other terms of the
same adiabatic order.9 The on-shell result is recovered for
M = m, for which � = 0 and corresponds to the usual
ARP procedure [44,45]. We now go one step further to our
previous study [81] by extending the adiabatic expansion up
to the next nonvanishing order, i.e. the 6th-order, which is a
rather bulky contribution. It will be essential to cover different
aspects of the current work. After some computational effort,
one finds (with the help of Mathematica [144])10:

ω
(6)
k = ω′′

kω
(4)
k

4ω3
k

−
ω′′
k

(
ω

(2)
k

)2

4ω4
k

+
(
ω

(2)
k

)′′
ω

(2)
k

4ω3
k

−
(
ω

(4)
k

)′′

4ω2
k

−3
(
ω′
k

)2
ω

(4)
k

4ω4
k

+
9

(
ω′
k

)2
(
ω

(2)
k

)2

8ω5
k

+
3

((
ω

(2)
k

)′)2

8ω3
k

+
3ω′

k

(
ω

(4)
k

)′

4ω3
k

−
3ω′

k

(
ω

(2)
k

)′
ω

(2)
k

2ω4
k

− ω
(2)
k ω

(4)
k

ωk
. (3.24)

It is easily checked with the mentioned book-keeping device
that the above terms ω

(2)
k , ω(4)

k and ω
(6)
k (and each component

piece in them) are indeed of O(T−2), O(T−4) and O(T−6) ,

9 In Sect. 10 and Appendix C, we provide an alternative justification of
this method using the heat-kernel expansion.
10 We are not aware that this result has been previously reported in the
literature.
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respectively. For simplicity we have presented here the above
results in terms of the previous orders and their derivatives
with respect to the conformal time. The first two derivatives
of ωk read

ω′
k = a2HM2

ωk
,

ω′′
k = 2a2H2 M

2

ωk
+ a2H′ M2

ωk
− a4H2 M

4

ω3
k

. (3.25)

From these elementary differentiations one can then compute
the more laborious derivatives appearing in the above expres-

sions, such as
(
ω

(2)
k

)′
,
(
ω

(2)
k

)′′
,
(
ω

(4)
k

)′
,
(
ω

(4)
k

)′′
, etc. The

explicit form with all of the terms after computing the various
derivatives and expanding the products and powers of the dif-
ferent terms leads to a rather formidable output. We refrain
from quoting it here, but of course it will be used for the
computation of the EMT up to O(T−6). One can see imme-
diately that the adiabatic expansion becomes an expansion
in powers of H and its time derivatives. This is a noticeable
property which will be of paramount importance for our con-
siderations. Notice that if the final formulas for the physical
quantity (in our case the ZPE) are written in terms of the ordi-
nary Hubble function, H(t), no factor of a can remain. All
the terms with n cosmic time derivatives of the scale factor
in different ways are of adiabatic order N . For example, for
N = 4 one can have, in principle, 5 possible combinations:
H4, Ḣ2, H2 Ḣ ,

...
H and H Ḧ , all of them being O(T−4); and

for N = 6 we can have 11 structures of orderO(T−6), to wit:
H6, H4 Ḣ , Ḣ3, H3 Ḧ , H2

...
H , Ḣ

...
H , Ḧ2, H

....
H , H2 Ḣ2, H Ḣ

Ḧ and
.....
H . We shall find explicitly all the actual terms. Some-

what unexpectedly, though, we will find that terms of a given
order in the list do not show up in the final result. So the
correct adiabaticity order is a necessary but not a sufficient
condition to appear in the final result.

4 Adiabatic expansion of the ZPE up to 4th and 6th
orders

We have now all the necessary ingredients to compute the
ZPE associated to the quantum vacuum fluctuations in curved
spacetime with FLRW metric. We closely follow the presen-
tation of [81], but we will take into account that the field
modes will be expanded up to 6th order, not just up to 4th
order. The starting procedure is the same, we can insert the
decomposition (3.13) of the quantum field φ in the EMT as
given in Eq. (3.6) and select only the fluctuating parts δφ

decomposed as in (3.13). However, we are interested just on
the contribution from the fluctuations, so we pick out the
quadratic fluctuations in δφ only since, as previously indi-
cated, we have zero VEV for the fluctuation itself. By the
same token, the crossed terms with the background part φb

and the fluctuation δφ vanish. The ZPE is obtained from just
the 00th-component, so we find

〈T δφ
00 〉 =

〈
1

2

(
δφ′)2 +

(
1

2
− 2ξ

)
(∇δφ)2

+6ξHδφδφ′ − 2ξδφ ∇2δφ

+3ξH2δφ2 + a2m2

2
(δφ)2

〉
. (4.1)

Notice that δφ′, the fluctuation of the differentiated field (with
respect to conformal time), is equal to the derivative of the
fluctuating field, i.e. δφ′ ≡ δ∂0φ = ∂0δφ = (δφ)′. Next,
we substitute the Fourier expansion of δφ = δϕ/a, as given
in (3.15), into Eq. (4.1) and use the commutation relations
(3.16). At the same time we symmetrize the operator field
products δφδφ′ with respect to the creation and annihilation
operators. We present the final result in Fourier space, and
hence we integrate

∫ d3k
(2π)3 (. . .) over solid angles:

〈T δφ
00 〉 = 1

4π2a2

∫
dkk2

[∣∣h′
k

∣∣2 + (ω2
k + a2�2) |hk |2

+
(

ξ − 1

6

) (
−6H2 |hk |2 + 6H (

h′
kh

∗
k + h∗′

k hk
))]

,

(4.2)

where the remaining integrals are over k = |k|. Using now
the WKB approximations (3.23) and (3.24), we expand the
various terms of the above integral consistently up to 6th
order. After some tedious calculations, we find

|hk |2 = 1

2Wk
= 1

2ωk
− ω

(2)
k

2ω2
k

− ω
(4)
k

2ω2
k

− ω
(6)
k

2ω2
k

+
(
ω

(2)
k

)2

2ω3
k

+ ω
(2)
k ω

(4)
k

ω3
k

−
(
ω

(2)
k

)3

2ω4
k

, (4.3)

∣∣h′
k

∣∣2 =
(
W ′

k

)2

8W 3
k

+ Wk

2
= ωk

2

(
1 + ω

(2)
k

ωk
+ ω

(4)
k

ωk
+ ω

(6)
k

ωk

)

+
(
ω′
k

)2

8ω3
k

⎛
⎜⎝1 − 3ω

(2)
k

ωk
− 3ω

(4)
k

ωk
+ 6

(
ω

(2)
k

)2

ω2
k

⎞
⎟⎠ +

((
ω

(2)
k

)′)2

8ω3
k

+
(
ω

(2)
k

)′
ω′
k

4ω3
k

(
1 − 3ω

(2)
k

ωk

)
+

(
ω

(4)
k

)′
ω′
k

4ω3
k

, (4.4)

h′
kh

∗
k + (

h∗
k

)′
hk = − W ′

k

2W 2
k

= − ω′
k

2ω2
k

⎛
⎜⎝1 − 2ω

(2)
k

ωk
− 2ω

(4)
k

ωk
+

3
(
ω

(2)
k

)2

ω2
k

⎞
⎟⎠

−
(
ω

(2)
k

)′

2ω2
k

(
1 − 2ω

(2)
k

ωk

)
−

(
ω

(4)
k

)′

2ω2
k

. (4.5)
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In view of these explicit results it is obvious that the VEV
(4.2) is UV-divergent, specifically the integrals

∫
dkk2

∣∣h′
k

∣∣2

and
∫
dkk2ω2

k |hk |2 in it are both quartically divergent,∫
dkk2 |hk |2 is quadratically divergent and

∫
dkk2

(
h′
kh

∗
k+h∗′

k hk
)

is logarithmically divergent. No terms can be left in
the EMT being linear in H, nor any odd power of it, as they
would violate the covariance of the result. Only even powers
of H can remain in the final result (strictly speaking, terms
with an even number of derivatives of the scale factor), as we
shall further reconfirm below.

With the help of (3.25) these expressions can be made
more explicit before being inserted in (4.2), but it demands a
significant amount of algebra. The result can be conveniently
split into the various contribution up to 6th adiabatic order
(plus higher orders, if necessary, but not in our case):

T δφ
00 = T δφ(0)

00 + T δφ(2)
00 + T δφ(4)

00 + T δφ(6)
00 + · · ·

= T δφ(0−4)
00 + T δφ(6)

00 + · · · (4.6)

where for convenience we have collected the contribution
from the terms up to 4th adiabatic order in the expression

T δφ(0−4)
00 ≡ T δφ(0)

00 + T δφ(2)
00 + T δφ(4)

00 .
Explicitly [81]:

〈T δφ
00 〉(0−4) = 1

8π2a2

∫
dkk2

[
2ωk + a4M4H2

4ω5
k

−a4M4

16ω7
k

(2H′′H − H′2 + 8H′H2 + 4H4)

+7a6M6

8ω9
k

(H′H2 + 2H4) − 105a8M8H4

64ω11
k

+
(

ξ − 1

6

) (
−6H2

ωk
− 6a2M2H2

ω3
k

+a2M2

2ω5
k

(6H′′H − 3H′2 + 12H′H2)

−a4M4

8ω7
k

(120H′H2 + 210H4) + 105a6M6H4

4ω9
k

)

+
(

ξ − 1

6

)2
(

− 1

4ω3
k

(72H′′H − 36H′2 − 108H4)

+54a2M2

ω5
k

(H′H2 + H4)

)]

+ 1

8π2a2

∫
dkk2

[
a2�2

ωk
− a4�4

4ω3
k

+ a4H2M2�2

2ω5
k

−5

8

a6H2M4�2

ω7
k

+
(

ξ − 1

6

) (
−3a2�2H2

ω3
k

+ 9a4M2�2H2

ω5
k

)]
. (4.7)

As expected, only even powers ofH remain in the final result.
We point out the appearance of the �-dependent terms in the
last two rows, which contribute at second (�2) and fourth
(�4) adiabatic order, according to the mentioned rule. Mind
that k in the above formulas is the comoving momentum,
whereas the physical momentum is k̃ = k/a.

Suppose we fix the scale M at the physical mass of the
particle (M = m), so that the �-terms vanish. The first two
adiabatic orders T δφ(0−2)

00 ≡ T δφ(0)
00 + T δφ(2)

00 can be easily
identified:

〈T δφ
00 〉(0−2)

∣∣∣
M=m

= 1

8π2a2

∫
dkk2

[
2ωk(m) + a4m4H2

4ω5
k (m)

−
(

ξ − 1

6

) (
6H2

ωk(m)
+ 6a2m2H2

ω3
k (m)

)]
, (4.8)

where ωk(m) ≡ √
k2 + a2m2. Let us next project the UV-

divergent terms of this formula only and assume that the
nonminimal coupling to gravity is absent (ξ = 0). We are
then left with

〈T δφ
00 〉(0−2)

∣∣∣UV

(M=m,ξ=0)
= 1

8π2a2

∫
dkk2

×
(

2ωk(m) + H2

ωk(m)
+ a2m2H2

ω3
k (m)

)
. (4.9)

Finally, the Minkowskian spacetime result is obtained for
a = 1 (H = 0):

〈T δφ
00 〉Mink

∣∣∣
(M=m,ξ=0)

= 1

4π2

∫
dkk2ωk

=
∫

d3k

(2π)3

(
1

2
h̄ ωk

)
, (4.10)

where h̄ has been restored only in the trailing term for a
better identification of the result. The last quantity is the vac-
uum energy density of the quantum fluctuations in flat space-
time, i.e. the ZPE in Minkowski spacetime. It is of course
the traditional contribution found in usual calculations. It is
quartically UV-divergent. Usual attempts to regularize and
renormalize this result by e.g. cancelling the corresponding
UV-divergence against the bare ρ� term in the action (3.1)
within the context of a simple cutoff method or appealing to
the Pauli–Villars, more formal, procedure; or even using the
MS scheme and related ones, leads in all these cases to the
well-known ugly fine-tuning problem inherent to the CCP,
see Sect. 6.3 for a summarized discussion. We will certainly
not proceed in this way here. We seek out (and will find) an
alternative way for renormalizing the above result (4.7) in its
full general form.11 The previous simpler formulas, includ-

11 Let us note that Supersymmetry is not sufficiently helpful for solv-
ing the CCP since the cancellation of quartic divergences (warranted
e.g. in the Wess–Zumino model [145–147], cf. also [148]) does not
guarantee the cancellation of the subleading ones, e.g. the quadratic
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ing the more complicated ones are UV divergent and require
appropriate regularization and renormalization. The result
(4.7) constitutes the WKB approximation up to 4th adiabatic
order. It is enough to encompass all the UV-divergences that
appear in the WKB expansion of the ZPE. However, we need
to continue such an expansion one more step since we want
to compute the on-shell value of the ZPE and, as it will be
clear in the next section, the effort is necessary.

Thus, we now move on to the calculation of the 6th-order
contribution, T δφ(6)

00 , which is more cumbersome than the
contributions up to 4th-order, Eq. (4.7). We will quote the
expression only at the on-shell point M = m (so all of the
terms proportional to � vanish in this case). There is no need
to compute 〈T δφ

00 〉(6) at an arbitrary scale M since no subtrac-
tion is needed for a contribution which is fully convergent,
piece by piece. In Fourier space, it reads as follows:

〈T δφ
00 〉(6)(m) = 1

4π2a2

∫
dkk2

[
a4m4

128ω9
k

(
16H6 + 96H4H′

+84H2 (H′)2 − 12
(H′)3

+56H3H′′ + 36HH′H′′ + (H′′)2 + 16H2H′′′

−2H′H′′′ + 2HH′′′′
)

+ a6m6

32ω11
k

(
− 152H6 − 396H4H′ − 114H2 (H′)2 + 5

(H′)3

−102H3H′′ − 15HH′H′′ − 9H2H′′′
)

+33a8m8

256ω13
k

(
212H6 + 264H4H′ + 27H2 (H′)2

+26H3H′′) − 3003a10m10

128ω15
k

(
2H6 + H4H′)

+25025a12H6m12

1024ω17
k

]

+
(
ξ − 1

6

)
4π2a2

∫
dkk2

[
3a2m2

16ω7
k

(
− 32H4H′ − 32H2 (H′)2

+8
(H′)3 − 24H3H′′ − 24HH′H′′ − (H′′)2

−8H2H′′′ + 2H′H′′′ − 2HH′′′′
)

+21a4m4

32ω9
k

(
76H6 + 232H4H′ + 73H2 (H′)2 − 4

(H′)3

+74H3H′′ + 12HH′H′′ + 8H2H′′′
)

Footnote 1 continued
divergences [93]. The quadratic parts are of the form �2

c H
2 (where

�c can serve as a UV cutoff). See [90–92,149,150] for a discussion in
nonsupersymmetric contexts. For �c around the Planck mass, it can be
phenomenological acceptable only if �2

c H
2 carries a small coefficient,

as it was noticed much earlier in [84,85]. The current calculation and
the companion one [81] substantiate these results for the first time in a
rigorous QFT context, see Sect. 6.

−63a6m6

16ω11
k

(
92H6 + 123H4H′ + 13H2 (H′)2

+14H3H′′
)

+ 693a8m8

128ω13
k

(
123H6 + 64H4H′)

−45045a10m10H6

128ω15
k

]
+

(
ξ − 1

6

)2

4π2a2

∫
dkk2

[
9

8ω5
k

×
(

− 4H2 (H′)2 − 4
(H′)3 − 8H3H′′

+12HH′H′′ + (H′′)2 − 2H′H′′′ + 2HH′′′′
)

+45a2m2

4ω7
k

(
− 8H4H′ − 9H2 (H′)2 + (H′)3 − 8H3H′′

−3HH′H′′ − 2H2H′′′
)

+315a4m4

16ω9
k

(
13H6 + 32H4H′ + 7H2 (H′)2 + 6H3H′′)

−2835a6m6

8ω11
k

H4 (H2 + H′) ]

+
(
ξ − 1

6

)3

4π2a2

∫
dkk2

[
9

2ω5
k

(
−15H6 + 9H2 (H′)2

−6
(H′)3 + 18H3H′′ + 18HH′H′′)

−405a2m2

2ω7
k

(
H6 + 2H4H′ + H2 (H′)2

) ]
. (4.11)

Some of the integrals in (4.7) are UV-divergent, as we have
seen, and others are convergent. The integrals in (4.11),
instead, are all convergent. One may compute/regularize
every single integral in these formulas (convergent or diver-
gent) using the master formula for DR in Appendix A.2.

5 Renormalization of the energy–momentum tensor
in curved spacetime

We may compare the evolving vacuum energy density (VED)
of cosmological spacetime with a Casimir device wherein the
parallel plates slowly move apart (“expand”) [26,27]. While
the total vacuum energy density cannot be measured, the
‘differential’ effect associated to the presence of the plates,
and then also to their increasing separation with time, it can.
Similarly, in the expanding FLRW spacetime there is a gen-
uine nonvanishing spacetime curvature, R, as compared to
Minkowskian spacetime and such a curvature is changing
with the expansion. The VED must vary accordingly and we
naturally expect that there is a contribution proportional to
R, hence to H2 and Ḣ (plus higher derivative (HD) effects
R2, RμνRμν , etc. in the early universe). Both spacetimes,
Minkowski and FLRW, are obviously similar at short dis-
tances, in the sense that the curved background is locally
flat. However, the short distance singularities are not really
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identical since the curvature carries additional ones related
to the nontrivial geometric structures.

More formally, the energy–momentum tensor (EMT),
Eq. (3.6), is a quadratic functional of the field φ(x). However,
in the context of QFT, φ(x) is an operator-valued distribu-
tion and hence terms like gμνm2φ2(x), ∂μφ(x)∂νφ(x), etc.
in EMT are not well defined at a given point x since a square
of a distribution is not generally defined. This is ultimately
the source of the UV-divergences of QFT in configuration
space. For this reason it is advisable to consider a bilinear
functional replacing the original EMT, which we may denote
as Tμν(x, x ′) = Tμν(φ(x)φ(x ′)), where a point-splitting has
been operated in order to avoid the UV-divergence [44–46].
The coincidence point limit in configuration space amounts,
of course, to the UV-limit in momentum space. In practice,
we need the VEV of that bilinear functional and the point
splitting regularization of 〈Tμν(x, x ′)〉 is carried out through
a (differential) operator Dμν acting on an appropriate two-
point (Green’s, Hadamard’s, etc.) function G(x, x ′) as fol-
lows: 〈Tμν(x, y)〉 = DμνG(x, y). The operator Dμν can be
easily identified from the terms involved in (3.6) and is usu-
ally expressed in a symmetrized form. For instance, the VEV
of the first term on the r.h.s. of (3.6) is treated as

(1 − 2ξ)〈∇μφ∇νφ〉
−→ (1 − 2ξ)

1

2

(∇μ∇ν′ + ∇μ′∇ν

)
G(x, x ′), (5.1)

where the derivatives with primed indices are assumed to act
on x ′ and those without primes on x . In the jargon of QFT,
this part would be regularization. The renormalization of the
EMT is then performed by subtracting the vacuum expec-
tation value through the coincidence limit x ′ → x . In the
simplest case of Minkowski space, with Minkowskian vac-
uum |0〉Mink, it would be natural to define the renormalized
EMT operator as

Tμν(x) = lim
x ′→x

[
Tμν(x, x

′) − 〈0|Tμν(x, x
′)|0〉Mink

]
. (5.2)

since in this case the VEV of the renormalized EMT is
expected to be zero for sound physical reasons. In our Casimir
example, the short-distance behavior in the region between
the plates is the same as that outside the plates and the
limit gives a finite result. However, as warned above, curved
spacetime induces new types of infinities as compared to
Minkowskian spacetime. The latter, however, are still there
and may still carry the core of the quantum vacuum problem
if the Minkowskian result is not renormalized to zero (cf.
Sect. 6.3).

The generalization of (5.2) in curved spacetime is more
delicate, but under appropriate conditions it is natural to use
a similar definition where we replace the Minkowskian vac-
uum |0〉Mink with the adiabatic vacuum, simply denoted |0〉
as we have been doing in the previous sections. We may

define the renormalized EMT operator performing a suit-
able subtraction, but in this case we should not presume a
zero result for the VEV of the renormalized EMT. We would
rather extract the nonvanishing renormalized vacuum energy
density and pressure in curved spacetime as a function of the
background itself, in such a way that when the background
is Minkowskian we ought to recover the previous vanish-
ing VEV. There are, however, some additional specifications
to handle correctly the UV-divergences. Moreover, we wish
to provide an off-shell definition enabling us to explore the
VED at different scales. Thereby we define the renormalized
EMT operator in n-dimensional curved spacetime (with n−1
spatial dimensions) up to adiabatic order N ≥ n through the
following off-shell subtraction prescription (which we shall
refer to also as the off-shell ARP):

T (0−N )
μν (x)ren(M) = T (0−N )

μν (x)(m)

−〈0|T (0−n)
μν (x)|0〉(M). (5.3)

In this equation, T (0−N )
μν (x)(M) refers to the computation

of the renormalized ETM to adiabatic order N ≥ n at the
scale M (not necessarily equal to the on-shell mass value
m), whereas 〈0|T (0−n)

μν (x)|0〉(M) is the VEV of the EMT
computed up to adiabatic order n (the dimension of space-
time, i.e. n = 4 in our context). The on-shell value is just
T (0−N )

μν (x)(m), of course. The subtraction is, therefore, per-
formed upon that on-shell value. By virtue of general covari-
ance, the adiabatic orders involved in the EMT must be
even (N = 0, 2, 4, 6, . . .). However, irrespective of the adi-
abaticity order N at which the on-shell value is computed,
the subtracted quantity at the scale M , i.e. T (0−n)

μν (x)(M),
must include just the first n

2 + 1 (nonvanishing) even orders
N = 0, 2, 4, · · · n, as these are the only ones which are UV-
divergent (in n spacetime dimensions). In n = 4, this means
that T (0−4)

μν (x)(M) must contain the first three even adiabatic
orders N = 0, 2, 4.

We have mentioned point-splitting regularization [134],
see also [151–153], because it illustrates very clearly the ori-
gin of the UV-divergences in QFT computations and because
it is in general a consistent, and physically justified, covari-
ant procedure to define the renormalized EMT. Proceeding in
this way, however, can be rather cumbersome. Indeed, in the
general case one has to start from the adiabatic expansion of
the Green function G(x, x ′) and the structure of divergences
is not apparent until the mode integral has been performed.
Examples are well described in the literature [44–46]. Fortu-
nately, however, the ARP procedure defined above for renor-
malizing the EMT and other local quantities can be shown
to be equivalent to the point-splitting procedure [154]. In
particular, when the field equation can be solved by separa-
tion of variables, as in the case under study, one can resort
to a simpler method of renormalization which is to perform
a mode by mode subtraction process under the integral sign
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using the adiabatic expansion of the modes, Eq. (3.9) [46].
In Sect. 3.1 we have seen that the properly normalized form
of these modes is

uk(τ, x) = (2π)−3/2 a−1(τ ) eik·x ϕk(τ ), (5.4)

in which the space and time variables are separated and the
time-evolving part ϕk(τ ) obeys the nontrivial Eq. (3.11).
Similarly for the equations satisfied by the fluctuating parts,
(3.15) and (3.17). When the field modes can be expressed
in separated form it is possible to arrange for the explicit
cancellation of UV-divergences before the mode integral is
computed. The advantage is clear since the arrangement of
terms can be made inside the subtracted integrand such that
no UV-divergence is present and the integral appears mani-
festly convergent ab initio.

The VEV of the 00th-component of T (0−N )
μν (x)(m) in (5.3)

is precisely given by Eq. (4.1) in our case. Thus, the renor-
malized vacuum EMT up to O(T−N ) in n = 4 spacetime
dimensions reads

〈0|T (0−N )
μν (x)|0〉ren(M) = 〈0|T (0−N )

μν (x)|0〉(m)

−〈0|T (0−4)
μν (x)|0〉(M), (5.5)

where it is supposed, of course, that the mode expansion
has been performed to O(T−N ). Since the EMT structure is
made of quadratic expressions of the fields, they are expanded
at that order in terms of the above mentioned modes (5.4)
and the creation and annihilation operators, and finally one
can move to momentum space by integrating

∫
d3k(. . .) the

result. The detailed computational results of this procedure
have already been given in Sect. 4. Here we just discuss the
formal procedure and furnish the practical recipe (5.5), which
is necessary to achieve a renormalized finite result using such
a mode by mode subtraction at any order.

5.1 Off-shell renormalization of the EMT

It goes without saying that to call Eq. (5.3) ‘renormalized’
EMT and (5.5) the renormalized vacuum EMT is almost
unnecessary since the mode by mode subtraction in the inte-
grand makes the integral manifestly finite. The ARP proce-
dure (based on the adiabatic expansion) defines automatically
the renormalized quantity. However, as mentioned above,
while in the usual adiabatic regularization method [44–46]
the subtraction is always performed on-shell, here we shall
instead perform the subtraction off-shell, i.e. at a scale M
which is generally different from the mass of the particle.
This enables us to test the scale dependence of the renormal-
ized result (5.5). The explicit calculations which we provided
in [81] concerning the regularization of the ZPE of a nonmin-
imally coupled scalar field can serve as a very practical illus-
tration of this procedure. In the present paper we continue and
extend those calculations for the same scalar field model and

hence we adopt such a renormalization framework, although
we will summarize it below for the sake of convenience of the
reader. No new divergences appear in the present calculation
as compared to that of [81]. We shall reconfirm these results
here using the effective action approach (cf. Sect. 10) and
will extend the computation by determining the (difficult)
6th order adiabatic term in the mode expansion along with
the corresponding contribution to the density and pressure
of the vacuum. The new terms are perfectly finite, but fairly
cumbersome, as we have seen in previous sections (see also
our Appendix D). We will use these results to extract physi-
cal consequences as to the scale dependence of the ZPE and
its on-shell value, as well as to derive the equation of state of
the quantum vacuum.

But before that, let us stress that the consistency of such
a renormalization method has been explicitly verified in our
previous work, where we have shown that it is equivalent to
the renormalization of coupling constants in Einstein’s equa-
tions, see Appendix B of Ref. [81]. If dimensional regular-
ization (DR) is used, the needed counterterms to cancel the
poles can be generated from the basic three parameters G−1,
ρ� and α appearing in the generalized form of Einstein’s
equations (compare with the original form (3.3)):

1

8πG
Gμν + ρ�gμν + α (1)Hμν = Tμν. (5.6)

Here (1)Hμν is the HD tensor which appears from the met-
ric variation of the R2-term in the higher derivative vacuum
action for FLRW spacetime. We remind the reader that the
term emerging from the variation of the square of the Ricci
tensor, called (2)Hμν , is not necessary in our case since it
is not independent of (1)Hμν for FLRW spacetimes (con-
fer Appendix A.1). All three couplings G−1, ρ� and α are
necessary to generate the counterterms that cancel all the
divergences in the regularized EMT:

G−1 = G−1(M) + δεG
−1,

ρ� = ρ�(M) + δερ�,

α = α(M) + δεα. (5.7)

The counterterms are denoted with the subscript ε to empha-
size that they depend on the regulator ε and become infi-
nite for ε → 0 (see below and Appendix A.2). The sub-
script is also useful to distinguishing this notation from other
quantities introduced in Sect. 6 which bare some notational
resemblance. The specific forms of the three counterterms
mentioned above is [81]:

δεG
−1 = −m2

2π

(
ξ − 1

6

)
Dε,

δερ� = + m4

64π2 Dε,
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δεα = − 1

32π2

(
ξ − 1

6

)2

Dε, (5.8)

with

Dε ≡ 1

ε
− γE + ln 4π = 2

4 − n
− γE + ln 4π. (5.9)

The pole is at n − 1 = 3 space (resp. n = 4 spacetime)
dimensions, where ε = 0. No more counterterms are needed
in the present calculation. In particular, we do not need the
nonminimal coupling ξ to generate an additional counterterm
for the free scalar field theory that we are addressing here.
Even so it is useful to keep a nonvanishing value of ξ in the
action (3.5) for the general reasons explained in Sect. 3.1 and
for more specific ones that we will consider in the coming
chapters. Overall the results obtained using the counterterm
method and renormalization of constants in the generalized
Einstein’s equations is identical to that of performing the
mode by mode subtraction directly in the integrand until
evincing the convergent nature of the integrals. We do not
furnish more details here on the counterterm method since
they are given in full in Ref. [81]. We have just reminded the
reader that in these cases the two procedures are equivalent.

Following [81], after computing the adiabatic WKB
expansion of the integrand of the divergent integrals a sub-
traction is carried out at an arbitrary scale M , i.e. we apply
the off-shell ARP (5.5). Taking into account that in 4 space-
time dimensions the only adiabatic orders that are divergent
in the case of the EMT are the first four ones, the subtraction
at the scale M is performed only up to the fourth adiabatic
order. The on-shell value of the EMT can be computed of
course at any order, all terms beyond 4th-order being finite.
Let us apply this procedure to the UV-divergent ZPE as given
by Eq. (4.7). The renormalized 00th-component of the EMT
in this context therefore reads12

〈T δφ
00 〉ren(M) = 〈T δφ

00 〉(m) − 〈T δφ
00 〉(0−4)(M). (5.10)

This subtraction prescription is, of course, equally valid for
any component of the EMT, as it is obvious from Eq. (5.5).
In the above equation and hereafter we omit the adiabaticity
order N up to which the EMT is computed. In our context,
the spacetime dimension is n = 4 and hence it is understood
that N ≥ 4. The value N = 4 is the minimum one which is
necessary to perform the renormalization of the EMT, but for
some applications we will consider also up to N = 6, as it is
obvious from the calculations already presented in Sect. 4.

12 Equation (5.10) implies a subtraction between two UV-divergent
integrals. In the cases under consideration, the two integrals can be
combined into a single one in which the integrands are subtracted and
the overall integration becomes convergent, as shown right next. But one
may equally regularize the UV-divergences of both integrals through
e.g. DR, and then one can check the cancellation of the UV-divergent
parts, see Appendix B of [81] for more details on this procedure.

To ease the presentation of the explicit result, it proves con-
venient to recover at least in part the more explicit notation
(3.22) in order to distinguish explicitly between the off-shell
energy mode ωk(M) = √

k2 + a2M2 (formerly denoted just
as ωk) and the on-shell one ωk(m) = √

k2 + a2m2. With this
notation, calculations lead to the following result up to fourth
adiabatic order [81]:

〈T δφ
00 〉(0−4)

ren (M) = 1

8π2a2

∫
dkk2

[
2 (ωk(m) − ωk(M))

− a2�2

ωk(M)
+ a4�4

4ω3
k (M)

]

−
(

ξ − 1

6

)
6H2

8π2a2

∫
dkk2

[
1

ωk(m)
− 1

ωk(M)

− a2M2

ω3
k (M)

− a2�2

2ω3
k (M)

+ a2m2

ω3
k (m)

]

−
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
8π2a2

∫
dkk2

×
[

1

ω3
k (m)

− 1

ω3
k (M)

]
−

(
ξ − 1

6

)
3�2H2

8π2 (5.11)

= a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)

−
(

ξ − 1

6

)
3H2

16π2

(
m2 − M2 − m2 ln

m2

M2

)

+
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
16π2a2 ln

m2

M2 . (5.12)

Even though some of the individual terms in the integrand
of (5.11) look formally UV-divergent, one can check upon
careful inspection that the overall integral is not, and this
explains why the final result (5.12) is perfectly finite.13 As
noted, the same result can be obtained from the counterterm
procedure, see Appendix B of [81]. The counterterms take
the precise form (5.7), which only depends on the physical
mass m of the particle, not on the arbitrary scale M . Hence
they cancel in the subtraction (5.10). However, the countert-
erms can also be used to cancel the poles and write down the
generalized Einstein’s equations (5.6) fully in terms of finite,
renormalized, quantities at the scale M , as we shall do in the
next section. Let us emphasize that the expression (5.12) is

13 For instance, the expression under square brackets in the first line of
(5.11) can be written:

2(ωk(m) − ωk(M)) − a2�2

ωk(M)
+ a4�4

4ω3
k (M)

= �6a6 ωk(m) + 3ωk(M)

4ω3
k (M)(ωk(m) + ωk(M))3

∼ �6a6 1

k5
as k → ∞.
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not yet the renormalized vacuum energy density, it is only
the renormalized ZPE.

