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A B S T R A C T   

Metabolic Control Analysis (MCA) marked a turning point in understanding the design principles of metabolic 
network control by establishing control coefficients as a means to quantify the degree of control that an enzyme 
exerts on flux or metabolite concentrations. MCA has demonstrated that control of metabolic pathways is 
distributed among many enzymes rather than depending on a single rate-limiting step. MCA also proved that this 
distribution depends not only on the stoichiometric structure of the network but also on other kinetic de
terminants, such as the degree of saturation of the enzyme active site, the distance to thermodynamic equilib
rium, and metabolite feedback regulatory loops. Consequently, predicting the alterations that occur during 
metabolic adaptation in response to strong changes involving a redistribution in such control distribution can be 
challenging. Here, using the framework provided by MCA, we illustrate how control distribution in a metabolic 
pathway/network depends on enzyme kinetic determinants and to what extent the redistribution of control 
affects our predictions on candidate enzymes suitable as targets for small molecule inhibition in the drug dis
covery process. Our results uncover that kinetic determinants can lead to unexpected control distribution and 
outcomes that cannot be predicted solely from stoichiometric determinants. We also unveil that the inference of 
key enzyme-drivers of an observed metabolic adaptation can be dramatically improved using mean control 
coefficients and ruling out those enzyme activities that are associated with low control coefficients. As the use of 
constraint-based stoichiometric genome-scale metabolic models (GSMMs) becomes increasingly prevalent for 
identifying genes/enzymes that could be potential drug targets, we anticipate that incorporating kinetic de
terminants and ruling out enzymes with low control coefficients into GSMM workflows will facilitate more ac
curate predictions and reveal novel therapeutic targets.   

1. Introduction 

The year 2023 marks the 50th anniversary of Metabolic Control 
Analysis (MCA), which originated from two papers published by sepa
rate teams: Kacser and Burns (1973) and Heinrich and Rapoport (1974). 
It has been widely acknowledged that this methodology overturned the 
dogma that the control of a metabolic pathway is dependent on a single 
limiting step. Instead, using a formulation based on sensitivity co
efficients, known as control coefficients, it introduced a more realistic 
perspective where control is distributed and, importantly, redistributed 

in the event of significant perturbations in metabolic pathways. 
Control coefficients describe the effects of changes or perturbations 

in enzyme activities at the molecular level on metabolite concentrations 
or fluxes at the systemic level (Cornish-Bowden, 2012; Fell, 1997; 
Heinrich and Schuster, 1996; Miskovic and Hatzimanikatis, 2010; 
Sauro, 2019). However, this description is only accurate for small 
changes in enzyme activities that will not result in any redistribution of 
control. Nevertheless, significant redistributions of control can be ex
pected for larger changes, reflecting the non-linearity of the kinetic 
mechanisms involved in the metabolic system. This redistribution of 
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control is especially relevant when studying metabolic adaptations or 
reprogramming that occur in pathological situations in response to drug 
therapy or in biotechnological interventions. In such cases, in practice, 
only a partial picture of the system is available for predicting metabolic 
vulnerabilities to be exploited for biomedical/biotechnological pur
poses. We cannot determine the precise nature of the system’s pertur
bation, which enzymatic activities have been affected, or to what extent 
they have been affected. Therefore, the exact mechanism of the 
perturbation remains unknown. The prediction of such vulnerabilities 
currently relies mostly on genome-scale metabolic models (GSMMs) 
(Ebrahim et al., 2013; Wang et al., 2018; Heirendt et al., 2019) based on 
the stoichiometric structure of the metabolic networks, the analysis of 
changes in fluxes of metabolite uptakes and secretions, and metabolite 
concentrations at the systemic level, while assuming that alterations in 
gene expression or protein levels are adequate to fully describe changes 
in enzyme activities at the molecular level (Katzir et al., 2019). 

Even the success of constrain-based GSMMs, there is increasing ev
idence that these approaches have important limitations in accurately 
inferring the key enzyme changes that sustain metabolic adaptations 
triggered by system perturbations, such as those induced by a drug. The 
predictive capacity of GSMMs has been improved by incorporating 
additional constraints, such as ensuring that each metabolic flux does 
not exceed its maximum capacity, which is equal to the product of the 
enzyme’s abundance and turnover number (Sánchez et al., 2017; 
Domenzain et al., 2022). In these enzyme-constrained models, sensi
tivity coefficients, such as control coefficients on the predicted growth 
rate and other predicted fluxes, are estimated based on these approxi
mated maximum capacities (Nilsson and Nielsen 2016; Wilken et al., 
2022). An improvement in the accuracy of control determination can be 
expected as these sensitivity coefficients gradually can incorporate all 
kinetic determinants. The recent publication of deep learning-predicted 
Michaelis constants (Km) on a genome-scale (Kroll et al., 2021) is ex
pected to fuel the incorporation of kinetic determinants into GSMMs 
(Antolin and Cascante, 2021), generating an urgent need for tools that 
can thoroughly explore the role of kinetic determinants in control dis
tribution, and understand how control redistribution can affect the 
identification of putative drug targets. 

The specific objectives of the present study are to address how does 
control distribution depend on kinetic determinants other than the 
stoichiometric structure, and to what extent does the redistribution of 
control affect the predictions based on control coefficients. As a proof of 
concept, we first examine how control distribution depends on factors 
such as negative feedback regulation circuits or the presence of iso
enzymes. Second, we investigate the impact of control redistribution, 
particularly focusing on the ability to identify altered enzyme activities 
that serve as key drivers of metabolic adaptations to mechanism- 
unknown perturbations. In this study, we use an inference strategy, 
based on linear programming (LP), that assumes control distribution 
remains constant after perturbation (de Atauri et al., 2021). Given a 
metabolic adaptation to a perturbation, theoretically, having complete 
knowledge of the control distribution, as well as the concentrations and 
reaction fluxes at the systemic level before and after the perturbation, 
should enable us to identify which key enzymatic activities were 
impacted at the molecular level. The identification of these key drivers is 
based on the predictive capacity of control coefficients. However, these 
predictions can deviate due to the reorganization of control distribution 
following the perturbation. An assessment of the distortion level can be 
conducted by comparing it with simulations based on detailed models 
that encompass complete knowledge of the rate laws involved in all 
molecular mechanisms. The same models are used to make predictions 
on key drivers and simulations. 

To illustrate these points, we use two kinetic models. The first is a 
simple model that covers the upper part of glycolysis in mouse muscle 
(Puigjaner et al., 1997). This model is applied to address the two ob
jectives. Additionally, we employ a second model that encompasses the 
entire central metabolism of Escherichia coli (Millard et al., 2017), which 

is used to address the second objective in a more complex scenario. 

