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A B S T R A C T

In this study, we aimed to quantify the presence of microplastics (MPs) in the stomachs of large pelagic fish
(swordfish, Xiphias gladius, Linnaeus, 1758) sampled in the western Mediterranean Sea, and assess temporal
trends (2011–2012 vs. 2017–2019) in MP ingestion. MPs were extracted from stomachs and characterized by
μ-Fourier transform infrared spectroscopy. Results highlighted the ingestion of MP in 39 out of 49 stomachs
analysed. Ingested MPs consisted mostly of small (<1 mm) fibers (88.6 %, mean ± standard deviation = 2.5 ±

6.1 particles per stomach), with a greater frequency of occurrence (FO) in the second period (FO = 90 %, 3.3 ±

8.0 particles per stomach). The predominant colours were purple, black and blue, and polyethylene terephthalate
was the most frequently detected polymer. These results are crucial for the development of management actions
aimed at the conservation of swordfish in the Mediterranean Sea and the prevention of health risks to humans.

1. Introduction

Marine debris, particularly plastic pollution, has emerged as a
pressing concern for the health of marine ecosystems worldwide (Der-
raik, 2002; Gall and Thompson, 2015; Pelamatti et al., 2021). In
response to this growing issue, the European Marine Strategy Frame-
work Directive (MFSD) has identified the monitoring of marine debris in
the Mediterranean Sea as an imperative objective (Galgani et al., 2013,
2014). Plastic debris, composed primarily of synthetic polymers, are
abundant in the oceans due to their widespread use, cost-effectiveness,
and durability (Geyer, 2020). Recent data indicates that global plastic
production waste has reached staggering levels, reaching 6.3 billion
tonnes in recent years (Galgani et al., 2015; Geyer, 2020; Du et al., 2022;
Xiang et al., 2022). Consequently, plastics pose a persistent and signif-
icant threat to the environment, particularly to marine ecosystems
(Jambeck et al., 2015; Peng et al., 2021).

In the marine environment, plastics undergo degradation through
the combined effects of photolytic, mechanical, and biological pro-
cesses, breaking down into meso- (25 mm to 5 mm), micro- (5 mm to 1

μm), and nano- (1 μm to 1 nm) particles (GESAMP, 2019). Anthropo-
genic micro-litter comprises microplastics and particles of modified
cellulose (cellulose combined with pigments) (Lusher et al., 2020;
hereafter microplastics). These particles can act as vectors for chemical
contaminants and pathogens (da Costa, 2018; Zantis et al., 2021; Eriksen
et al., 2023). Microplastics (MPs) are defined as particles smaller than 5
mm, which encompass both fossil-based and bio-based polymers (Arthur
et al., 2009; ECHA, 2020; Lusher et al., 2020). Depending on various
factors (i.e., size, density, abundance, colour), MPs are bioavailable to a
wide range of marine species at different trophic levels, including deep-
sea fish species (Wright et al., 2013; Soliño et al., 2022), either through
direct (Gouin, 2020) or indirect ingestion of contaminated prey (Nelms
et al., 2018).

The presence of ingested MPs has been observed in several Medi-
terranean organisms, including marine turtles, teleosts, elasmobranchs,
cetaceans, seabirds and invertebrates (Anastasopoulou et al., 2013;
Deudero and Alomar, 2014; Pennino et al., 2020; De Pascalis et al.,
2022). Furthermore, there is clear evidence of the negative effects of MP
accumulation on fish, including oxidative damage, tissue damage, DNA
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damage, intestinal damage, behavioural changes, reduced swimming
speed, growth reduction, dysbiosis, breeding impairment, disrupted
digestion, inflammation, altered gene expression, neurotoxicity, repro-
ductive organ damage, and mortality (Bhuyan, 2022).

While there is existing information on MP ingestion in small and
medium size fish (Rios-Fuster et al., 2019; Garcia-Garin et al., 2019;
Pennino et al., 2020), there remains a lack of a comprehensive overview
over time, particularly regarding large teleost species that in turn, prey
on small and medium fish. For instance, Romeo et al. (2015) investi-
gated the presence of MPs in the stomachs of swordfish (Xiphias gladius,
Linnaeus, 1758) and Atlantic bluefin tuna (Thunnus thynnus), but only
during a sampling period of two years, and reported only 9 MPs within
56 swordfish individuals.