5.2 The full ZPE up to 6th adiabatic order

The explicit form of the 6th adiabatic order is obtained by
computing the integrals in the expression (4.11), which is
one of the main objectives of this work. In the absence of the
6th-order terms, the 4th-order result that we have obtained,
Eq. (5.12), vanishes on-shell (i.e. for M = m), as it should
be expected from the definition itself, Eq. (5.10). As a matter
of fact, this is the reason why we need to include the next
nonvanishing adiabatic order so as to get the first nonvanish-
ing contribution to the on-shell value of the ZPE. The higher
order finite effects must satisfy the Appelquist–Carazzone
decoupling theorem [139] since they must be suppressed for
large values of the physical mass m of the quantum field.
We may now compute these finite contributions. On using
the master integral formulas given in Appendix A.2, the final
renormalized result computed up to 6th-order is:

〈T δφ
00 〉(0−6)

ren (M) = a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)

−
(

ξ − 1

6

)
3H2

16π2

(
m2 − M2 − m2 ln

m2

M2

)

+
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
16π2a2 ln

m2

M2

+ 1

20160π2a4m2

(
4

(H′)3 − 24H3H′′ − 6H′H′′′ + 96H4H′

−12HH′H′′ + 6HH′′′′ + 3
(H′′)2

−12H2 (H′)2 − 24H2H′′′)

+
(

ξ − 1

6

)
1

160π2a4m2

(
12H3H′′ − (H′′)2 − 40H4H′

+2H′H′′′ − 2HH′′′′ + 10H2 (H′)2 + 8H2H′′′)

+
(

ξ − 1

6

)2 3

32π2a4m2

(
4H6 + 48H4H′ − 12H2 (H′)2

−16H3H′′ + (H′′)2 − 8H2H′′′

−2H′H′′′ + 2HH′′′′)

−
(

ξ − 1

6

)3 9

8π2a4m2

(
H2 + H′) (

11H4 + H2H′

+2
(H′)2 − 6HH′′) . (5.13)

The first two lines of this expression embody just the
4th-order renormalized result (5.12). We can easily convince
ourselves that the remaining terms of (5.13) are of 6th adi-
abatic order, i.e. O(T−6), where we are using the notation
introduced in Sect. 3.2 for the adiabaticity order. Moreover,
they are all suppressed by two powers of the particle’s mass
m, i.e. they fall off as ∼ 1/m2, or to be more precise as
O(T−6)/m2. Thus, as formerly announced, the 6th-order
terms satisfy the Appelquist–Carazzone decoupling theorem

for large m [139].14 The next adiabatic order would be the
8th one. These terms also fulfill the decoupling theorem and
are further suppressed as O(T−8)/m4. We shall not be con-
cerned with them.

We should also note that the 6th-order terms do not depend
on the arbitrary mass scale M , but only on the mass of the
particle, m. The reason is that M enters only the terms up
to adiabatic order 4, which are the only ones which are sub-
tracted (because they are the only ones which are originally
UV-divergent), as it is obvious from the definition (5.10). As
a consequence, the on-shell value of (5.13) is now nonvan-
ishing and it is exclusively determined by the higher order
adiabatic terms beyond O(T−4). It is convenient to express
the result in terms of the ordinary Hubble rate defined in terms
of the cosmic time, H(t), with H(τ ) = aH(t). We may now
use the conversion relations between the derivatives of H
with respect to the conformal time and the derivatives of H
with respect to the cosmic time (see Appendix A.1). After
some algebra we find the following expression for the renor-
malized on-shell value (M = m) at 6th adiabatic order, i.e.
at O(T−6) (which, we stress again, is the first and hence the
leading nonvanishing order in the on-shell case):

〈T δφ
00 〉(6)

ren(m)

= a2

20160π2m2

(
−8H6 − 36H4 Ḣ − 20Ḣ3 + 42H3 Ḧ

+3Ḧ2 − 6Ḣ
...
H

+84H2 Ḣ2 + 36H2
...
H + 60H Ḣ Ḧ + 6H

....
H

)

+
(

ξ − 1

6

)
a2

160π2m2

(
2H6 + 12H4 Ḣ + 8Ḣ3

−14H3 Ḧ − Ḧ2 + 2Ḣ Ḧ − 34H2 Ḣ2

−12H2
...
H − 24H Ḣ Ḧ − 2H

....
H

)

+
(

ξ − 1

6

)2 3a2

32π2m2

(
−24H4 Ḣ − 8Ḣ3

+10H3 Ḧ + Ḧ2 − 2Ḣ
...
H + 32H2 Ḣ2

+12H2
...
H + 24H Ḣ Ḧ + 2H

....
H

)

−
(

ξ − 1

6

)3 9a2

8π2m2

(
2H2 + Ḣ

)

×
(

2H4 − 19H2 Ḣ + 2Ḣ2 − 6H Ḧ
)

. (5.14)

14 An alternative way to express this decoupling result for large m is
to say that in the opposite limit (m → 0) the higher order adiabatic
terms beyond N > 4 (all of them of even order owing to covariance,
N = 6, 8, . . .) are infrared divergent for m → 0 in four dimensions.
This is a well-known behavior expected from the effective action [44],
which e.g. can be immediately appraised in the explicit form of the
6th order adiabatic integral (4.11). Although we are not affected by IR
effects (m is in our case very large), the IR limit of ARP must be treated
with care [155].
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6 Renormalized vacuum energy density and running
vacuum

The renormalized expression for the vacuum fluctuations,
〈T δφ

μν 〉ren(M), is not yet the final one for the renormalized
VED. As indicated in (3.14), the latter is obtained upon
including the contribution from the ρ�-term in the Einstein–
Hilbert action (3.1). This term is initially a bare quantity, but
we take its renormalized value at the same scale M , Eq. (5.7).
Therefore, the renormalized vacuum EMT at the scale M is
given by
〈T vac

μν 〉ren(M) = −ρ�(M)gμν + 〈T δφ
μν 〉ren(M). (6.1)

For the considerations in this section we will use only the
renormalized expressions up to 4th adiabatic order, since
these suffice to discuss the renormalization of the EMT.

6.1 Renormalizing the vacuum energy density in FLRW
spacetime

The renormalized VED obtains from extracting the 00th-
component of the expression (6.1):

ρvac(M) = 〈T vac
00 〉ren(M)

a2 = ρ�(M) + 〈T δφ
00 〉ren(M)

a2 , (6.2)

where we have used the fact that g00 = −a2 in the conformal
metric that we are using. The above equation stems from
treating the vacuum as a perfect fluid, namely with an EMT
of the form
〈T vac

μν 〉 = Pvacgμν + (ρvac + Pvac) uμuν, (6.3)

where uμ is the 4-velocity. In conformal coordinates in the
comoving cosmological (FLRW) frame, uμ = (−a, 0, 0, 0)

and hence uμ = (a, 0, 0, 0). Taking the 00th-component of
(6.3), the relation 〈T vac

00 〉 = −a2Pvac + (ρvac + Pvac) a2 =
a2ρvac follows, irrespective of Pvac. Whence

ρvac(M) = 〈T vac
00 〉ren(M)

a2 . (6.4)

Finally, inserting the 00th-component of (6.1) into (6.4) we
obtain Eq. (6.2), as desired.

Notice that we distinguish between VED and ZPE. The
latter is generated from the vacuum fluctuations of the fields
whereas the former combines the ZPE and the parameter ρ�

in the action. When they are both renormalized quantities,
the sum (6.2) provides the physically measurable quantity at
the scale M . In a symbolic way, we can write
VED = ρ� + ZPE. (6.5)

More explicitly, we can write it out on taking cognizance of
the important result presented in Eq. (5.12):

ρvac(M) = ρ�(M) + 1

128π2

×
(

−M4 + 4m2M2 − 3m4 + 2m4 ln
m2

M2

)

+
(

ξ − 1

6

)
3H2

16π2a2

(
M2 − m2 + m2 ln

m2

M2

)

+
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
16π2a4 ln

m2

M2 + · · ·
(6.6)

Here the dots denote that we have not written higher order adi-
abatic orders beyond the 4th one. It is important to remark that
these terms do not depend on the renormalization parameter
M . The simplified notation ρvac(M) should not obscure the
fact that the VED in FLRW spacetime is dynamical, as it rests
on the expansion rate of the universe and its derivatives, apart
from the scale M , i.e. ρvac(M) ≡ ρvac(M,H,H′,H′′, . . .).
We note that M itself is dynamical in cosmology since we will
associate M with a cosmological variable. Thus, the dynam-
ical character of the VED enters both through the explicit
dependence in the Hubble rate and also implicitly through
M (cf. Sect. 6.4).

It should be clear that ρvac(M) cannot be computed from
the above expression, even if the expansion rate is known at
a given time since we do not know the value of the renor-
malized parameter ρ�(M) in the action. As usual, we need
some experimental input, we will comment more on this fact
in Sect. 6.4. We should not forget that the main aim of renor-
malization theory is not so much to predict the value of a
quantity, for example the VED, at a certain scale (and time,
in cosmology) but to relate it at different scales or renormal-
ization points, and hence to account for its evolution with
the scale M . We next compute the difference of VED values
between the two scales M and M0. We find

ρvac(M) − ρvac(M0) = 〈T vac
00 〉ren(M) − 〈T vac

00 〉ren(M0)

a2

= ρ�(M) − ρ�(M0) + 〈T δφ
00 〉ren(M) − 〈T δφ

00 〉ren(M0)

a2 ,

(6.7)

where

〈T δφ
00 〉ren(M) − 〈T δφ

00 〉ren(M0) = − a2

128π2

×
(
M4 − M4

0 − 4m2(M2 − M2
0 ) + 2m4 ln

M2

M2
0

)

+
(

ξ − 1

6

)
3H2

16π2

(
M2 − M2

0 − m2 ln
M2

M2
0

)

+
(

ξ − 1

6

)2 9

16π2a2

×
(
H′2 − 2H′′H + 3H4

)
ln

M2

M2
0

. (6.8)

To account for this difference we have just used the 4th-order
form (5.12) since, as noticed, the 6th adiabatic contribution
does not carry along any new dependency on the scale M (it
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only adds up new contributions which depend on the massm);
and hence all the higher order adiabatic effects beyond 4th-
order cancel out when one is just relating scales rather than
computing the result at a given scale. The same subtraction
can be performed using the generalized Einstein’s equations
(5.6). We take now these equations in vacuo and in terms of
the renormalized couplings at the scale M . For convenience
we write them as follows:

M2
Pl(M)Gμν + ρ�(M)gμν + α(M) (1)Hμν

= 〈T δφ
μν 〉ren(M). (6.9)

Apart from ρ�(M) and α(M) we have defined another renor-
malized coupling at the scale M ,

M2
Pl(M) = G−1(M)

8π
, (6.10)

which is nothing but the reduced Planck mass squared at
that scale. Its relation with the ordinary Planck mass is
MPl(M) = mPl(M)/

√
8π . As we shall further discuss in

what follows (see also Appendix B), the setting M = H is the
most appropriate one to make contact between the renormal-
ized value of a parameter and its physical value at the epoch
H . In accordance with this prescription, the measured local
value of gravity, GN , is obtained when M is set to the current
value of the Hubble parameter, i.e. G(H0) ≡ GN = 1/m2

Pl,
where mPl � 1.2 × 1019 GeV. Performing the subtraction of
the 00th-component of (6.9) at the two scales M and M0, we
find15:

〈T δφ
00 〉ren(M) − 〈T δφ

00 〉ren(M0) = −a2 (ρ�(M) − ρ�(M0))

+ (M2
Pl(M) − M2

Pl(M0)
)
G00 + (α(M) − α(M0))

(1)H00,

(6.11)

where in the first line we have used once more that g00 =
−a2. Comparison between (6.8) and (6.11) yields the impor-
tant relation

δρ�(m, M, M0) ≡ ρ�(M) − ρ�(M0)

= 1

128π2

(
M4 − M4

0 − 4m2(M2 − M2
0 ) + 2m4 ln

M2

M2
0

)
,

(6.12)

and upon using the known form of G00 and (1)H00 in the
conformal metric (given in Appendix A.1) we collect also
the two relations:

δM2
Pl(m, M, M0) ≡ M2

Pl(M) − M2
Pl(M0)

=
(

ξ − 1

6

)
1

16π2

[
M2 − M2

0 − m2 ln
M2

M2
0

]
(6.13)

15 Let us note that the relations in which we perform subtractions at
two scales are obviously unaffected by the background contributions
to the EMT since these are independent of M , and hence cancel in the
subtraction.

and16

δα(M, M0) ≡ α(M) − α(M0)

= − 1

32π2

(
ξ − 1

6

)2

ln
M2

M2
0

. (6.14)

These relations are important not only because they furnish
the scaling laws of the couplings M2

Pl(M) and α(M) in the
modified Einstein’s equations, but also because they help to
properly identify the various terms in Eq. (6.11). In particular
they contribute to isolate the shift of the renormalized vacuum
parameter ρ�(M), Eq. (6.12). Using (6.12) we can rewrite
(6.8) in the following form

〈T δφ
00 〉ren(M) − 〈T δφ

00 〉ren(M0)

a2

= −δρ�(m, M, M0) +
(

ξ − 1

6

)
3H2

16π2a2

×
(
M2 − M2

0 − m2 ln
M2

M2
0

)

+
(

ξ − 1

6

)2 9

16π2a4

(
H′2 − 2H′′H + 3H4

)
ln

M2

M2
0

.

(6.15)

Finally, on combining equations (6.15) and (6.7) we see
that the expression δρ�(m, M, M0) exactly cancels and we
are left with

ρvac(M) − ρvac(M0) =
(

ξ − 1

6

)
3H2

16π2a2

×
(
M2 − M2

0 − m2 ln
M2

M2
0

)

+
(

ξ − 1

6

)2 9

16π2a4

(
H′2 − 2H′′H + 3H4

)
ln

M2

M2
0

=
(

ξ − 1

6

)
3H2

16π2

[
M2 − M2

0 − m2 ln
M2

M2
0

]

16 The scale shifts quoted in equations (6.12)–(6.14) are finite quan-
tities in our renormalization scheme and should not be confused with
counterterms, such as those in (5.7)–(5.8). Strictly speaking, we do not
need counterterms in the ARP since we perform a subtraction of UV-
divergent quantities at two scales, and this renders a finite result.
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+
(

ξ − 1

6

)2 9

16π2

(
Ḣ2 − 2H Ḧ − 6H2 Ḣ

)
ln

M2

M2
0

,

(6.16)

where in the second equality we have written the result in
terms of the Hubble rate in the ordinary cosmic time, and for
this reason it does not depend explicitly on the scale factor.
The exact cancellation of the quantity (6.12) in Eq. (6.16)
is very important since such a term is precisely the poten-
tially conflicting quantity carrying all of the awkward quar-
tic powers of the mass scales. If this term would survive,
it would recreate the traditional (ugly) fine-tuning conun-
drum between the values of the VED at the two scales M
and M0. Its remarkable cancellation in our renormaliza-
tion setup, however, shows that the values of ρvac(M) and
ρvac(M0) differ only by a small quantity proportional to H2

and another which is ofO(H4), both small in the current uni-
verse (the latter being utterly irrelevant for the entire FLRW
regime). Thus, no fine-tuning is needed to relate ρvac(M) and
ρvac(M0) in the present renormalization framework.

The above considerations show that the generalized Ein-
stein’s equations (6.9) can be written in terms of the full
vacuum energy–momentum tensor (6.1):

M2
Pl(M)Gμν + α(M) (1)Hμν = 〈T vac

μν 〉ren(M). (6.17)

As a result the contribution (6.12) cancels automatically
whenever we compare the renormalized vacuum EMT,
〈T vac

μν 〉ren(M), at two scales. The formal quantity ρ�(M) −
ρ�(M0) indeed never shows up physically and hence only
the difference of VED’s at the two renormalization points
M and M0 remains, Eq. (6.16). Such a physically measur-
able quantity is a smooth function ∼ m2H2 of the cos-
mic evolution. With no quartic mass terms being involved
in the physical measurements, there is no need of fine-tuning
in this renormalization setup. This is also true in the spe-
cial case of Minkowskian spacetime, where neither ρ�(M)

nor the ZPE can be measured in an isolated way, just the
sum, which in this case is exactly zero (see next section).
The foregoing considerations show that, in the context of
the running vacuum model, the dark energy that we observe
is just the (non-constant) vacuum energy density predicted
within QFT in FLRW spacetime, which remains naturally
of order H2 at all times without fine tuning. At any cosmic
time t characterized by H(t) there is a (different) ‘CC’ term
�(H) = 8πGNρvac(H) acting (approximately) as a cosmo-
logical constant for a long period around that time, but there
is no true CC valid at all times!

6.2 Vanishing vacuum energy density in Minkowskian
spacetime

We note that Eq. (6.16) can be thought of as being the result
of subtracting the Minkowskian form of the ZPE in FLRW

spacetime [81]. Let us evaluate

ρvac(M) ≡ 〈T δφ
00 〉ren(M)

a2 −
[

〈T δφ
00 〉ren(M)

a2

]Mink

= 〈T δφ
00 〉ren(M)

a2 − 〈T δφ
00 〉Mink

ren (M), (6.18)

where in Minkowski spacetime a = 1, H = H = 0. It fol-
lows that equation (6.9) boils down to just ρ�(M)ημν =
〈T δφ

μν 〉Mink
ren (M), or 〈T δφ

00 〉Mink
ren (M) = −ρ�(M). Thus, the

above expression becomes

ρvac(M) = 〈T δφ
00 〉ren(M)

a2 + ρ�(M)

= 〈T vac
00 〉ren(M)

a2 , (6.19)

which is precisely our starting formula for the renormalized
VED, Eq. (6.2). Retaking from this point the subtraction pro-
cedure (6.7), we reach once more the final result (6.16).

As previously noted, the fact that the correct renormalized
result can be viewed as subtracting the Minkowskian contri-
bution can be traced to an analogy with the Casimir effect.
Namely, one expects that if we compute the expression for
〈T vac

μν 〉 in Minkowskian spacetime and subtract it from its
equivalent in curved spacetime the result should depend only
on the curvature of the latter and hence evolve only mildly
with the cosmic evolution through a function of the Hubble
rate (which is the key term providing the departure of the
FLRW background from Minkowskian spacetime). Such a
function is exactly given by the r.h.s. of Eq. (6.16).

In Minkowski space we should expect zero vacuum
energy, as in such a case we can apply the normal order-
ing of the quantum operators in the canonical formalism.
In our context we encounter the same result. To start with,
the renormalized ZPE in Minkowski space is the value of
〈T δφ

00 〉ren(M), given by Eq. (5.12) for a = 1 and H = 0:

〈T δφ
00 〉Mink

ren (M) = 1

128π2

(
−M4 + 4m2M2

−3m4 + 2m4 ln
m2

M2

)
. (6.20)

However, this quantity is purely formal and does not appear
in physical results since it cancels exactly against ρ�(M).
Indeed, from (6.19) we confirm that the VED in Minkowskian
spacetime is exactly zero in our renormalization setup:

ρMink
vac =

[
〈T δφ

00 〉ren(M)

a2

]Mink

+ ρ�(M)

= 〈T δφ
00 〉Mink

ren (M) + ρ�(M)

= −ρ�(M) + ρ�(M) = 0, (6.21)

for all scales M . In hindsight, this can be viewed as the
practical implementation of the setting (5.2). Therefore, for
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Minkowski spacetime

ρ�(M) = − 1

128π2

(
−M4 + 4m2M2

−3m4 + 2m4 ln
m2

M2

)
. (6.22)

The two quantities ρ�(M) and 〈T δφ
00 〉Mink

ren (M) both carry
quartic dependencies on the mass scales, but they exactly
conspire to sum up to zero, and hence the detailed struc-
ture of these formal quantities plays no role in the physically
measured quantities. In contrast to the Minkowski case, in
curved spacetime such quantities cannot be isolated since
the sum is not zero, see Eq. (6.6), but it yields a smooth
quantity mildly evolving with the cosmological evolution.
For a → 1 (H → 0) the l.h.s of (6.6) goes to zero, as we
have seen, and hence the r.h.s goes to zero too. At this point
we retrieve the Minkowskian space result (6.21) from the
curved spacetime case (6.6). But at any intermediate stage
of this limit we cannot determine ρ�(M) separately from
the ZPE, only the sum is physically relevant and it defines
the dynamical vacuum energy density in curved spacetime.
Recall that the renormalization point itself M is dynamical in
curved spacetime. As it was previously indicated, the scale
setting prescription M = H is an appropriate ansatz for test-
ing the cosmological evolution of the VED at different stages
of the expansion history (cf. Sect. 6.4 and Appendix B.1). It
is remarkable that the VED of the expanding universe despite
it being currently very small (of order ρ0

vac) is dynamical and
such dynamics could be measured since it is of O(H2). The
VED is exactly zero only in Minkowski spacetime, where the
vacuum energy plays no cosmological role. In actual fact, the
scale M becomes in this case a purely formal quantity devoid
of any physical meaning, much the same as the artificial mass
unit μ employed in DR (as discussed in the next section).
There is no dynamics of gravity in Minkowski space and
therefore nothing can physically run with M (or μ). In con-
trast, in FLRW spacetime the gravitational field is dynamical
and hence the prescription M = H is physically meaning-
ful and enables exploring the running of the vacuum energy
density with the cosmic expansion (cf. and Appendix B.1 for
a thorough discussion). This is actually the original point of
view of the RVM from the renormalization group approach
[24,25] and is also the main result advanced in our previous
work [81].

6.3 Minimal subtraction scheme and the fine-tuning
problem

The former are certainly properties we should expect from a
correct, physically meaningful, renormalization of the vac-
uum energy density, in contrast to other formal treatments
in the literature in the framework of different renormal-

ization schemes. In particular, the absence of fine-tuning
among the different terms is much welcome as well as the
vanishing value of the VED in Minkowskian spacetime,
which in the simplified notation (6.5) introduced above reads
ρ�+ZPE= 0. This condition can be thought of as a neces-
sary condition for the physical renormalization prescription
for the quantum vacuum energy, cf Eq. (5.2), and is encoded
in the general form (6.2). Many other approaches and renor-
malization prescriptions have been advocated to deal with the
vacuum energy, see [84–88,90–103,149–157], for instance.
Arguably, the simplest treatments are those based on the Min-
imal Subtraction (MS) scheme [123,124] (cf. [158–161] for
further explanations and practical applications). Its use was
soon extended to QFT in curved spacetime [162]. But in this
context, simplicity does not necessarily mean adequacy to
the physical purposes, and in fact the MS scheme does not
lead to a physically acceptable approach to the renormal-
ization of the VED, cf. [86] and references therein. Let us
briefly summarize the situation of the fine-tuning problem in
the MS scheme (we refer the reader e.g. to [24,25] for more
details). It will suffice to focus on Minkowskian spacetime
for this consideration.

In flat spacetime (a = 1, H = 0) the ZPE (4.7) shrinks
just to the compact form (4.10), where we shall continue
with h̄ = 1 in natural units. Using dimensional regulariza-
tion in Minkowskian n-spacetime (with n− 1 spatial dimen-
sions), a simple calculation with the notation and formulas
of Appendix A.2 leads to the result [24,25]

〈T δφ
00 〉Mink(m) =

∫
μ2εdn−1k

(2π)n−1

(
1

2
ωk(m)

)

= 1

2
In−1(p = −1, Q = m)

= m4

4(4π)2

(
−Dε + ln

m2

μ2 − 3

2

)
, (6.23)

where Dε contains the pole at n − 1 = 3 (i.e. at ε = 0,
or equivalently at n = 4 spacetime dimensions) as given by
Eq. (5.9). It is natural to assume that the VED in Minkowskian
space is given by a similar equation to (6.2), but with the bare
quantities at this point since (6.23) is divergent, i.e. ρMink

vac =
ρ� + 〈T δφ

00 〉Mink. We next split the bare term ρ� into the
renormalized quantity ρ�(μ) plus the counterterm, as shown
in Eq. (5.7). As we know, in the MS scheme the running scale
is usually represented by means of the arbitrary ’t Hooft’s
mass unitμ, which displays dimensions away fromn = 4 and
keeps control of dimensional analysis. Using the MS scheme
(or its variant MS [158,163]) to deal with the UV-divergences
is very tempting for we can choose the counterterm δρ� in
the form given in Eq. (5.8), which precisely cancels the pole
in (6.23) and this allows to define the renormalized ZPE in
Minkowski space, 〈T δφ

00 〉Mink
Ren (μ). One may then be tempted

to interpret that the MS-renormalized VED in Minkowskian

123



551 Page 22 of 64 Eur. Phys. J. C (2022) 82 :551

spacetime is the finite expression

ρMink
vac = ρ�(μ) + 〈T δφ

00 〉Mink
Ren (μ)

= ρ�(μ) + m4

4(4π)2

(
ln

m2

μ2 − 3

2

)
. (6.24)

However, in spite of its formal simplicity the above formula
leads to the usual fine-tuning nightmare associated to the
CCP, which is brought about by the fact that the renormal-
ized ZPE is proportional to the quartic power of the mass
of the particle ∼ m4. As a result, the MS-renormalized term
ρ�(μ) must be fine tuned in a preposterous way against the
renormalized ZPE contribution so as to get a VED value
in a reasonable phenomenological range, see [24,25] for a
detailed exposition of the fine-tuning problem. Since μ was
introduced on mere dimensional grounds there is no special
physical meaning to be ascribed to it. To set μ = H does
not make much sense here since the above formula applies to
Minkowskian spacetime, where H = 0. Besides, any attempt
to make sense of the above VED formula (using DR or Pauli–
Villars regularization, for example) leads to nowhere. No
matter what physical quantity is chosen for μ or the type and
number of fields involved, the numerical results are com-
pletely astrayed [149,164]. Let us stress once more that one
should not aim at a prediction of the value of the VED at
present, as this is out of the scope of renormalization theory.
Equation (6.24) is certainly not the VED neither in flat nor in
curved spacetime. Such an expression is unphysical, it just
describes the mathematical running of the parameter ρ�(μ)

and the renormalized ZPE with μ in such a way that their
sum remains equal to the original bare (hence RG-invariant)
parameter ρ� in the action. There is not an inch of physics in
it since μ cannot be related to any quantity of cosmological
interest; we reiterate that (6.24) was derived in Minkowski
space, where we have seen that the VED is just zero. In
Sect. 10.4 we come back to this point, after discussing the
running couplings in curved spacetime.

Nothing of this sort occurs in our renormalization scheme,
where the VED is given by (6.6). To start with, the value of
that expression in Minkowski space is exactly zero, as we
have shown above, in stark contrast with the MS formula
(6.24). Furthermore, as long as we hold on to the aforemen-
tioned prescription for Minkowskian spacetime, the implica-
tion on the corresponding calculation for curved spacetime
is that the VED is no longer zero but a mildly dynamical
quantity, which evolves smoothly (without fine-tuning) from
one scale to another throughout the cosmic evolution follow-
ing the ‘running law’ (6.16).17 Thus, while we do not aim

17 If one naively extends the MS renormalization to curved spacetime,
the fine-tuning problem persists unmodified, see [24,25] for a sum-
marized account. The two fine-tuning-generating pieces on the r.h.s of
(6.24) remain exactly as they are. The curved background only adds
purely geometric terms O(R, R2, Rμν Rμν, . . .) and the essence of the

at a prediction of the value of the VED at present from pure
renormalization theory, a prediction is made of its value at
some scale, given its value e.g. at present. Such an evolution
is governed by the Hubble flow and a quadratic (not quar-
tic) dependence on the mass scale, which is made extremely
smooth since it is accompanied by H2 and thereby evolving
as ∼ m2H2. In what follows we take up what are the impli-
cations for the late time universe and in particular for our
present time.

6.4 Running vacuum in the current universe

While for the current universe (H = H0) we may neglect
all terms of order O(H4) (which comprise also Ḣ2, H Ḧ
and H2 Ḣ ) the piece proportional to H2 in (6.16) may be
significant in the present universe. It entails that the vacuum
energy density is dynamical and such a dynamics is amenable
to being measured, as we have previously shown in [81]. This
property leads to the notion of ‘running VED’. By running
we mean that the VED is not static but changing with the
cosmic evolution. A good tracking of that evolution in the
FLRW context is provided by the Hubble rate H . At any given
cosmic time characterized by the Hubble rate, the choice
M = H may be taken as parameterizing the scaling evolution
of the VED, see [24–28] and references therein for the old
connection with the renormalization group arguments [84,
85]. If ρvac is known at some reference scale M0 associated
to the epoch H0 we can use the relation Eq. (6.6) to compute
the value of ρvac at another scale M associated to some other
epoch H . Since these scales may represent different stages
of the cosmic evolution, the idea of running vacuum could
be a viable framework for the possible time variation of the
so-called fundamental constants of nature [165–167].

If M0 is taken to be the current Hubble parameter, then
ρvac(H0) = ρ0

vac can be identified as being the presently
observed value of the VED at H = H0. We may relate ρ0

vac
with the value ρvac(M = H) at another scale in the past cor-
responding to the cosmic epoch H , which we typically select
within the accessible FLRW cosmic history. Using Eq. (6.6),
the connection between the two values of the VED can be
written as follows (cf. Appendix B.1 for details and notation):

ρvac(H) � ρ0
vac + 3νeff

8π
(H2 − H2

0 )m2
Pl

= ρ0
vac + 3νeff

κ2 (H2 − H2
0 ), (6.25)

fine-tuning problem embodied in the Minkowskian spacetime repli-
cates identically in curved spacetime in such scheme, see [162] for
more technical details. Renormalization of the VED à la MS seems to
be completely hopeless in cosmology.
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where κ2 = 8πGN . Here we have defined the ‘running
parameter’ νeff , which is approximately given by

νeff � 1

2π

(
ξ − 1

6

)
m2

m2
Pl

ln
m2

H2
0

. (6.26)

The more detailed treatment in Appendix B.1 shows that νeff

is actually a slowly changing (logarithmic) function of the
Hubble rate. But, to a fairly good approximation, νeff can be
taken essentially as the constant value given above for values
of H corresponding to the relatively recent universe.18 As it
was foreseen from the beginning, the structure of the RVM
vacuum does not necessarily require the nonminimal cou-
pling of matter to the external gravitational field. We can see
from (6.26) that ξ = 0 does not imply νeff = 0. The vanish-
ing of νeff and hence of the dynamical ∼ H2 part of (6.25)
is obtained only for conformal coupling: ξ = 1/6. If the
scalar field pertains to a typical GUT, i.e. m ∼ MX ∼ 1016

GeV, the ratiom2/m2
Pl ∼ 10−6 remains sizeable. Taking into

account that the parameter ξ can be, in principle, arbitrary
and that the multiplicity of states in a GUT is usually high, the
value of νeff can actually be much larger. There are, however,
also the fermionic contributions to νeff . These are obviously
independent of ξ , but we shall not tackle them here.19 An
accurate determination of νeff can only be found by fitting
the RVM to the overall cosmological data, as it has been done
in detail e.g. in [65–67], and lately in [78]. The phenomeno-
logical results show that νeff is positive and can be of order
10−3. A recent analysis of Big Bang nucleosynthesis (BBN)
constraints points to the same order of magnitude, although
is not sensitive to the sign of νeff [76].