2. Methods 

2.1. MCA formulation 

In MCA, sensitivity coefficients are used to measure the de
pendencies of systemic variables, such as metabolic fluxes or metabolite 
concentrations, with respect to enzymes or parameters in metabolic 
networks (Cornish-Bowden, 2012; Fell, 1997; Heinrich and Schuster, 
1996; Miskovic and Hatzimanikatis, 2010; Sauro, 2019). Table 1 sum
marizes the different types of sensitivity coefficients for a metabolic 
system with n internal metabolites (i = 1, …,n) and m reaction steps (j =
k = 1, …,m). Here, xi represents the systemic steady state metabolite 
concentration for metabolite i. Jj and vk correspond to the same steady 
state measure. On the one hand, Jj is taken as the systemic steady state 
reaction flux that changes around the steady state as a system-dependent 
variable. On the other hand, vk is taken as the molecular enzyme activity 
that changes around the steady state as a variable independent of the 
rest of the metabolic system. Both measures are applicable for the re
action step j=k. Molecular activities can be taken as proportional to 
enzyme concentration and can generally be approximated from protein 
or gene expression levels. However, they can also be modulated by 
phosphorylation or other covalent modifications (Martín-Bernabé et al., 
2017). Systemic transport processes and molecular transporters, which 
can be relevant actors in metabolism, are treated as systemic fluxes and 
enzyme activities, respectively. 

At the systemic level, for global changes in concentrations and fluxes 
that are system-dependent, sensitivity coefficients can be divided into 
control and response coefficients. Control coefficients describe varia
tions in metabolite concentrations and reaction fluxes in response to 
perturbations in enzyme activities (vk taken as parameters), while 
response coefficients describe the same variations in response to any 
other perturbation (parameter p). At the molecular level, for local 
changes in enzyme activities that behave independently of the rest of the 
system, elasticities are described as variations in enzyme activities 
(vk taken as variables) in response to perturbations in metabolite 
concentrations, known as metabolite elasticities, or in response to any 
other perturbation (parameter p), known as parameter elasticities. The 
MCA formulation includes sets of theorems that establish dependencies 
between these sensitivities: 
∑m

k=1
Cxi

vk
= 0 and

∑m

k=1
CJj

vk
= 1 (summation theorems) (1) 

Table 1 
Sensitivity coefficients.    

a b 

concentration control coefficients Cxi
vk

=
vko

xio

dxi

dvk
=

d log xi

d log vk 

xi vk 

flux control coefficients 
CJj

vk =
vko

Jjo

dJj

dvk
=

d log Jj

d log vk 

Jj vk 

“metabolite” elasticities εvk
xi

=
xio

vko

∂vk

∂xi
=

∂log vk

∂log xi 

vk xi 

concentration response coefficients Rxi
p =

p
xio

dxi

dp
=

d log xi

d log p 
xi p 

flux response coefficients 
RJj

p =
p

Jjo

dJj

dp
=

d log Jj

d log p 
Jj p 

“parameter” elasticities εvk
p =

p
vko

∂vk

∂p
=

∂log vk

∂log p  
vk p 

Each sensitivity coefficient is a dimensionless quantity that measures the frac
tional change in a variable a per fractional change in a parameter b around a 
steady-state (xio, Jko = vko). Notation as used in de Atauri et al. (2021). Alter
native notations could be utilized. For example, control and response co
efficients could be defined as partial derivatives, and what we have referred to as 
‘parameter elasticities’ might also be known as ‘π-elasticities’ (Heinrich and 
Schuster, 1996).  
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and 
∑m

k=1
Cxa

vk
× εvk

xb
= 0 (a∕= b),

∑m

k=1
Cxa

vk
× εvk

xa
= − 1, and

∑m

k=1
CJj

vk
× εvk

xi

= 0 (connectivity theorems) (2) 

For the estimation of control coefficients, various matrix formula
tions have been developed in the context of MCA (Cascante et al., 1989a, 
b; Fell and Sauro, 1985; Westerhoff and Kell, 1987; Reder, 1988; Small 
and Fell, 1989). These matrix methods imply all summation and con
nectivity dependencies in Table 1, along with stoichiometric de
pendencies of fluxes and concentrations of species involved in moiety 
conservations. 

2.2. Model I. Upper part of glycolysis on mice muscle extracts 

Model I is based on a published kinetic model that covers the upper 
part of glycolysis. This model was parametrized from experiments per
formed on mouse muscle extracts (Puigjaner et al., 1997). The kinetic 
laws, their parameters, and steady-state concentrations and fluxes were 
obtained from the original publication. The original irreversible Hill 
equation for phosphofructokinase (PFK) has been replaced with a 
reversible Hill equation (Hofmeyr and Cornish-Bowden, 1997). The 
equation was adjusted based on published Gibbs free energies of for
mation for the metabolites involved in the reaction, as well as the 
ADP/ATP ratio from human muscle (Fernandes et al., 2019). The 
fructose-1,6-biphosphate (FbP) concentration scaled by its half satura
tion constant (FbP/K0.5) was adjusted to provide negative elasticities for 

Fig. 1. Magnitudes of control coefficients and control redistribution. (a) Scheme for Model I-A. (b) Each column shows the distribution of control coefficients for 
flux (J) and G6P concentration, as well as the corresponding flux and G6P concentration, as estimated in Model I (Variant I-A). Each column corresponds to a ten-fold 
decrease or increase of enzyme activities: 1st) none; 2nd) HK; 3rd) GPI; 4th) PFK; 5th) ALD; 6th) simultaneously HK, PFK, and ALD; and 7th) simultaneously all enzymes. 
Changes in G6P concentrations/G6P-concentration control coefficients and the flux/flux control coefficients are in the upper and lower panels, respectively. Tenfold 
decreases and tenfold increases are in the left and right panels, respectively. Flux units are nmol min− 1 mg prot− 1, and concentration units are millimolar (mM). ρ 
represents the disequilibrium ratio (ρ = Γ/K). Model I-A is described in the Appendix. 
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FbP in all the analysed steady states. 
As described in Figs. 1–3, a total of five model variants (A, B, C, D, 

and E) were utilized for comparisons, which allowed for the assessment 
of the impact of different control determinants. Model I-A features a 
feedback inhibition on the first metabolic intermediary targeting the 
first enzyme. The feedback inhibition is shifted along the metabolic 
pathway to the second and third metabolic intermediaries in Models I–B 
and I–C, respectively. In contrast, Model I-D lacks any feedback inhibi
tion. Model I-E, another variant of Model I-A, incorporates two iso
enzymes catalysing the first reaction step. These five model variants 
were adjusted to provide the same steady-state flux and concentrations 
as the original model. Model I-A is the original model, but with an 

irreversible Hill equation. In models I–B to I-D, corrections were applied 
to maintain inhibitor concentration/inhibition constant (Ki) ratios, as 
well as apparent Km and Vmax for Hexokinase activities (HK), as in 
model I-A. In model I-E, the first step catalysed by HK was modified to be 
catalysed by two isoenzymes, which correspond to HK type I and type II 
in muscle (Ritov and Kelley, 2001; Wilson, 2003). 

The model includes three system-dependent metabolites and four 
(five in model I-E) enzyme-catalysed reactions. A detailed description of 
the model equations is provided in the Appendix. Model abbreviations: 
G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FbP, fructose-1,6- 
diphosphate; HK, hexokinase; GPI, glucose-phosphate isomerase; PFK, 
phosphofructokinase; ALD, aldolase. 