The bioaccumulation of MPs in prey increases the likelihood of
finding MPs in the gastrointestinal tract of apex predators, potentially
leading to higher concentrations of MPs in their tissues compared to
non-predatory fish and posing a risk for humans through consumption
(Sequeira et al., 2020). Thus, monitoring studies on MP accumulation
are crucial for understanding the extent of environmental contamination
and its impact on marine ecosystems. This information will allow
effective mitigation strategies to be designed.

Concretely, swordfish is considered a good candidate to monitor
ecosystem changes (e.g., diet changes, human-driven changes, among
other) in the western Mediterranean Sea due to its generalist and
opportunistic feeding behaviour (Navarro et al., 2017; Fernández-Cor-
redor et al., 2023). Swordfish characterized by its elongated, round body
and exceptional size, presents a high commercial value in the

Mediterranean Sea (Collette et al., 2022). While they play a pivotal role
in the marine ecosystem as apex predators, helping to maintain the
balance of marine food webs and contributing to the overall health and
stability of oceanic environments, swordfish populations have suffered
from significant overfishing in the region (Righi et al., 2020), being
considered Near Threatened by the IUCN (Di Natale et al., 2011).
Despite the Mediterranean basin represents <10 % of the swordfish
global range, catch levels are relatively high and comparable to those of
larger areas such as the North Atlantic (Di Natale et al., 2011). This
study aims to address two primary objectives: (1) to quantify MPs
extracted from the stomachs of swordfish caught in the western Medi-
terranean Sea, analysing temporal differences in MP ingestion over two
sampling periods (2011–2012 and 2017–2019), and (2) to characterize
the size, colour, shape and polymer type of each MP detected.

2. Material and methods

2.1. Study area and sampling

All samples were collected from specimens of swordfish caught in the
western Mediterranean Sea, using commercial drifting longlines, during
two different periods: 2011–2012 (n = 26) and 2017–2019 (n = 23)
(Fig. 1 and Table S1). After each catch, the fish were eviscerated, and the
stomachs were collected and frozen until further laboratory analysis,
and the total body length was measured (Table S1).

Fig. 1. Map of the study area showing the catch sites of the 49 swordfish from the western Mediterranean Sea, as well as the period of collection of each individual.
The image of the swordfish was made by Àlex Mascarell.
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2.2. Microplastic analysis

The fish dissection and identification of MPs were based on the
protocol developed by Lusher and Hernandez-Milian (2018). Firstly,
each stomach was weighted (Table S1). After this, two nested metal
sieves (5 mm and 1 mm) were employed to separate the stomach con-
tents and to detect MPs larger than 1 mm. Utilizing the sieve as a sup-
port, the stomachs were individually opened using scissors, and the
fullness index of each stomach was recorded (from empty (0 %) to full
(100 %), Table S1, Alomar and Deudero, 2017). Subsequently, they were
rinsed with Milli-Q water to cleanse the inner surface from partially
digested food and potential MPs. The liquid was then gathered in glass
beakers and covered with aluminium foil. Depending on the volume of
solution collected, either 50 or 100 ml of H2O2 16 % was promptly
added to the solution. The beakers were subsequently incubated at 60 ◦C
for a duration ranging from three to five days. H2O2 was added as
necessary to digest all the organic matter present in the beakers until
obtaining a transparent to slightly yellow solution containing water,
H2O2, calcareous fragments, and candidate MPs. Once the solution had
been digested, each sample was vacuum filtered using fiber glass filters
(pore size 1.2 μm) and stored in Petri dishes sealed with Parafilm.

2.3. Microplastic characterization and μFT-IR analysis

Glass fiber filters were scrutinized using a Leica Microsystems ste-
reomicroscope (model MZ6) to identify potential MPs, categorizing
them as fibers, fragments, or films. Recovered potential MPs were
documented and characterized, specifically regarding their colour and
length, which was measured as the distance between the farthest points
on each particle. Subsequently, each potential MP was delicately
extracted from the glass fiber filter using metal tweezers. It was then
transferred onto a calcium fluoride (CaF2) slide and covered with
another slide composed of the same material for the purpose of chemical
composition characterization.