The following comments are in order. From Eq. (6.25), we
see that for νeff > 0 the vacuum can be conceived as decay-
ing into matter since the vacuum energy density is larger in
the past (where H > H0); whereas if νeff < 0 the oppo-
site occurs. The former situation, however, is more natural
from a thermodynamical point of view, for if the vacuum
decays into matter one can show that the Second Law of
Thermodynamics is satisfied by the general RVM, see [168]
for a detailed discussion. Moreover, for νeff > 0 the RVM
effectively behaves as quintessence since the vacuum energy
density decreases with time. For νeff < 0 the behavior is
that of phantom DE. One may also interpret here that G is
changing with time owing to vacuum decay. Both possibili-
ties have been mooted within the RVM in Refs. [165–167],
see also Sect. 11. Recall that we expect |νeff | � 1 from
(6.26), whereby we cannot hope for observing dramatic devi-
ations from the standard �CDM model. This would actually

18 In [81] a formula similar to that in (6.25) was derived, making how-
ever reference to a Grand Unified Theory (GUT) scale MX . The result
is not essentially different if m is assumed very large, of order of MX .
19 A detailed account of the fermionic quantum effects on the RVM
vacuum structure will be provided in a separate publication [122].

not be welcome, given the considerable success of the con-
cordance cosmology. But the fact that the existing analyses
point to νeff = O(10−3) suggests that the effects are not
necessarily negligible, and in fact they can be helpful to cure
or relieve some of the existing tensions in the context of the
�CDM model. This has been shown in actual RVM fits and
also in the framework of alternative cosmological models
which mimic the RVM behavior, see e.g. [70–72,74,78].

7 Trace of the vacuum EMT in curved spacetime

As we will need to compute the pressure and equation of state
of the quantum vacuum, it is helpful to compute the trace of
the vacuum part of the EMT. We start by computing the trace
of the classical EMT, which we denote T cl. ≡ Tμ

μ. Using
(3.6), it can be expressed as

T cl. = (6ξ − 1) ∇μφ∇μφ + 6ξφ�φ − ξ Rφ2 − 2m2φ2

= (6ξ − 1) ∇μφ∇μφ + (6ξ − 1) φ�φ − m2φ2, (7.1)

where in the last step we have used the equation of motion
(3.7). This last form is useful since it makes transparent that
the trace is null in the conformal limit (m = 0 and ξ = 1/6),
as it should be (in four spacetime dimensions). An alternative
form which will be more helpful for our purposes and still
makes apparent the previous property, is obtained by trading
φ�φ for Rφ2 as follows:

T cl. = (6ξ − 1) ∇μφ∇μφ + 2(3ξ − 1)m2φ2

+ξ (6ξ − 1) Rφ2

= (6ξ − 1) gμν∇μφ∇μφ + 2(3ξ − 1)m2φ2

+6

(
ξ − 1

6

)2

Rφ2 +
(

ξ − 1

6

)
Rφ2, (7.2)

where the last rearrangement is just for convenience. On
examining the quantum fluctuations (3.13) about the back-
ground field, we note that the vacuum expectation value
(VEV) of the trace T φ

μν with the quantum field φ, can only
comprise terms quadratic (or, more rigorously, bilinear under
the coincidence limit) on its fluctuations δφ. Denoting by
〈T δφ〉 ≡ 〈0|T δφ |0〉 such a result, we find

〈T δφ〉 =
〈
(6ξ − 1) gμν∇μδφ∇μδφ + 2(3ξ − 1)m2δφ2

+6

(
ξ − 1

6

)2

Rδφ2 +
(

ξ − 1

6

)
Rδφ2

〉
. (7.3)

This result for the vacuum trace (i.e. the vacuum expectation
value of the trace) adopts the same form as (7.2), with φ

replaced by its fluctuating part δφ.
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7.1 Trace calculation up to 4th and 6th adiabatic orders

We may now explicitly compute the VEV of the trace, i.e.
Eq. (7.3), using the Fourier decompositions of the field fluc-
tuation δφ in the mode functions hk(τ ) and also utilizing the
commutation relations between the creation and annihilation
operators, i.e. we proceed along the lines we already followed
in Sect. 3.2 with the components of the EMT. The result can
be presented in two steps as follows:

〈T δφ〉 = − (6ξ − 1)

a2

( H2

(2π)3a2

∫
d3k|hk |2

+ 1

(2π)3a2

∫
d3k|h′

k |2 − H
(2π)3a2

∫
d3k

(
hkh

′∗
k + h′

kh
∗
k

))

+ (6ξ − 1)

a2

1

(2π)3a2

∫
d3kk2|hk |2 + 2(3ξ − 1)m2

× 1

(2π)3a2

∫
d3k|hk |2 + 6

(
ξ − 1

6

)2

R
1

(2π)3a2

∫
d3k|hk |2

+
(

ξ − 1

6

)
R

1

(2π)3a2

∫
d3k|hk |2

= 1

(2π)3a2

∫
d3k

(
−(6ξ − 1)

H2

a2 + (6ξ − 1)
k2

a2 + 2(3ξ − 1)m2

+6

(
ξ − 1

6

)2

R +
(

ξ − 1

6

)
R

)
|hk |2

− (6ξ − 1)

a2

1

(2π)3a2

∫
d3k|h′

k |2 + (6ξ − 1)

a2

× H
(2π)3a2

∫
d3k

(
hkh

′∗
k + h′

kh
∗
k

)
. (7.4)

The first equality makes it clearer the structure of the
result. For instance, using the fact that gμν∇μδφ∇μδφ =
−a−2

(
(δφ′)2 − ∇2δφ

)
and taking into account that the

expansion of δφ′ = (δφ)′ involves the calculation of
(d/dτ)(hk(τ )/a) = (h′

k − Hhk)/a) – as can be seen from
Eq. (3.15) (with δφ = δϕ/a) –, it is easy to understand
the origin of the first line of Eq. (7.4), and similarly with
the other terms. Up to this point this result is generic and no
approximation has been performed (apart from using the adi-
abatic vacuum, on which the creation and annihilation oper-
ators act upon). We must now expand the above VEV with
respect to such vacuum state up to the 6th-order. To this aim
we employ the 6th-order adiabatic expansions of the mode
functions given in Eqs. (4.3)–(4.5) in combination with the
relations (3.25). On substituting them in the above formula
the result is a rather lengthy expression, which is given in full
in Appendix D.1. We will use this result at due time.

7.2 Trace anomaly

As we know, at the classical level the trace of the EMT van-
ishes in the massless (m = 0) conformal limit (ξ = 1/6).
Indeed, using Eq. (7.2) it is obvious that for (ξ = 1/6) we

get the result

T cl. = −m2φ2. (7.5)

Moreover, it is evident that limm→0 T cl. = 0, and hence the
classical trace of the EMT vanishes in the massless conformal
limit, a well-known result which corresponds to the Noether
identity following from the conformal invariance of the the-
ory in that limit. However, if we move to the part of the trace
inherent to the quantum fluctuations, we find from (7.3) that
in the conformal limit takes on the form 〈T δφ〉 = −m2〈δφ2〉,
still consistent with (7.5) since Eqs. (7.3) and (7.2) are for-
mally identical, as we noted. We may naturally wonder if
limm→0〈T δφ〉 = 0 holds good too. The naive answer is yes,
but the correct (and also well-known) answer is no. This
is the origin of the famous trace anomaly (also called con-
formal anomaly), see e.g. [44] and references therein. Basi-
cally, what happens is that the quantum fluctuation 〈δφ2〉
involves terms ∼ 1/m2, which make the limit nonvanishing
and independent of m. Setting ξ = 1/6 in Eq. (7.4) we find
the reduced result:

〈T δφ〉∣∣
ξ=1/6 = − m2

(2π)3a2

∫
d3k|hk |2

= − m2

2π2a2

∫
dkk2|hk |2. (7.6)

The explicit form of this integral, however, is nontrivial.
Notice that only the 4th adiabatic order terms contribute to
it for m → 0 since the 6th adiabatic order must decou-
ple for m → ∞, so it cannot be independent of m. In the
Appendix D.2 we furnish the details of this calculation for
m → 0 and show that it leads to the standard form of the trace
anomaly. The latter is the result associated to the finite part
of the effective action. Since the above calculation comes up
from the unrenormalized part of the EMT, the trace anomaly
is just minus the above result since the vacuum trace of the
total EMT derived from the full effective action must be zero
in the massless conformally coupled limit [44]. The latter
can be computed first in the conformal metric and subse-
quently expressed in a covariant form, with the final result
(cf. Appendix D.2):

lim
m→0

〈T δφ〉
∣∣∣∣
anomaly

(ξ=1/6,M=m)

= 1

480π2a4

(
4H2H′ − H′′′)

= 1

2880π2

[
RμνRμν − 1

3
R2 + �R

]
. (7.7)

The last equation coincides with the standard covariant for-
mulation of the anomaly, except that the square of the Weyl
tensor does not show up here (while it appears for more gen-
eral backgrounds [44]) since the FLRW spacetime is con-
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formal to Minkowski spacetime (i.e. it is a conformally flat
spacetime) and hence the Weyl tensor vanishes identically.

7.3 Trace renormalization

It is important to realize that the vacuum trace (7.4) is UV-
divergent and therefore needs renormalization. For instance,
similar to the situation with Eq. (4.2), the integrals in the first
line of (7.4) are quadratically, quartically and logarithmi-
cally UV-divergent, respectively, cf. Eqs. (4.3)–(4.5). In our
framework, as outlined in Sect. 5, renormalization amounts
to subtract the same expression at an arbitrary mass scale M
(but computed only up to 4th adiabatic order):

〈T δφ〉ren(M) = 〈T δφ〉(m) − 〈T δφ〉(0−4)(M). (7.8)

This is of course the same subtraction prescription that we
have already followed with the components of the EMT, see
(5.10). Computational details are lengthy and the full expres-
sion is given in Appendix D.1. Fortunately, the final form of
the renormalized trace of the vacuum EMT, exact up to 6th
adiabatic order, can be cast in a relatively compact form as
follows:

〈T δφ〉(0−6)
ren (M) = 1

32π2

(
3m4 − 4m2M2 + M4 − 2m2 ln

m2

M2

)

+3
(
ξ − 1

6

)
8π2

(
m2 − M2 − m2 ln

m2

M2

) (
2H2 + Ḣ

)

− 9

8π2

(
ξ − 1

6

)2 (
12H2 Ḣ + 4Ḣ2 + 7H Ḧ + ...

H
)

ln
m2

M2

+ 1

10080π2m2

(
16H6 + 96H4 Ḣ − 44Ḣ3

−66H3 Ḧ − 54Ḣ
...
H − 96H2 Ḣ2

−93H2
...
H − 267H Ḣ Ḧ − 30H

....
H − 36Ḧ2 − 3

.....
H

)

−
(
ξ − 1

6

)
80π2m2

(
4H6 + 30H4 Ḣ − 44H2 Ḣ2 − 18Ḣ3 − 22H3 Ḧ

−103H Ḣ Ḧ − 14Ḧ2 − 31H2
...
H − 20Ḣ

...
H − 10H

....
H − .....

H
)

(7.9)

+3
(
ξ − 1

6

)2

16π2m2

(
48H4 Ḣ − 16Ḣ3 − 8H3 Ḧ − 14Ḧ2

−20Ḣ
...
H − 16H2 Ḣ2 − 29H2

...
H − 95H Ḣ Ḧ − 10H

....
H − .....

H
)

−9
(
ξ − 1

6

)3

4π2m2

(
−8H6 + 60H4 Ḣ + 11Ḣ3 + 42H3 Ḧ

+45H Ḣ Ḧ + 3Ḧ2 + 3Ḣ
...
H + 102H2 Ḣ2 + 6H2

...
H

)
.

(7.10)

We have used once more the conversion relations between
the derivatives of H with respect to the conformal time and
the derivatives of H with respect to the cosmic time (see
Appendix A.1) so as to express the final result in terms of
H = H(t). Notice that the first three lines of the above
expression comprise the terms up to the 4th adiabatic order

while the remaining lines stand for the complete 6th-order
contributions. The subsequent contribution would be of adi-
abatic order 8th, which we are not interested in here.

8 Equation of state of the quantum vacuum

We should not presume that the equation of state (EoS) of
the quantum vacuum is exactly Pvac = −ρvac, as we must
first carefully evaluate the quantum effects. Obviously the
EoS cannot depart too much from the traditional one, but we
will see that it is not exactly −1. The vacuum pressure is
defined in a way similar to the vacuum energy density (6.2).
Assuming the vacuum to be an homogeneous and isotropic
medium (it should preserve the Cosmological Principle) we
may define the pressure using any diagonal i i-component of
the renormalized vacuum stress tensor.

8.1 Quasi-vacuum EoS

Adopting once more the perfect fluid form (6.3) for the vac-
uum EMT, we may infer the expression for the vacuum pres-
sure by following the same logic as for the vacuum energy
density (6.2). We start taking the 11th-component, T vac

11 , of
the mentioned EMT. As we said, any i i th-component would
do equally well owing to isotropy, and we find T vac

11 = a2Pvac

in the conformal metric. Mind that since we are using again
the comoving cosmological frame there is no contribution
from the 4-velocity part. We subsequently equate this result to
the 11th-component of (3.14), 〈T vac

11 〉 = −ρ�g11 + 〈T δφ
11 〉 =

−ρ�a2 +〈T δφ
11 〉. Thus, the renormalized vacuum pressure at

the scale M is given by

Pvac(M) ≡ 〈T vac
11 〉ren(M)

a2 = −ρ�(M) + 〈T δφ
11 〉ren(M)

a2 ,

(8.1)

which looks similar to the renormalized VED, Eq. (6.2), up to
a sign in the ρ� term. This sign points to the expected EoS for
the vacuum, but we need to proceed carefully before unveil-
ing the final result. Having computed the 00th-component of
the EMT and its trace in the previous sections, the isotropy
condition enables us to compute the 11th-component of the
EMT simply by means of the relation

〈T δφ
11 〉ren(M)

a2 = 1

3

(
〈T δφ〉ren(M) + 〈T δφ

00 〉ren(M)

a2

)
. (8.2)

Using now our definition (6.2) of VED, we can eliminate
ρ�(M) in favor of ρvac(M) in the above equations, and we
find
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Pvac(M) = −ρvac(M) + 1

3

(
〈T δφ〉ren(M) + 4

〈T δφ
00 〉ren(M)

a2

)
.

(8.3)

This equation clearly shows that the EoS of the quantum
vacuum is not exactly −1, and the departure from this value
can be obtained from the previously computed expressions.
We can provide a rather precise result by including terms up
to 6th adiabatic order20:
Pvac(M) = −ρvac(M) +

(
ξ − 1

6

)

8π2 Ḣ

(
m2 − M2 − m2 ln

m2

M2

)

− 3

8π2

(
ξ − 1

6

)2 (
6Ḣ2 + 3H Ḧ + ...

H
)

ln
m2

M2

+ 1

10080π2m2

(
8H4 Ḣ − 28Ḣ3 + 6H3 Ḧ − 10Ḧ2 − 22Ḣ

...
H

+24H2 Ḣ2 − 7H2 ...
H − 49H Ḣ Ḧ − 6H

....
H − .....

H
)

+
(
ξ − 1

6

)

240π2m2

(
−6H4 Ḣ + 34Ḣ3 − 6H3 Ḧ + 12Ḧ2 + 24Ḣ

...
H

−24H2 Ḣ2 + 7H2 ...
H + 55H Ḣ Ḧ + 6H

....
H + .....

H
)

−
(
ξ − 1

6

)2

16π2m2

(
32Ḣ3 − 12H3 Ḧ + 12Ḧ2 + 24Ḣ

...
H − 48H2 Ḣ2

+5H2 ...
H + 47H Ḣ Ḧ + 6H

....
H + .....

H
)

+
9

(
ξ − 1

6

)3

4π2m2

(
4H4 Ḣ − 5Ḣ3 − 6H3 Ḧ − 11H Ḣ Ḧ − Ḧ2

−Ḣ
...
H − 24H2 Ḣ2 − 2H2 ...

H
)

+ · · · (8.4)

where … represent the 8th-order contributions and above,
which we shall not consider at all. The obtained expression
takes the generic form

Pvac(M) = −ρvac(M) + f2(M, Ḣ)

+ f4(M, H, Ḣ , . . . ,
...
H) + f6(Ḣ , . . . ,

.....
H ) + · · · , (8.5)

in which f2, f4 and f6 involveO(T−2),O(T−4) andO(T−6)

adiabatic contributions. They represent a small correction to
the canonical relation Pvac(M) = −ρvac(M) for the vac-
uum EoS and therefore, strictly speaking, make the quantum
vacuum a quasi-vacuum state. Notice that the adiabatic con-
tributions fi are specific effects on the pressure not present
in the vacuum energy density, which in its own also contains
contributions to all these orders. The specific O(T−6) terms
shown above for the pressure are essential if we want to com-
pute the EoS on-shell since f2 = 0 and f4 = 0 for M = m,

20 The reader may carefully track the calculation and observe that there
is once more an exact cancellation of the quartic mass scales in the sum
of the two terms in parenthesis on the r.h.s. of Eq. (8.3). To check this one
has to use Eqs. (5.12) and (7.10). It follows that the scaling evolution of
the vacuum pressure is also free from quartic mass dependencies. This
is of course reassuring and shows the consistency of our calculation.

as it is obvious from the first two lines of (8.4). Therefore, at
leading order, the on-shell value of the vacuum EoS is

Pvac(m) = −ρvac(m) + f6

= −ρ�(m) − 〈T δφ
00 〉(6)

ren(m)

a2 + f6, (8.6)

where 〈T δφ
00 〉(6)

ren(m) is given by Eq. (5.14). The EoS “param-
eter” therefore reads

wvac(m) = Pvac(m)

ρvac(m)
= −1 + f6(m)

ρvac(m)

= −1 + 1

10080π2m2ρvac(m)

(
8H4 Ḣ − 28Ḣ3

+6H3 Ḧ − 10Ḧ2 − 22Ḣ
...
H

+24H2 Ḣ2 − 7H2
...
H − 49H Ḣ Ḧ − 6H

....
H − .....

H
)

+
(
ξ − 1

6

)
240π2m2ρvac(m)

(
−6H4 Ḣ + 34Ḣ3 − 6H3 Ḧ

+12Ḧ2 + 24Ḣ
...
H − 24H2 Ḣ2 + 7H2

...
H

+55H Ḣ Ḧ + 6H
....
H + .....

H
)

− 3
(
ξ − 1

6

)2

48π2m2ρvac(m)

(
32Ḣ3 − 12H3 Ḧ

+12Ḧ2 + 24Ḣ
...
H − 48H2 Ḣ2 + 5H2

...
H + 47H Ḣ Ḧ

+6H
....
H + .....

H
)

+ 9
(
ξ − 1

6

)3

4π2m2ρvac(m)

(
4H4 Ḣ − 5Ḣ3 − 6H3 Ḧ

−11H Ḣ Ḧ − Ḧ2

−Ḣ
...
H − 24H2 Ḣ2 − 2H2

...
H

)
. (8.7)

Quite obviously wvac(m) = wvac(m, H, Ḣ , Ḧ , , . . .) is actu-
ally a function of H and its derivatives. These terms can be
relevant at the very early stages of the cosmological evo-
lution. However, even during the short inflationary period
deviations from the vacuum EoS wvac = −1 are tiny since
all the terms that can trigger a departure depend on deriva-
tives of H , but H remains essentially constant during infla-
tion. We discuss RVM-inflation in Sect. 9. At this point the
important result that we have just obtained must be empha-
sized in a twofold manner, quantitatively and qualitatively.
First, quantitatively, we have just proven that the EoS of the
quantum vacuum is essentially the expected one, i.e. close
to wvac = −1, and hence this is no longer an assumption
or imposition; second, qualitatively, we have found that the
quantum vacuum is not a static state but is dynamical: it
changes very slowly at present but it could well have been a
powerful driving force in the past. Both of these conclusions
are perfectly reasonable for a primeval vacuum which might
have been highly “creative” in the past but became much
more tempered at present. Even so, the effect at present may
not be entirely negligible, as it will be discussed in the next
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two sections. In particular, in Sect. 8.3 we discuss the late
time EoS of the quantum vacuum.

8.2 Generalized RVM at low energies

The result (8.4), derived in the previous section, reveals
an interesting new feature. Among the various O(T−2),
O(T−4) and O(T−6) terms that we have collected on its
r.h.s. (all of which are contributions to the vacuum pressure
beyond those entering the VED), the O(T−2) one is partic-
ularly worth noticing, namely the term

f2(M, Ḣ) =
(
ξ − 1

6

)
8π2 Ḣ

(
m2 − M2 − m2 ln

m2

M2

)
. (8.8)

This term can have implications on the vacuum dynamics at
low energy since Ḣ is of the same order as H2. To see this, let
us write down the two ordinary Friedmann’s equations for flat
three-dimensional space and in the presence of a dominant
matter component and vacuum energy:

3H2 = 8πG(ρm + ρvac),

2Ḣ + 3H2 = −8πG(pm + Pvac), (8.9)

where ρm and pm are the density and pressure of the domi-
nant matter component (relativistic or non-relativistic). From
these two equations one can derive the differential equation
that is satisfied by the Hubble rate:

Ḣ + 3

2
(1 + ωm) H2 = 4π G (wmρvac − Pvac) , (8.10)

where wm = pm/ρm is the EoS of the dominant matter com-
ponent. For the present universe, we have wm = 0 and the
above equation reduces to

Ḣ + 3

2
H2 = −4π GPvac ≡ 4π Gρeff

vac. (8.11)

Here we have defined an effective vacuum pressure ρeff
vac =

−Pvac as if the EoS of the quantum vacuum would be exactly
−1 . However, as we know, this does not imply ρvac = −Pvac.
We use ρeff

vac only to mimic the situation in the �CDM, but
in reality the quantum vacuum contributes with a term that
produces a departure of the EoS from the usual value. From
Eq. (8.5) we have the dominant contribution (8.8) at the scale
M , which is of second adiabatic order, and can still be size-
able in the current universe. In fact, we have two pieces of
second adiabatic order on the r.h.s. of (8.5), one contained in
ρvac and the other given by f2, which when combined lead to

ρeff
vac(M) = −Pvac(M) = ρvac(M) − f2(Ḣ) + · · ·

≈

(
ξ − 1

6

)
3H2

16π2

(
M2 − m2 + m2 ln

m2

M2

)

+
(

ξ − 1

6

)
Ḣ

8π2

(
M2 − m2 + m2 ln

m2

M2

)
+ · · ·

(8.12)

Here we have used Eq. (6.6) and neglected the higher order
adiabatic terms. The meaning of ≈ is that we have also omit-
ted the first two terms of the mentioned equation, since we
know that when we compare the VED at two scales in the
same manner as we did in (6.16) these terms will exactly
cancel each other and only the indicated terms of (8.12) will
contribute. In fact, when we insert Eq. (8.12) on the r.h.s.
of (8.11) and solve for H , it will all occur as though the
effective vacuum energy density contains not only the ∼ H2

dynamical component but also the new one proportional to
Ḣ . We can repeat a very similar argument to that in Sect. 6.4,
with the two scales M = H and M0 = H0, and we find that
the effective expression for the vacuum energy density in
the present universe can be expressed in a generic form as
follows:

ρeff
vac(H, Ḣ) = ρ0

vac + 3νeff

8πGN
(H2 − H2

0 )

+ 3ν̃eff

8πGN
(Ḣ − Ḣ0). (8.13)

We have normalized this relation such that ρeff
vac(H =

H0, Ḣ = Ḣ0) = ρ0
vac at the present time, where H0 and Ḣ0

stand for the respective current values of H and Ḣ . Notice
also that we have placed two generic coefficients νeff and ν̃eff

for each of the two terms of adiabatic order 2, H2 and Ḣ ,
rather than the specific ones in (8.12) (which would entail just
ν̃eff = (2/3)νeff for a single scalar field and no other matter
field) because in general we expect that these coefficients will
receive contributions from different sorts of fields, fermions
and bosons. These coefficients are naturally small in magni-
tude, viz. of order ∼ m2/m2

Pl � 1, cf. Eq. (6.26), but not
hopelessly small if m is the mass of a GUT particle. In the
limit νeff , ν̃eff → 0 we just recover the �CDM with constant
ρ0

vac = �/(8πGN ), but if they are small though nonvanish-
ing they can impact nontrivially on the phenomenology of
the dark energy. Here we have computed the effect from a
single scalar field only, but in general we have to sum over the
concomitant contributions from other bosons and fermions
[122].

The above formula (8.13) obviously extends the struc-
ture of Eq. (6.25). In this way we have found an alterna-
tive justification for the generalized form of the RVM, which
was already motivated in Ref. [81] from a different perspec-
tive. Basically, one expects an extended form for the vacuum
structure (3.14) such that it comprises more geometric struc-
tures which are not possible in Minkowski spacetime but are
certainly available in curved spacetime. Namely, one may
naturally conceive a generalization of the form

〈
T vac

μν

〉 = −ρ�gμν + 〈
T δφ

μν

〉 + α1Rgμν

+α2Rμν + O(R2). (8.14)
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In the above expression, O(R2) represents possible contri-
butions from geometric tensors of adiabatic order 4, that is
R2, RμνRμν, . . . , and αi are parameters of dimension +2 in
natural units. In a more realistic picture, contributions from
all fields (bosons and fermions) are expected, and general
covariance leads to a generic form as represented by (8.14).
In fact, the prospect for new terms in the effective vacuum
action has been discussed in various ways in the literature
[90–94]. These terms are also expected in the aforementioned
stringy version of the RVM, see [112,113].

Even though the vacuum dynamics from cosmological
observations will receive contributions from all fields at a
time, and in this sense the values of the coefficients νeff and
ν̃eff can only be determined observationally, what matters
here is that the theoretical framework leads to small val-
ues for them, as we have seen. After all the �CDM with a
rigid cosmological constant works relatively well. Even so
we know that the latter is afflicted with persisting tensions
which call for an explanation. The RVM seems to encode the
key theoretical features for such an explanation and appears
phenomenologically preferred as well.21

8.3 EoS of the quantum vacuum in the late universe

Despite of the fact that the complete expression for the equa-
tion of state (EoS) of the quantum vacuum has been computed
in Sect. 8.1, see Eq. (8.4), it is interesting to highlight the spe-
cific form that such an EoS adopts in the late universe, which
is the most accessible part of the cosmic history. We therefore
set M = H at the corresponding epoch (cf. Appendix B.1)
and from Eq. (8.12) we find that the current EoS is

wvac(H) ≡ Pvac(H)

ρvac(H)

� −1 + f2(Ḣ)

ρvac(H)

� −1 +
(

ξ − 1

6

)
Ḣm2

8π2ρvac(H)

(
1 − ln

m2

H2

)

� −1 −
(

ξ − 1

6

)
Ḣm2

8π2ρ0
vac

ln
m2

H2
0

= −1 − νeff m
2
Pl

Ḣ

4πρ0
vac

. (8.15)

In the last equation we have rephrased the result directly in
terms of the approximately constant parameter νeff defined in
Eq. (6.26). This is all the more justified if we remain within
the recent expansion history. More details on the exact form
of νeff(H) are given in Appendix B.1. Furthermore, we used
ln m2

H2 
 1 and also the fact that, in linear order in the small

21 The fitting results with different data sets confirm that the coefficients
νeff and ν̃eff are of order 10−3 at most, see e.g. [65–77]. This suffices
to have a nontrivial impact on the σ8 and H0 tensions [78].

parameter νeff = O (
10−3

)
and for small redshift (which

we can estimate in the range z � 10) we can approximate
the expression of ρvac(H) – cf. Eq. (6.25) – involved in the
denominator of the above EoS formula by the constant value
ρvac(H0) = ρ0

vac (the VED at present; and, finally, we have
set H = H0 in the log since it makes no significant difference
for the cosmic span under consideration. By simple manip-
ulations from equations (8.9) we can reach now a beautiful
and compact expression for the current EoS of the quantum
vacuum, which just depends on νeff and on the current cos-
mological parameters �0

m and �0
vac, and can be written in

terms of the cosmological redshift z:

wvac(z) � −1 + νeff
ρm(a)

ρ0
vac

� −1 + νeff
�0

m

�0
vac

(1 + z)3. (8.16)

In the second equality we have set ρm = ρ0
ma

−3 = ρ0
m(1 +

z)3, just as in the matter conservation law for the�CDM. This
is justified toO(νeff) as we now argue. Recall that in the pres-
ence of running vacuum the matter conservation law can be
affected in some cases. For example, if there is an exchange
between vacuum and cold dark matter (CDM), the matter
conservation law takes corrections of the typeρ0

cdma
−3(1−νeff )

[65–67]. However, even in these cases it does not modify
the leading form of the EoS that we have found, as it only
amounts to add a O(ν2

eff) correction to it. In other situations,
such as e.g. the one that will be studied in Sect. 11 and also
the (so-called type-II) scenario addressed [78], the gravita-
tional coupling also runs with the cosmic expansion but the
running is of the form ∼ νeff ln H . This term would induce
once more a negligible O(ν2

eff) correction to the equation of
state (8.16). As it turns out, therefore, the EoS that ensues
from our QFT approach is pretty universal for the RVM in
its various implementations, at least to order O(νeff) and for
the indicated low redshift range. A more detailed treatment
of the EoS in the general regime will be presented elsewhere.

In summary, Eq. (8.16) reconfirms what we had already
advanced in Sect. 6.4, namely that for νeff > 0 (resp.
νeff < 0) the evolving VED mimics quintessence (resp. phan-
tom DE). This result is a bit provocative and comes as some-
thing of a surprise. The usual picture of the vacuum is that it
is a kind of medium with a strict EoS equal to −1. However,
the QFT analysis of vacuum in curved spacetime shows that
it is not so. The so-called quintessence or phantom fields (and
in fact DE in general) could be nothing else but a manifesta-
tion of the (dynamical) quantum vacuum, and if so there is
no need of ad hoc fields with particular potentials to explain
the DE. Vacuum fluctuations of quantum matter fields could
just make it since upon proper renormalization they lead to
small contributions of order m2H2. The current fits to νeff

suggest that it should be in the ballpark of ∼ 10−3 and posi-
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tive [56–78], and hence the favored dynamical DE mimicked
by the quantum vacuum seems to be that of quintessence. A
related result was already hinted at long ago but on much
more phenomenological grounds [169,170]. Surprisingly, it
also holds in Brans–Dicke theory with a cosmological con-
stant, as this context has recently been shown to mimic the
RVM, see [70,74,171,172]. After we have studied the impact
of the new pressure terms of O(T−2) at low energies, in the
next section we consider the impact of the O(T−6) terms at
high energies.