Fig. 2. Regulatory circuits and control distribution. (a) Schemes of four variations of Model I that vary in the metabolite responsible for product inhibition on HK 
(I-A, I–B, I–C), and without inhibition (I–D). (b) Distribution of control coefficients for flux (J) and G6P concentration, as well as the corresponding flux and G6P 
concentration, estimated in the four variations of Model I – I-A, I–B, I–C, and I-D – along with three additional variants of Models I-A, I–B, and I–C (designated as I-A’, 
I–B’, and I–C’, respectively), in which the inhibition constant for HK was modified. Each column corresponds to a variant of Model I. All variants were adjusted to the 
same steady-state flux and concentrations. (c) Each column corresponds to a tenfold decrease in enzyme activities for Model I-A, I–C, I-A’, and I–C’: 1st) none; 2nd) 
HK; 3rd) GPI; 4th) PFK; 5th) ALD. Model I variants are described in the Appendix. 
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2.3. Model II. Glucose uptake, catabolism, ATP production and growth in 
Escherichia coli 

Model II is based on a published and detailed kinetic model that 
describes the central metabolism of Escherichia coli cultivated on glucose 
under aerobic conditions (Millard et al., 2017) and includes 62 metab
olites and 67 reactions. The concentration of external glucose was set as 
constant. 

2.4. Inference by interval reduction 

Given a single known flux control coefficient and that variations in 
enzyme activity are small enough for this control coefficient to remain 
constant, by linear approximation predictions can be made about the 
change in the flux value (Fell, 1997). Predictions for larger changes are 
possible, although these linear predictions will be less accurate as the 
changes become larger. A response coefficient in response to a pertur
bation p can be rewritten as a sum of terms, each of which quantifies the 
variations in a metabolite concentration or reaction flux in response to 
the perturbation of one of the enzymes (Kholodenko, 1988; Cascante 
et al., 1989a; 1989b; Hofmeyr and Cornish-Bowden, 1991): 

Rxi
p =

∑m

k=1
Cxi

vk
× εvk

p = Cxi
v1
× εv1

p + ⋯ + Cxi
vm

× εvm
p (3)  

RJj
p =

∑m

k=1
CJj

vk
× εvk

p = CJj
v1
× εv1

p + ⋯ + CJj
vm

× εvm
p (4) 

Under this definition, while each control coefficient describes vari
ations in a metabolite concentration or reaction flux in response to the 
perturbation of a single enzyme activity, each response coefficient is 
presented as a general sensitivity coefficient. This describes the response 
to any perturbation, which could proportionally or not affect a single 
enzyme activity, or multiple enzyme activities simultaneously. Accord
ing to this definition, a response coefficient will correspond to a control 
coefficient when a single activity is affected proportionally (εvk

p = 1). 
These expressions integrate changes at both systemic and molecular 
levels, accounting for the effect of an infinitesimal or small perturbation 
p. Analogously to the single control coefficient, given known control 
coefficients, by linear approximation predictions can be made about the 
changes in fluxes and concentrations, which will become less accurate as 
the changes become larger. Assuming this loss of accuracy, using a 
constraint and optimization-based method, we recently applied an 
inference strategy that assumes constant control coefficients and in
corporates constraints from Eqs. (3) and (4) to identify the key drivers of 
metabolic adaptations (de Atauri et al., 2021). Our aim was to identify 
the key unknown changes in enzyme activities that drive metabolic 
adaptations resulting from mechanism-unknown perturbations. Firstly, 
analogous to Eqs. (3) and (4), the following expression was derived, 

Δlog xi =Cxi
v1
× Δlog v1 + ⋯ + Cxi

vm
× Δlog vm =

∑m

k=1
Cxi

vk
× Δlog vk (5)  

Δlog Jj =CJj
v1
× Δlog v1 + ⋯ + CJj

vm
× Δlog vm =

∑m

k=1
CJj

vk
× Δlog vk (6)  

where Δlog xi = log(xifinal /xiinitial), Δlog Jj = log(Jjfinal /Jjinitial), and 
Δlog vk = log(vkfinal /vkinitial) are log fold changes for systemic concen
trations, systemic reaction fluxes, and molecular enzyme activities, 
respectively, describing the change from an initial state (i.e, before the 
perturbation) to a final state (i.e., after the perturbation). For these log 
fold changes natural logarithms are applied, although any logarithmic 
base could be used. All log fold changes are presented as domains of 
possible values, which are intervals with lower and upper bounds. A 
subset of these intervals is constrained to known bounds, while the 
remaining intervals have unknown lower and upper bounds that are set 
to a common value of − 4 or +4, respectively, which corresponds to fold 
decreases or increases of around 55, an arbitrary value very far from the 
expected changes. Secondly, control coefficients are assumed to be fixed 
parameters; therefore, Eqs. (5) and (6) can be treated as linear equa
tions, where log fold changes in concentrations, reaction fluxes, and 
enzyme activities are the variables. Taking these equations into account, 
an interval reduction problem can be formulated that solves two LP 
problems – maximization and minimization, one at time, for each one of 
the variables of interest (de Atauri et al., 2021), 

Fig. 3. Isoenzymes and control distribution. (a) Schemes for Models I-A 
(without isoenzymes) and I-E (with isoenzymes for HK activity). (b) Distribu
tion of control coefficients for the flux (J) and G6P concentration, as well as the 
corresponding flux and G6P concentration, estimated in Models I-A and I-E. 
Each column corresponds to a concentration of glucose substrate. Model I 
variants are described in the Appendix. 
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maximize (and minimize) z = Δlog xi,Δlog Jj,Δlog vk ∀i ∈ N,

∀j, k ∈ M

subject to − Δlog xi +
∑m

k=1
Cxi

vk
× Δlog vk = 0 ∀i

− Δlog Jj +
∑m

k=1
CJj

vk
× Δlog vk = 0 ∀j

lbin
xi
≤ Δlog xi ≤ ubin

xi
∀i

lbin
Jj
≤ Δlog Jj ≤ ubin

Jj
∀j

N = 1,⋯, n lbin
vk
≤ Δlog vk ≤ ubin

vk
∀k

M = 1,⋯,m Δlog xi,Δlog Jj,Δlog vk ∈ ℝ
(7)  

where, by maximizing and minimizing each variable, the lower (lb) and 
upper (ub) bounds of the initial domain (in) of possible values for this 
variable, lbin

variableand ubin
variable, respectively, is contracted or reduced to a 

final domain (fi), lbfi
variableand ubfi

variable, that satisfy all implicit constraints 
(lbin

variable ≤ lbfi
variable and ubfi

variable ≤ ubin
variable). By maximizing and mini

mizing each one of variables of interest (Δlog xi, Δlog Jj, and Δlog vk), 
the method returns the ranges of feasible log fold changes for each of the 
m systemic fluxes (Δlog Jj), n concentrations (Δlog xi), and m molecular 
activities (Δlog vk). 