Chemical characterization was performed at the Scientific and
Technological Centres of the Universitat de Barcelona (CCiTUB) using
micro-Fourier-Transform Infrared (μFT-IR) spectroscopy, conducted on
a Thermo Scientific Nicolet IN10MX spectrometer equipped with an
imaging microscope. This analysis aimed to verify the anthropogenic
origin of the particles. After conducting background scans, transmission
spectra were acquired, averaging 64 scans per particle, with a spectral
resolution of 4 cm− 1 (ranging from 4000 to 850 cm − 1). The infrared
spectra were subsequently processed and analysed for polymer identi-
fication using the OMNIC Picta software, which had access to 14 refer-
ence libraries such as the Hummel Polymer Sample Library, Polymer
Laminate Film, Sigma Biological Sample Library, Georgia State Crime
Lab Sample Library, Aldrich Condensed Phase Sample Library, Aldrich
Vapor Phase Sample Library, OTC Pharmaceuticals Microscope, Or-
ganics by RAMAN Sample Library, and HR Nicolet Sampler Library,
among others.

2.4. Quality assurance/quality control (QA/QC) protocol

A rigorous quality assurance and quality control (QA/QC) protocol
was meticulously adhered at each stage of sample handling. The stom-
achs were carefully rinsed with Milli-Q water prior to their dissection.
Within the laboratory setting, all aspects of sample processing, encom-
passing reagent preparation and filtration procedures, were rigorously
conducted within a laminar flow hood that maintained positive pres-
sure. To further ensure the absence of contamination, laboratory blanks,
consisting of exposed glass fiber filters, were positioned at every work-
station to capture potential airborne fiber contaminants. Personnel were
required to always wear nitrile gloves and white cotton laboratory coats
during sample handling. Furthermore, prior to use and between sample
processing, all materials such as sieves, glass containers and tweezers
underwent meticulous rinsing with Mili-Q water.

2.5. Control correction

MP contamination in blank samples was confirmed by μFTIR
(Table S2). One cellophane particle of contamination was detected per
control sample (Table S2). Consequently, all particles associated with
this polymer type were excluded (n = 1). The means of the remaining
polymer types were <0.5 (cellulose polyethylene, and polyamide (x‾ =
0.3 particle per processed sample), and therefore, they were retained in
the dataset. A total of 54 out of 200 candidate microplastics (27 %) were
analysed through μFT-IR. Following these adjustments, it was deter-
mined that 70 % of the 54 particles analysed (38 particles) by μFT-IR
exhibited a confirmed anthropogenic origin, as determined by their
chemical composition. However, initially, a total of 200 potential par-
ticles were recovered from all samples. To extrapolate the control data to
the entire dataset, the proportion of particles discarded by μFT-IR (30 %)
was proportionally subtracted for each sample (n = 60 discarded
particles).

2.6. Statistical analysis

Since the data did not follow a normal distribution nor exhibited
variance homogeneity (Shapiro-Wilk and Levene tests, respectively), the
abundance of MPs in swordfish was modelled using Generalized Linear
Models (GLM) with a negative binomial error distribution. The explan-
atory variables used for building the models included: stomach weight
(SW), total length (TL), fullness index of the digestive tract (from empty
(0 %) to full (100 %) (Alomar and Deudero, 2017), and period of
collection (2011–2012 or 2017–2019). Models were compared with the
Akaike’s Information Criterion corrected for small sample sizes (AICc;
Hurvich and Tsai, 1989). Types of ingested MPs (class sizes, colours,
shape and polymer types) were compared between the two sampling
periods using the Mann-Whitney test. The significance level was set at p
< 0.05, and all analyses were performed using R version 4.2.2 (R Core
Team, 2022).

3. Results

3.1. Microplastic quantification for each period

A total of 140 MP particles were retrieved in 39 (79.6 %) of the 49
swordfish stomachs analysed (mean ± standard deviation (SD) = 3.0 ±

6.3 particles/stomach; 2011–2012: 1.7 ± 2.1 particles/stomach and
2017–2018: 4.2 ± 8.8 particles/stomach) (Table 1).