9 Predicting inflation from running vacuum:
RVM-inflation

Next we move to the opposite end of the cosmic history
and consider the possible implications for the very early uni-
verse. It is interesting to note that once the vacuum energy
density in cosmological spacetime is renormalized through
the adiabatic procedure a definite prediction for a mecha-
nism of early inflation emerges which is characterized by
a short period where H=const. This constant must take, of
course, a large value which we expect to lie around a charac-
teristic GUT scale. It is nevertheless totally unrelated to the
ground state of a scalar field potential and hence does not
require any ad hoc inflaton field. Such an alternative form
of inflation, based on the constancy of H for a short lapse
of time, is called ‘RVM-inflation’. To set off an inflationary
phase with this mechanism we need powers of H higher than
H2, see [28,168,173–175] for a phenomenological descrip-
tion. In the current work, however, we can establish ‘RVM-
inflation’ from first principles. For this we need to go beyond
O(T−2) (i.e. beyond second adiabatic order), but in fact we
must go even further. In our previous work [81], the calcu-
lation reached up to O(T−4) (4th adiabatic order) since this
was sufficient for discussing the renormalization of the EMT.
However, the O(T−4) terms that we found turn out to vanish
for H =const. since they all depend on time derivatives, as
it is manifest in Eq. (6.6). The absence of the power H4 in
the renormalized EMT hinges on the renormalization pre-
scription (5.10), in which the divergences are removed by
subtracting the EMT up to order adiabatic 4 at the scale M .
However, the O(T−6) terms accounted for here take now the
lead, see Eq. (5.14). They originate from finite contributions
unrelated to renormalization. Collecting the relevant terms
from our 6th-order calculation, we find

ρinf
vac(m) = 〈T δφ

00 〉(6)
ren(m)

a2

= ξ̃

80π2m2 H6 + f (Ḣ , Ḧ ,
...
H . . .), (9.1)

which we have labeled with a superindex ‘inf’ because such
an effective VED triggers inflation, as we shall see imme-

diately. In computing the overall coefficient of H6, we have
defined the parameter

ξ̃ =
(

ξ − 1

6

)
− 2

63
− 360

(
ξ − 1

6

)3

. (9.2)

Notice that in (9.1) we have only stood out the contributions
from (5.14) which can be responsible for fast inflation in a
transient H =const. regime. The only relevant terms for such
an inflationary interval are those carrying the power H6 with
some constant coefficient. The remaining terms, collected in
the function f (Ḣ , Ḧ ,

...
H . . .), consist of different combina-

tions of powers of H accompanied in all cases with deriva-
tives of H , and hence all these terms vanish for H =const. In
other words, f = 0 for H =const. in Eq. (9.1). As a result,
up to 6th adiabatic order the only terms which do not van-
ish for constant Hubble rate are the isolated powers H6. The
overall coefficient upon collecting all these terms is given by
(9.2).

For the current discussion on inflation we may admit
the presence of incoherent matter with density and pres-
sure (ρm, pm) beyond our original field φ, which is of
course a most realistic assumption for this consideration. The
primeval, highly energetic, vacuum can then decay into rela-
tivistic particles of all species. In the mentioned phenomeno-
logical approach, it is considered a generalized RVM model
of the form

ρvac(H) = 3

κ2

(
c0 + νH2 + α̃

H2p+2

H2p
I

)
(9.3)

(p=1,2,3,. . .), where α̃ is another dimensionless coefficient.
For α̃ = 0 we recover the low-energy form of the RVM,
i.e. Eq. (6.25), after we impose the boundary condition
ρvac(H = H0) = ρ0

vac to determine the coefficient c0. At
higher energies, however, the presence of higher powers of
H beyond H2 can bring about inflation in the early universe,
and in this case HI defines (up to a coefficient) the scale of
inflation, as we shall see. The effect of the higher powers of H
is negligible for the current universe. For α̃ �= 0 the primeval
vacuum can decay into matter (most likely relativistic) at high
energies (when H ∼ HI very large), thus we can set ρm = ρr
and pm = pr = wrρr (with wm = wr = 1/3 in this case) in
(8.9) and (8.11). Additionally, since f6 = 0 for H =const.
we have ρeff

vac = (4/3)ρvac on the r.h.s. of (8.11) for the infla-
tionary period. Coefficients c0 and ν are not important for
the early universe, and hence we may just concentrate on
the effect of H2p+2 for the study of the RVM-inflationary
mechanism. Once more the presence of only even powers
H2p+2 (p = 1, 2, 3, . . .) is related to the general covariance.
Our QFT calculation has revealed that p = 2 is singled out
as the lowest possible power (∼ H6) available for triggering
inflation in the present framework.
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Let us summarize the main traits of implementing RVM-
inflation from our predicted VED form (9.1) in the very early
universe. First, we observe that we can take Pvac � −ρvac

for an inflationary regime in which H remains approximately
constant since functions f2, f4 and f6 are essentially vanish-
ing in Eq. (8.5) during such an inflationary phase. In these
conditions, taking p = 2 in (9.3) and neglecting the terms
c0 and νH2 in front of the higher power H6, we can actually
solve for H directly from (8.11):

H(a) = H̃I[
1 +

(
a

a∗

)8
]1/4 , (9.4)

where we have traded cosmic time for the scale factor vari-
able, a. Next, using equations (8.9) we can solve for the
explicit form of the radiation and vacuum energy densities22:

ρr (a) = ρI

(
a

a∗

)8

[
1 +

(
a

a∗

)8
] 3

2

, ρvac(a) = ρI[
1 +

(
a

a∗

)8
] 3

2

.

(9.5)

We are expressing the above results in terms of the point
a∗, which defines the transition between vacuum domi-
nance and the radiation era, i.e. the point which satisfies
ρr (a∗) = ρvac(a∗). It can be estimated as a∗ ∼ 10−29 within
a typical GUT defined at the scale at MX ∼ 1016 GeV [168].
Furthermore, we have defined

H̃I = HI

α̃1/4 , ρI = 3

κ2 H̃2
I . (9.6)

Since H(a = 0) = H̃I , it follows that this is the value
of the Hubble rate in the very early universe. Similarly,
ρvac(0) = ρI is the VED at that initial point. We can see
that they are both finite. The model, therefore, presents no
early singularities at all. On comparing (9.1) with the generic
form (9.3) – with p = 2 in our case – and using the above
definitions we can easily identify

H̃I =
(

240π2

ξ̃

)1/4 √
MPl m. (9.7)

Clearly, in order to have inflation near a typical GUT scale we
need very massive particles with masses m in the neighbor-
hood of that scale. In addition, it is imperative, of course, to
have ξ̃ > 0. For a single scalar field nonminimally coupled
to gravity, we find numerically from (9.2) that this occurs
for ξ � 0.1023. Such a range excludes ξ = 1/6, for which

22 See Appendix B of Ref. [168], where the analytic solution is given
for arbitrary ν, α̃ and p, but still with c0 = 0. The analytic solution
for c0 �= 0 is only possible for the late universe, where the high power
H2p+2 (p ≥ 1) is negligible [168].

ξ̃ < 0, but it admits the minimal coupling situation ξ = 0,
and the negative values ξ < 0. In general, we can expect
to have many fields nonminimally coupled to gravity with
different couplings and masses, especially if we consider
the matter content of GUT’s. Therefore, a proper study of
inflation must take into account the fact that we have a much
wider parameter space than with just one scalar field. We have
checked that, in general, RVM-inflation can be made compat-
ible with nonvanishing running of the VED at low energies,
see Eq. (6.25). However, a detailed account of RVM-inflation
in the QFT context requires a dedicated study and will be
presented elsewhere. In particular, we note that the fermionic
contribution might be important as well. Although the gener-
alization of the point-splitting and ARP methods for fermions
have been amply discussed in the literature [152,176–179],
its application to compute the scaling evolution of the VED,
and more specifically within the off-shell ARP procedure
that we have been using for scalar fields, has been consid-
ered only very recently [122]. Overall, theoretical scenar-
ios indeed exist for which RVM-inflation occurs along with
νeff > 0 in Eq. (6.26), thereby being consistent with the sign
picked up by the current phenomenological analyses [65–
67,78].

From Eq. (9.5) we learn that the VED is initially constant
and large, ρvac(a) � ρI for a � a∗, and decreases very fast
beyond that point. On the other hand, the radiation energy is
initially zero, ρr (0) = 0, but increases very fast in the begin-
ning (ρr ∼ a8) owing to the vacuum decay into radiation.
We can appraise this behavior in Fig. 1, where we can see the
transition from the pure vacuum state that brings about the
inflationary phase, in which the VED remains approximately
constant, into an incipient radiation epoch, which soon dom-
inates the evolution of the universe. For a 
 a∗, the frenzied

Fig. 1 Inflationary period. It is shown the evolution of the energy den-
sities (9.5) of vacuum and relativistic matter before and after the tran-
sition point a∗ ∼ 10−29 from inflation to the early radiation epoch (see
the text). The constant vacuum energy density during inflation decays
into radiation and the standard FLRW regime starts
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growing ∼ a8 of the radiation density turns into the dilution
law ρr (a) ∼ a−4 and hence we retrieve the standard behavior
of the radiation until our days. The VED, on the other hand,
remains negligible during the radiation epoch as compared
to ρr and therefore it cannot perturb in any significant way
the BBN processes which will occur much later at a ∼ 10−9.
In the long run, after entering the matter-dominated epoch,
the VED will recover the (much more tranquil) form (6.25),
which is characteristic of the current universe and evolves
just as a constant plus a mild component H2 ∼ a−3 with
a small coefficient. Obviously such form will appear in the
solution only if we keep the terms c0 and ν in solving the
equations, but in this section we focus exclusively on the
very early times when the inflationary regime turns into the
primeval radiation epoch. Needless to say, the above solution
is approximate and is in effect only when the terms carrying
the time derivatives of H are negligible as compared to H6

during the short inflationary stage set off by H � const. This
estimate is nonetheless sufficient to exhibit the main features
of the early phase of RVM-inflation. The terms with time
derivatives of H are suppressed and cannot perturb signif-
icantly the inflationary period characterized by H �const.
nor can have any sizeable influence beyond the very early
universe once the H2 terms take over until the constant term
c0 becomes eventually dominant around our present time.

The inflationary mechanism based on a short lapse of
time in which H � const. (unrelated to the ground state
value of the potential of a scalar field) is the distinctive hall-
mark of RVM-inflation as compared to other related mech-
anisms. For example, in the well-known Starobinsky’s R2-
inflation [180,181] there exists no inflationary phase with
H � const. Instead, there exists a short interval in which it is
the time derivative of the Hubble rate (rather than the Hubble
rate itself) which remains constant, i.e. Ḣ � const. During
such a phase inflation is prompted as well. The approxima-
tions made in both cases are similar since during the Ḣ �
const. regime all higher time derivatives are neglected – cf.
Ref. [28] for a comparative discussion of RVM-inflation ver-
sus Starobinsky inflation.

Despite RVM-inflation had been explored phenomeno-
logically in the mentioned previous works (cf. [28,168,173–
175]), all of them were based on assuming the ad hoc structure
(9.3). Here, in contrast, we have been able to show that such
a structure indeed emerges from QFT in curved spacetime
and that p = 2 is the lowest possible value. In other words,
we have proven from an explicit QFT calculation that RVM-
inflation can be unleashed by the ∼ H6-term in the vacuum
energy density. Thus, the two specific powers H2 and H6

are the ones which are picked out by the quantum effects of
matter fields in the FLRW background. The former power
affects the dynamics of the current universe, whilst the latter
is responsible for inflation in this context. Remember that
only even powers are allowed by general covariance. The

conspicuous absence of the power H4 is not surprising: it
is a built-in consequence of the subtraction procedure in the
adiabatic renormalization of the EMT in four dimensions.
At the end of the day, the RVM description has the ability to
encompass the entire history of the universe from inflation
up to our days from first principles.23 A thorough account
of the RVM mechanism of inflation will be presented in a
devoted study.

10 Heat-kernel approach: renormalization of the
effective action

The effective action describing the quantum matter vacuum
effects of QFT in curved spacetime, W , is defined through its
relation to the VEV of the EMT [44–46]. In our conventions,

〈Tμν〉 = 2√−g

δW

δgμν

⇐⇒ 〈Tμν〉 = − 2√−g

δW

δgμν
. (10.1)

Such an effective action provides the quantum matter vacuum
effects on top of the classical action. These quantum effects
can be computed through a loopwise expansion in powers of
h̄. Thus, if the expansion is truncated at the one loop level it
contains all terms of the complete theory to order h̄. It is well-
known that at leading (one loop) order the value of W for the
free theory is essentially given by the trace of the logarithm
of the inverse of the Green’s function. More specifically:

W = i h̄

2
Tr ln(−G−1

F ) = i h̄

2
Tr ln(−GF )−1

= − i h̄

2
Tr ln(−GF )

= − i h̄

2

∫
d4x

√−g lim
x→x ′ ln

[−GF (x, x ′)
]

≡
∫

d4x
√−g LW , (10.2)

wherein in the second line we have indicated the precise com-
putational meaning of the trace in the spacetime continuum.
The last equality defines the Lagrangian density

√−g LW ,
and for simplicity we will call the piece LW the (effective)
quantum vacuum Lagrangian, as it accounts for the quantum
vacuum effects from the quantized matter fields (in our case
just the scalar field φ). We retain h̄ in the above expression

23 We remind the reader that a related inflationary mechanism, based on
the power H4, is conceivable in the framework of [109–113]. However,
such a proposal is not based on the QFT action considered here but
on gravitational-anomaly aspects which are specific of the bosonic part
of the effective action of string theory. Because the leading power in
this case is H4 rather than H6, such a stringy RVM-inflation is, in
principle, distinguishable from the QFT one addressed here. These two
independent options strengthen the general support for RVM inflation.
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just to emphasize the aforementioned fact that the above for-
mula describes a pure quantum effect at one loop. From now
on, however, we continue with h̄ = 1 (as it has been done
in most of the paper). The above action gives the vacuum
effects, i.e. the effects originating from the matter vacuum-
to-vacuum (‘bubble’) diagrams. These are closed loop dia-
grams without external tails, thereby rendering the zero-point
energy contributions (ZPE). Let us note that, in the case of
the free field theory based on the action (3.5), we have no
self-interactions of φ since there is no effective potential. In
this situation we have one single bubble diagram and the one-
loop effective action is the exact result since in the absence
of matter interactions we cannot have additional vertices to
insert in the bubble diagram to produce higher order loops.

The ZPE is usually discarded in flat spacetime on account
of normal ordering of the operators (in the operator formu-
lation) or by normalizing to one the generating functional
of the Green’s functions at zero value of the source (in the
functional approach to QFT). In the context of gravity, none
of these arbitrary settings is permitted. Although we have
already performed the computation of the ZPE by directly
computing the VEV of the energy–momentum tensor, i.e.
the l.h.s. of Eq. (10.1), here we wish to dwell further on these
considerations in the context of the effective action approach
by computingW and then re-deriving the vacuum EMT using
Eq. (10.1). While the procedure is well-known [44–46,143],
we wish to discuss the changes introduced in it when we
compute the effective action off-shell, as this is convenient
to better understand the connection with the previous sec-
tions, in which we subtracted the EMT off-shell.

In curved spacetime, the Feynman propagator, GF , is the
solution to the following distributional differential equation
[44–46]:(

�x − m2 − ξ R(x)
)
GF (x, x ′)

= − (−g(x))−1/2 δ(n)(x − x ′), (10.3)

where δ(n) is the Dirac δ distribution in n spacetime dimen-
sions. For all practical purposes in our work, n = 4. Notwith-
standing we can keep n general at the moment since DR will
be employed for regularizing the UV divergences in the cal-
culations presented in this section. We now reformulate the
above on-shell equation in an appropriate form as follows:(

�x − M2 − �2 − ξ R(x)
)
GF (x, x ′)

= − (−g(x))−1/2 δ(n)(x − x ′). (10.4)

Here we have introduced a new scale, M , and also the impor-
tant quantity:

�2 ≡ m2 − M2. (10.5)

Although we have already introduced �2 in the context of
the WKB expansion (cf. Sect. 3.3), we now endow it with a

different perspective that may help to better understand its
meaning. The strategy behind Eq. (10.4) is to delve into the
solution to the propagator equation (and hence of the effec-
tive action) for an arbitrary mass scale M . We can recover
the on-shell case M = m by simply setting � = 0. But if
the quantity �2 is to be used to explore the off-shell regime
it must be dealt with as being of adiabatic order higher than
M (which is of order zero). Hence �2 must be conceived as
being of adiabatic order 2, which is the next-to-leading order
compatible with general covariance. Taking into account that
the term ξ R in (10.4) is also of adiabatic order 2, the combi-
nation �2 + ξ R can be treated as a block of adiabatic order
2. This adiabaticity assignment for �2 is consistent with our
former considerations in Sect. 3.3 and can be regarded as
an alternative justification for it. As long as the adiabaticity
order of the terms must be hierarchical respected, the fact
that the mass scale M is of adiabatic order zero whereas
the special quantity �2 is of adiabatic order 2 is precisely
what makes the solution to the Green’s function equation
(10.4) different from the solution to the original (on-shell)
equation (10.3). The adiabatic expansion of the solution to
Eq. (10.4) will generate new (�2-dependent) terms which
are genuinely distinct as compared to the adiabatic expan-
sion of the solution to (10.3). In what follows we work out
such an expansion of the Green’s function for a scalar field
in curved spacetime [44], with the purpose of identifying
the (extra) �-dependent terms characteristic of our off-shell
subtraction procedure. See also the approach of [102,103],
which is however slightly different as we will comment later
on.

10.1 Effective action of QFT in curved spacetime

The solution to (10.4) can be obtained from the adiabatic
expansion of the Green’s function. The method is well-
known [44,45] but is outlined here (with some more techni-
cal details disclosed in Appendix C) since, as advertised, we
wish to pay special attention to the modification introduced
by the presence of the extra terms �2 on top of the usual pro-
cedure. The final result allows us to determine the effective
Lagrangian defined in Eq. (10.2) and express it in the form
of an asymptotic DeWitt–Schwinger expansion [134]. Using
DR as a regularization procedure in this section, we find after
a considerable amount of calculations (see Appendix C for
an expanded exposition) the following result24:

LW = μ4−n

2(4π)n/2

∞∑
j=0

â j (x)
∫ ∞

0
(is) j−1−n/2e−iM2s ids

24 For convenience we use DR in the context of the effective action, but
this is (as we remarked before) just optional. We have explicitly checked
that one can obtain the same results with the subtraction procedure used
to renormalize the EMT in the previous sections. See Appendix A.2 for
some more considerations along these lines.
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= 1

2(4π)n/2

(
M

μ

)n−4 ∞∑
j=0

â j (x)M
4−2 j�

(
j − n

2

)

= 1

2(4π)2+ ε
2

(
M

μ

)ε ∞∑
j=0

â j (x)M
4−2 j�

(
j − 2 − ε

2

)
,

(10.6)

where ε ≡ n − 4 and the limit ε → 0 is understood; � is
Euler’s gamma function and μ is ’t Hooft’s mass unit to keep
the effective Lagrangian with natural dimension+4 of energy
in n spacetime dimensions. The final results will not depend
on it. The sum is over j = 0, 1, 2, . . . and includes the even
adiabatic orders only. The modified DeWitt–Schwinger coef-
ficients resulting from our calculation up to fourth adiabatic
order read

â0(x) = 1 = a0(x),

â1(x) = a1(x) − �2,

â2(x) = a2(x) + �4

2
+ �2R

(
ξ − 1

6

)
(10.7)

and include the zero, second and fourth adiabatic orders,
respectively. The hatless ai (x) are the ordinary DeWitt–
Schwinger coefficients for � = 0 (on-shell expansion),
which the reader can find in the in Appendix C. The effec-
tive Lagrangian (10.6) and corresponding effective action
are UV-divergent quantities since the Euler’s �-function is
divergent for j = 0, 2, 4 in n = 4 spacetime dimensions.

Let us now consider some renormalization issues. Our
starting point was the Einstein–Hilbert action (3.1) together
with the quantum matter action (3.2). The former is associ-
ated to the Lagrangian

LEH = −ρ� + 1

16πG
R = −ρ� + 1

2
M2

PlR, (10.8)

which represents the starting (classical) vacuum action. We
have nevertheless observed in our discussion on the EMT
renormalization in Sect. 5 that, even though we did not start
with higher derivative (HD) terms in the action, such as
R2(x), Rμν(x)Rμν(x), etc., these purely geometric struc-
tures are generated by the quantum fluctuations of the matter
field, which probe the short distances around x . Therefore,
renormalizability of QFT in the FLRW background requires
that the more general classical action comprises also these
HD geometric structures. Let us write the extended classical
gravitational Lagrangian for the vacuum with all the neces-
sary terms in two alternative ways as follows:

Lcl.
G = LEH + LHD = −ρ� + 1

2
M2

PlR + αQ
Qλ

λ

3
+ α2R

2

= −ρ� + 1

2
M2

PlR + α1C
2 + α2R

2 + α3E + α4�R,

(10.9)

in which the notation in Lcl.
G indicates that this is the classical

Lagrangian part of the gravitational field, to which we still
have to add the quantum vacuum effects. Coefficients αi for
i = 1, 3, 4 in the second expression can be easily related with
the coefficient αQ if we take into account that the combined
HD structure Qλ

λ can be phrased in terms of the square of the
Weyl tensor (C2), the Euler density (E) and a total derivative
term as follows (cf. Appendix A.1):

1

3
Qλ

λ = − 1

120
C2 + 1

360
E + 1

6

(
ξ − 1

5

)
�R. (10.10)

These HD terms did not appear when we renormalized the
EMT in Sect. 5 since we used a restricted generalization
of Einstein’s equations, viz. Eq. (5.6), which is sufficiently
general for the FLRW spacetime. The three terms (10.10)
appear in a natural way in the effective action approach since
they are involved as part of the DeWitt–Schwinger coefficient
a2 (cf. Appendix C), so we have just computed them within
the natural flow of the effective action procedure, but none
of these terms actually plays any role for FLRW spacetime
since the latter in conformal to the Minkowski metric and
hence the Weyl tensor vanishes identically. The other two
are also irrelevant at the level of the action since E leads to a
topological invariant in n = 4 dimensions, the Gauss-Bonnet
term G (cf. Appendix A.1), and �R is a total derivative. We
have carried along these HD terms up to this point just for
completeness, but in effect the only HD term which stays in
the FLRW background is R2, as we warned in Sect. 5. We
will nonetheless still keep these terms in the next section so
as to close our discussion on the effective action method in
a more complete way.

Starting from LW and following a procedure similar
to our definition of adiabatically renormalized EMT, see
Eq. (5.10), we define now the renormalized quantum vac-
uum Lagrangian at the scale M . It is obtained by subtracting
the divergent adiabatic orders at this scale from the on-shell
value LW (m):

L ren
W (M) = LW (m) − L(0−4)

W (M)

≡ LW (m) − Ldiv(M), (10.11)

where Ldiv(M) ≡ L(0−4)
W (M) is the divergent part of

Eq. (10.6); by this we mean that Ldiv is that part of LW involv-
ing only the terms j = 0, 1, 2, i.e. up to fourth adiabatic
order. Of course both LW (m) and Ldiv(M) are divergent, but
the former is assumed to involve the full DeWitt–Schwinger
expansion at the scalem, whilst the latter stops the expansion
at j = 2 and is evaluated at a different scale M . This sub-
traction prescription for the quantum vacuum Lagrangian is
the exact analogue of the off-shell ARP that we used for the
EMT and it is sufficient to make L ren

W (M) a finite quantity.
The above renormalized Lagrangian describes the vacuum
effects from the quantum matter (in this case, the scalar field
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φ) and it must be added up to the classical vacuum Lagrangian
so as to form the total vacuum Lagrangian. We do this in the
next section.

Upon expanding Euler’s �-function in the limit ε → 0 (cf.
Appendix A.2) and using the explicit form of the modified
DeWitt–Schwinger coefficients (10.7), we find after a rela-
tively lengthy but straightforward calculation the following
result (cf. the current Appendix C for more details):

L ren
W (M) = δρ�(M) − 1

2
δM2

Pl(M)R

−δαQ(M)
Qλ

λ

3
− δα2(M)R2 + · · · , (10.12)

where the dots stand for subleading contributions which
decouple at large m, and

δρ�(M) = 1

8 (4π)2

(
M4 − 4m2M2 + 3m4 − 2m4 ln

m2

M2

)
,

δM2
Pl(M) =

(
ξ − 1

6

)

(4π)2

(
M2 − m2 + m2 ln

m2

M2

)
,

δαQ(M) = − 1

2(4π)2 ln
m2

M2 ,

δα2(M) =
(
ξ − 1

6

)2

4(4π)2 ln
m2

M2 . (10.13)

As promised, the dependence on μ fully cancelled out along
with the poles at n = 4. We have used DR to verify the can-
cellation of the UV-divergences (similarly to the procedure
used in the Appendix B of Ref. [81]). We emphasize that the
use of DR is auxiliary here, it can be done with other regula-
tors, the final result has no memory of this intermediate step.
The chief difference here is not so much about regularization
but about renormalization.25 The quantities (10.13) are finite
renormalization effects associated to the quantum vacuum
Lagrangian LW .

10.2 Running couplings

We are now ready to modify the classical or background
vacuum Lagrangian (10.9) by including the quantum matter
effects generated in our scalar field model and in this way to
track the shift received by each parameter as a function of the
renormalization point M . This will allow us to derive the run-
ning couplings. The full effective Lagrangian from which we
can extract physical information up to one loop (actually the

25 We emphasize that the subtracted term Ldiv(M) at the scale M
in (10.11) involves not just the UV-divergences but the full expres-
sion obtained from the sum of the first three terms ( j = 0, 1, 2) in
the DeWitt–Schwinger expansion (10.6), including their finite parts (cf.
Eq. (C.31)), hence fully in consonance with the procedure Eq. (5.10)
utilized for the EMT. This renormalization prescription is, of course,
entirely different from MS renormalization.

complete result at the quantum level, in the absence of scalar
self-interactions) is obtained by adding the extended classi-
cal Lagrangian of gravity plus the (renormalized) quantum
effects, i.e. the sum of Eqs. (10.9) and (10.12):

Leff = Lcl.
G (M) + L ren

W (M) = −ρ�(M) + 1

2
M2

Pl(M)R

+α1(M)C2 + α2(M)R2 + α3(M)E

+α4(M)�R + δρ�(M) − 1

2
δM2

Pl(M)R

−δαQ(M)
Qλ

λ

3
− δα2(M)R2 + · · · (10.14)

where the dots represent the subleading finite pieces emerg-
ing from the DeWitt–Schwinger expansion (10.6).26 Notice
that the couplings of the classical part are dependent on the
renormalization scale M since the above expression repre-
sents the full effective renormalized Lagrangian of the theory.
Overall it is independent of M (i.e. RG-invariant), but each
coupling ‘runs’ (scales) with M even though there is a net
internal compensation among all the scaling dependencies.
It is convenient to rearrange (10.14) as follows:

Leff = [−ρ�(M) + δρ�(M)]

+1

2

[
M2

Pl(M) − δM2
Pl(M)

]
R

+
[
α1(M) + 1

120
δαQ(M)

]
C2

+
[
α3(M) − 1

360
δαQ(M)

]
E

+
[
α4(M) − 1

6

(
ξ − 1

5

)
δαQ(M)

]
�R

+ [α2(M) − δα2(M)] R2 + · · · (10.15)

where we have used Eq. (10.10). As previously remarked,
the full effective Lagrangian Leff must be independent of
the renormalization point M . It follows that each one of the
quantities in the square brackets of (10.15) must be indepen-
dent of the scale M , and this allows us to readily compute
the β-functions for each of the couplings:

βρ�(M) = 1

2(4π)2 (M2 − m2)2 (10.16)

βM2
Pl
(M) =

(
ξ − 1

6

)
8π2 (M2 − m2) (10.17)

and

βα1 = − 1

120(4π)2 βα2 = −
(
ξ − 1

6

)2

2(4π)2 (10.18)

26 We have not computed these terms in the effective action formalism
(in contrast to the calculation that we have previously performed within
the direct EMT approach, where we have reached up to the (finite) 6th
adiabatic order. Here we just want to cross-check the core design of
the renormalization procedure within the effective action method and
confirm that we obtain the same results.
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βα3 = 1

360(4π)2 βα4 = ξ − 1
5

6(4π)2 . (10.19)

We have used the explicit expressions (10.13) for the calcu-
lation of the β-functions through

βi = M
∂λi (M)

∂M
(10.20)

for each of the couplings (λi = ρ�,M2
Pl, α1, . . . , α4).27

Let us note that in our approach the decoupling effects
of physical quantities, such as the vacuum energy density
itself, satisfy the Appelquist–Carazzone theorem [139]. This
is apparent in our 6th-order formulas, in the limit of large m,
see e.g. Eq. (5.14). This is not to be expected for the couplings
in general, as they do not have the same level of physical sig-
nificance. For example, we know that ρ�(M), which satisfies
the first renormalization group equation (RGE) above, is a
formal quantity which does not appear in the physical results.
Only the EMT has physical meaning, and in particular the
VED, so there is no need in general for the couplings to sat-
isfy manifest decoupling.

It is straightforward to integrate the corresponding RGE’s
and derive the explicit running of the couplings with the
renormalization point M , assuming that they are defined at
some initial value M0:

ρ�(M) = ρ�(M0) + 1

8(4π)2

×
(
M4 − M4

0 − 4m2(M2 − M2
0 ) + 2m4 ln

M2

M2
0

)
,

M2
Pl(M) = M2

Pl(M0) +
(
ξ − 1

6

)

(4π)2

(
M2 − M2

0 − m2 ln
M2

M2
0

)
,

α1(M) = α1(M0) − 1

240(4π)2 ln
M2

M2
0

,

α2(M) = α2(M0) −
(
ξ − 1

6

)2

4(4π)2 ln
M2

M2
0

,

α3(M) = α3(M0) + 1

720(4π)2 ln
M2

M2
0

,

α4(M) = α4(M0) + ξ − 1
5

12(4π)2 ln
M2

M2
0

. (10.21)

The equation for the running (reduced) Planck mass squared
M2

Pl(M) = 1/ (8πG(M)) given above can also be cast in
terms of the running Newton’s constant:

G(M) = G(M0)

1 +
(
ξ− 1

6

)
2π

G(M0)

(
M2 − M2

0 − m2 ln M2

M2
0

) . (10.22)

27 Related formulas have been considered in [102,103]. Let us, how-
ever, note that they differ from ours in that we consider the scale M as
the primary off-shell quantity from which to parameterize the quantum
effects, rather than the difference �2 (called −μ2 in their case).

The previous equation can be related to the physical running
of the gravitational coupling during the cosmological expan-
sion. In Sect. 11 we further dwell upon the running of the
gravitational coupling in combination with that of the VED,
and will come back to Eq. (10.22).