In our previous work, we demonstrated the effectiveness of this 
approach in identifying targets within a highly uncertain environment 
(de Atauri et al., 2021). We used measured fold changes for nearly all 
systemic fluxes, a few concentrations, and some restrictions on molec
ular activities. Instead of employing a single fixed set of control co
efficients, we generated multiple sets through sampling, while 
maintaining the same stoichiometry and regulatory networks. 

In the present paper, a single set of constant control coefficients is 
applied, therefore a unique application of the algorithm for interval 
reduction is done accounting for the minimum and maximum values of 
each variable. In this application, all fold changes for enzyme activities 
are unknowns, while all fold changes for concentrations and fluxes are 
known. For the unknown variables, the lower and upper bounds in the 
initial domains are kept unknown (±4). For the known variables, there is 
always a certain degree of uncertainty associated, which will propagate 
to solution spaces. Thus, their lower and upper bounds can be derived 
from measured errors or other measures of uncertainty. In this study, a 
percentage δ of uncertainty is assigned around the values obtained by 
model simulations for all concentrations (xiinitial ± δ% and xifinal ± δ%) 
and reaction fluxes (Jjinitial ± δ% and Jjfinal ± δ%). Therefore, the reduced 
domains for the log fold changes of concentrations and fluxes are 
calculated as follows: 

Δlog xi =

[

log
xifinal − δ%
xiinitial + δ%

, log
xifinal + δ%
xiinitial − δ%

]

(8)  

Δlog Jj =

[

log
Jjfinal − δ%
Jjinitial + δ%

, log
Jjfinal + δ%
Jjinitial − δ%

]

(9)  

In the application of the approach performed in this study, we assume 
that we know all the fold changes for fluxes and concentrations, while all 
fold changes for enzyme activities are unknown. However, the approach 
is very flexible and does not require knowing the fold change of all fluxes 
and concentrations. These could be unknowns, just like the fold change 
of enzyme activities (examples will be provided later as part of the an
alyses). Additionally, known fold changes in enzyme activities could be 
introduced. Finally, although in all the perturbations applied in this 
study, the sign of the fluxes was maintained, Eq. (9) cannot be applied 
when net fluxes switch from positive to negative values. In each pair 
Jjinitial and Jjfinal, both are positive or both are negative. This is a limita
tion of the proposed method, which can be circumvented by splitting the 
net fluxes into forward and reverse fluxes, where apparent control co
efficients for the forward and reverse reactions can be applied. Provided 

that reverse and forward reactions are not independent, a constraint 
must be added, as fold changes in the corresponding enzyme activities 
should be equal. Alternatively, the removal of the corresponding linear 
constraint involving this flux should have an impact on the solution 
space, which would depend on the relevance of the affected reaction in 
the metabolic network. 

2.5. Calculations 

All calculations were performed using ‘Wolfram Mathematica 12’ 
(www.wolfram.com). To solve steady-state simulations before and after 
perturbations, with kinetic models represented as a system of ordinary 
differential equations (ODEs), deterministic methods were used. The 
model simulations were solved as initial value problems. For solving 
control coefficients, first, elasticities are estimated by direct derivation 
of the model reaction-rate laws around the solved steady states, and then 
any of the matrix formulations to solve control coefficients can be 
applied (Cascante et al., 1989a,b; Fell and Sauro, 1985; Westerhoff and 
Kell, 1987; Reder, 1988; Small and Fell, 1989). For solving inference 
problems, a Mathematica notebook is available on Zenodo (de Atauri 
et al., 2021b). 

3. Results 

3.1. How does control distribution depend on determinants others than 
the stoichiometric structure? 

Fig. 1 provides a detailed analysis of Model I-A. As shown in Fig. 1b, 
the steady state concentrations and fluxes and the control distribution of 
the initial (non-modified) model were first estimated by model simula
tion and matrix methods, respectively, and are presented in the first 
column of the four panels (labelled as “none”). Subsequently, all enzyme 
activities were either decreased or increased by a factor of 10, either 
alone or simultaneously. For each perturbation, the modified model was 
allowed to evolve via simulation to a new steady state and control dis
tribution, which are estimated and presented in one of the subsequent 
columns (labelled with the modified activity or activities). The com
parison with the first column shows how control coefficients have been 
redistributed. 

The extent of the resulting control redistribution depends on both the 
degree of control possessed by the affected activities and the magnitude 
of the alteration made. As expected, Fig. 1 illustrates how modifying 
enzymes with significant control, such as HK, PFK, and aldolase (ALD), 
leads to a substantial impact on control redistribution following changes 
in steady-state concentrations and fluxes. Conversely, modifying an 
enzyme with very low control, such as glucose-phosphate isomerase 
(GPI), does not have a significant effect on control redistribution. This 
does not mean that it cannot have some degree of control. As can be seen 
in the figure (6th column in the two right panels), simultaneously 
increasing the activities of HK, PFK, and ALD results in a slight but 
significant increase in the control of GPI. This effect could become 
dominant with higher increases in the activities of these enzymes. 
Consistently, the same pattern is observed when only GPI is decreased 
(3rd column in the two left panels). 

For reactions that are close to equilibrium, such as the reaction 
catalysed by GPI, the elasticities are determined mainly by the degree of 
displacement of the reaction from equilibrium (Fell, 1997; Cornish-
Bowden et al., 2012). Thus, the elasticity for GPI, which follows a 
reversible Michaelis-Menten rate equation, can be rewritten as (West
erhoff et al., 1984; Rohwer and Hofmeyr, 2010; Hofmeyr, 1995): 

ϵv
G6P =

1
1 − ρ −

G6P/Kms
1 + G6P/Kms + F6P/Kmp

(10)  

ϵv
F6P = −

ρ
1 − ρ −

F6P/Kmp
1 + G6P/Kms + F6P/Kmp

(11) 
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where G6P and F6P are the substrate and the product, respectively, and 
ρ is the disequilibrium ratio, which is the ratio of the mass-action ratio Γ 
to the equilibrium constant K (ρ = Γ/K). While the second right-hand 
term is the fractional saturation, the first term depends on the distance 
to the equilibrium, going to infinity at equilibrium. Therefore, in situ
ations close to equilibrium, this value will be increasingly higher, which 
will contribute to giving low values for control coefficients, such as those 
seen for GPI. This intrinsic thermodynamic property of the reaction 
catalysed by GPI has an impact on the ability of GPI activity to alter both 
steady-state values and control distribution, as depicted in Fig. 1. 

Both the distance to equilibrium and the degree of enzyme activity 
saturation provide us with two examples to illustrate control de
terminants that should be taken into consideration. The heterogeneous 
list of control determinants also should include regulatory circuits and 
the presence of isoenzymes. Fig. 2 illustrates the distribution of control 
in four different model variants that differ in the metabolite responsible 
for product inhibition on HK, as well as the degree of inhibition. In the 
pathway lacking any feedback inhibition (Model I-D), it can be observed 
that all control shifts to the initial step catalysed by HK. Despite PFK and 
ALD being reactions that are far from equilibrium or irreversible in 
Model I-A, they lose all control. When the metabolic intermediary 
involved in the feedback inhibition of the first step catalysed by HK is 
moved along the metabolic pathway (Models I-A, I–B, and I–C), control 
is redistributed. As previously established for linear reaction chains 
(Heinrich and Schuster, 1996), the enzyme activities that become 
involved inside the loop lose all control, regardless of their previous 
level of control in Model I-A. Also, in Fig. 2, another component of the 
regulatory circuits, the magnitude of the inhibition, is explored. 
Decreasing the inhibition constant (Ki), the control moves from HK to 
PFK and ALD. This, in turn, can result in significant differences in the 
resulting outcomes, changes in fluxes and concentrations, as illustrated 
in the figure by reducing the activities of the four enzymes. 