GLM outputs indicated that period and total length were not signif-
icantly related with MP abundance. Conversely, fullness index and
stomach weight were related: MP abundance increased when i) fullness
index increased and ii) stomach weight decreased (Table 2 and Table 3).

Table 1
Biological parameters (mean ± standard deviation), frequency of occurrence
and abundance (total number or mean ± standard deviation) of ingested
microplastics (MPs) in swordfish from the western Mediterranean Sea.

2011–2012 2017–2019 Total

Number of individuals
examined

26 23 49

Fish length (cm) 91.2 ± 15.2 83.4 ± 12.1 87.7 ±

14.5
Stomach weight (g) 189.1 ±

117.9
158.7 ±

59.6
166.3 ±

80.2
Fullness Index (%) 43.3 ± 27.1 47.6 ± 32.2 47.2 ±

31.6
Number of individuals
containing MP

18 21 39

MP frequency of occurrence (%) 70 90 80
Number of MPs 43 97 140
Number of MPs per individual 1.7 ± 2.1 4.2 ± 8.8 3.0 ± 6.3
MP length (μm) 783 ± 691 724 ± 500 742 ± 564

M. Torresi et al.
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3.2. Microplastic characterization (size, colour, shape and polymer type)

The proportion of size class, colour, shape and polymer type cate-
gories did not differ among sampling periods (Mann-Whitney tests, p >

0.05). MP sizes ranged from 114 to 3969 μm (mean ± SD = 783 ± 691
μm) in 2011–2012 and from 145 to 3244 μm (mean ± SD = 724 ± 500
μm) in 2017–2019. In addition, two fibers measuring 14.81 mm and
13.97 mm were also classified as MPs. Particles retrieved in each period
were grouped into three size-classes: Class A (100 to 500 μm), Class B
(500 to 1000 μm) and Class C (> 1000 μm) (Fig. 2). Purple (32.9 %),
black (23.6 %) and blue (16.4 %) were the predominant MP colours in
both periods of sampling, while green and orange MPs were retrieved
only in the second period. Black was the dominant colour in the first
period and purple in the second (Fig. 2). Fibers were the most frequent
shape found (88.6 %, mean ± SD = 2.5 ± 6.1 particles/stomach), fol-
lowed by fragments (11.4 %, mean ± SD = 0.3 ± 0.6 particles/stom-
ach). In both periods the abundance of fibers was about 70 % of the total
MPs, as shown in Fig. 2.

Anthropogenic origin of 38 particles was confirmed through chem-
ical characterization by μFT-IR spectrometry (Fig. 3). Eight different
polymers were identified, being polyethylene terephthalate (PET) by far
the most common polymer (61 %). Three polymers were retrieved in
both periods (polyethylacrylate:acrylamide, polyacrylonitrile and cel-
lulose), while others were found only in one of the two. For instance,
polystyrene:acrylonitrile was found in stomachs from the first period
and polyethylene:vinyl acetate/vinyl chloride, polypro-pylene and
polyester, tere&isophthalate were found in stomachs from the second
period.

Table 2
The variables included in the models were: stomach weight (SW), total length
(TL), fullness index (FI), and period of collection (Period). The best-fit model is
shown in bold. df = number of parameters; AICc wt = AICc weights.

Number Model df AICc AICc wt

1 FI þ SW þ Period 4 205 0.34
2 FI + SW 3 207 0.18
3 FI + FL + Period 4 208 0.10
4 FI + FL + SW + Period 5 208 0.10
5 FI + FL 3 208 0.08
6 FI + FL + SW 4 209 0.06
7 FI + Period 3 209 0.05
8 FL + Period 3 210 0.03
9 FL 2 211 0.02
10 FI 2 212 0.01
11 FL + SW + Period 4 212 0.01
12 Period 2 213 0.01
13 SW + Period 3 213 0.01
14 FL + SW 3 213 0.01
15 SW 2 218 0.00
16 NULL 1 218 0.00

Table 3
Summary of the outputs of the best-fit GLM, including the variables “Fullness
index”, “Stomach weight” and “Period”. *Statistically significant.