We can see that the first two RGE solutions and the fourth
one in (10.21) are nothing but equations (6.12), (6.13) and
(6.14), respectively (with α2 = α/2) which we found in the
process of renormalization of the EMT. Overall we have met
at this point a rather nontrivial consistency check between
the renormalization procedure of the EMT from which we
started our calculation in Sect. 5, and the alternative approach
based on the renormalization of the effective action (and cor-
responding effective Lagrangian), which we have undertaken
in this section.28 In other words, it confirms that the renormal-
ized couplings that we have now computed from the effective
Lagrangian method are indeed the same parameters which
appeared in the renormalized EMT following from the orig-
inal prescription (5.10) and performing the corresponding
subtraction δX (M, M0) = X (M)− X (M0) in the renormal-
ized Einstein’s equations (6.9). In a similar way, we can easily
check that the relations (10.13) can be recovered now as a par-
ticular case of the above running solutions for the case M0 =
m upon defining δX (M) ≡ δX (M,m) = X (M) − X (m)

for each of the parameters X = ρ�,M2
Pl, αi . For instance,

using the first relation in (10.21) we find

δρ�(M) = ρ�(M) − ρ�(m)

= 1

8 (4π)2

(
M4 − 4m2M2 + 3m4 − 2m4 ln

m2

M2

)
,

(10.23)

which matches the first one of (10.13). Similarly for the
other parameters. The complete formulas are obtained after
inserting M0 = m in the various relations (C.36) of the
Appendix C.

Let us finally pause at this point to observe that there is a
long way mediating between these two approaches, namely,
the one based on tackling a direct renormalization of the EMT
by means of the adiabatic procedure and the other based on
computing the effective action from the DeWitt–Schwinger
expansion. However different they are, they appear to be fully
consistent. This fact is, of course, very much welcome as
it demonstrates the cogency and congruence of the results
obtained in our calculation. The touchstone of such a consis-
tency can be made even more transparent if we compute the
functional derivative of the action associated to the renor-
malized vacuum effective Lagrangian with respect to the
metric, i.e. if we show how to recover the renormalized EMT

28 Although the RGEs for α1, α3 and α4 were not discussed in Sect. 5,
we have derived them en route in the effective action approach only for
completeness.
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obtained in previous sections using the effective action itself,
Eq. (10.1).

10.3 Full consistency between the EMT and effective
action results

We take up the renormalized quantum vacuum Lagrangian
defined in the previous section, Eq. (10.11). The effective
action associated to such Lagrangian is

Wren(M) ≡
∫

d4x
√−g L ren

W (M) =
∫

d4x
√−g (LW (m)

−Ldiv(M)) . (10.24)

Let us now show that with this action we can recompute the
renormalized vacuum EMT that we have previously found
in Sect. 5.1. In fact, on inserting Eq. (10.12) in it we find

Wren(M) =
∫

d4x
√−g

(
δρ�(M) − 1

2
δM2

Pl(M)R

−δαQ(M)
Qλ

λ

3
− δα2(M)R2

)
. (10.25)

The renormalized vacuum EMT now follows from

〈T δφ
μν 〉ren(M) = − 2√−g

δWren(M)

δgμν
. (10.26)

Using (10.25) on the r.h.s. of (10.26) we may compute the
metric functional variation. In performing the variation of the
HD term 1

3 Q
λ
λ as given in Eq. (10.10), we can use some of

the formulas quoted in Appendix A.1. In particular, we drop
the contribution from the Euler density E (since the metric
functional variation of the Gauss-Bonnet term G is exactly
zero in n = 4 spacetime dimensions) and of course that of
the total derivative term �R. Therefore, using the mentioned
appendix,

1√−g

δ
(
Qλ

λ/3
)

δgμν
= 1√−g

δ

δgμν

(
− 1

120
C2

)

= − 1

60

(
(2)Hμν − 1

3
(1)Hμν

)
. (10.27)

With this proviso, the sought-for metric functional variation
can be easily performed and (10.26) can be written in the
compact form

〈T δφ
μν 〉ren(M) = δM2

Pl(M)Gμν + δρ�(M)gμν

+δα(M)(1)Hμν − 1

30
δαQ(M)

×
(

(2)Hμν − 1

3
(1)Hμν

)
, (10.28)

where we have used the fact that 2δα2 = δα and we recall that
the coefficients of the various tensor expressions on the r.h.s.
of the previous formula are given explicitly by Eq. (10.13).
For conformally flat spacetimes (which comprise, in partic-
ular, all the FLRW backgrounds) the two HD tensors (1)Hμν

and (2)Hμν are related in the form (2)Hμν = 1
3
(1)Hμν – cf.

Eq. (A.14) of Appendix A.1.29 As a consequence, the previ-
ous equation simplifies into

〈T δφ
μν 〉ren(M) = δρ�(M)gμν + δM2

Pl(M)Gμν

+δα(M)(1)Hμν. (10.29)

If we take the 00th-component of this result and use the for-
mulas given in Appendix A.1 we find

〈T δφ
00 〉ren(M) = δρ�(M)g00 + δM2

Pl(M)G00 + δα(M)(1)H00

= a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)

−
(

ξ − 1

6

)
3H2

16π2

(
m2 − M2 − m2 ln

m2

M2

)

+
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
16π2a2 ln

m2

M2 + · · ·
(10.30)

The upshot is that we are led once more to Eq. (5.12), as it
should be. The corresponding result for the VED obtains now
from (10.30) using the relation (6.2). In this way we reach
again the final result (6.6) and hence we have demonstrated
the perfect consistency between the two renormalization pro-
cedures.

We can perform a similar computation to find the scaling
evolution of the EMT between the renormalization point M
and M0. One option is to use Eq. (10.30) to reproduce the
results we have already found in Sect. 6. But we may also
repeat the above procedure ab initio, now using the subtracted
effective action at the two mentioned scales:

Wren(M) − Wren(M0) =
∫

d4x
√−g

(
Lren

W (M) − Lren
W (M0)

)

=
∫

d4x
√−g (Ldiv(M0) − Ldiv(M))

=
∫

d4x
√−g

(
δρ�(m, M, M0) − 1

2
δM2

Pl(m, M.M0)R

−δαQ(M, M0)
Qλ

λ

3
− δα2(M, M0)R2

)
. (10.31)

Here we have used Eq. (C.35) of the Appendix C and we note
that the coefficients of the various tensor expressions on the
r.h.s. of the previous formula are not the same as in (10.25)
but are given explicitly in Eq. (C.36) of that appendix. The
difference of vacuum EMT values at the two scales reads

δ〈T δφ
μν 〉 ≡ 〈T δφ

μν 〉ren(M) − 〈T δφ
μν 〉ren(M0)

= − 2√−g

δ

δgμν
(Wren(M) − Wren(M0)) . (10.32)

29 The notations ‘(1)’ and ‘(2)’ as upper indices on the left for these
HD tensors is standard [44], it has nothing to do with adiabatic orders.
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and upon computing the metric functional variation we find

δ〈T δφ
μν 〉 = δM2

Pl(m, M.M0)Gμν + δρ�(m, M, M0)gμν

+δα(M, M0)
(1)Hμν

− 1

30
δαQ(M, M0)

(
(2)Hμν − 1

3
(1)Hμν

)
.

(10.33)

For conformally flat spacetimes we can repeat the same argu-
ment as given above and the above result boils down to

δ〈T δφ
μν 〉 = δM2

Pl(m, M, M0)Gμν + δρ�(m, M, M0)gμν

+δα(M, M0)
(1)Hμν. (10.34)

The obtained expression is just the subtracted form of
Eq. (6.9) at the two scales M and M0. Thus, if we take the
00th-component of this result and use the formulas given in
Appendix A.1 to perform the identifications on both sides and
the definition of VED we encounter once more the important
Eq. (6.16) which gives the smooth evolution of the VED
between the two scales with the total absence of quartic
mass contributions. This corroborates the perfect consistency
between the two approaches. Having found the very same
renormalization results with the effective action formalism,
all of the discussions made in Sect. 6 can be iterated exactly
as they are there.

10.4 Renormalization group equation for the VED

To compute the RGE for ρvac(M) we have to take into
account that only the adiabatic orders up to O(T−4) carry
M-dependence since the higher orders are finite and hence
need not be subtracted. It follows that the exact β-function
for the VED can be obtained from Eq. (6.6) as follows:

βρvac = M
∂ρvac(M)

∂M
= βρ� + 1

128π2

×
(
−4M4 + 8m2M2 − 4m4

)

−
(

ξ − 1

6

)
3H2

16π2a2

(
−2M2 + 2m2

)

+
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
16π2a4 (−2)

=
(

ξ − 1

6

)
3H2

8π2a2

(
M2 − m2

)

+
(

ξ − 1

6

)2 9
(H′2 − 2H′′H + 3H4

)
8π2a4 . (10.35)

In the first line we have used the β-function for ρ�(M) that
we have just obtained in (10.16). It is seen that βρ� exactly
cancels against the contribution from the second term on the
r.h.s. of the above equation. This cancellation is most wel-
come, as it leaves the β-function of the VED completely free
from quartic mass contributions. It follows that the running of

ρvac(M) rests only on the presence of quadratic mass scales
in the final result. Integrating the above RGE we find

ρvac(M) = ρvac(M0) +
(

ξ − 1

6

)
3H2

16π2a2

×
(
M2 − M2

0 − m2 ln
M2

M2
0

)
+

(
ξ − 1

6

)2 9

16π2a4

×
(
H′2 − 2H′′H + 3H4

)
ln

M2

M2
0

. (10.36)

Thus we have recovered the expected result (6.16), which
gives the evolution of the VED with the scale M , starting from
another scale M0, and such relation involves only quadratic
mass scales which in leading order are highly tempered by
the presence of quadratic powers of the Hubble rate. In other
words, rather than the hard ∼ m4 behavior we obtain the
much softened one ∼ m2H2.

The following observation is now in order. As we warned
in Sect. 6, the renormalization of the EMT and in particular
of the VED involves the renormalization of formal quanti-
ties which do not ever play a role in the physical interpre-
tation of the VED. Such is the case of the quantity (6.12),
which carries the quartic powers of the masses. This quan-
tity cancels exactly in the important expression (6.16), which
physically relates the VED at the two scales M and M0 and
hence no dependence is left of the unwanted terms ∼ m4.
As we know, this is the clue to avoid the need for fine-tuning
in our renormalization procedure. Now we can see that the
primary reason for that stems from the soft behavior of the
VED β-function (10.35).

In contrast, the β-function for the parameter ρ�(M) is
proportional to the quartic power of the particle mass, as
indicated in Eq. (10.16), and for this reason the solution to
the corresponding RGE, as represented by the first equation in
(10.21), is also proportional to those quartic terms. However,
the running of ρ� with M has no physical implication since
these terms exactly cancel out in the VED, as we have just
seen. This situation can be compared to the running of ρ�

with the unphysical mass unit μ in the MS approach to the
VED, as discussed in Sect. 6.3. Yet there is an important
difference: in the MS case one usually interprets that the
renormalized VED is given by Eq. (6.24).30 If so, then, as
a (purported) physical quantity one is enforced to fine tune
ρ�(μ) against the large ∼ m4 contribution (represented by
the second term in that expression). The counterpart of these
formulas in our calculation is just given by a single piece
of our Lagrangian (10.15) (since all the others are geometric
contributions from curved spacetime), to wit: it is just (minus)
the first term, or ρ�(M)−δρ�(M). The last equation indeed
contains, among others, the terms involved in Eq. (6.24). This
can be checked from Eq. (10.23), conveniently rewritten as

30 Recall the footnote on p. 22.
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− δρ�(M) = m4

64π2

(
ln

m2

M2 − 3

2
− M4

2m4 + 2M2

m2

)
,

(10.37)

upon replacing M with μ and neglecting the last two terms
since we consider M2 = H2 � m2. The RG-invariant
expression ρ�(M)−δρ�(M) = ρ�(m) is not at all the VED.
In Minkowski spacetime, we saw that the correctly renormal-
ized VED is zero in our framework (cf. Sect. 6.2). What is
more, on comparing the VED at two different scales the effect
of ρ�(M) always cancels against the quartic terms emerging
from the renormalized ZPE, and the net result is free from
the influence of the quartic masses, cf. Eq. (10.36). Thanks to
this crucial fact the observable running of the VED in curved
spacetime depends only on the quadratic mass scales times
the Hubble rate square, i.e. ∼ m2H2, as shown in that expres-
sion. The presence of H2 makes the running rate much more
temperate: it just follows the evolution of the cosmic flow
itself. In fact, this is nothing but the characteristic running
law of the RVM [24,25].

11 Friedmann’s equations and conservation laws
with running vacuum

Friedmann’s equations in the presence of running vacuum
are a bit more complicated than usual. They have been dealt
with previously in (8.9) assuming the generic RVM form
(9.3), which boils down to (6.25) at low energy. This is suf-
ficient for an effective treatment of the RVM since they offer
the possibility to confront the predictions with the data and
put bounds to the νeff parameter. This has led to a fruitful
phenomenology, cf. [56–78], for instance. The phenomeno-
logical approach is very useful because there may be many
QFT models (even string models [112,113]) whose effec-
tive behaviour leads to a vacuum energy density of the form
(9.3). However, it is also interesting to study the exact form
of Friedmann’s equations of the RVM using directly the field
variables involved in the QFT model under consideration,
which in the present instance is based on a nonminimally
coupled scalar field with action (3.5). As can be expected,
this part is more cumbersome but it reveals some new clues
on the internal consistency of our calculation. Assuming an
FLRW background, the starting point is Einstein’s equations
in renormalized form, see (6.17), which we have to combine
with the explicit formulas that we have derived in the previ-
ous sections for the vacuum energy density and pressure in
our adiabatically renormalization approach. The fact that the
quantum vacuum satisfies a quasi-vacuum equation of state
means that there is a relationship between vacuum density
and pressure which is not the naive one we usually have in
mind, see Sect. 8.1.

11.1 Field equations and matter conservation law

In the context of the model (3.5), we have to distinguish
between the background field density and pressure and their
fluctuating or vacuum components (cf. Sect. 3.2). We denote
by (ρφ, Pφ) the background components. The fluctuating
parts of these quantities have been object of devoted study
in the previous sections and are represented by the quantities
(ρvac, Pvac), which have been computed up to 6th adiabatic
order. The generalized Friedmann’s equation emerging from
the 00th-component of Eq. (6.17) can be written as follows,

H2 = 8π

3
G(M)

[
ρvac(M) + ρφ + ρX (M)

]
, (11.1)

where the running gravitational coupling G(M) is related
to the parameter M2

Pl(M) frequently used in the previous
sections through Eq. (6.10). Needless to say, if this equa-
tion were to apply to the current universe we would need to
add baryons and CDM, but here we just want to illustrate
the interplay between the field φ and the vacuum without
introducing more elements. In fact, the main actor here are
the quantum vacuum effects produced by φ. Its background
part is not the main focus, but we include it for completeness
and self-consistency. In this context, we have got also the
gravitational contribution from the HD tensor (1)Hμν in the
generalized Einstein’s equations, which contributes the term
ρX in the above Friedmann’s equation as follows:

ρX ≡ −α(M)
(1)H00

a2

= 18α(M)(Ḣ2 − 2H Ḧ − 6H2 Ḣ). (11.2)

This effective energy density (acting as an effective fluid
X ) stems from the 00th-component of the mentioned HD
tensor (cf. Appendix A.1). Similarly, the generalized pressure
equation within the Friedmann’s pair can be written as

3H2 + 2Ḣ = −8πG(M)
[
Pvac(M) + Pφ + PX

]
, (11.3)

where

PX ≡ −α(M)
(1)H11

a2 = α(M)
(

108H2 Ḣ + 54Ḣ2

+72H Ḧ + 12
...
H

)
. (11.4)

Combining the two generalized Friedmann’s equations given
above we find

Ḣ = −4πG(M)
[
Pvac(M) + ρvac(M) + Pφ

+ρφ + PX + ρX
]
. (11.5)

The conservation equation for the fluid X reads

ρ̇X + 3H (ρX + PX ) = 18α̇
(
Ḣ2 − 2H Ḧ − 6H2 Ḣ

)

= α̇

α
ρX . (11.6)
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The local conservation law for the background field φb

(which we have just denoted φ here for simplicity) ensues
from the fact that ∇μT φ

μν = 0. Indeed, using the explicit
form of the classical EMT, Eq. (3.6), we find

∇μT φ
μν = (1 − 2ξ) (�φ) (∇νφ) + (1 − 2ξ)

(∇μφ
) (∇μ∇νφ

)

+
(

2ξ − 1

2

)
∇ν

(∇αφ∇αφ
)

−2ξ
(∇μφ

) (∇μ∇νφ
) − 2ξφ∇μ∇μ∇νφ

+2ξ∇ν (φ�φ) + ξ
(∇μGμν

)
φ2 + ξGμν∇μφ2 − 1

2
m2∇νφ

2

= (
� − m2)

φ∇νφ + 2ξφ
(
Gμν∇μφ + ∇ν�φ − �∇νφ

)
= ξ Rφ∇νφ + 2ξφ

(
Gμν∇μφ − Rμν∇μφ

) = 0. (11.7)

In the above derivation we have used the Klein Gordon
equation (3.7) and the Bianchi identity ∇μGμν = 0. At the
same time we have made use of the formula (A.19) in the
Appendix A.1 in order to commute the covariant box operator
� and ∇ν . Equation (11.7) for ν = 0 can be rephrased in
terms of the energy density and pressure:

∇μT φ
μν = gμα

(
∂αTμν − �σ

αμTσν − �σ
ανTμσ

)
= −ρ′

φ − 3H (
ρφ + Pφ

) = 0, (11.8)

which, if rewritten in cosmic time differentiation (using
d/dτ = a(d/dt)), implies that

ρ̇φ + 3H
(
ρφ + Pφ

) = 0, (11.9)

with

ρφ ≡ T φb
00

a2 = 1

2
φ̇2 + 1

2
m2φ2

+3ξ
(

2Hφφ̇ + H2φ2
)

(11.10)

and

Pφ ≡ T φb
11

a2 = 1

2
φ̇2 − 1

2
m2φ2

−ξ
(

2φ̇2 + 4Hφφ̇ + 2φφ̈ + 3H2φ2 + 2Ḣφ2
)

. (11.11)

The ratio wφ = Pφ/ρφ from the last two equations defines
the EoS of the nonminimally coupled (ξ �= 0) scalar field
φ, which is seen to be nontrivial. All in all, we have found
that the background matter field φ does not interact with
the vacuum, and hence its energy density is covariantly self-
conserved during the expansion, cf. (11.9).

It is easy to see that the local conservation law (11.9) is
just another way to write the Klein–Gordon equation for the
background field φ:

φ̈ + 3H φ̇ + (m2 + ξ R)φ = φ̈ + 3H φ̇ + m2φ

+ξ
(

12H2 + 6Ḣ
)

φ = 0. (11.12)

This equation is, of course, the same as Eq. (3.8), but written
in terms of the cosmic time and after having neglected the

term ∇2φ owing to homogeneity and isotropy for the back-
ground field φ – which, as advertised, corresponds to φb(t)
in Eq. (3.13).

11.2 Conservation equation for the quantum vacuum

The vacuum, however, does not obey the same conservation
equation as matter in general. In point of fact, it is not gen-
erally conserved. We find

ρ̇vac + 3H (ρvac + Pvac)

= 3Ṁ

8π2M

[ (
ξ − 1

6

)
H2(M2 − m2)

+3

(
ξ − 1

6

)2 (
Ḣ2 − 2H Ḧ − 6H2 Ḣ

)]
. (11.13)

It is remarkable that this equation can be written very suc-
cinctly in terms of the β-function of the running vacuum
obtained in (10.35):

ρ̇vac + 3H (ρvac + Pvac) = Ṁ

M
βρvac . (11.14)

Here we have taken into account that the scale M in cos-
mology is associated to a dynamical variable (H in our case,
although we do not implement any particular choice at this
point), and hence it evolves with the cosmic time, Ṁ �= 0.
The compact form (11.14) illustrates the fact that the non-
conservation of the VED is due to both the running of ρvac

with M (i.e. the fact that βρvac �= 0) and to the cosmic time
dependence of M . This feature is in contradistinction to ordi-
nary gauge theories of strong and electroweak interactions
[165–167], and allows us to probe the effect of the time-
dependence of M in the running couplings and in particular
in the VED. This is possible and even necessary in cosmol-
ogy since the scale M should be linked with cosmological
variables changing with the cosmic time. When one stud-
ies situations where the ordinary gauge couplings participate
in cosmological problems, it is perfectly possible to find out
that they run both with the (time-independent) ’t Hooft’s mass
unit μ and also with the cosmic (time-dependent) scale M ,
which is associated to H [165–167]. In Appendix B.2 we
use Eq. (11.14) to further investigate the time evolution of
the VED. We show that the result is consistent with Eq. (6.25),
as it should.

The following comments are pertinent at this point. We
remark that Eq. (11.13), or equivalently (11.14), is exact,
that is to say, fulfilled to all adiabatic orders. This must be
so since the scale dependence of the running quantities stops
at order four. The higher order adiabatic terms do not bring
additional M-dependent terms. However, let us not forget
that the time-dependence is carried by all orders through the
powers of H(t) and its derivatives. We have used this fact to
explicitly check that even in the presence of the complicated
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6th order contributions in the structure of ρvac and Pvac – see
Sects. 5.2 and 8.1 – Eq. (11.13) is exactly satisfied and the 6th
order effects in it just cancel out precisely. The calculation has
been performed in the following way. The quantity ρvac(M)

depends on time implicitly through M but also through the
many terms which depend on the Hubble rate and its time
derivatives: H, Ḣ , Ḧ . . .

.....
H . Let’s separate the first term on

the l.h.s. of (11.13) as follows :

ρ̇vac + 3H (ρvac + Pvac) = Ṁ
∂ρvac

∂M
+ ∂ρvac

∂t

∣∣∣∣
M

+3H (ρvac + Pvac) , (11.15)

where Ṁ = dM/dt and |M in the second term on the r.h.s.
is to emphasize that we keep M constant in time when per-
forming such a differentiation. The first term on the r.h.s.,
Ṁ ∂ρvac

∂M , is entirely responsible for the result (11.13). The last
two terms on the r.h.s. of (11.15) can be shown to yield an
identically vanishing result:

∂ρvac

∂t

∣∣∣∣
M

+ 3H (ρvac + Pvac) = 0. (11.16)

We have verified the exactness of this equation. Carrying out
the check explicitly is a bit ponderous as it implies using the
full structure (up to 6th adiabatic order) of the expressions
for the vacuum density and pressure, i.e. Eqs. (5.14) and
(8.4). For this reason we have performed it with the help of
Mathematica [144]. We believe it constitutes a pretty robust
consistency check of our formulas. The net outcome is just
the expression on the RHS of (11.13), which involves effects
up to 4th adiabatic order. All the remaining contributions
from higher order cancel identically.

As emphasized above, the VED is not locally conserved
since the scale M evolves with the cosmic time and the VED
runs with M . The integration of Eq. (11.13) yields, of course,
the characteristic RVM evolution law (6.6). The full local
conservation equation containing all the ingredients is more
complicated. Let us find it. We first extend the generalized
Einstein’s equations (6.9) by including also the background
EMT contribution from the scalar field (i.e. by inserting the
term T φ

μν on its r.h.s.), as in this way we take into account all
of the components exchanging energy in the system:

M2
Pl(M)Gμν + ρ�(M)gμν + α(M)(1)Hμν

= 〈T δφ
μν 〉ren(M) + T φ

μν. (11.17)

We multiply next this equation by 8πG(M) = 1/M2
Pl(M)

and take the covariant divergence on both sides (i.e. we apply
the operator ∇μ on each term). Taking into account that
Gμν is a conserved tensor (i.e. we have the Bianchi iden-
tity ∇μGμν = 0) and that the HD tensor (1)Hμν is also con-
served (∇μ (1)Hμν = 0, see Appendix A.1), we are left with
a reduced expression where ∇μ acts now only on the running
parameters and on the vacuum part of the EMT:

∇μ (G(M)ρ�(M)) gμν + ∇μ (G(M)α(M)) (1)Hμν

= ∇μ
(
G(M)〈T δφ

μν 〉ren(M)
) + ∇μ (G(M)) T φ

μν.

(11.18)

We have used ∇μT φ
μν = 0 as well – cf. Eqs. (11.8)–(11.9).

Performing the remaining derivatives and writing down the
ν = 0 component of the final result, one finds after some
calculations the following expression:

Ġ(M)
(
ρφ + ρvac

) + G(M)ρ̇vac

+3HG(M) (ρvac(M) + Pvac(M))

= (
α(M)Ġ(M) + G(M)α̇(M)

) (1)H00

a2 . (11.19)

With this result it is straightforward to show that the gen-
eralized Friedmann’s equations and local conservation laws
given above lead to the following overall conservation law
involving all of the ingredients entering our quantum matter
system nonminimally coupled to gravity:

d

dt

(
G(M)

(
ρφ + ρvac(M) + ρX

))

+3HG(M)
(
ρφ + ρvac(M) + ρX + Pφ

+Pvac(M) + PX ) = 0. (11.20)

11.3 Running gravitational coupling

If we neglect the effect of the HD term in the current universe,
the r.h.s. of (11.19) can be set to zero and we are left with

Ġ(M)
(
ρφ + ρvac(M)

) + G(M)ρ̇vac(M)

+3HG(M) (ρvac(M) + Pvac(M)) = 0, (11.21)

where we have used the conservation law for the background
component of the scalar field, Eq. (11.9). A further simpli-
fication can be obtained if we assume that the EoS of the
quantum vacuum is exactly Pvac = −ρvac. We shall check
right next what is the effect of the correction we have found
in Sect. 8. In the meantime, if we just take the standard EoS of
vacuum it allows us to dispense with the last term in the above
equation. Because the two terms left involve derivatives with
respect to the cosmic time we can write down (11.21) as a
simple differential form:
(
ρφ + ρvac

)
dG + Gdρvac = 0. (11.22)

This equation can be used together with Friedmann’s equa-
tion (11.1) in the same approximation (i.e. neglecting the
HD terms and hence ignoring the ρX component in it). The
two equations can be easily combined in the nicely separable
form,

3H2

8πG
dG + Gdρvac = 3H2

8πG
dG

+G
3νeff

4π
m2

PlHdH = 0, (11.23)
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in which the sum ρφ + ρvac has been replaced with
3H2/(8πG) thanks to Friedmann equation, and dρvac has
been computed from (6.25) within the approximation of
constant νeff – cf. Eq. (6.26). Notice that G varies with H
and our aim is to find this function in this approximation.
Dividing out the above equation by G and upon identifying
G(H0) = GN = 1/m2

Pl with the current local value mea-
sured in Cavendish-type experiments, we can solve for the
function G(H), with the result

G(H) = GN

1 + νeff ln H2

H2
0

, (11.24)

where νeff here is given by the constant coefficient (6.26).
This equation was previously met in [165–167] within a more
simplified theoretical context and used to study the potential
variation of the fundamental constants of Nature. However,
Eq. (11.24) is only approximate in our context. Remember
that we assumed that νeff is constant in its derivation, but we
know from Appendix B.1 that it is not a strict constant.

It is natural to compare the above formula with Eq. (10.22)
at this point. The latter stems from the existence of running
couplings, which is of course a direct reflex of the RG invari-
ance of the effective action. In it, M can be arbitrary since the
effective action is independent of M . Moreover, our assump-
tion that Pvac = −ρvac, which we also used in the above
derivation, is not a sufficiently good approximation since we
know from Sect. 8 that there is indeed a departure of the quan-
tum vacuum EoS from −1, see Eq. (8.4). Admittedly the last
equation is a bit cumbersome, but if we consider only the
contributions that can be relevant for the current universe,
the departure is given by the term f2(M, Ḣ) on the r.h.s. of
Eq. (8.5). This is the same approximation used in our discus-
sion of the EoS of the quantum vacuum for the current uni-
verse, see Sect. 8.3. Thus, from Eq. (8.8) and setting M = H ,
according to our usual prescription (cf. Appendix B.1 for
details), we find

Pvac(H) + ρvac(H) �
(
ξ − 1

6

)

8π2 Ḣ

(
m2 − H2 − m2 ln

m2

H2

)

�
(
ξ − 1

6

)

8π2 Ḣm2

(
1 − ln

m2

H2

)
, (11.25)

where we have neglected a term of O(Ḣ H2) = O(H4)

but we have kept the terms proportional to m2 Ḣ as they
are not necessarily negligible in the present universe. The
above expression gives the leading deviation of the quantum
vacuum EoS from −1 at low energy, being such a deviation
of the same order of magnitude as the ∼ H2 term involved
in ρvac(H). The above correction to the quantum vacuum
EoS genuinely originates from our calculation of the vac-
uum pressure in Sect. 8. Therefore, it must be considered

on equal footing with the dynamical term of ρvac(H) in the
correct calculation.

By duly taking into account Eq. (11.25) in the calcula-
tion of G(H) and using the exact function νeff(H) given
in the Appendix B.1 rather than just inserting the approxi-
mate constant result (6.26), we find after some calculations
the following expression for the running of the gravitational
coupling (see the details in Appendix B.3):

G(H) = GN

1 −
(
ξ− 1

6

)
2π

m2

m2
Pl

ln H2

H2
0

. (11.26)

This formula is not only more rigorous than Eq. (11.24) in
our context, but in contrast to the latter it is entirely consistent
with the running coupling formula (10.22) when we set M =
H and M0 = H0 in it and use the fact that H2 − H2

0 is
fully negligible versus m2 ln

(
H2/H2

0

)
for all H (in post-

inflationary times). In fact, for H around the current value
H0, this follows from

H2 − H2
0

m2 ln H2

H2
0

= H2
0

m2

(
1 + 1

2
x + O(x2)

)
� 1 (0 ≤ |x | < 1) ,

(11.27)

with x ≡ (H2 − H2
0 )/H2

0 and H2
0 /m2 � 1 for any known

particle. On the other hand, for large values of H we also
have H2/m2 � 1 since m is assumed to be a mass of a
typical GUT particle. Notice that the running of G(H) from
Eq. (11.26) is very mild, not only because it is a logarithmic
running but also because the coefficient of the log is of order
m2/m2

Pl � 1, which holds good even for m in the GUT
range, i.e. m ∼ MX ∼ 1016 GeV, assuming that ξ is not very
big.

We should emphasize that the setting M = H used above
to study the running of G(H) is the same one employed
to infer the running vacuum formula (Appendix B.1). The
fully consistent derivation of (11.26) from two diverse roads;
namely one (more physical) relying on the overall local con-
servation law (11.21), and the other (more formal) based on
the running coupling formula (10.22) – and ultimately on the
RG-invariance of the effective action – is a most remarkable
feature. At the end of the day, the scale setting prescrip-
tion M = H proves to be the clue for exploring the physical
consequences of our renormalization framework. Overall the
obtained results speak up of the full mathematical and phys-
ical consistency of our approach.

Finally, we should note that although our discussion in this
section has focused on the background and vacuum effects
from the single quantum matter field φ, this does not exclude
the possibility that additional contributions from incoherent
dust matter and radiation become involved. In the discus-
sion of Appendix B.3 we show that the presence of ordinary
matter does not alter at all the results presented above, pro-
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vided one assumes that such an ordinary matter is conserved.
Apart from that, there is also the possibility that matter com-
ponents interact with the running vacuum. The safest pos-
sibility would be to assume potential interactions between
CDM and vacuum, as in this way the most sensitive and well
known components of the universe (baryons and photons) are
unaffected. These new types of interaction between DM and
vacuum can certainly be important but are model dependent,
as they rely on introducing new parameters in the theory.