Concerning isoenzymes, Fig. 3 shows that adding isoenzymes for the 
first enzyme, with Kms covering a wide range of values, is an example of 
a design that can maintain control distribution, as well as steady-state 
concentrations and fluxes, when faced with variable concentrations of 
glucose, the substrate of the pathway. In this case, the two HKs in Model 
I-E with Kms of 0.04 mM (HK Type I) and 0.4 mM (HK Type II) enable 
control to be maintained over a wider range of values compared to the 
single HK in Model I-A, which has a Km of 0.4 mM. This is especially 
relevant when designing drug interventions that target specific iso
enzymes that are overexpressed in a particular subtype of tumours. 
Indeed, one of the mechanisms of escaping drug interventions is through 
the existence of isoenzymes that catalyse the same reactions, which can 
compensate for the inhibition of a specific isoenzyme. An interesting 
example is mutant isocitrate dehydrogenases (IDH1 and IDH2), which 
are the main source of the oncometabolite 2-hydroxyglutarate (2HG), 
contributing to oncogenesis. It has been described that the expression of 
IDH1 and IDH2 mutants is tightly orchestrated by Polo-like kinase 1 
(PlK1) during mitosis to ensure optimal production of 2HG (Saikiran 
Reddy et al., 2022). Furthermore, cancer cells switch between mutant 
IDH1 or IDH2 to acquire resistance to IDH inhibitors, ensuring 2HG 
production (Harding et al., 2018). Another illustrative example is the HK 
isoenzymes expression profile, which is described to change in 
cancerous transformation (Perrin-Cocon et al., 2021; Tseng et al., 2018) 
and to be linked to poor prognosis and acquisition of resistance to 
chemotherapy (Varghese et al., 2020; Marcucci and Rumio, 2021). 

Lastly, another illustrative example of a control determinant is a 
regulatory motif, commonly known as the Universal Method or Multisite 
Modulation (Kacser and Acerenza, 1993; Fell and Thomas, 1995), which 
is independent of all the determinants discussed thus far. This method 
enables the increase or decrease of a flux without affecting steady-state 
concentrations and control distribution. As seen in the last columns of 
the four panels in Fig. 1, a simultaneous proportional decrease or in
crease in all enzymatic activities will result in a proportional decrease or 

increase in the flux, without affecting concentrations or control 
coefficients. 

3.2. To what extent does the redistribution of control affect the 
predictions based on control coefficients? 

As discussed above, the control coefficients have a predictive value, 
although this is only entirely accurate for small changes. The conse
quence of the redistribution of control associated with large changes is, 
in turn, the loss of predictive value for the original control coefficients. 
While sacrificing predictive power, approximations made for large 
changes can still capture the main trends of the variations, which can be 
sufficient for applications such as the one proposed for identifying key 
drivers of metabolic adaptations. To consider the effect of large changes, 
different approaches have explored the sensitivity of metabolic variables 
to finite changes. These approaches utilize adaptations of control co
efficients that are based on different assumptions and can deal with large 
changes in enzyme activities (Small and Kacser, 1993a,b; Acerenza, 
2000; Acerenza and Ortega, 2007; Ortega and Acerenza, 2011; Acerenza 
et al., 2015). 

In our analyses, applied to mechanism-unknown perturbations, we 
use the inference strategy designed to identify key drivers. It is sum
marized in Eq. (7) and is based on the assumptions underlying Eqs. (5) 
and (6). At large changes, the performance in the identification of key 
drivers is due to the level of approximation implicit in these expressions. 
Given that control coefficients are assumed to be constant parameters 
and since control should be redistributed after a large perturbation, 
therefore, the accuracy of these expressions depends on the degree of 
control redistribution. Using kinetic Model I-A, as shown in Fig. 1a, we 
simulated large perturbations by increasing and decreasing the activity 
of each driver enzyme, which generated two steady state conditions for 
each perturbation (one before and one after the modification). Our 
objective was to assess how well the inference strategy identifies the 
driver and how this identification is affected by control redistributions. 
The procedure was applied for the same tenfold decreases and increases 
of enzyme activities applied in Fig. 1, and the result is illustrated in Fig. 4 
for the tenfold decrease of the enzyme activity of PFK in the Model I-A: 
1) exact values for initial steady-state concentrations, fluxes, and control 
coefficients (initial control coefficients) are solved (Fig. 1b, 1st column in 
all panels); 2) a large perturbation is introduced in the original model 
(decreasing the enzyme concentration of PFK ten times) and a new set of 
exact values for steady-state concentrations, fluxes, and control co
efficients (final control coefficients) is solved (Fig. 1b, 4th column of all 
panels); and 3) changes in enzyme activities (drivers) required to 
explain the changes in concentrations and fluxes are inferred by 
applying the inference strategy. For this last step, 1) lower and upper 
bounds were estimated for the initial domains of log fold changes of the 
final steady state with respect to the initial steady state for the previ
ously solved concentrations and reaction fluxes; and 2) all control co
efficients were fixed. The three upper panels and the three bottom panels 
show the same simulations, but with different levels of uncertainty. In 
the lower set of panels, a percentage of uncertainty (δ) equal to 15% was 
assigned to the exact values for fluxes and concentrations. In addition, in 
the upper set of panels, to represent the final domains as points on the 
figures and clearly display unexpected deviations, the uncertainty was 
reduced to a much smaller value (δ = 0.000001%), which allowed the 
final domains to be represented as very short intervals displayable as 
points. These points were applied to estimate the cumulative deviation 
from expected changes. As seen in the upper panels in Fig. 4, to compare 
the cumulative deviation from expected changes, a performance mea
sure denoted by η was applied in each analysis. Each performance 
measure quantifies the accumulated relative deviations in the predicted 
versus expected fold changes for all enzyme activities: 

η =

⃒
⃒
⃒
⃒

∑m
k

⃒
⃒Δlog vkpredicted

⃒
⃒ −

∑m
k

⃒
⃒Δlog vkexpected

⃒
⃒

∑m
k

⃒
⃒Δlog vkexpected

⃒
⃒

⃒
⃒
⃒
⃒ (12) 
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Although these points displayed in the upper panels could be directly 
solved without the need to use the inference approach based on LP, as 
shown in the lower panels, this approach is efficient and permits to 
analyse the sensitivity of the predictions to the uncertainty around these 
points, therefore providing a more complete understanding. While the 
upper panels tell us about the deviation from expected changes, the 
lower panels inform us about the degree of propagation of the uncer
tainty associated with each measured flux or concentration. A higher 
uncertainty propagation should be due to a higher sensitivity of the 
predictions to uncertainty. 