Term Coefficient
estimate

Standard
error

t value Pr(>|
t|)

Intercept 0.73 0.50 1.47 0.15
Stomach weight − 0.01 0.00 − 2.28 0.02*
Fullness index 0.02 0.01 2.73 0.01*
Period
(2017–2019)

0.69 0.36 1.93 0.06

Fig. 2. Variability of size (mm), colour, shape and polymer composition of the MPs retrieved in stomachs from period 1 (2011− 2012) and period 2 (2017–2018
- 2019).

M. Torresi et al.
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4. Discussion

In this study, it was investigated the prevalence and temporal pat-
terns (2011–2019) of MPs found in the stomachs of 49 swordfish in-
dividuals from the western Mediterranean Sea. Additionally, it was
assessed the size, colour, shape, and polymer type of each identified MP
particle.

While prior studies have addressed MP ingestion by large pelagic fish
across global waters (Li et al., 2022; Justino et al., 2023; Pereira et al.,
2023), only one such study, to our knowledge, has specifically focused
on the Mediterranean Sea (Romeo et al., 2015) (Table 4). It should be
noted that the different methodologies employed in each study can
affect the reported results (Table 4). Li et al. (2022) analysed MP pres-
ence in various tissues (gills, oesophagus, stomach, intestinal tract, and
muscle) of pelagic dolphinfish (Coryphaena hippurus) specimens from the
eastern Pacific Ocean, reporting a 100 % occurrence rate, exceeding the
80 % noted in the current study. However, within stomach contents,
they reported an average concentration of 3.4 MPs per individual, which
is similar to finding of 3 MPs per individual of this study. Justino et al.
(2023) detected 93 MPs within 9 yellowfin tuna (Thunnus albacares)

specimens, indicating a 100 % occurrence rate, with an average of 10.3
MPs per individual, a magnitude higher than the current study obser-
vations. Pereira et al. (2023) examined MP presence in the gastroin-
testinal tracts of 7 large pelagic fish from 4 distinct species collected
from the middle Atlantic Ocean and along the South American Atlantic
coast, revealing a 100 % occurrence rate and an average concentration
of 9.3 MPs per individual, exceeding the current findings. Romeo et al.
(2015) assessed MP ingestion across three species of large pelagic fish
(X. gladius, Thunnus thynnus, and Thunnus alalunga) within the central
Mediterranean Sea. They reported 9 MPs within 56 swordfish in-
dividuals, equating to a mean of 0.16 MPs per individual, with an
occurrence rate of 12.5 %, values lower than those documented herein.
Generally, MP ingestion rates among large pelagic fish from the Atlantic
Ocean surpassed those observed in the Pacific Ocean and Mediterranean
Sea, potentially reflecting regional MP densities and the influence of
species-specific factors. Conversely, the elevated numbers observed in
the current study compared to those from the central Mediterranean as
reported by Romeo et al. (2015) indicate the high levels of pollution in
the western Mediterranean Sea (Mansui et al., 2020).

The majority of MPs detected in the study region could originate

Fig. 3. Examples of microplastics found in swordfish stomachs with relative micro-Fourier-transform infrared spectroscopy spectra (in blue: spectra from current
study; in red: spectra from library). (A-B) Polypropylene; (C–D) Polyethylene terephthalate; (E-F) Modified cellulose (cellulose with pigments). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

M. Torresi et al.



Marine Pollution Bulletin 206 (2024) 116767

6

from the Ebro River, a prominent waterway that ranks as the second
longest and largest in terms of flow in the entire Iberian Peninsula.
Simon-Sánchez et al. (2019) analysed MPs in the Ebro River and re-
ported MP fibers to be the most common shape and with a mean
abundance in surface waters of 3.5 ± 1.4 MPs⋅m− 3, which represents an
input of 2.14 × 109 MPs⋅yr− 1 into the Mediterranean Sea. On the other
hand, because most marine currents run from north to south along the
continental slope of the western Mediterranean coast (Font et al., 1995),
it may be possible that MP pollution from the urban area of Barcelona
(approximately 1800 tons annually; Liubartseva et al., 2018) are
transported to the study area (Garcia-Garin et al., 2020) increasing its
MP concentration.