12 Running vacuum: some phenomenological
implications

We have devoted most of this work to put the foundations
of the running vacuum model (RVM) on a sound theoretical
basis within QFT in curved spacetime. In this last section,
which precedes the conclusions, we would like to put forward
some phenomenological considerations in order to illustrate
the possible physical impact of the quantum running vac-
uum in the light of the observational data. Although a more
detailed phenomenological analysis will be presented else-
where [182], here we just highlight a few potentially signifi-
cant implications. We have already mentioned that the RVM
has been tested in the past in a variety of phenomenological
contexts, where the basic parameter νeff has been fitted to
different sets of cosmological data [56–78]. The fact that we
have now been able to account for the structure of the RVM
on QFT grounds, it obviously strengthens its position. To test
the RVM, we are going to use the generalized expression for
the VED which we have predicted in Sect. 8.2. It includes the
two low energy terms H2 and Ḣ , each one with independent
coefficients. More specifically, we consider a generic RVM
structure of the form (8.13). From the QFT perspective, the
two coefficients νeff and ν̃eff depend both on the number
of bosons and fermions in a way which can be computed
theoretically. Although in this work we have presented the
calculation for the scalar contribution only, the yield from
the fermionic part will be reported in a separate study [122].
Let us however note that despite of the fact that the vacuum
running is theoretically computable in QFT, which is perhaps
the most remarkable observation of our work, in practice we
ignore the details of the underlying GUT which ultimately
accounts for such a vacuum dynamics. Therefore, at present
we cannot predict the precise quantitative evolution of the
VED. But this does not preclude us, of course, from testing
the phenomenological performance of the model. While the
general VED form (8.13) was analyzed on pure phenomeno-
logical grounds in [56,57], here we will minimize the num-
ber of parameters and shall consider the convenient situation
ν̃eff = νeff/2, as in this way the VED adopts the form

ρvac(H) = 3

8πGN

(
c0 + νeff H

2 + ν̃eff Ḣ
)

= 3

8πGN

(
c0 + νeff

12
R

)
, (12.1)

with R = 12H2 + 6Ḣ the curvature scalar. This scenario
was analyzed in [78] under different hypotheses, in particu-
lar it was assumed that the vacuum was interacting with cold
dark matter. We restrict the number of assumptions to the
minimum and just adapt to the precise situation that we have
encountered in the QFT analysis presented in this work, in
which matter is locally conserved (as in the standard �CDM)
and the VED and gravitational coupling G possess a mild
cosmic evolution (as studied in the previous section). Inter-
actions between matter and vacuum are not considered. This
scenario is particularly well-behaved in the radiation domi-
nated era since the relativistic matter density is not altered as
compared to the standard model and hence cannot impinge on
the BBN physics [56,57]. This is all the more true if we take
into account that the vacuum energy density (12.1) remains
also subdominant in the radiation epoch since R � 0 in it.

As previously indicated, the RVM under consideration
preserves local matter conservation. However, the VED
evolves together with G such that the Bianchi identity can be
satisfied, just as explained in Sect. 11. On solving explicitly
the model (details will be provided elsewhere) we find the
following evolution for the VED in linear order in the small
parameter νeff :

ρvac(a) =
(

�0
vac

�0
m

− 1

4
νeff

)
ρ0
m

+1

4
νeffρ

0
ma

−3 + O(ν2
eff), (12.2)

where the current cosmological parameters �0
i = (8πGN )

ρ0
i /(3H

2
0 ) satisfy �0

vac + �0
m = 1. For νeff = 0 the VED

is constant and ρvac = 3H2
0

8πGN
�0

vac = ρ0
vac =const. (i.e. we

recover the �CDM behavior, as it should be), but for non-
vanishing νeff the VED has a moderate dynamics since this
parameter is small. In Fig. 2 we plot the various energy densi-
ties for matter, radiation and vacuum using the best-fit values
from Planck TT, TE, EE + low E + lensing data [9–11]. In
addition, in Fig. 3 we display the EoS of the quantum vacuum
at low energy, which is important for the late time universe.
As discussed in Sect. 8.3, the EoS of the vacuum departs from
the classical value wvac = −1 when the quantum effects are
taken into account. In Fig. 3 we plot the approximate formula
(8.16) as well as the exact result (for νeff = 0.005). They
remain close for low redshift only. Because νeff > 0 (as it
follows from different phenomenological studies mentioned
above), the EoS of the quantum vacuum satisfies wvac > −1
even at z = 0. Hence it mimics quintessence without need
of invoking ad hoc scalar fields. This is quite revealing, as it
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Fig. 2 Evolution of the different energy densities with the expansion
in the RVM context. The plot on the right provides a complementary
view in a (vertical) logarithmic scale. The VED exhibits a very mild
dynamics up to the early radiation dominated epoch. Parameters H0
and �0

m are taken from the best-fit values of [9–11], see the text. The

vacuum evolution is very mild and to make it more apparent it is shown
for different values of νeff . The additional (green-dotted) line on the
right plot corresponds to ν = 0.005. Since it could not be appreciated
on the left plot (which uses a linear scale), it has not been marked there

suggests that such an effective quintessence behaviour may
emerge from a fundamental QFT origin.

Finally, in Fig. 4 we illustrate an important phenomeno-
logical implication of the present framework, namely the
possibility that the RVM could help in solving or at least
alleviating the persistent H0 and σ8 tensions mentioned in
the introduction. These tensions are still the main focus of
interest of many cosmologists [48–55]. In that figure we
show the 1σ and 2σ c.l. contours in the (σ8, H0) plane
both for the RVM and the �CDM. The used data sets in
this analysis involve type Ia supernovae, baryonic acous-
tic oscillations, cosmic chronometers, large scale structure
formation data (on f σ8) and the cosmic microwave back-
ground observations from Planck 2018 (i.e. the data string
SnIa+BAO+H(z)+LSS+CMB). We refer the reader to the
previous studies [74,78] for a detailed definition and descrip-
tion of these data and the methodology used in the fitting
analysis. In the light of the results presented in Fig. 4, we can
say that the comparative performances between the RVM and
�CDM clearly show that the RVM may alleviate the two ten-
sions σ8 and H0 at a time, which is remarkable. The value of
H0 tends to be higher in the case of the RVM as compared
to the �CDM and as a result the current 5σ tension [183]
between the measurements of the local value of H0 and from
the early universe (CMB) is rendered at the residual level of
∼ 1.6σ . Similarly, the σ8 value is also reduced and the cor-
responding tension is brought to the inconspicuous level of
∼ 1.3σ . A more detailed and exhaustive presentation includ-
ing additional data sources (e.g. from BICEP2/Keck Array
CMB polarization experiments [184] as well as updated
observations from the data string mentioned above) will be
undertaken in a future phenomenological study. However, we

Fig. 3 Vacuum EoS at low redshifts including the quantum effects
computed in this work. The horitzontal (dotted) line, marks the constant
EoS value −1/3, below which a fluid contributes to the accelerated
expansion. We show both the curve corresponding to the approximate
formula (8.16) and the exact curve computed numerically for νeff =
0.005. Because the fitting analyses generally favour the sign νeff > 0
[78], the EoS deviates slightly from wvac = −1 already at z = 0 and
mimics quintessence

believe that even from the short considerations highlighted
in this section the reader can already get a flavor of the real
potential of the RVM for improving the description of the cos-
mological data, i.e. when the cosmological vacuum becomes
dynamical, and more specifically when it runs according to
the QFT description presented in this paper.
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Fig. 4 Comparative contours at 1σ and 2σ c.l. in the (σ8-H0)-plane
corresponding to the RVM and the �CDM for the data sets mentioned
in the text. It can be seen that the RVM is quite effective in alleviating
the H0 tension and at the same time it reduces the σ8 one

13 Discussion and conclusions

The focus point of this paper has been the vacuum energy
density (VED) in the context of quantum field theory (QFT)
in FLRW spacetime and the possible connection with the
cosmological term in Einstein’s equations. As we know, the
difficulties in reconciling QFT (and string theory) predictions
with cosmological observations in connection to this subject
are at the basis of the so-called Cosmological Constant Prob-
lem (CCP) [13,14]. Time and again this is one of the main
problems of theoretical physics and cosmology that demands
an urgent explanation at a fundamental level. The methods
to deal with QFT in curved spacetime are well-known since
long [44–47], and yet some of the most pressing problems
of modern cosmology still remain unaccounted. The CCP
is certainly a focus issue for any formal theory of the cos-
mic evolution. It is a must to be addressed in this kind of
field theoretical studies since the physical interpretation of
the cosmological term � has traditionally been linked to the
current value of the VED, ρ0

vac, through Lemaître’s formula
ρ0

vac = �/(8πGN ). As we have mentioned in the introduc-
tion, the discrepancy existing between the measured value of
ρ0

vac and the generic prediction made in field theories of the
fundamental interactions (e.g. the standard model of particle
physics) is utterly disproportionate. Such an appalling clash
of theoretical concurring ideas versus direct astrophysical
observations is at the root of the CCP. Furthermore, irrespec-
tive of the fact that there are many sources of vacuum energy
in QFT (which are, in principle, uncorrelated), each one of
them is very large as compared to ρ0

vac ∼ 10−47 GeV4, and
hence the possible compensation among these sources leads
to hopeless fine-tuning among the parameters of the theory.
If that is not enough, the adjustment must be redone order
by order in perturbation theory. Such an unending process
of tuning and retuning makes the CCP even harsher, in fact
unacceptable as a natural solution [24,25]. When tackling big
theoretical hurdles of this sort one may expect to get some
helping hand from the concepts, methods and tools underly-

ing quantum gravity and string theory [14]. The bare truth,
however, is that neither one of them has succeeded in improv-
ing significantly the situation for the time being. Quantum
gravity (QG) does not exist as a consistent theory yet; and
string theory somehow abhors de Sitter space, as ‘swamp-
land’ conjectures preclude the construction of metastable de
Sitter vacua in the string framework [185–187]. While we
remain agnostic about these problems a lot of exciting QG
phenomenology is still possible with the advent of the multi-
messenger era, characterized by a steep increase in the quan-
tity and quality of experimental data that are being obtained
from the detection of the various cosmic messengers (pho-
tons, neutrinos, cosmic rays and gravitational waves) from
numerous origins [188]. At the same time we expect that the
more pedestrian methods of the semiclassical QFT approach
may still shed some light on those pending issues in the cos-
mological arena, in particular on the vacuum energy and its
renormalization. This has been the main aim guiding our task
here.

The pivotal message which we can extract from our inves-
tigation should be made clear: if the VED of the expanding
universe is to be tackled from the fundamental point of view
of QFT in curved spacetime, the vacuum energy should be
a mild dynamical quantity. The reason is that, in the QFT
context, the VED appears initially as a UV-divergent quan-
tity, and hence it is subject to renormalization. Intrinsic to
the process of renormalization is the appearance of a scale M
(which plays the role of renormalization point). Scale depen-
dencies (explicit and implicit) obviously cancel out in the full
effective action of the theory, which is renormalization group
(RG)-invariant, and involves in particular the vacuum action
as well as many other scale-dependent terms, e.g. from the
classical matter Lagrangian (such as masses, couplings and
fields, all of them implicitly scale-dependent). Now except
for the effective action itself, which is a rather formal object,
in cosmology we cannot play with RG-invariant quantities
which are more common in particle physics (such as scatter-
ing cross-sections, decay rates etc. and in general different
kinds of Green’s functions related to observable quantities).
Thus, we must content ourselves with using different parts
of the full effective action that remain scale dependent. The
VED is one of these parts and hence it appears as one of the
scale-dependent quantities upon renormalization. To explore
the cosmic evolution of the VED we find that the setting
M = H is most appropriate and it also leads to a mildly
logarithmic running of the gravitational coupling G.

Even though a full-blown calculation of the VED in QFT
cannot be faced at this point, in this work we have focused
on the simplest, and yet nontrivial, QFT model interacting
with the FLRW spacetime background that we can think of,
namely a scalar field φ nonminimally coupled to gravity. For
the sake of a more simple presentation and, therefore, to avert
‘not seeing the forest for the trees’, we have assumed that φ

123



Eur. Phys. J. C (2022) 82 :551 Page 45 of 64 551

has no self-interactions and hence no spontaneous symme-
try breaking. This assumption allows us not only to avoid
dealing with the renormalization of the corresponding effec-
tive potential but also to concentrate on the computation of
the zero-point energy (ZPE) part, which is a pure quantum
effect and thereby constitutes the most genuine quantum vac-
uum piece within the whole VED structure. With these basic
assumptions, we have undertaken the renormalization of the
corresponding energy–momentum tensor (EMT) using the
adiabatic regularization and renormalization method. A key
point in our approach has been to implement an appropriate
renormalization of the EMT by performing a subtraction of
its on-shell value at an arbitrary renormalization point M . The
presence of this floating scale brings into play the renormal-
ization group flow. Since the renormalized EMT becomes a
function of M , we can compare the renormalized result at dif-
ferent epochs of the cosmic history characterized by different
energy scales, which we have tested with the value of H (the
Hubble rate) at each epoch. This is certainly along the lines
of the original RG approach [24,25] but goes well beyond
it since it provides a more formal and explicit QFT calcu-
lation. The renormalized VED is composed not only of the
ZPE (involving the quantum fluctuations of the scalar field)
but also of ρ�(M), the renormalized value of the parameter
ρ� in the bare vacuum action. We find it remarkable that
when we compute the evolution of the VED from one scale
to another within our renormalization framework, the result
is free from quartic contributions ∼ m4. This is in stark con-
trast with other renormalization schemes in which the ∼ m4

effects are responsible for the outrageously large contribu-
tions to the VED and hence are badly in need of extreme
fine-tuning arrangements. In our opinion, even if being well
aware of the many other difficulties ahead of us, with the
absence of these terms in our framework we might be inch-
ing into an eventual solution of the CCP.

Let us, however, not forget that the CCP is a tough poly-
hedric problem with many faces. One thing is to glimpse at
some light at the end of the fine-tuning ‘tunnel’, and quite
another is to solve all aspects of the cosmological constant
problem. As we have emphasized from the very beginning,
renormalization theory stops at this point. While we can use
input data at present to predict (within the current renor-
malization framework) a well-defined value and a smooth
evolution of the VED at any time in the past (and even in the
future), which is already something, let us not be mistaken:
we cannot predict its value at present. Renormalization the-
ory uses data at one point to make a prediction at another
point, but it does not aim at self-predicting the initial data, of
course. Therefore, the so-called ‘old cosmological constant
problem’ [13] (namely, the problem about explaining the
value itself of the cosmological constant), persists. Notwith-
standing, it may have been freed of the unbearable ‘shakes
and jerks’ impinged on the result by the seeming need of

continuously having to do unnatural fine-tuning among the
parameters of the theory. Instead, in our case we find a mild
time evolution of the VED which is proportional to H2 in the
present universe, and hence it is small and changes smoothly
and slowly with the flow of the cosmic expansion.

The renormalized results obtained in our analysis are
robust. Indeed, in order to strengthen our conclusion, which
we have first presented on the basis of the WKB expansion of
the Fourier modes of the field, we have subsequently corrobo-
rated it from the perspective of the effective action formalism.
It means that we have solved the curved spacetime Feynman
propagator of the nonminimally coupled scalar field to grav-
ity using the adiabatic method and computed the effective
action using the heat-kernel expansion. Since that expansion
has also been performed off-shell (i.e. at the arbitrary scale M
rather than at the physical mass m), it was necessary to com-
pute the corresponding corrections induced on the DeWitt–
Schwinger coefficients. With the help of the effective action
we have rederived the renormalized EMT and obtained the
same result as with the original WKB method. As a bonus we
have extracted the renormalization group equations (RGE’s)
for the couplings and also for the VED itself. For this we
have had to find out the explicit form of β-function for
the VED running, Eq. (10.35). The latter appears to be free
from quartic mass scales, which otherwise would recreate the
usual (unfathomable) fine-tuning problem which we wanted
to eschew. The smoothly behaving RGE for the VED that
we have found was long suspected from semi-qualitative RG
arguments, see [24,25] and references therein, but only here
(and previously in the shorter presentation [81]) this result
has been demonstrated for the first time in the literature in a
full-fledged QFT context. Besides, we provide the RGE for
the gravitational coupling. From the dynamical interplay with
the VED we find that it evolves very mildly as a logarithmic
function of the Hubble rate, G = G(ln H).

The above accomplishments for the low energy behavior
of the VED can be summarized by saying that the renor-
malized VED obtained in our calculation for the accessi-
ble expansion history of the universe adopts essentially the
canonical form of the running vacuum model (RVM), in
which ρvac = ρvac(H) consists of a dominant ‘rigid’ term
(playing the role of cosmological constant) plus a series of
powers of H and its time derivatives. This form was orig-
inally motivated from general renormalization group argu-
ments. Finding this result is most reassuring since it shows
that the long predicted form of the RVM structure for the
VED can be attained from direct calculations of QFT in the
FLRW spacetime. The structure of ρvac(H) is such that all
of the involved terms carry an even number of time deriva-
tives of the scale factor, which is mandatory to preserve the
general covariance of the effective action. The lowest order
terms are just H2 and Ḣ both of second adiabatic order. In
the original RVM formulation, only the H2 was taken into
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account. In the present calculation, we have shown that its
coefficient νeff can be computed in QFT in curved space-
time and is naturally predicted to be small (|νeff | � 1). The
detailed structure of νeff depends on all the quantum matter
fields involved in the calculation. In this sense, its value must
ultimately be determined experimentally by confronting the
model to the cosmological data. The H2 term is nevertheless
sufficient to describe the dynamics of the vacuum in the cur-
rent universe, while the higher order components can play
a role in the early universe, and in particular for describing
inflation.

As indicated, our findings here reconfirm and improve the
results of [81], where the 4th order adiabatic solution was first
presented. Extending the solution into the next (6th) order is
a computationally demanding task, which has allowed us to
determine the on-shell renormalized form of the EMT and
derive the equation of state (EoS) of the quantum vacuum.
To the best of our knowledge these are brand-new results in
the literature. We have found that the EoS is slightly different
from −1 and hence that the quantum vacuum is really a quasi-
vacuum state. As a result, this may have consequences for
the present universe (see below), but at the same time these
effects can have nontrivial implications for the very early
universe. In fact, we predict a new mechanism for inflation
which is triggered by the aforementioned ∼ H6 terms. In
contrast to the O(H4) terms, which vanish for H =const.
(as they all depend on time derivatives), the term ∼ H6 can
perfectly bring about a short but fast period of H =const.
inflation.

We should stress, however, that the RVM inflationary
mechanism is distinct from Starobinsky’s inflation [180,
181], for which it is the time derivative of the Hubble rate
which remains constant for a short stretch of time (viz. Ḣ =
const.) Noteworthy, there exists a stringy version of the RVM
inflationary mechanism which can operate with H4 terms,
i.e. for which these terms appear without time derivatives
and hence do not vanish for H =const. [112,113]. This
is in contrast to the QFT version that we have described
here, being characterized by H6-inflation. This means that
the stringy and non-stringy (QFT) mechanisms of RVM-
inflation can, in principle, be distinguished. In both cases
inflation is unleashed during a short time interval of the early
universe where H =const. and therefore requires that the
effective behavior of the VED carries a higher (even) power
HN (N = 4, 6, . . .) (beyond H2). The existence of a high
power of the Hubbe rate in the VED is the characteristic
trademark of RVM-inflation. In the QFT case, it appears as
a fundamental mechanism of inflation solely induced by the
pure quantum matter effects on a classical gravitational back-
ground.

Even if the RG approach was actually the first qualitative
idea behind the RVM (see [24,25] and references therein),
with the present QFT calculations and those of [81] we have

provided for the first time a solid foundation of the RVM, in
which the dynamical structure of the VED is seen to ensue
from first principles, namely from the quantum effects associ-
ated with the proper renormalization of the EMT. Let us also
clarify that despite we have illustrated our results employ-
ing one single (real) scalar field, further ongoing investiga-
tions show that the generalization of these results for multi-
ple fields, involving bosons as well as fermionic components,
lead also to the generic RVM structure mentioned here (up
to nontrivial computational details [122]).

The unsatisfactory status of the m4 terms in cosmology
is alike to the hierarchy problem linked to the role played
by the m2 terms in ordinary gauge theories [189], although
much worse in magnitude. In the approach we have outlined
in this work we need not call for special cancellations (fine-
tuning) among the m4 contributions, such as e.g. when using
the Pauli sum rules [190] to insure the (fine-tuned) cancella-
tion of quartic, quadratic and logarithmic contributions from
bosons against fermions [149], nor to invoke the existence of
emergent scales or very small dimensionless parameters sup-
pressing the undesired effects, or treating the standard model
of particle physics as a low energy effective theory, see e.g.
[191–197] for a variety of contexts of this sort. Instead, the
problem is dealt with here by suitable renormalization lead-
ing to more physical results.

The upshot and final summary of this investigation is that
from calculations of QFT in FLRW spacetime we find that the
VED takes the form of an expansion in powers of H (and its
time derivatives) of even adiabatic order. This is essential to
preserve the general covariance of the effective action. This
form of ρvac(H) is just as predicted by the RVM. At low
energies, it is particularly simple and consists of an addi-
tive constant together with a small dynamical component
∼ νeff H2, in which the dimensionless parameter νeff is pre-
dicted to be small (|νeff | � 1). The latter is proportional to the
coefficient of the β-function of the running VED, although
they have opposite signs. This is a reflex of the fact that the
two leading effects on the late time dynamics of the VED,
namely one from the scaling evolution with M (before we
fix its value) and the other from the expansion rate H , are
actually opposed. However, the second one is dominant and
this fact implies that the net sign of the slope of the VED
is fixed by the sign of νeff . So for νeff > 0 (resp. νeff < 0)
the evolving VED mimics quintessence (resp. phantom DE).
Such a behavior is also manifest at the level of the equation of
state of the quantum vacuum in the late universe, which we
have also determined explicitly (cf. Sect. 8.3) and is found
to be redshift dependent. This is in contradistinction to the
usual preconceptions on the vacuum state, in which the vac-
uum EoS is assumed to have the rigid value −1 since one
is ignoring the renormalization effects on it. The dynamical
VED, in fact, turns out to have a dynamical EoS too.
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The physical outcome is that even today’s cosmic vac-
uum should be mildly dynamical and the same holds for the
gravitational coupling , although in the latter case is much
milder (∼ ln H ). The corrections are small for the current
universe, but they are not necessarily negligible, especially
for the VED. In practice, the value of νeff can only be deter-
mined upon fitting the RVM to the overall cosmological data.
In previous works, the RVM has been phenomenologically
fitted to a large wealth of cosmological data and the value of
νeff has been found to be positive and of order ∼ 10−3 cf.
[56–67]. This has been reconfirmed in the most recent studies
[78,182]. In the present work, we have also highlighted (cf.
Sect. 12) some of these important phenomenological applica-
tions of the RVM, which may help to improve the description
of the overall cosmological data, and in particular to alleviate
the H0 and σ8 tensions [54].

Being νeff > 0 preferred by the fitting results, the VED
decreases (slowly) with the expansion and hence the RVM
mimics quintessence. From this more fundamental perspec-
tive, the effects that are usually attributed to the hypothetical
existence of quintessence or phantom fields (and other forms
of DE in general) might be nothing else but a manifestation
of the quantum effects of matter fields in curved spacetime. If
so there would be no need of appealing to the existence of ad
hoc scalar fields with particular effective potentials capable of
describing the DE in the current universe. Such a description
is only possible at the (huge) price of arranging severe fine
tuning among the parameters. Instead, the observed DE might
just be a property of the quantum vacuum dynamics, which is
triggered by the quantum matter fields through pure virtual
vacuum-to-vacuum fluctuations, and hence being sensitive
to all mass scales available. In our framework no particular
potential was used and the renormalized vacuum energy den-
sity evolves smoothly without fine tuning. All that said, we
cannot exclude, of course, that quantum gravity effects may
also be involved and help in further shaping the structure and
properties of the quantum vacuum, especially once a consis-
tent theory of quantum gravity will (hopefully) be available
in the future, but these additional vacuum contributions fall
out of the scope of the present study.

Finally, we should mention that despite of the fact that
our QFT calculation focused on the ZPE, we conjecture that
a similar dynamical structure should emerge from the VED
in the general case since the expansion of the full effective
action in powers of momenta in the context of FLRW space-
time should result in an even power series of the Hubble rate
(owing once more to general covariance).
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Appendix A: Conventions and useful formulas

A.1 Geometric quantities

We use natural units, therefore h̄ = c = 1 and GN =
1/m2

Pl, where mPl � 1.22 × 1019 GeV is the Planck
mass. As for the conventions on geometrical quantities used
throughout this work, they read as follows: signature of
the metric gμν , (−,+,+,+); Riemann tensor, Rλ

μνσ =
∂ν �λ

μσ + �
ρ
μσ �λ

ρν − (ν ↔ σ); Ricci tensor, Rμν =
Rλ

μλν ; and Ricci scalar, R = gμνRμν . Overall, these cor-
respond to the (+,+,+) conventions in the classification
by Misner–Thorn–Wheeler [198]. The Einstein field equa-
tions read Gμν + �gμν = 8πG Tμν , where Gμν = Rμν −
1
2 Rgμν is the Einstein tensor. We assume spatially flat three-
dimensional geometry. The nonvanishing Christoffel sym-
bols corresponding to the conformally flat metric ds2 =
a2(τ )ημνdxμdxν , with ημν = diag(−1,+1,+1,+1), are
the following:

�0
00 = H, �0

i j = Hδi j , �i
j0 = Hδij . (A.1)

We denote with primes the derivatives with respect to con-
formal time (τ ) and with dots the derivatives with respect
to cosmic time (t). Thus, H = aH , a′ = aH = a2H and
a′′ = a3(2H2 + Ḣ). We can also derive the following useful
relations to convert the derivatives of the Hubble rate with
respect to conformal time into derivatives with respect to
cosmic time, which are repeatedly used in the calculations
quoted in the main text:

H′ = a2(H2 + Ḣ),

H′′ = a3
(

2H3 + 4H Ḣ + Ḧ
)

,
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H′′′ = a4
(

6H4 + 18H2 Ḣ + 4Ḣ2 + 7H Ḧ + ...
H

)
,

H′′′′ = a5
(

24H5 + 96H3 Ḣ + 52H Ḣ2

+46H2 Ḧ + 15Ḣ Ḧ Ḧ + 11H
...
H + ....

H
)

,

H′′′′′ = a6
(

120H6 + 600H4 Ḣ + 548H2 Ḣ2 + 52Ḣ3

+326H3 Ḧ + 271H Ḣ Ḧ + 15Ḧ2

+101H2
...
H + 26Ḣ

...
H + 16H

....
H + .....

H
)

. (A.2)

For convenience we quote the Ricci scalar and the nonva-
nishing components of the curvature tensors in alternative
forms:

R = 6
a′′

a3 = 6

a2 (H′ + H2)

= 6

(
ȧ2

a2 + ä

a

)
= 6(2H2 + Ḣ) (A.3)

and

R00 = −3H′ = −3a2(H2 + Ḣ),

G00 = 3H2 = 3a2H2. (A.4)

For reference we also quote the well-known definitions of
Euler’s density E and the square of the Weyl tensor (C2):

E = Rαβγ δRαβγ δ − 4Rαβ Rαβ + R2,

C2 = Rαβγ δRαβγ δ − 2Rαβ Rαβ + 1

3
R2. (A.5)

It follows that

Rαβγ δRαβγ δ = 2C2 − E + 1

3
R2,

Rαβ Rαβ = 1

2
(C2 − E) + 1

3
R2. (A.6)

From the density E one defines the Gauss-Bonnet term,

G =
∫

dnx
√−gE, (A.7)

which is a topological invariant in n = 4 (not so in other
dimensions). Such a topological invariance implies that the
metric functional variation of G vanishes identically in four
dimensions:

δG

δgμν
= 0 (n = 4). (A.8)

From the basic HD terms one may construct the higher
derivative (HD) part of the vacuum action, henceforth n = 4:

SHD =
∫

d4x
√−g

(
α1C

2 + α2R
2 + α3E + α4�R

)

≡
∫

d4x
√−gLHD. (A.9)

The purely geometric terms in (A.9) are generated by the
quantum matter contributions, and hence these HD terms
are necessary for the renormalization procedure. The bare

couplings αi become renormalized couplings αi (M) which
run with the renormalization scale M . That HD gravitational
action (with effective Lagrangian LHD) is to be added to the
EH action plus matter, cf. Eq. (3.1), in order to have a well-
defined and renormalizable semiclassical theory of quantum
fields in curved spacetime. The total action of gravity plus
matter therefore reads

Stot = SEH + SHD + Sm. (A.10)

In it, the total vacuum action is the sum of the first two pieces,
whereas the last piece is the matter action. By functionally
differentiating the R2 and Rαβ Rαβ terms with respect to the
metric, we obtain two (conserved) higher order curvature
tensors (of adiabatic order 4), namely

(1)Hμν = 1√−g

δ

δgμν

∫
d4x

√−gR2

= −2∇μ∇νR + 2gμν�R − 1

2
gμνR

2 + 2RRμν (A.11)

and

(2)Hμν = 1√−g

δ

δgμν

∫
dx4√−gRαβ R

αβ

= 2Rα
μRαν − 2gμβ∇α∇νR

αβ

+�Rμν + 1

2
gμν�R − 1

2
gμνR

αβ Rαβ. (A.12)

One can also define Hμν = 1√−g
δ

δgμν

∫
dx4√−gRαβγ δRαβγ δ .