In the left and right panels (Fig. 4b), fixed control coefficients 
correspond to the initial control coefficients (before perturbation) and 
final control coefficients (after perturbation). In the central panels, an 
intermediate pattern is used (mean control coefficients), which is the 
result of calculating for each control coefficient the mean between the 

initial control coefficient and the final control coefficient: 

Cxi
vk
=
(

Cxi
vk

initial+Cxi
vk

final
)/

2 (13)  

CJj
vk
=
(

CJj
vk

initial+CJj
vk

final
)/

2 (14) 

Results obtained using Model I-A as a case example and perturbing 
only PFK enzyme activity showed that either initial control coefficients 
(Fig. 4a) or final control coefficients (Fig. 4b) permit to successfully 
identify PFK as the expected driver of the metabolic adaptation (blue 
arrow). Consistently, an approximate tenfold decrease is observed. The 
expected pattern of changes should be exactly zero for the rest of the 
enzyme activities. However, a slight deviation for HK and a strong de
viation for GPI (yellow arrow) is observed. Additionally, a higher 
propagation of uncertainty is observed for GPI activity in both scenarios, 

Fig. 4. Identification of key drivers in Model I-A. PFK decrease. Initial domains (grey) and final domains for log fold changes (logFC) in systemic concentrations 
(xi; i = 1, …,n) (green) and reaction fluxes (Jj; j = 1, …,m) (red), as well as in molecular enzyme activities (vk; k = 1, …,m) (orange). The fixed control coefficients 
applied are those estimated before the perturbation (initial control coefficients) (a), after the perturbation (final control coefficients) (b) and using the mean values 
(mean control coefficients) (c). Each η denotes the cumulative deviation (upper panels) and the blue arrow indicates the expected change, while the yellow arrow 
shows the more relevant unexpected deviation. A tenfold decrease in the level of PFK activity is expected based on the pattern of fold changes measured in all 
concentrations and fluxes. Each measured fold change in concentrations and fluxes is estimated as a log fold change of the value after the perturbation with respect to 
the value before the perturbation, with a correction factor δ that involves associating a degree of uncertainty around each calculated value (±δ), which is used to 
estimate lower and upper bounds in initial domains. Two groups of problems are solved: 1) with δ = 15% (bottom set of panels) and 2) with an adjusted δ (δ =
0.000001%) (upper set of panels). All fold changes in fluxes were measured, but only the lower and upper bounds of the initial domain for changes in HK were 
defined. The remaining reaction fluxes for GPI, PFK and ALD do not require to be restricted to the measured values because are interdependent (JHK = JGPI = JPFK =

JALD). These remaining fluxes and all enzyme activities were restricted to a range of − 4 to +4. See Table S1 for detailed initial and final domains. 
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when the uncertainty (δ) is set to 15% for concentrations and fluxes. The 
consequence is a higher difficulty (requiring a reduction of the value of 
δ) in displaying the estimated fold change as a point. We hypothesize 
that these deviations and the increased propagation of uncertainty, 
which are consequences of control redistribution during the nonlinear 
adaptation to the perturbation, can be avoided using mean control co
efficients. According to this hypothesis, using mean control coefficients 
(Fig. 4c), we successfully identified PFK as the only driver (blue arrow) 
and significantly reduced the cumulative deviation (η). 

Although the degree of deviation is lower, these observations are 
generally consistent in the analyses for identification of key drivers in 
Figs. S1 and S2, where the effects of changing the concentrations of HK, 
GPI, and ALD are described. The lower degree of deviation is for GPI 
perturbation, which has very low flux control coefficients (Fig. 1) and 
therefore exhibits a lower degree of control redistribution. This situation 
is taken to the extreme when we consider a proportional decrease or 
increase in all enzymatic activities at the same time, as shown in Fig. S3. 
Multisite modulation of all enzyme activities is associated with reduced 
control redistribution, which is null when all activities are changed in 
the same proportion (Kacser and Acerenza, 1993; Fell and Thomas, 
1995). 

Finally, we repeated the same analyses using the larger and more 
complex Model II, which covers the central metabolism of Escherichia 
coli (Millard et al., 2017). These analyses produced results that are 
consistent with those obtained using the simpler Model I. As shown in 
Fig. 5 and S6, both a tenfold increase in pyruvate kinase (PYK) activity 
and a simultaneous twofold decrease in the levels of PFK, PYK, pyruvate 
dehydrogenase (PDH) and glutamate dehydrogenase (GDH) activities, 
respectively, were consistently inferred (blue arrows). However, unex
pected deviations (yellow arrows), along with a high propagation of 
uncertainty, are also observed. As noted in the figures, where the control 
coefficients are ordered according to their magnitudes, this is a tendency 
for activities with lower flux control coefficients. Although a slightly 
different order is obtained for concentration control coefficients, the 
same conclusion can be drawn (Figs. S5 and S7). All of this suggests that 
in practical exercises for identifying key drivers, a good strategy might 
be, as a first step, to rule out those enzyme activities associated with low 
control distribution, such as GPI in Model I-A. As shown in Fig. 5c, S5c, 
S6c and S7c, this successfully avoids any situation of deviation or high 
propagation of uncertainty, improving the quality of the analysis. 

4. Discussion 

GSMMs (Ebrahim et al., 2013; Wang et al., 2018; Heirendt et al., 
2019) comprise a family of models that account mainly for stoichiom
etry. Although they can integrate various omics data, they do not take 
into account kinetic laws and regulation, unlike kinetic models such as 
Models I and II. GSMMs have succeeded in identifying gene knock-out 
targets, in addition to up- or downregulations, required as part of 
metabolic manipulation strategies (Zhang and Hua, 2015; Gu et al., 
2019; Fang et al., 2020; Razaghi-Moghadam and Nikoloski, 2021; 
Maranas and Zomorrodi, 2016). In addition, they have even been 
applied to unveil the important role of post-transcriptional events, such 
as regulation of enzyme activity by covalent modifications (e.g., phos
phorylation, methylation, acetylation), beyond changes in enzyme 
expression (Katzir et al., 2019). Computation of metabolic control co
efficients, although restricted to a subnetwork, can be complementary to 
GSMMs to unveil the effect of these manipulations and to quantify the 
control. Indeed, MCA has demonstrated that the most effective approach 
is to target enzymes with high control coefficients, because less con
centrations of inhibitors will be required to achieve the desired effect 
(Cascante et al., 2002; Moreno-Sanchez et al., 2008). For example, using 
MCA, glutathione S-transferase has been identified as an attractive 
co-target for enhancing the effectiveness of Sorafenib, an approved drug 
for treating hepatocellular carcinoma (Mishra et al., 2018). However, as 
analysed in this paper, when facing metabolic adaptations to substantial 

changes, such as those resulting from drug administration, precautions 
must be taken. On one hand, we have control redistribution, which 
becomes more pronounced as the disturbance becomes larger and more 
complex. On the other hand, perhaps more importantly, there is the 
partial knowledge of control determinants involved in metabolic regu
lation, such as negative feedback regulation circuits or the presence of 
isoenzymes. 