No significant differences were detected in the levels of MPs ingested
by swordfish between the two sampling periods, although MP occur-
rence was higher in the recent period. It has been estimated that the total
annual plastic input in the Mediterranean basin amounts to 100,000 tons
(Cincinelli et al., 2019). Of this plastic debris, approximately 50 %
typically originates from various land-based sources, 30 % from river
channels, and 20 % from maritime activities (Cincinelli et al., 2019).
Additionally, large plastics are gradually broken down into smaller
pieces through mechanical erosion caused by wind and waves, as well as
through photodegradation and biodegradation (Thompson et al., 2004;
Barnes et al., 2009), increasing the concentration of MPs in the Medi-
terranean Sea. A period of 5–6 years is likely insufficient to detect a
change in the concentration of MPs ingested by swordfish, despite an
observed increase in the frequency of occurrence. Although swordfish is
regarded as a generalist and opportunistic predator in the western
Mediterranean (Navarro et al., 2017, 2020) a dietary shift towards
increasing consumption of cephalopods and decreasing consumption of
Gadiformes had been observed between 2012 and 2020 (Fernández-
Corredor et al., 2023). This dietary change seems to have not affected
the ingestion of MPs since no temporal change has been detected be-
tween the two studied periods. In addition, swordfish is heavily pre-
dating on small pelagic fish, particularly anchovy, sardine, and
sardinella (Ouled-Cheikh et al., 2022), whose abundances have fluctu-
ated in recent years (Coll et al., 2019, 2024). It is noteworthy that a
significant proportion of these three species have been found to contain
MPs in their stomachs in recent investigations (Bachiller et al., 2020,
2021; Pennino et al., 2020). Further studies on MP ingestion by
swordfish prey should be conducted to understand what role prey play
in MP concentrations in swordfish.

The results of the model indicated that total length is not a significant
factor for MP abundance, and stomach weight is inversely related to it.

This result seems to contradict the fact pointed by some authors that
larger fish are more likely to contain a higher number of MPs due to the
potential for accumulation through the food web (Franzellitti et al.,
2019; Miller et al., 2020; Pereira et al., 2023). However, the homoge-
neity of fish sizes, predominantly within a single age group, is not
suitable for investigating the potential correlation between fish size and
microplastic content in the current study. The obtained results also
indicated that MP abundance significantly increases with a higher full-
ness index, which it is consistent with other studies analysing MP
ingestion in fish (Bråte et al., 2016; Liboiron et al., 2016).

Small sized MPs (MPs < 1000 μm) were the dominant in the samples
(> 60 %). The fact that the synthetic particles undergo constant frag-
mentation processes makes small MPs the most abundant and therefore
more bioavailable (Llorca et al., 2020). This predominance of small MPs
is consistent with other studies about MPs in large pelagic fishes (Li
et al., 2022).

Blue coloured MPs are the most common in aquatic taxa, probably
due to physical resemblance between synthetic particles and prey
(Santos et al., 2021; Du et al., 2022). However, purple and black were
the most common colours retrieved in the current study, with a pre-
dominance of black and purple in the first and second period, respec-
tively. Blue was still a frequent colour, detected in both periods, which is
consistent with other studies analysing MPs in pelagic fish (Romeo et al.,
2015; Di Giacinto et al., 2023).

Along the Spanish Mediterranean coast, the level of MP pollution in
surface waters, biota, as well as in benthic sediments, is mostly
composed of fibers (Cincinelli et al., 2019; Garcia-Garin et al., 2019;
Llorca et al., 2020). This explains the current results, since the pre-
dominant shape of MPs retrieved from swordfish stomachs were fibers.
MP shape can provide important information on the source of plastic
pollution. For example, the fiber morphotype is a typical textile particle
that can be easily found in the coastal areas where urban wastewater is
discharged and it is the predominant shape in the aquatic environment,
often accounting for >80 % of the total items (Bellas et al., 2016; Rios-
Fuster et al., 2019). This predominance was observed in both periods
analysed in which the abundance of fibers was around 70 % of all the
MPs found in swordfish stomach contents. This is in accordance with
Mizraji et al. (2017), who concluded that microfibres were the most
frequently encountered MPs ingested by marine fish, typically ac-
counting for over 90 % of ingested plastics. The use of synthetic fibers
has displaced natural fibers (e.g., cotton, wool) due to its low production
costs and high demand (Lusher et al., 2017), indeed microfibers recor-
ded in previous studies in the Mediterranean Sea were primarily

Table 4
Number of samples (n), solvent used, microplastics (MPs) analysed by (μ)FTIR, RAMAN or other (%), control correction applied, frequency of occurrence (FO, %) and
MP per individual, detected in the stomach of swordfish from the current study, and those currently available in the literature in other large pelagic fish studies.