However, because of the topological property (A.8) in n = 4,
one can easily show that the new HD tensor can be writ-
ten in terms of the previously defined ones as follows:
Hμν = 4(2)Hμν − (1)Hμν . Using this property to compute
the functional derivative of the Weyl tensor squared defined
in (A.5) we find

1√−g

δC2

δgμν
= Hμν − 2(2)Hμν

+1

3
(1)Hμν = 2(2)Hμν − 2

3
(1)Hμν. (A.13)

The previous relation implies that for conformally flat space-
times (like FLRW), for which the Weyl tensor vanishes iden-
tically, the basic two HD tensors (2)Hμν and (1)Hμν are not
independent:

(2)Hμν = 1

3
(1)Hμν. (A.14)

We remark that the two HD tensors , (1)Hμν and , (2)Hμν are
conserved tensors, namely they satisfy the local conservation
laws

∇μ (1)Hμν = 0, ∇μ (2)Hμν = 0. (A.15)

These laws are fulfilled identically and independently of each
other, even if the background geometry is non-conformally
flat and the relation (A.14) is not satisfied. This should not
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be surprising for the following reason. Tensors (1)Hμν and
(2)Hμν represent the most general modification of the l.h.s.
of Einstein’s equations in the presence of HD terms. In fact,
the metric variation of the total action (A.10) produces the
generalized Einstein’s equations:

Gμν + b1(M)(1)Hμν + b2(M)(2)Hμν

= 8πG(M)〈T tot
μν 〉ren(M). (A.16)

One would expects that (1)Hμν and (2)Hμν should not perturb
the consistency between the Bianchi identity ∇μGμν = 0
satisfied by the Einstein tensor and the local conservation
law ∇μT tot

μν = 0 (where the EMT T tot
μν involves all forms

of energy, matter and vacuum, whether interacting or not).
One can verify, of course, by explicit calculations from the
above definitions that the two local conservation laws (A.15)
are indeed satisfied. This fact insures that acting with ∇μ on
both sides of (A.16) gives consistently zero. For the explicit
derivation of the relations (A.15), the following standard rela-
tion can be used:(∇ν∇μ − ∇μ∇ν

)
vα = Rσ

αμνvσ , (A.17)

which holds for any covariant vector field vα . In particular,
for vα = ∇αφ we find(∇ν∇μ − ∇μ∇ν

) ∇αφ = Rσ
αμν∇σ φ. (A.18)

It shows that in curved spacetime the successive action of
three ∇μ operators cannot be performed by commuting the
last two being applied, while of course ∇ν∇μφ = ∇μ∇νφ

(because the Christoffel symbols are symmetric). The rela-
tion (A.18) can be used to derive the rule for commuting the
nabla and box operators, which we need as well in the text:

∇μ�φ − �∇μφ = −Rμν∇νφ. (A.19)

Additional formulas which are used in the main text
involving the above HD tensors in the specific context of
the FLRW metric are the following. The 00th and 11th-
components of the (1)Hμν tensor in the conformally flat metric
reads

(1)H00 = −18

a2

(
H′2 − 2H′′H + 3H4

)

= −18a2
(
Ḣ2 − 2H Ḧ − 6H2 Ḣ

)
, (A.20)

(1)H11 = −a2
(

108H2 Ḣ + 54Ḣ2 + 72Ḣ Ḧ + 12
...
H

)
.

(A.21)

We also need

RμνRμν = 12

a4

(
H′2 + H′H2 + H4

)
,

�R = − 6

a4

(
H′′′ − 6H′H2

)
. (A.22)

As warned, these formulas assume vanishing three-dimens-
ional curvature.

A.2 Master integral

Integrals over 3-dimensional momentum appear quite often
in our calculations. For our purposes it will suffice to focus
on integrals of the form

I3(p, Q) ≡
∫

d3k

(2π)3

1

ω
p
k (Q)

= 1

2π2

∫
dkk2 1

ω
p
k (Q)

= 1

2π2

∫
dkk2 1

(k2 + Q2)p/2 , (A.23)

where k ≡ |k|, ωk(Q) = √
k2 + Q2 and Q is an arbitrary

scale. In n − 1 spatial dimensions,

In−1(p, Q) ≡
∫

μ3−(n−1)dn−1k

(2π)(n−1)

1

(k2 + Q2)p/2

= μ3−(n−1)

(4π)(n−1)/2

�
(
p−(n−1)

2

)

�
( p

2

) (
Q2

) (n−1)−p
2

= 1

(4π)3/2

�
(
p−3

2 + ε
)

�
( p

2

) (
Q2

) 3−p
2

(
Q2

4πμ2

)−ε

. (A.24)

Here�(x) is Euler’s � function, which satisfies the functional
relation �(x+1) = x �(x). The scale μ (with natural dimen-
sion one) has been introduced such that the new integration
measure dn−1k → μ2εdn−1k has the same dimension as
d3k, where ε ≡ 3−(n−1)

2 = 4−n
2 . Of course, the limit ε → 0

(i.e. n − 1 → 3) at the end of the calculation is understood.
Such a limit is trivial for p > 3, but not so for p ≤ 3 since in
the last case poles ∼ 1

ε
appear in the result of (A.24), which

can be used to regularize the UV-divergent terms appearing
in many of the integrals appearing in our calculation, see e.g.
Eq. (4.7). The limit ε → 0 also generates finite parts which
must be carefully included. Despite the fact that the adiabatic
subtraction procedure provides overall UV-convergent inte-
grals, as explained in detail in the main text, one can also use
dimensionally regularized integrals to track the poles found
in intermediate results. The following properties of the �

function are useful:

�(ε) = 1

ε
− γE + O(ε),

�(−1 + ε) = −1

ε
− 1 + γE + O(ε), (A.25)

where γE is Euler’s constant. Using the functional definition
of � mentioned above, one can easily extend these formu-
las to parameterize the divergent behavior of � around any
negative integer.

The following observation is in order at this point. It is
important to clarify that, in our renormalization scheme, the
auxiliary ’t Hooft’s mass unit μ used in the above formu-
lae plays no role and cancels out completely at the level of
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the final results. This is so in all the computations presented
in this work. The appearance of μ in intermediate steps is
related to have used (optionally) dimensional regularization
in some parts of our calculation. Use of DR, however, is not
essential at all and it can be totally circumvented. This was
shown e.g. in the calculations given in Appendix B of Ref.
[81], where the regularization of the EMT was performed
using DR after the results had already been obtained using
the subtraction prescription in the main text. Similarly, use
of DR in the effective action approach of Sect. 10 is only for
convenience, we have rederived the same results using the
scale subtraction procedure, i.e. the one we have employed
in Sects. 5 and 6 of the actual study. We do not deem nec-
essary to provide more details here after we have already
illustrated the perfect matching of the final results using the
two alternative methods for the renormalization of the EMT
[81]. Use of one procedure over the other is ultimately a mat-
ter of convenience. We emphasize, however, that we did not
use the MS scheme of renormalization at any point in our
study of the VED, although this is of course independent
of using DR as an intermediate regularization technique, if
desired. In contrast, the subtracting scale M remains always
in our results as it is inherent to our renormalization method,
no matter whether we decide to use DR in intermediate steps
for regularization or just proceed to rearrange the terms of
the integrands of our subtracted integrals to show by explicit
calculation that the result is overall convergent. See e.g. the
current Appendix D for another example.

Appendix B: Running vacuum and gravitational coupling
in the RVM

In this appendix, we provide calculational details on the
formulas for the running vacuum and gravitational cou-
pling introduced in the main text, and their interrela-
tionship. Recall that ρvac(M) is an abridged notation for
ρvac = ρvac(M, H, Ḣ , Ḧ , . . .), i.e. the vacuum energy den-
sity (VED), which is a function not only of the scale M but
also of the Hubble rate and its time derivatives. The value
of H = H(t) defines an expansion history time t . When
compared with our current cosmic time, t0, the difference
t0 − t defines our lookback time to the events occurring
around the expansion history epoch H . It is advisable to make
the original shorthanded notation a bit more explicit for the
kind of discussion in this appendix. Rather than denoting the
renormalized value of the VED at the scale M for a fixed
expansion rate H (and corresponding time derivatives) by
just ρvac(M) , we will use ρvac(M, H). The second argument
denotes generically all the dependency in H, Ḣ , Ḧ , . . . The
values of M and H are independent, of course, but a selected
choice of the renormalization point M near H corresponds
to choose the RG scale around the characteristic energy scale

of FLRW spacetime at a given moment, and hence it should
have more physical significance. This is actually in analogy
with the standard practice in ordinary gauge theories, where
the choice of RG scale is usually made near the typical energy
of the process. For the FLRW universe, the natural choice for
the process of expansion is M = H and we will see it is con-
sistent. In what follows we derive the ‘low energy’ form of
the VED along these lines. Subsequently we will focus on
the running gravitational couplingG(M) and its relation with
the running ρvac(M).

B.1 Running VED

The expression for VED at the scale M for a given expansion
history time H is provided by our renormalization procedure
and it is given by Eq. (6.6). This expression contains the
contributions from all the possible adiabatic orders up to the
limit of the asymptotic expansion. Suppose, however, that
we consider the renormalized VED at a given expansion his-
tory time H for different values of the renormalization scale,
say M and M0. The difference of renormalized VED values
at these scales at a fixed H can be computed in an exact
way, see Eq. (6.16). The exactness of such formula stems
from the fact that the renormalization scale dependence of
the EMT (i.e. the M-dependence) can only be carried by the
terms that are originally divergent (those up to 4th adiabatic
order). The renormalized EMT at the scales M and M0 at
fixed cosmic time (hence at fixed H ) is obtained upon sub-
tracting the corresponding on-shell value at these respective
scales, as explained in Sect. 5. Therefore, the difference of
renormalized VED values at M and M0 is free from all of the
finite contributions from 6th adiabatic order and higher. Only
O (

H2
)

and O (
H4

)
(i.e. second and fourth adiabatic orders,

respectively) remain, as it is manifest in Eq. (6.16). However,
despite of the fact that such result is exact, we wish to focus
on lookback times accessible to observations, hence with val-
ues of H which are moderate enough for the O (

H4
)

terms
to be negligible. The desired difference between ρvac(M, H)

and ρvac(M0, H) within our lookback observational range
therefore reads

ρvac(M, H) − ρvac(M0, H) = ρ�(M) − ρ�(M0)

+ 1

128π2

(
−M4 + M4

0 + 4m2(M2 − M2
0 ) − 2m4 ln

M2

M2
0

)

+
(

ξ − 1

6

)
3H2

16π2a2

(
M2 − M2

0 − m2 ln
M2

M2
0

)
+ · · ·

=
(

ξ − 1

6

)
3H2

16π2

(
M2 − M2

0 − m2 ln
M2

M2
0

)
+ · · · (B.1)

where the dots denote the kind of neglected contributions
mentioned above. As we know, the first two terms in the
above formula cancel against each other thanks to the relation
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(6.12). The obtained result is given, of course, by theO (
H2

)
part of Eq. (6.16).

Similarly, from Eq. (6.6) we may also find the difference
between the values of the VED corresponding to two acces-
sible lookback times for a given renormalization point M :

ρvac(M, H) − ρvac(M, H0) = 3

(
ξ − 1

6

)
16π2 (H2 − H2

0 )

×
(
M2 − m2 + m2 ln

m2

M2

)
+ · · · (B.2)

In this expression we have disregarded not only the O (
H4

)
terms but also the higher order ones (which are indeed present
here, in contrast to Eq. (B.1)), as they entail no significant
contribution at present. They can be important only for the
early universe, e.g. during the inflationary regime, see Sect. 9.

We may as well compute the scaling evolution of the VED
when we change both the cosmic times and the renormaliza-
tion points. Keeping our focus on cosmic epochs H and H0

accessible to our observations, the result immediately fol-
lows from Eq. (6.6) upon neglecting the O (

H4
)

terms and
higher:

ρvac(M, H) − ρvac(M0, H0)

= 3
(
ξ − 1

6

)
16π2

[
H2

(
M2 − m2 + m2 ln

m2

M2

)

−H2
0

(
M2

0 − m2 + m2 ln
m2

M2
0

)]
+ · · · , (B.3)

where again the first two terms on the r.h.s. of Eq. (B.1) are
involved here, but cancel each other for the aforementioned
reasons. Finally, let us consider what should be the physical
(measurable) difference between the VED values at differ-
ent epochs of the cosmic evolution within our observational
range. According to our prescription, choosing the renormal-
ization point M near H (and hence bringing the RG scale near
the characteristic energy scale of the FLRW spacetime at the
given epoch) ought to be the most suited physical choice in
consonance with the usual practice based on selecting the RG
scale choice near the typical energy of the process in particle
physics. As indicated, in our case the ‘process’ is nothing but
the cosmic expansion of the universe at a given epoch. Thus,
to compute the scaling evolution of the VED in the span medi-
ating in between the two cosmic epochs H and H0, follows
directly from Eq. (B.3) upon picking out the renormalization
points M and M0 at precisely the values of the Hubble rate in
those epochs, respectively: M = H and M0 = H0. Defining
for convenience ρvac(H) ≡ ρvac(M = H, H) and simi-
larly ρvac(H0) ≡ ρvac(H0, H0), and neglecting as always the
higher order terms O (

H4
)

, we find

ρvac(H) − ρvac(H0) = 3
(
ξ − 1

6

)
16π2[

H2
(
H2 − m2 + m2 ln

m2

H2

)
− H2

0

(
H2

0 − m2

+m2 ln
m2

H2
0

)]
+ · · ·

� 3
(
ξ − 1

6

)
m2

16π2

[
−

(
H2 − H2

0

)

+H2 ln
m2

H2 − H2
0 ln

m2

H2
0

]

= 3
(
ξ − 1

6

)
m2

16π2

[
− 1 + ln

m2

H2

− H2
0

H2 − H2
0

ln
H2

H2
0

] (
H2 − H2

0

)
. (B.4)

The previous formula shows that there is in effect a ‘running’
or change of the VED from H0 to H . Notice that if m is an
ordinary particle mass (e.g. within the standard model of
particle physics) the running would be very small. Suppose,
however, that m is a particle mass near some GUT scale, then
it is natural to measure its value in units of the Planck mass
mPl and factor out the ratio m/mPl. We do this in defining
the effective running parameter

νeff(H) ≡ 1

2π

(
ξ − 1

6

)
m2

m2
Pl

×
(

−1 + ln
m2

H2 − H2
0

H2 − H2
0

ln
H2

H2
0

)
. (B.5)

The running VED formula (B.4) can now be written in a
rather compact form as follows:

ρvac(H) � ρ0
vac + 3νeff(H)

8π
(H2 − H2

0 )m2
Pl

= ρ0
vac + 3νeff (H)

8πGN
(H2 − H2

0 ), (B.6)

where ρvac(H0) is identified with today’s VED value, ρ0
vac,

and GN is assumed to be the currently measured value of the
gravitational constant. As a matter of fact, νeff(H) in (B.5) is
not a parameter, of course, since it is a function of H . How-
ever, it varies very slowly with the Hubble rate. The last term
of (B.5) is logarithmic and becomes quickly suppressed for
increasingly large values of H above H0, whereas the sec-
ond term furnishes (on account of ln m2

H2 
 1) the dominant
contribution to the effective running parameter:

νeff(H) � 1

2π

(
ξ − 1

6

)
m2

m2
Pl

ln
m2

H2 . (B.7)
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In the approximation H = H0 (valid to within a few percent
in the accessible part of the expansion history for large m),
it just renders Eq. (6.26) in the main text, and Eq. (B.6) is
nothing but the canonical form of the VED for the running
vacuum model (RVM), as given in the main text in Eq. (6.25).
In it, the running parameter is treated essentially as a con-
stant. In actual fact, for a large stretch of the recent universe
we can just set H = H0 in Eq. (B.7) since it differs less than
7% through the entire period from now up to the decoupling
time. Even if ξ is not known, the ratio m2/m2

Pl � 1 in the
prefactor of (B.5) is very small, so we can expect that νeff is
essentially a tiny quantity with a very mild variation with H .
From the foregoing, it follows that it can be treated to a good
approximation as a small parameter within the observable
universe. Notice, however, that for m large, say of order of
a GUT scale MX ∼ 1016 GeV, we have m2/m2

Pl ∼ 10−6,
which is not hopelessly small. Since ξ is, in principle, arbi-
trary and we have in general a large multiplicity of heavy
scalar particles in a typical GUT, the effective value of νeff

can not be excluded to be in the small but sizeable range
10−4−10−3 [85]. This theoretical expectation is actually cor-
roborated by the phenomenological analysis. The RVM has
been fitted to the data and the obtained results for νeff lie in
expected ballpark of ∼ 10−3, see e.g. [65–67,78].

B.2 Time versus scaling evolution of the VED

To further illustrate the meaning and consistency of the above
formulas for the running VED, it is interesting to compare
the scaling versus time evolution laws of the VED at the
differential level. The former is, of course, determined by
the β-function (10.35) of the VED, whereas the latter can
be computed as follows. For two given expansion epochs
H and H0, the time evolution is determined by Eq. (B.4),
or equivalently by (B.5) and (B.6). However, we would like
this result for an infinitesimal change of H around H =
H0, which means to compute the derivative of ρvac(H) with
respect to H at H = H0, or, for convenience, the logarithmic
derivative dρvac(H)/d ln H = Hdρvac(H)/dH . The result
follows from Eq. (B.4). We find

H0
dρvac(H0)

dH
=

(
ξ − 1

6

)
3H2

0 m
2

8π2

(
−2 + ln

m2

H2
0

)
. (B.8)

This equation can be written in an approximate way as fol-
lows:

H0
dρvac(H0)

dH
�

(
ξ − 1

6

)
3H2

0 m
2

8π2 ln
m2

H2
0

= 3νeff

4π
m2

PlH
2
0 . (B.9)

where in the last step we used ln m2

H2 
 1 and took the
approximate expression (6.26) for the coefficient νeff . It is

also instructive to obtain the same result using the chain rule
to compute the total derivative with respect to M and set
M = H0 at the end of the calculation, as in this way the role
of the β-function for the VED, βρvac , becomes manifest:

M
dρvac(M, H)

dM
= M

(
∂ρvac

∂M
+ ∂ρvac

∂H

∂H

∂M

)

= βρvac + M
∂ρvac

∂H

∂H

∂M
, (B.10)

or, more explicitly, for H = H0:

M
dρvac(M, H0)

dM
=

(
ξ − 1

6

)
3H2

0

8π2

(
M2 − m2

)

+M

(
ξ − 1

6

)
3H0

8π2

(
M2 − m2 + m2 ln

m2

M2

)
∂H0

∂M
,

(B.11)

where both for the VED expression (6.6) and for its β-
function (10.35) we used the relevant O(H2) terms only,
and of course we borrowed the β-function for the renormal-
ized coupling ρ�(M), as given in Eq. (10.16). Setting at this
point M = H0 and dropping the terms higher than O(H2)

we strike once more Eq. (B.8). From the latter we can see
that the sign of the total variation of the VED is given by the
sign of ξ − 1

6 and hence also by the sign of νeff , see (B.9).
This is in full accordance with the result (6.25). In particular,
we can see from the last derivation that the total evolution
of the VED is dominated by the variation of ρvac with H
rather than with the scale M (before setting M = H ). When
we set M = H at the end, the dominant term is that one
carrying ∂ρvac/∂H in (B.10), whose sign is the same as that
of νeff . It is therefore the total, rather than just the partial,
derivative with respect to M what matters for the study of
the physical evolution of the VED. This is a consequence of
the time dependence of M in cosmology, in contrast to the
situation in ordinary gauge theories. Writing the leading term
of Eq. (10.35) at low energies as

βρvac = 3 bvac

4π
H2

0 m
2 bvac ≡ − 1

2π

(
ξ − 1

6

)
, (B.12)

we find from (B.7) the approximate formula relating νeff with
the coefficient bvac of the β-function for the running VED:

νeff = −bvac
m2

m2
Pl

ln
m2

H2
0

. (B.13)

The sign between νeff and bvac reflects the mentioned antag-
onism between the variations of the VED with H and with
M before the latter is set equal to the former. Recall that H0

here may be the current value of the Hubble rate, but for that
matter it can represent any point of the expansion history at
low energies. As noted in the previous section, νeff remains
essentially constant since the change of ln m2

H2 is bound within
a few percent from now until recombination.
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Finally, it is also instructive to derive once more the above
result using a third alternative procedure, as in this way we
may crosscheck our formulas from different perspectives. In
particular, let us remember that Eq. (11.13) provides direct
and precious information about the time evolution of the VED
and it involves the influence from the vacuum pressure, which
as we know is not exactly equal to minus the vacuum density
in this QFT framework (i.e. the EoS of the quantum vacuum
is not exactly equal to −1, see Sect. 8). We want to show
that we can test the consistency of this feature as well. Upon
inserting (11.25) into the term ρvac + Pvac of Eq. (11.14) we
find

ρ̇vac = Ṁ

M
βρvac − 3H(ρvac + Pvac)

= Ṁ

M
βρvac − 3H

ξ − 1
6

8π2 Ḣm2
(

1 − ln
m2

H2

)
+ · · ·

(B.14)

where the dots just denote that we are not considering
terms higher than O(H2), which is our usual assumption for
the present considerations. Using once more the β-function
(10.35) of the VED to the same consistent order and setting
M = H0, we find

ρ̇vac(t0) =
(

ξ − 1

6

)
3m2

8π2 H0 Ḣ0

(
−2 + ln

m2

H2
0

)
. (B.15)

This equation gives the rate of change of the VED at t = t0
(corresponding to H = H0), which may refer to the present
time or for that matter any other cosmic time. For νeff > 0
(respectively for νeff < 0) and taking into account that
Ḣ < 0 at all (post-inflationary) times, together with the
fact that ln m2

H2 
 1, it is not difficult to see that the VED
increases (resp. decreases) towards the past and decreases
(resp. increases) towards the future. We can actually show
that the above equation coincides with Eq. (B.8). Indeed,
bearing in mind that ρ̇vac(t) = Ḣ dρvac

dH we find

H
dρvac

dH
= H

Ḣ
ρ̇vac(t) =

(
ξ − 1

6

)
3H2m2

8π2

×
(

−2 + ln
m2

H2
0

)
, (B.16)

which for t = t0 exactly matches Eq. (B.8) (q.e.d.) Thus the
three approaches do converge to the same result, which can
be summarized as follows: for νeff > 0 the VED is larger
in the past and behaves effectively as quintessence, whereas
for νeff < 0 the VED is smaller in the past (equivalently, it
increases towards the future) and hence it behaves effectively
as phantom DE. This is exactly the same message encoded
in Eq. (6.25). The fact that the quantum vacuum can mimic
both quintessence and phantom DE shows that it may not
be necessary to introduce ad hoc scalar fields in the classical

action to generate dynamical DE, since the latter could just be
caused by the fact that the quantum vacuum is in permanent
cosmic evolution!

B.3 Running G

Here we elaborate further on the derivation of Eq. (11.26) in
the main text. We take up the discussion from Eq. (11.21),
in which we have disregarded the HD contributions present
in Eq. (11.19), as they are negligible for the present uni-
verse (and for that matter, also at all times after inflation).
We can admit the concurrence of relativistic and nonrela-
tivistic ordinary matter components (ρm, pm) apart from the
background scalar field (ρφ, pφ). If the former are locally
conserved (ρ̇m + 3H(ρm + pm) = 0) it is not difficult to see
that the structure of (11.21) remains unaltered:

Ġ(M)
(
ρm + ρφ + ρvac(H)

) + G(H)ρ̇vac(H)

+3HG(H) (ρvac(H) + Pvac(H)) = 0, (B.17)

where we have set M = H , according to the prescription
discussed in the previous section. Using the Friedmann equa-
tion we can get rid of the total energy density in the above
expression no matter the number of components involved in
it: ρm + ρφ + ρvac = 3H2/(8πG). In addition, we insert
the expression ρvac(H) from (6.25) in the above equation,
and also ρvac(H) + Pvac(H) from (11.25). As always we
neglect of course the higher order terms O (

H4
)

generated
in intermediate calculations, which are irrelevant after the
inflationary epoch. All in all, Eq. (B.17) can be rewritten

3H2Ġ

8πG
+ 3G

d

dt

[
ρ0

vac + 1

κ2 νeff(H)(H2 − H2
0 )

]

+3HG

(
ξ − 1

6

)
8π2 Ḣm2

(
1 − ln

m2

H2

)

= 3H2Ġ

8πG
+ 3

G

κ2

(
ν̇eff(H)(H2 − H2

0 ) + 2H Ḣνeff(H)

+H

(
ξ − 1

6

)
π

Ḣ
m2

m2
Pl

(
1 − ln

m2

H2

))
= 0, (B.18)

where we recall that κ2 = 8πGN is constant, whereas
G = G(H(t)) is the function that we wish to determine by
solving the above differential equation. Notice that to com-
pute ν̇eff(H) = d

dt νeff(H) we use the exact expression (B.5)
rather than just a constant approximation. At this point it is
important to keep all terms since, in general, expressions that
are neglected are not necessarily negligible after being differ-
entiated. We find that there is a partial cancellation between
the last two terms of (B.18) in the second line, which can be
pinpointed if we use the explicit form of (B.5). The intermedi-
ate result at this point, prior to calculating the time derivative
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of the last term of (B.5), reads as follows:

3H2Ġ

8πG
+ 3

G

κ2

⎡
⎣

(
ξ − 1

6

)
2π

m2

m2
Pl

(H2 − H2
0 )

×
⎛
⎝−2

Ḣ

H
− H2

0
d

dt

⎛
⎝ ln H2

H2
0

H2 − H2
0

⎞
⎠

⎞
⎠

−H Ḣ
(
ξ − 1

6

)
π

m2

m2
Pl

H2
0

ln H2

H2
0

H2 − H2
0

⎤
⎦ = 0. (B.19)

Computing the pending derivative it is possible to produce
further simplifications among the various terms until reach-
ing the following beautifully simple and compact expression:

dG

G2 =
(
ξ − 1

6

)
π

m2 dH

H
, (B.20)

in which we have replaced the time derivatives Ġ = dG/dt
and Ḣ = dH/dt by just the differentials dG and dH since dt
cancels on both sides. Finally, integrating by simple quadra-
ture Eq. (B.20) from the present time (H0,G(H0) = GN )

up to an arbitrary moment around the present (H,G(H)) we
meet after some elementary algebra the final result

G(H) = GN

1 −
(
ξ− 1

6

)
2π

m2

m2
Pl

ln H2

H2
0

= GN

1 + bvac
m2

m2
Pl

ln H2

H2
0

,

(B.21)

in which GN defines the local gravity value usually associ-
ated to the inverse Planck mass squared: G(H0) = GN =
1/m2

Pl (in natural units). In this way we have proven (11.26)
(q.e.d.) The obtained formula is our QFT prediction for the
physical running of the gravitational coupling with the cos-
mic expansion. The presence of the coefficient bvac in it – cf.
Eq. (B.12) – denotes its connection with the scaling evolu-
tion of the VED. See Sect. 11.3 for more discussions on Eq.
(B.21).

Appendix C: DeWitt–Schwinger expansion in the off-
shell formulation

To solve the Green’s function equation in curved spacetime
as given in Sect. 10, namely(

�x − M2 − �2 − ξ R(x)
)
GF (x, x ′)

= − (−g(x))−1/2 δ(n)(x − x ′), (C.1)

is not such a simple task as to find the corresponding solu-
tion in the flat spacetime case. Here we summarize the well-
known procedure [44–46,143] putting special emphasis on
highlighting the differences introduced by the parameter

�2 ≡ m2 − M2, Eq. (10.5), which is crucial in our off-shell
approach, see also [101] for a related formulation.

C.1 Computing the effective action from the heat-kernel

A traditional method to circumvent the difficulty of dealing
with a curved spacetime manifold has been to expand the
metric around Minkowski space. A suitable implementation
of this idea is to make a local expansion of the metric in Rie-
mann normal coordinates, up to four derivatives of the metric
(hence up to fourth adiabatic order). In these coordinates, the
metric admits the following expansion up to 4th order [143]:

gμν(y) = ημν − 1

3
Rμανβ y

α yβ − 1

6
Rμανβ;γ yα yβ yγ

+
[
− 1

20
Rμανβ;γ δ + 2

45
RαμβλR

λ
γ νδ

]
yα yβ yγ yδ + · · ·

(C.2)

Here y stands for the difference between the spacetime coor-
dinate x and the source point x ′ taken as a reference point
in normal coordinates, i.e. y = x − x ′. The different cur-
vature tensors and its derivatives (for instance Rμανβ ) that
appear in the expansion above are assumed to be computed
at the source point x ′ (i.e. at y = 0). The same is true for the
expansion of the determinant and the inverse of the metric.
For simplicity it is easier to define

GF (x, x ′) = (−g(x))1/4 GF (x, x ′). (C.3)

We can operate using the standard definition of curved space-
time box operator:

�xGF (x, x ′) = �x

(
(−g(x))−1/4GF (x, x ′)

)

= 1

(−g(x))1/2 ∂μ

(
(−g(x))1/2∂μ

(
(−g(x))−1/4GF (x, x ′)

))

= (−g(x))1/4
[

3

16
GF (x, x ′) ∂μ(−g(x))∂μ(−g(x))

(−g(x))2

−∂μ

(GF (x, x ′)
)
∂μ(−g(x))

4(−g(x))
− GF (x, x ′)∂μ∂μ(−g(x))

4(−g(x))

+ ∂μ
(GF (x, x ′)

)
∂μ(−g(x))

4(−g(x))
+ ∂μ∂μ

(GF (x, x ′)
)]

. (C.4)

In order to continue, we need to know the expansion of the
determinant of the metric as well its inverse. For convenience,
we define

gμν(y) = ημν + hμν, (C.5)

where the deviation hμν from flat spacetime is written in
powers of the normal coordinate y according to (C.2). We
denote it as follows:

hμν = h(1)
μν + h(2)

μν + h(3)
μν + h(4)

μν + · · ·
= h(2)

μν + h(3)
μν + h(4)

μν + · · · (C.6)
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where h(i)
μν stands for the i th-term in the indicated order of

(C.2). The missing term in the second equality is because
(C.2) tells us that h(1)

μν = 0. Such linear term is missing
because the expansion refers to a local inertial (Lorentz)
frame, which is the tangent Lorentz frame at the point x ′
of the curved spacetime manifold. This demands not only
gμν(0) = ηνν but also ∂αgμν(0) ≡ ∂gμν/∂yα(0) = 0, both
being satisfied at x ′ (i.e. at y = 0). From the above expan-
sion of the metric we can Taylor expand the corresponding
determinant of it, g(y):

g(y) = g(0) + ∂g

∂gμν

∣∣∣∣
y=0

hμν

+ 1

2!
∂2g

∂gγ λ∂gμν

∣∣∣∣
y=0

hμν hγ λ + · · · , (C.7)

with g(0) = −1 and hμν given by (C.6). The derivatives of
the determinant can be computed as follows:

∂g

∂gμν

= g(y)gμν(y),

∂2g

∂gγ λ∂gμν

= g(y)gγ λ(y)gμν(y) − g(y)gμγ (y)gλν(y).