Regarding the degree of control redistribution, as explored in Fig. 1, 
the accuracy of control coefficients in predicting changes is limited in 
some cases to relatively small changes in enzyme concentrations, as 
significant enzyme changes result in the redistribution of control coef
ficient values along the metabolic pathway. Accordingly, as explored 
first in the simpler Model I-A (Fig. 4, S1, S2 and S3), and also in the more 
complex Model II (Fig. 5, S5, S6 and S7), the subsequent identification of 
key drivers sustaining metabolic adaptations may encounter unexpected 
deviations, along with a high propagation of uncertainty, in particular 
for activities associated with low control coefficients, as emphasized in 
figures for Model II. As mentioned before, this significant propagation of 
uncertainty is likely due to a higher sensitivity of the predictions to 
uncertainty. To address these bottlenecks, we have developed a suc
cessful workflow that involves the use of mean control coefficients and 
ruling out enzyme activities that are generally associated with low 
control coefficients, such as epimerases and isomerases, which are often 
near equilibrium. This makes sense considering that these are low-value 
control coefficients, and therefore it is unlikely that they have been the 
drivers of a mechanism-unknown perturbation. The use of mean control 
coefficients should account for the system’s behaviour during the tran
sient state between the initial and final stages, as described by the initial 
and final control coefficients, respectively. Assuming that both the 
initial and final control coefficients are available, this approach should 
extend the applicability of the proposed workflow beyond simply 
considering the initial or final set of control coefficients. The applica
bility of the workflow also depends on having available measurements 
of fluxes and concentrations at two steady states, along with fixed values 
for control coefficients. This application of the workflow should be 
viewed as a proof of concept, as we derive the constant control co
efficients and known fold changes from complete kinetic models, which 
are assumed to accurately represent the actual system, with all kinetic 
control determinants implicitly contained in the rate laws and regula
tory circuits of the model. As long as we have a kinetic model capable of 
adjusting maximum velocities (i.e., enzyme activities) to match the 
measured concentrations and fluxes, our approach may not offer addi
tional benefits when the goal is to detect changes in enzyme activities. It 
was designed for use in scenarios of uncertainty about the kinetic 
mechanisms, where sets of control coefficients were estimated using 
sampling methods (de Atauri et al., 2021), and also in scenarios of un
certainty about measurements of fluxes, concentrations or enzyme ac
tivities. The approach applied in this study is applicable even if some of 
the fold changes required for a single solution are not strictly defined. A 
partial set of fold changes might suffice to identify some of the unknown 
variables. As shown in Fig. S4, the decrease in PYK activity continues to 
be detected, even when the analysis in Fig. 1 is repeated with the fold 
change for G6P ignored. In terms of the sensitivity of the predictions to 
uncertainty, the analysis of Model II demonstrates that the propagation 
of uncertainty is low enough to permit the application of the workflow in 
central carbon metabolism scale models. In an ideal context, emerging 
technologies may allow for the experimental measurement of control 
coefficients. On the one hand, metabolomics methods facilitate 
large-scale measurement of changes in the concentrations of metabolites 
(Johnson et al., 2016). On the other hand, continuous advancements in 
13C-based Metabolic Flux Analysis could provide us with reliable flux 
measurements (Antoniewicz, 2021). Although the scale is currently far 
from that of GSMMs, these data could be employed to provide a direct 
measurement of control coefficients by applying established strategies in 
MCA, such as co-response analysis (Hofmeyr and Cornish-Bowden, 
1996). This approach does not require information about the kinetic 
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Fig. 5. Identification of key drivers in Model II. PYK increase. Initial domains (grey) and final domains for log fold changes (logFC) in molecular enzyme ac
tivities (vk; k = 1, …,m) (orange). The fixed control coefficients applied are the mean values (mean control coefficients). The enzyme activities are ordered according 
to the magnitudes of the flux control coefficients. η denotes the cumulative deviation (a) and the blue arrow indicates the expected change, while yellow arrows show 
the more relevant unexpected deviations. A tenfold increase in the level of PYK activity is expected based on the pattern of fold changes measured in all concen
trations and fluxes. Three scenarios are presented: 1) with an adjusted δ (δ = 0.32567242%) (a), 2) with δ = 5% (b), and 3) with δ = 5% and the fold changes for 
enzyme activities catalysing reactions close to equilibrium (ρ > 0.5) having lower and upper bounds set to zero in the initial domains (c). Detailed initial and final 
domains for enzyme activities, along with those for concentrations and reaction fluxes, can be found in Table S2. 
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mechanisms and is based on experimental measurements. As an 
example, Model I was originally developed to compare calculated con
trol coefficients from those derived experimentally by co-response 
analysis (Puigjaner et al., 1997). 

Regarding the partial knowledge of control determinants in GSMMs, 
we have analysed the effects of a heterogeneous list of determinants, 
including the distance to the equilibrium, the degree of enzyme activity 
saturation, metabolite feedback inhibition loops, presence of iso
enzymes, and multisite modulations, using Figs. 1–3. Other analyses 
may serve to illustrate the importance of accurately identifying these 
control determinants. Considering additional input and output reactions 
can have a significant impact on the control distribution (de Atauri et al., 
2002), especially if they involve irreversible non-regulated steps, such as 
exchange fluxes with fixed values. Therefore, an appropriate selection of 
inputs and outputs is required. Millard et al. (2017) developed his model 
(Model II) to investigate the impact of metabolite-enzyme interactions 
on the regulation of metabolism, revealing that kinetic characteristics, 
such as modulation of enzyme activity by allosteric effectors and feed
back/feedforward loops of metabolite inhibition/activation, may be just 
as important as network stoichiometry in determining the key players in 
metabolic regulation. Another example concerns metabolic adaptations 
that involve sensitive gene regulatory loops and hormone-based regu
lations. There are enzymes that acquire additional non-metabolic func
tions (known as moonlighting functions) that are not accounted for in 
the existing metabolic models. In this context, it has been proposed that 
a feedback mechanism exists between cellular metabolism and gene 
expression, whereby glycolytic and gluconeogenic enzymes in tumour 
cells acquire additional functions and directly regulate gene expression 
(Bian et al., 2022). 

On the contrary, some mechanisms could serve to maintain control, 
as we have seen with isoenzymes. Here, we hypothesize that the pattern 
of isoenzymes expressed in a cell may result from evolutionary optimi
zation under the selective pressure of maintaining metabolic flexibility 
and adapting to different environments with varying nutrient avail
ability. For instance, we used Model I-A (which includes only HK II 
isoenzyme) and Model I-E (which includes HK I and HK II isoenzymes 
catalysing the same reaction) to explore the role of isoenzyme expres
sion patterns in maintaining sustained control over metabolic pathway 
flux. The results obtained, illustrated in Fig. 3, reveal that HK 

isoenzymes could play a pivotal role in maintaining control coefficient 
distribution, intermediate metabolite homeostasis, and sustained 
glycolytic flux over a wide range of glucose concentrations. This would 
ensure optimal adaptation to different environmental challenges and 
resistance to drug interventions such as those based on 2-deoxyglucose. 
Finally, there are also enzymatic kinetic mechanisms that have been 
proposed to help maintain control in the face of perturbations, such as 
the so-called paradoxical or sustained control. This is associated with 
enzymes that exhibit allosteric kinetics, like glucokinase (de Atauri 
et al., 2001; Ortega et al., 2008). 