Species n Area Solvent used MP analysed
(%)

Control
correction
applied

MP
individual− 1

(mean ± SD)

FO
(%)

Reference

Xiphias gladius 49 Western Mediterranean Sea H2O2 27 Yes 3.0 ± 6.3 80 This study
Xiphias gladius 56 Central Mediterranean Sea No solvent

used
0 No 0.16 13 Romeo et al.

(2015)
Thunnus thynnus 34 Central Mediterranean Sea No solvent

used
0 No 0.47 32 Romeo et al.

(2015)
Thunnus alalunga 31 Central Mediterranean Sea No solvent

used
0 No 0.13 13 Romeo et al.

(2015)
Coryphaena hippurus 15 Eastern Pacific Ocean KOH 100 No 3.4 60 Li et al. (2022)
Thunnus albacares 9 Southwestern Tropical Atlantic NaOH 15 Yes 10.33 ± 14.06 100 Justino et al.

(2023)
Acanthocybium

solandri
3 Middle Atlantic Ocean and South American

Atlantic coast
H2O2 + Fe

(II)
100 Yes 11.7 100 Pereira et al.

(2023)
Coryphaena spp. 1 American Atlantic coast H2O2 + Fe

(II)
100 Yes 2 100 Pereira et al.

(2023)
Seriola lalandi 2 Middle Atlantic Ocean H2O2 + Fe

(II)
100 Yes 11.5 100 Pereira et al.

(2023)
Thunnus albacares 1 Middle Atlantic Ocean H2O2 + Fe

(II)
100 Yes 5 100 Pereira et al.

(2023)

M. Torresi et al.
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composed of semisynthetic celluloses, polyester (PES) or natural fibers
(Athey et al., 2020; Santini et al., 2022). Cellulose fibers were also
represented in the samples collected in the current study, which was
expected considering that these fibers are highly abundant in the oceans
due to their importance in textiles (Suaria et al., 2020). Although some
authors do not classify cellulose particles strictly as MPs, their increased
persistence, when chemically modified, makes them a risk for marine
organisms (Adams et al., 2021).

Eight polymers were identified in stomachs of swordfish, being
polyethylene terephthalate (PET) the most common, especially in the
most recent sampling period. PET is produced in the reaction of purified
terephthalic acid (PTA) and ethylene glycol (EG) monomers in the
presence of a catalyst, and it is the most common thermoplastic polymer
resin in the polyester family (de Vos et al., 2021). PET is a significant
source of marine debris due to its widespread use in the production of
synthetic materials, such as fibers for clothing, containers for liquids and
thermoforming for manufacturing (Ji, 2013). Polyethylacrylate was the
second most common polymer retrieved from the samples (12.5 %). It is
a synthetic polymer derived from ethyl acrylate monomer and is among
the most abundant polymers in the ocean (Penzel et al., 2018). These
results partially agree with those of Di Giacinto et al. (2023) in swordfish
samples. They found predominantly polyethylene terephthalate and
ethyl polyacrylate, among a large variation of polymer types, which they
associated with the great diversity of marine debris types in the Ionian
Sea.