(C.8)

Furthermore, the expansion of the inverse of the metric in
powers of the normal coordinate reads

gab = ηab − ηaμηbν hμν

+ 1

2!
(
ηaλημρηbν + ηaμηbληνρ

)
hμν hρλ + · · · (C.9)

Thus, the previous calculations can be expanded up to fourth
order as follows:

g(y) = g(0) + hμν

∂g

∂gμν

∣∣∣∣
y=0

+ 1

2!h
(2)
μνh

(2)
ρλ

∂2g

∂gρλ∂gμν

∣∣∣∣
y=0

+ · · ·

= g(0) −
(
h(2)

μν + h(3)
μν + h(4)

μν + · · ·
)

ημν

− 1

2!h
(2)
μνh

(2)
ρλ

(
ηρλημν − ημρηλν

) + · · · (C.10)

and

gab = ηab − ηaμηbν
(
h(2)

μν + h(3)
μν + h(4)

μν

)

+ 1

2!
(
ηaλημρηbν + ηaμηbληνρ

)
h(2)

μνh
(2)
ρλ + · · ·

(C.11)

Using (C.2) and the previous results, we find after some cal-
culations:

g(y) = −1 + 1

3
Rαβ y

α yβ + 1

6
Rαβ;γ yα yβ yγ

+
[

1

20
Rαβ;γ δ − 1

18
Rαβ Rγ δ + 1

90
Rμ

αβλR
λ
γ δμ

]

×yα yβ yγ yδ + · · · (C.12)

and

gab = ηab + 1

3
ηaμηbνRμανβ y

α yβ

+1

6
ηaμηbνRμανβ;γ yα yβ yγ

+
[

1

20
ηaμηbνRμανβ;γ δ − 2

45
ηaμηbνRαμβλR

λ
γ νδ

+ 1

18

(
ηbνηakηλμ + ηaμηbkηλν

)
Rμανβ Rkγ λδ

]

yα yβ yγ yδ + · · · (C.13)

It will be useful to consider the Fourier integrals and trans-
forms

GF (x, x ′) = 1

(2π)n

∫
dnkeikyGF (k), (C.14)

iηαβ yβGF (x, x ′) = 1

(2π)n

∫
dnkeiky

∂

∂kα

GF (k), (C.15)

with ky ≡ ηαβ yαkβ . Note that in normal coordinates we can
raise and lower indices with the Minkowskian metric, as it
can be easily shown from (C.2). We organize the solution in
adiabatic orders, i.e. counting the number of time derivatives
of the metric:

GF (k) = G(0)
F (k) + G(1)

F (k) + G(2)
F (k)

+G(3)
F (k) + G(4)

F (k) + · · · (C.16)

Introducing this expansion in the propagator equation (C.1)
one can generate a solution of it in terms of an adiabatic
series. The results, up to 4th-order, are

G(0)
F (k) = 1

k2 + M2 , G(1)
F (k) = 0,

G(2)
F (k) = − 1

(k2 + M2)2

((
ξ − 1

6

)
R + �2

)
,

G(3)
F = − i

2

(
ξ − 1

6

)
R;α

∂

∂kα

(
1

(k2 + M2)2

)
,

G(4)
F = 1

3
Qαβ

∂2

∂kα∂kβ

(
1

(k2 + M2)2

)
+

[(
ξ − 1

6

)2

R2

+�4 + 2�2R

(
ξ − 1

6

)
− 2

3
Qλ

λ

]
1

(k2 + M2)3 ,

(C.17)

where we have defined

Qαβ ≡ 1

2

(
ξ − 1

6

)
R;αβ + 1

120
R;αβ − 1

40
Rαβ;λλ

+ 1

30
Rα

λRλβ − 1

60
Rκ

α
λ
β Rκλ − 1

60
Rλμκ

αRλμκβ.

(C.18)
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As we know, of the two parameters M2 and �2 = m2 −
M2 entering the propagator equation (C.1), the former is of
adiabatic order 0 whereas the latter is of adiabatic order 2, see
the main text. One can easily recognize that the terms G(i)

F (k)
are of adiabatic orders i = 0, 1, 2, 3, 4, respectively, and
represent successive corrections to the propagator solution
up to 4th-order.

The obtained solution represents an adiabatic expansion
of the propagator in momentum space. Using Fourier integral
formulas such as (C.14) and (C.15) we can transfer the solu-
tion to position space. Integrating by parts and neglecting the
boundary terms, we find:

GF (x, x ′) = 1

(2π)n

∫
dnkeiky

{
â0(x, x

′) + â1(x, x
′)

(
− ∂

∂M2

)

+â2(x, x
′)

(
− ∂

∂M2

)2

+ · · ·
} (

1

k2 + M2

)
, (C.19)

with

â0(x, x
′) = 1,

â1(x, x
′) = −

(
ξ − 1

6

)
R − �2 − 1

2

(
ξ − 1

6

)
R;α yα

−1

3
Qαβ y

α yβ,

â2(x, x
′) = 1

2

(
ξ − 1

6

)2

R2 + �4

2
+ �2R

(
ξ − 1

6

)
− 1

3
Qλ

λ.

(C.20)

As we can see, these bilocal coefficients receive �2-
dependent corrections in our case. The quantity Qλ

λ in the
last expression can be found explicitly by taking the trace of
(C.18):

Qλ
λ = − 1

60
Rαβγ δRαβγ δ + 1

60
Rαβ Rαβ

+1

2

(
ξ − 1

5

)
�R. (C.21)

Using the Euler’s density E and the square of the Weyl tensor
(C2) – see Appendix A.1 – we can rewrite (C.21) as follows:

1

3
Qλ

λ = − 1

120
C2 + 1

360
E + 1

6

(
ξ − 1

5

)
�R, (C.22)

We use this expression in Sect. 10 and below. The pole in
(C.19) must be shifted M2 → M2−iε in order to have a time
ordered product. In addition, we employ Schwinger’s proper
time representation [199,200] of the zeroth order propagator
through the following identity and corresponding derivatives
with respect to the scale M :

(k2 + M2 − iε)−1 = i
∫ ∞

0
dse−is(k2+M2−iε),

(
− ∂

∂M2

) j

(k2 + M2 − iε)−1

= i
∫ ∞

0
(is) j e−is(k2+M2−iε)ds. (C.23)

This is the basis for subsequently obtaining the DeWitt–
Schwinger representation of the sought-for Green’s func-
tion in curved spacetime [134], originally derived by DeWitt
[201] following the work of Schwinger [199,200]. Using the
integral representations (C.23) in the expression (C.19) we
can interchange the order of integration and perform first the
following Gaussian integral in momentum space
∫

dnkeiky−isk2 = i
( π

is

)n/2
e−σ(x,x ′)/(2is), (C.24)

where the characteristic function σ(x, x ′) (sometimes called
the world function [46]) is one-half of the square of the
geodesic distance between x and x ′: σ(x, x ′) = 1

2 yα y
α ≡

1
2 (x − x ′)2. In this way the desired final form for the proper
time representation of the Green’s function (C.3) ensues:

GF (x, x ′) = iD1/2(x, x ′)
(4π)n/2

∫ ∞

0
ids

e−iM2s−σ(x,x ′)/(2is)

(is)n/2

×
[
a0(x, x

′) + isa1(x, x
′) + (is)2a2(x, x

′) + · · ·
]
,

(C.25)

where D(x, x ′) ≡ − det(−∂μ∂ν′σ(x,x ′))√
g(x)g(x ′)

is the general expres-

sion for the Van Vleck–Morette determinant, which reduces
to D(x, x ′) = (−g(x))−1/2 for the case of normal coordi-
nates. This, of course, agrees with the redefinition we made
in (C.3). One can easily recognize in (C.25) a generalized
form of the fundamental solution of the heat (or diffusion)
equation, i.e. its integral kernel. Once we have the proper
time representation of the propagator we may compute the
effective Lagrangian LW associated to the quantum vacuum
effective action,

W = − i

2
Tr ln(−GF ) =

∫
d4x

√−gLW . (C.26)

The trace in this expression is to be computed as specified
in Eq. (10.2). Proceeding now in the standard way [44] the
effective Lagrangian in n spacetime dimensions can finally
be put in the form of a DeWitt–Schwinger expansion at the
arbitrary scale M :

LW (M) = μ4−n

2(4π)n/2

∞∑
j=0

â j (x)
∫ ∞

0
(is) j−1−n/2e−iM2s ids,

(C.27)

where μ is ’t Hooft’s mass unit introduced by dimensional
purposes (viz. in this case to maintain LW with natural dimen-
sion 4 in n spacetime dimensions) and â j (x) ≡ â j (x, x)
are the corresponding DeWitt–Schwinger coefficients, which
appear after computing the coincidence limits x → x ′ (i.e.
y → 0) of the bilocal coefficients (C.20). Upon implement-
ing this limit, the final DeWitt–Schwinger coefficients carry
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�2-dependent correction terms, as follows:

â0(x) = 1 = a0(x),

â1(x) = −
(

ξ − 1

6

)
R − �2 = a1(x) − �2,

â2(x) = 1

2

(
ξ − 1

6

)2

R2 + �4

2
+ �2R

(
ξ − 1

6

)

−1

3
Qλ

λ = a2(x) + �4

2
+ �2R

(
ξ − 1

6

)
, (C.28)

where the hatless a j (x) represent the ordinary DeWitt–
Schwinger coefficients when � = 0 (on-shell expansion),

a0(x) = 1,

a1(x) = −
(

ξ − 1

6

)
R,

a2(x) = 1

2

(
ξ − 1

6

)2

R2 − 1

3
Qλ

λ. (C.29)

Expressed in this way we can more clearly see what is the
effect of performing the expansion off-shell. Computing the
integral involved in (C.27) with the help of the Euler � func-
tion, we find

LW (M) = lim
ε→0

1

2(4π)2+ ε
2

(
M

μ

)ε ∞∑
j=0

â j (x)M
4−2 j�

×
(
j − 2 − ε

2

)
, (C.30)

where ε ≡ n−4 is the departure of the spacetime dimension
from 4 in DR.

C.2 Renormalizing the effective action

The effective vacuum actionW and corresponding Lagrangian
LW obtained in the previous section shows up in the form of a
DeWitt–Schwinger expansion. However, it is divergent since
the first terms j = 0, 1, 2 are UV-divergent and include the
contributions up to 4th adiabatic order. This so-called diver-
gent part of LW at the scale M is defined through

Ldiv(M) ≡ L(0−4)
W (M) = lim

ε→0

1

2(4π)2+ε

(
M

μ

)ε

×
2∑
j=0

â j (x)M
4−2 j�

(
j − 2 − ε

2

)
. (C.31)

The divergent character is apparent since the � function has
poles for j ≤ 2 in the limit ε → 0. Therefore it requires
renormalization. Since we are tracking the poles through DR,
it is convenient to expand Ldiv for ε → 0. We find

Ldiv(M) = 1

2 (4π)2

(
1 + ε

2
ln

M2

4πμ2 + O
(
ε2

))

×
[
â0(x)M

4
(

−1

ε
− γE

2
+ 3

4
+ O (ε)

)

+â1(x)M
2

(
2

ε
+ γE − 1 + O (ε)

)

+â2(x)

(
−2

ε
− γE + O (ε)

) ]

= 1

2 (4π)2

[
1

ε

(
−â0(x)M

4 + 2â1(x)M
2 − 2â2(x)

)

+γE

(
−1

2
â0(x)M

4 + â1(x)M
2 − â2(x)

)

+â0(x)M
4

(
3

4
− 1

2
ln

M2

4πμ2

)
+ â1(x)M

2

×
(

−1 + ln
M2

4πμ2

)
− â2(x) ln

M2

4πμ2

]
. (C.32)

To perform the renormalization, we could generate UV-
divergent counterterms by splitting the parameters of the
extended classical Lagrangian (including the HD terms) into
a renormalized parameter plus an UV-divergent counterterm
– cf. Eq. (5.7) – and then cancel the divergences of LW leaving
some arbitrary finite parts. However, we do not want to use
this procedure (MS scheme or variations thereof) since it does
not produce acceptable results in this context. Instead, we
wish to renormalize the effective actionW and corresponding
effective Lagrangian in the same way as we did with the EMT,
namely by performing a subtraction at another scale. Thus,
we define the renormalized vacuum effective Lagrangian LW

at the scale M through the subtraction prescription (10.11):
L ren
W (M) = LW (m) − Ldiv(M), with Ldiv(M) the diver-

gent part of LW , as defined in (C.31) and (C.32). The lat-
ter involves terms only up to adiabatic order 4, precisely as
in the case of the definition of the renormalized EMT – see
Eq. (5.10). Thus, L ren

W (M) is a finite quantity. Notice that
L ren
W (m) = LW (m) − Ldiv(m) is also finite, of course: it is

zero if LW (m) is evaluated up to j = 2 but is nonvanishing if
LW (m) is evaluated beyond j = 2 (i.e. beyond 4th adiabatic
order).

To exhibit the finiteness of the renormalized Lagrangian,
let us compute L ren

W (M) explicitly. Notice that

L ren
W (M) = LW (m) − Ldiv(M)

= Ldiv(m) − Ldiv(M) + · · · (C.33)

The dots in this expression represent finite subleading terms
(viz. higher than 4th adiabatic order) emerging from the
DeWitt–Schwinger expansion (10.6) of LW (m). These sub-
leading terms decouple for large values of the mass m of the
scalar field, as can be easily seen from Eq. (C.30) for j > 2
and M = m. Thus, if we are just interested in tracking the
cancellation of divergences and the finite parts left in the pro-
cess, it is enough to compute Ldiv(m)−Ldiv(M). For the sake
of convenience concerning other formulas used in the main
text, it will be more useful to first perform the subtraction
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between two arbitrary scales M and M0:

L ren
W (M) − L ren

W (M0) = Ldiv(M0) − Ldiv(M). (C.34)

Although the calculation of this quantity is straightforward
it is a bit laborious, as there are many terms. In particular,
one has to use the explicit form of the modified DeWitt–
Schwinger coefficients (C.28). Notice that these coefficients
depend on the quantity �2(M) = m2 − M2 when we per-
form the calculation of Ldiv(M), whereas they depend on
�2(M0) = m2 − M2

0 when we compute Ldiv(M0). All
these terms must be tracked carefully, as they are respon-
sible for the precise expressions (C.36) quoted in the final
result given below. Most important, one has to check that
the poles cancel in the subtraction and that no trace is left of
the arbitrary mass unit μ either. Some terms can be shown
immediately to vanish in this subtraction, e.g. it is easy to
check that the overall coefficient of γE in (C.32), namely
− 1

2 â0(x)M4 + â1(x)M2 − â2(x), does not depend on M
and therefore this term will automatically cancel in the sub-
traction. Other terms require more work and one has to go
through all the details. After some tedious algebra one finds
that the poles which appear in the limit ε → 0 indeed cancel
along with the dependence on the arbitrary mass unit μ, and
the final result can be cast in the compact form

Ldiv(M0) − Ldiv(M) = δρ�(m, M, M0)

−1

2
δM2

Pl(m, M, M0)R

−δαQ(M, M0)
Qλ

λ

3
− δα2(M, M0)R

2, (C.35)

where the various contributions read as follows:

δρ�(m, M, M0) = 1

8 (4π)2

⎛
⎝M4 − M4

0 − 4m2M2 + 4m2M2
0

+2m4 ln
M2

M2
0

)
,

δM2
Pl(m, M, M0) =

(
ξ − 1

6

)

(4π)2

(
M2 − M2

0 − m2 ln
M2

M2
0

)
,

δαQ(M, M0) = 1

2(4π)2 ln
M2

M2
0

,

δα2(M, M0) = −
(
ξ − 1

6

)2

4(4π)2 ln
M2

M2
0

. (C.36)

In the light of these general subtraction formulas we may now
evaluate the leading terms involved in our original expres-
sion (C.33) by just setting M0 = m in the above equa-
tions. We can easily check that the result is precisely given
by the Eqs. (10.12) and (10.13) quoted in the main text.
Note that the relation between the parameters in the afore-
mentioned equations with those of (C.36) reads as follows:

δρ�(M) = δρ�(m, M,m), δM2
Pl(M) = δM2

Pl(m, M,m),
δαQ(M) = δαQ(M,m) and δα2(M) = δα2(M,m).

In the original renormalization approach to the EMT
some of these quantum effects appeared as parameter dif-
ferences computed at the two scales under consideration, ie.
δX ≡ X (M) − X (M0), for the various couplings X and
using the renormalized form of Einstein’s equations (6.9),
see Sect. 6.1. This is because we renormalized the EMT
following the subtraction prescription defined in Eq. (5.10).
We can indeed recognize the first two expressions in (C.36)
as being identical to the parameter subtractions (6.12) and
(6.13). The third and fourth expressions in (C.36) are related
to the coefficients of the HD terms Qλ

λ and R2. In particular,
δα2(M, M0) is just one half of δα given in Eq. (6.14). The
factor of 1/2 is because the parameter α2 in the Lagrangian
(10.9) is related to the parameter α in the generalized Ein-
stein’s equations (5.6) through α2 = α/2. Recall that α is the
coefficient of the HD tensor (1)Hμν in these equations, and
that tensor is given by the functional derivative of R2 with
respect to the metric, see Appendix A.1.

At this point we have fully justified the important
Eq. (10.12), which gives the renormalized effective
Lagrangian of vacuum. From here we may construct the full
effective Lagrangian (10.15) and reproduce the remaining
considerations. In particular, we can obtain the coefficients
of the β-functions for the various couplings (10.16)–(10.19)
and solve the corresponding renormalization group equa-
tions, with the result (10.21).

Appendix D: Calculation of the vacuum trace of the EMT

D.1 Full trace up to 6th adiabatic order

The following expression is the expanded form of Eq. (7.4)
in the main text31:

〈T δφ〉 = 1

4π2a4

∫
dkk2

{
− a2M2

ωk
− a4M4

4ω5
k

(
2H2 + H′)

+a4M4

16ω7
k

(
8H4 + 24H2H′ + 6(H′)2 + 8HH′′ + H′′′)

+5a6M6

8ω7
k

H2 − 7a6M6

32ω9
k

(
28H4 + 36H2H′ + 3(H′)2 + 4HH′′)

−a4M4

64ω9
k

(
32H6 + 240H4H′ + 60

(H′)3 + 160H3H′′

+20
(H′′)2 + 30H′H′′′ + 360H2 (H′)2

+60H2H′′′ + 240HH′H′′ + 12HH′′′′ + H′′′′′
)

31 Extensive use of Mathematica [144] is made in performing these
lengthy computations.
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+ 3a6M6

128ω11
k

(
1264H6 + 1512H3H′′ + 23

(H′′)2 + 228
(H′)3

+38H′H′′′ + 940HH′H′′ + 18HH′′′′

+4672H4H′ + 3276H2 (H′)2 + 256H2H′′′)

+231a8M8

32ω11
k

(
2H4 + H′H2) − 1155a10M10H4

128ω13
k

−11a8M8

128ω13
k

(
3152H6 + 61

(H′)3 + 1116H3H′′ + 258HH′H′′

+2364H2 (H′)2 + 75H2H′′′ + 6660H4H′)

+429a10M10H2

256ω15
k

(
492H4 + 572H2H′ + 83

(H′)2 + 40HH′′)

−255255a12M12H4

512ω17
k

(
2H2 + H′)

+425425a14M14H6

1024ω19
k

+�2
(

− a2

ωk
+ a4M2

2ω3
k

− a4M2
(
2H2 + H′)
2ω5

k

+5a6M4

8ω7
k

(
5H2 + H′) − 35a8M6

16ω9
k

H2
)

+�4

(
a4

2ω3
k

− 3a6M2

8ω5
k

) }

+
(
ξ − 1

6

)
4π2a4

∫
dkk2

{
6H′

ωk
+ 3a2M2

ω3
k

(H2 + 2H′)

−9a4M4H2

ω5
k

− a2M2

2ω5
k

(
3H′′′ + 12HH′′ + 9(H′)2 + 12H2H′)

+3a2M2

8ω7
k

(
32H4H′ + 96H2 (H′)2 + 24

(H′)3 + 40H3H′′

+92HH′H′′ + 13
(H′′)2 + 20H2H′′′

+18H′H′′′ + 6HH′′′′ + H′′′′′
)

+ a4M4

4ω7
k

× (
210H4 + 390H2H′ + 45(H′)2 + 60HH′′)

−a6M6

8ω9
k

(
1365H4 + 840H2H′) − 21a4M4

16ω9
k

(
152H6

+57
(H′)3 + 288H3H′′ + 7

(H′′)2

+12H′H′′′ + 232HH′H′′ + 6HH′′′

+724H4H′ + 642H2 (H′)2 + 61H2H′′′
)

+ 945a8M8H4

8ω11
k

+63a6M6

32ω11
k

(
1332H6 + 40

(H′)3 + 636H3H′′ + 172HH′H′′

+1359H2 (H′)2 + 52H2H′′′ + 3276H4H′)

−693a8M8H2

64ω13
k

(
860H4 + 1117H2H′ + 180

(H′)2 + 88HH′′)

+9009a10M10H4

128ω15
k

(
173H2 + 94H′)

−675675a12M12H6

128ω17
k

+ �2
(

3a2

ω3
k

(H2 + H′) − 9a4M2

2ω5
k

× (
5H2 + 2H′) + 45a6M4

2ω5
k

H2 + 45a6M4H2

2ω7
k

)}

+
(
ξ − 1

6

)2

4π2a4

∫
dkk2

{
9

ω3
k

(−6H2H′ + H′′′) − 27a2M2

2ω5
k

×
(
H4 + 12H2H′ + 3

(H′)2 + 4HH′′)

+ 9

4ω5
k

(
4

(H′)3 + 16HH′H′′ − 6
(H′′)2

+4H2H′′′ − 6H′H′′′ − H′′′′′)

+45a2M2

8ω7
k

(
28

(H′)3 + 40H3H′′ + 7
(H′′)2 + 12H′H′′′

+6H (
18H′H′′ + H′′′′)

+32H4H′ + 24H2
(

4
(H′)2 + H′′′))

+135a4M4

ω7
k

(H4 + H2H′)

−315a4M4

8ω9
k

(
26H6 + 119H4H′ + 5

(H′)3 + 44H3H′′

+22HH′H′′ + H2
(

96
(H′)2 + 7H′′′))

+2835a6M6

16ω11
k

H2
(

25H4 + 56H2H′ + 15
(H′)2 + 8HH′′)

−31185a8M8

8ω13
k

H4 (H2 + H′)
) }

+
(
ξ − 1

6

)3

4π2a4

∫
dkk2

{
81

ω5
k

(
5H4H′ − (H′)3

−4HH′H′′ − (H′′)2 − H′′′ (H2 + H′))

+135a2M2

2ω7
k

(H2 + H′) (
H4 + 29H2H′ + 4

(H′)2

+12HH′′) − 2835a4M4H2

2ω9
k

(H2 + H′)2
}

+O (
�2)O (

T−4)
. (D.1)

The notation O (
�2

)O (
T−4

)
at the end of the above for-

mula denotes the collection of all the contributions of adia-
batic order 6 or higher, i.e. O (

T−6
)
, which are constructed

from the product of terms proportional to �2 times other
contributions of adiabatic order 4th (or higher) made out
of more powers of �2, the Hubble rate and its derivatives:
H,H′,H′′,H′′′ . . .. We do not include these O (

T−6
)

terms
in our analysis because they vanish on-shell, thereby play-
ing no role in the renormalization of 〈T δφ〉 according to the
subtraction prescription given below – cf. Eq. (D.3).

The above expression is UV-divergent. It is easy to identify
the few divergent terms in it, all of them of 4th adiabatic order:

〈T δφ〉Div ≡ 1

4π2a4

∫
dkk2

{
−a2M2

ωk
+

(
ξ − 1

6

)

×
(

6

ωk
H′ + 3a2M2

ω3
k

(
H2 + 2H′)

)
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+
(

ξ − 1

6

)2
(

1

ω3
k

(
−54H2H′ + 9H′′′)

)

−a2�2

ωk
+ a4

2ω3
k

(
M2�2 + �4

)

+
(

ξ − 1

6

)
3a2�2

ω3
k

(
H2 + H′)

}
. (D.2)

The remaining terms, given of course by 〈T δφ〉Non−Div ≡
〈T δφ〉 − 〈T δφ〉Div, are finite. In order to meet a well defined
renormalized expression within the ARP we must perform
the subtraction of the trace of the EMT up to the 4th adiabatic
order at an arbitrary scale M :

〈T δφ〉ren(M) = 〈T δφ〉(m) − 〈T δφ〉(0−4)(M). (D.3)

Let us emphasize that we are following the same prescrip-
tion as for the 00th-component of the EMT (cf. Sect. 5),
namely the subtraction is performed in this case over all
of the terms of 〈T δφ〉ren(M), whether UV-divergent or UV-
convergent. This overall subtraction is crucial to insure the
consistency of the procedure, namely to avoid that the net
finite part that remains in the subtractions turns out to be
ambiguous. After the subtraction the integrations left in that
expression are finite and can be performed with the help of
the formulas of Appendix A.1. Albeit the overall integration
left is indeed convergent it is not evident if one considers the
isolated pieces. Following the method of Appendix B of [81]
one can either proceed by explicitly exhibiting the divergent
parts of these isolated pieces (for example through the poles
in DR) and showing that they cancel out altogether, or one
can rearrange that expression to show that the integrals can
be put in a convergent form. If one wishes to follow the last
procedure, the following relations prove useful to show that
upon performing the subtraction (D.3) on the integral (D.2)
one finds manifestly convergent expressions:

− a2m2

ωk(m)
+ a2M2

ωk(M)
+ a2�2

ωk(M)
− a4

2ω3
k (M)

(
M2�2 + �4)

= − a6m2�4

2ω3
k (M)ωk(m) (ωk(m) + ωk(M))

×
(

1 + ωk(M)

ωk(M) + ωk(m)

)
, (D.4)

and

6H′

ωk(m)
+ 3a2m2

ω3
k (m)

(H2 + 2H′) − 6H′

ωk(M)

−3a2M2

ω3
k (M)

(H2 + 2H′) − 3a2�2

ω3
k (M)

(H2 + H′)

= −H′
[

3a4�4

ω2
k (m)ωk(M)(ωk(m) + ωk(M))

×
(

1

ωk(m)
+ 1

ωk(m) + ωk(M)

)

−3a4(m4 − M4)

ω2
k (M)ωk(m)

(
1

ω2
k (m)

+ 1

ωk(M)(ωk(m) + ωk(M))

)]

−H2 3a4m2�2

ω2
k (M)ωk(m)

(
1

ω2
k (m)

+ 1

ωk(M)(ωk(m) + ωk(M))

)
.

(D.5)

As we can see after these rearrangements, the integration∫
dkk2 of these expressions leads to convergent integrals.

They all behave as ∼ ∫
dkk2/k5 ∼ ∫

dk/k3 in the UV
region, similarly as in the situation indicated in the mentioned
footnote on p. 16. The remaining task is to compute these
converging integrals, which is not completely trivial. With the
help of Mathematica [144] the final result can be expressed as
in Eq. (7.10) of the main text. Alternatively, if one performs
the calculation in DR one may account for all the integrals
(whether UV-divergent or convergent) on using the master
formula (A.24) of Appendix A.2. The result is the same.

D.2 Trace anomaly: explicit computation

As a nontrivial check of our calculations, let us use our results
to reproduce the famous trace or conformal anomaly of the
energy–momentum tensor in curved spacetime. In our case
it is obtained upon computing Eq. (7.6) in the limit m → 0.
While this is not the interesting limit for our purposes, it
serves nevertheless as a nontrivial calculational check. The
explicit form of the result remains nonvanishing for m → 0
and can be easily extracted from Eq. (D.1) above by setting
ξ = 1/6 and M = m, and then picking out the terms of
4th adiabatic order which are independent of m under an
appropriate change of integration variable (see below). These
are the following:

lim
m→0

〈T δφ〉
∣∣∣∣
(ξ=1/6,M=m)

= 1

4π2a4

∫
dkk2

{
a4m4

16ω7
k

(
8H4

+24H2H′ + 6(H′)2 + 8HH′′ + H′′′)

−7a6m6

32ω9
k

(
28H4 + 36H2H′ + 3(H′)2 + 4HH′′)

+231a8m8

32ω11
k

(
2H4 + H′H2

)
− 1155a10m10H4

128ω13
k

}
,

(D.6)

where the limit m → 0 remains implicit on the r.h.s. of
the above expression. However, it is not necessary since the
involved integrals are actually independent of m. To see that,
let us make the change of variable k = amx . Then, ωk =√
k2 + a2m2 = am

√
1 + x2, and we realize that the powers

of m in the numerator of all the above terms (plus the three
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added ones from dkk2) exactly cancel against those in the
denominator, so the integrals do not actually depend on m
and hence the expression (D.6) cannot vanish for m → 0.
The result after some computations (with the help of the
master integral formula in Appendix A.2) reads

lim
m→0

〈T δφ〉
∣∣∣∣
(ξ=1/6,M=m)

= 1

4π2a4

∫ ∞
0

dxx2

×
⎧⎨
⎩

8H4 + 24H2H′ + 6
(H′)2 + 8HH′′ + H′′′

16
(
1 + x2

)7/2

−7(28H4 + 36H2H′ + 3
(H′)2 + 4HH′′)

32
(
1 + x2

)9/2

+
231

(
2H4 + H′H2

)

32
(
1 + x2

)11/2 − 1155H4

128
(
1 + x2

)13/2

⎫⎬
⎭

= 1

480π2a4

(
−4H2H′ + H′′′)

= 1

480π2

(
ä2

a2 +
....
a

a
+ 3

ȧ
...
a

a2 − 3
ȧ2ä

a3

)
. (D.7)

The trace anomaly can also be elucidated in the framework
of the effective action, W [44]. The latter is related to the
VEV of the EMT, as noted in (10.1). The effective action is
purely geometric and involves the quantum effects of φ in our
case. Since the UV-divergences are inherent to short-distance
effects, they all involve the behavior of geometric tensors
R2, RμνRμν, . . . at short distances (cf. Appendix C). The
nontrivial local behavior of the curved spacetime at the level
of the effective action is the counterpart to the UV behavior
of the field modes in the EMT. The two languages lead to
the same answer. Thus, although one can use W and the UV-
divergences associated to these geometric terms to derive the
trace anomaly [44], here we have used directly the VEV
of the EMT corresponding to the quantum matter field φ.
The divergences of W are of course the same as those of
the vacuum EMT. So, if we write W = Wdiv + Wren, the
divergent and renormalized parts of the vacuum EMT must
correspond respectively toWdiv andWren. This means that the
obtained expression (D.7) can be identified with the vacuum
trace emerging from the divergent part of the effective action,
which in the massless conformal limit turns out to be finite.
Thus,

lim
m→0

〈T δφ〉
∣∣∣∣
(ξ=1/6,M=m)

= 2√−g
gμν

δWdiv

δgμν

. (D.8)

Because the vacuum trace of the total EMT derived from
the effective action must vanish in the massless conformally
coupled limit [44], the trace associated to Wren (the so-called
renormalized part of the effective action) is given by minus

the previous result (D.8), and this defines the trace anomaly:

lim
m→0

〈T δφ〉
∣∣∣∣
anomaly

(ξ=1/6,M=m)

= 2√−g
gμν

δWren

δgμν

= − 2√−g
gμν

δWdiv

δgμν

= − lim
m→0

〈T δφ〉
∣∣∣∣
(ξ=1/6,M=m)

.

(D.9)

It can be expressed in an invariant form, showing that the
anomaly is a general coordinate scalar. With the help of the
geometric relations given in Appendix A.1 one can readily
show that the obtained expression can be written in a covari-
ant way as follows:

lim
m→0

〈T δφ〉
∣∣∣∣
anomaly

(ξ=1/6,M=m)

= − lim
m→0

〈T δφ〉
∣∣∣∣
(ξ=1/6,M=m)

= − 1

480π2a4

(
−4H2H′ + H′′′)

= + 1

2880π2

[
RμνRμν − 1

3
R2 + �R

]
. (D.10)

It is well known that there is no contribution from the square
of the Weyl tensor C2 = Cαβγ δCαβγ δ for conformally flat
spacetimes since that tensor vanishes identically for them.
The above expression is the form which we have quoted in the
main text, see Eq. (7.7). In general the conformal anomaly can
also be written in a very succinct way in terms of the DeWitt–
Schwinger coefficient of adiabatic order 4 – cf. Appendix C.1
and [44]. Borrowing Eqs. (C.22) and (C.28), one finds

lim
m→0

〈T δφ〉
∣∣∣∣
anomaly

(ξ=1/6,M=m)

= + a2

16π2

∣∣∣
ξ=1/6

= − 1

48π2 Q
λ
λ

∣∣∣∣
ξ=1/6

= + 1

1920π2

[
C2 − 1

3
E + 2

3
�R

]
. (D.11)

Using (A.6), with Cαβγ δ = 0 for FLRW spacetime, the pre-
vious expression boils down to the particular form (D.10).
Notice that â2 = a2 in this case, since M = m and hence
� = 0 in (C.28).
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