In summary, we demonstrate that identification of kinetic de
terminants is essential for the inference of key enzymes that drive 
metabolic adaptations. Moreover, our MCA-based analysis also 
demonstrated that the inference of these putative drug targets can be 
dramatically improved using mean control coefficients and excluding 
those enzyme activities that are associated with low control coefficients. 
We envision that by incorporating MCA into GSMM workflows, even 
with MCA focused on only one subpart of the metabolism analysed by 
GSMM, researchers can obtain a more comprehensive understanding of 
metabolic regulation. We anticipate that this combined approach will 
enable a more thorough exploration of biological systems, boosting the 
development of effective treatments and advancing the fields of systems 
medicine and biotechnology. 
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Appendix 

Equations and parameters in model I-A  

1 vHK = Vmax Glc
Glc (1+G6P

Ki )+Km
,Vmax = 63 nmol min− 1mg prot− 1,Glc = 10 mM,Km = 0.4019 mM,Ki = 0.111 mM.  

2 vGPI =

Vmaxf ×G6P
Kms − Vmaxr×F6P

Kmp
1+G6P

Kms+
F6P
Kmp

,Vmaxf = 12474 nmol min− 1mg prot− 1,Vmaxr = 18125 nmol min− 1mg prot− 1,Kms = 0.48 mM,Kmp = 0.272 mM, .  

3 vPFK =
Vmaxf

F6P
K0.5s (1− FbP

F6P×K) (
F6P

K0.5s+
FbP

K0.5p)
h− 1

1+( F6P
K0.5s+

FbP
K0.5p)

h ,Vmaxf = 1115.53 nmol min− 1mg prot− 1,K0.5s = 0.061 mM,K0.5p = 0.000804 mM,h = 1.4744,K = 21724, .  

4 vALD = Vmax Glc
Glc (1+G6P

Ki )+Km
,Vmax = 1500 nmol min− 1mg prot− 1,Km = 0.1297 mM. 

Equation for the first step in model I–B  

1 vHK = Vmax Glc
Glc (1+F6P

Ki )+Km
,Vmax = 63 nmol min− 1mg prot− 1,Glc = 10 mM,Km = 0.4019 mM,Ki = 0.0410609 mM. 

Ki is adjusted to maintain the steady-state ratio of [inhibitor] to Ki, while 
also keeping the apparent Km and Vmax values the same as those in the 
original Model I-A. 

Equation for the first step in model I–C  

1 vHK = Vmax Glc
Glc (1+FbP

Ki )+Km
,Vmax = 63 nmol min− 1mg prot− 1,Glc = 10 mM,Km = 0.4019 mM,Ki = 0.0116912 mM. 
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Ki is adjusted to maintain the steady-state ratio of [inhibitor] to Ki, while 
also keeping the apparent Km and Vmax values the same as those in the 
original Model I-A. 

Equation for the first step in model I-D  

1 vHK = Vmax Glc
Glc+Km,Vmax = 46.7878 nmol min− 1mg prot− 1,Glc = 10 mM,Km = 0.298477 mM. 

Km and Vmax are adjusted to match the same apparent values as in 
Model I-A. 

Equation for the first step describing the two isoenzymes in model I-E  

1 vHK = 0.75× Vmax Glc
Glc (1+G6P

Kia)+Kma
+ 0.25× Vmax Glc

Glc (1+G6P
Kib)+Kmb

,Vmax = 61.6125 nmol min− 1mg prot− 1,Kma = 0.04 mM,Kmb = 0.4 mM,Kia =

0.111 mM,Kib = 0.111 mM. 

To produce three additional model variants – models I-A′, I–B′, and I–C’ – with reduced inhibition constants (Ki), these are divided by 100 to Ki =
0.00111 mM, Ki = 0.000410609 mM, and Ki = 0.000116912 mM, respectively, therefore multiplying by 100 the original steady state [inhibitor]/Ki 
ratio in HK. To ensure that the Vmax and Km values for HK in the three variants matched those of model I-A, Vmax are set to 1668 nmol min− 1 mg 
prot− 1, and Km are set to 10.6408 mM. 

Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.biosystems.2023.104984. Multimedia component 1 contains 
Figs. S1 to S7; Multimedia component 2 contains Table S1; and Multimedia component 3 contains Table S2. 
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Martín-Bernabé, A., Balcells, C., Tarragó-Celada, J., Foguet, C., Bourgoin-Voillard, S., 
Seve, M., Cascante, M., 2017. The importance of post-translational modifications in 
systems biology approaches to identify therapeutic targets in cancer metabolism. 
Curr. Opin. Syst. Biol. 3, 161–169. https://doi.org/10.1016/j.coisb.2017.05.011. 

Millard, P., Smallbone, K., Mendes, P., 2017. Metabolic regulation is sufficient for global 
and robust coordination of glucose uptake, catabolism, energy production and 
growth in Escherichia coli. PLoS Comput. Biol. 13, e1005396 https://doi.org/ 
10.1371/journal.pcbi.1005396. 

Mishra, M., Jayal, P., Karande, A.A., Chandra, N., 2018. Identification of a co-target for 
enhancing efficacy of sorafenib in HCC through a quantitative modeling approach. 
FEBS J. 285, 3977–3992. https://doi.org/10.1111/febs.14641. 

Miskovic, L., Hatzimanikatis, V., 2010. Production of biofuels and biochemicals: in need 
of an ORACLE. Trends Biotechnol. 28, 391–397. https://doi.org/10.1016/j. 
tibtech.2010.05.003. 

Moreno-Sanchez, R., Saavedra, E., Rodriguez-Enriquez, S., Olin-Sandoval, V., 2008. 
Metabolic control analysis: a tool for designing strategies to manipulate metabolic 
pathways. J. Biomed. Biotechnol. 2008, 597913. 

Nilsson, A., Nielsen, J., 2016. Metabolic trade-offs in yeast are caused by F1F0-ATP 
synthase. Sci. Rep. 6, 22264 https://doi.org/10.1038/srep22264. 

Ortega, F., Acerenza, L., 2011. Modular metabolic control analysis of large responses in 
branched systems - application to aspartate metabolism. FEBS J. 278, 2565–2578. 
https://doi.org/10.1111/j.1742-4658.2011.08184.x. 

Ortega, F., Cascante, M., Acerenza, L., 2008. Kinetic properties required for sustained or 
paradoxical control of metabolic fluxes under large changes in enzyme activities. 
J. Theor. Biol. 252, 569–573. 

Perrin-Cocon, L., Vidalain, P.-O., Jacquemin, C., Aublin-Gex, A., Olmstead, K., 
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