Polymer density directly affects MP buoyancy. Low-density polymers
(e.g., polyethylacrylate) are positively buoyant, and therefore concen-
trate in surface waters (epipelagic zone), whereas high-density polymers
(e.g., PET) are negatively buoyant and tend to accumulate in the sedi-
ment (benthic zone) (Digka et al., 2018; Ajith et al., 2020). This spatial
variation, based on polymer density, allows MPs to be widely available
to different taxonomic groups (Wang et al., 2020) which are part of the
pool of species preyed by the swordfish (Fernández-Corredor et al.,
2023; Navarro et al., 2017, 2020; Ouled-Cheikh et al., 2022). The wide
range of species consumed by swordfish, from epipelagic and mesope-
lagic to benthopelagic and demersal species (Navarro et al., 2017, 2020;
Fernández-Corredor et al., 2023), may explain the presence of the
different types of polymers detected. Nonetheless, although the buoy-
ancy of MPs is relevant to predict its spatial distribution, it can be altered
by external factors, such as biofouling or aggregations with other debris
(Corcoran et al., 2015; Kooi et al., 2017).

MPs are abundant and ubiquitous aquatic pollutants which can affect
lifestyle, habits and diet of a large multitude of people all over the world
(Dawson et al., 2021; Ragusa et al., 2022; Quinzi et al., 2023). MPs in
seafood poses a major hazard to human health, since plastic waste is
dumped into the sea, where it is ingested by fish and ends up on the
consumer’s table (EFSA, 2016). A growing body of research demon-
strates that MPs are toxic to a wide range of fish and evaluates the
human health risks associated with MP ingestion through the con-
sumption of such fish, such as Sardina pilchardus and Sparus aurata
(Ferrante et al., 2022) or T. thynnus and X. gladius (Di Giacinto et al.,
2023). Considering that swordfish from the Mediterranean Sea has been
reported to contain: 218 MPs per Kg of muscle tissue (Di Giacinto et al.,
2023), and 3 MPs in the stomach content per individual, in the current
study, it is likely that MPs are accumulating in muscle. This fact poses a
significant risk to humans who consume plastic-contaminated fish and
this exposure could lead to the onset of several chronic diseases
(Bhuyan, 2022).

5. Conclusions

This study establishes a baseline to monitor the ingestion of MPs by
swordfish in the western Mediterranean Sea, and is the first analysis of
temporal variations in MP ingestion in this species. The comparison with
previous studies underscores the heightened MP pollution in the western
Mediterranean, suggesting regional differences in MP densities and

pollution sources. Despite no significant temporal differences in MP
levels ingested by swordfish, an observed increase in MP frequency
aligns with the growing plastic input into the Mediterranean basin.
However, due to the limited sample size, drawing definitive conclusions
regarding temporal variations in MP content is not feasible. The pre-
dominant shapes, sizes, colours, and polymer types of the MPs detected
provide valuable insights into the sources and pathways of plastic
pollution in the marine environment, with fibers being the most com-
mon form, likely originating from urban wastewater and riverine inputs.
The presence of diverse polymers in swordfish stomachs reflects their
wide-ranging diet and the varying buoyancy of different plastic types,
which are influenced by environmental factors such as biofouling and
aggregations with other debris. Further studies should include the
analysis of MPs in potential preys to understand the transfer of MPs
through diet, as well as to study other areas from the Mediterranean Sea
to evaluate which spatial characteristics affects MP ingestion by
swordfish. Furthermore, combined studies of MP ingestion and bio-
accumulation in the edible flesh should shed some light into the transfer
of contaminants to their tissues. This study highlights the urgent need
for further research on MP ingestion in marine food webs and its im-
plications for human health, alongside concerted efforts to mitigate
plastic pollution in marine environments.
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Bachiller, E., Albo-Puigserver, M., Giménez, J., Pennino, M.G., Marí-Mena, N.,
Esteban, A., Coll, M., 2020. A trophic latitudinal gradient revealed in anchovy and
sardine from the Western Mediterranean Sea using a multi-proxy approach. Sci. Rep.
10 (1), 17598.

Bachiller, E., Giménez, J., Albo-Puigserver, M., Pennino, M.G., Marí-Mena, N.,
Esteban, A., Coll, M., 2021. Trophic niche overlap between round sardinella
(sardinella aurita) and sympatric pelagic fish species in the Western Mediterranean.
Ecol. Evol. 11 (22), 16126–16142.

Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M., 2009. Accumulation and frag-
mentation of plastic debris in global environments. Philos. Trans. R. Soc. Biol. Sci.
364 (1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205.

Bellas, J., Martínez-Armental, J., Martínez-Cámara, A., Besada, V., Martínez-Gómez, C.,
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