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Abstract

1. Marine habitat-forming (MHF) species in the Mediterranean are among the most

threatened coastal species by human activities. In recent decades, different

stressors (e.g., warming-induced marine heatwaves and algal blooms) have caused

mass mortality events in these key species. Overall, a common method to assess

their health status at the Mediterranean Sea scale is lacking.

2. To fill this gap, the aim of this work is to present and validate a cost-effective

method, the Mortality Rapid Assessment Method, that is able to assess the health

status of key MHF species, even through Citizen Science.

3. The Mortality Rapid Assessment Method is based on determining the impact of

mortality on MHF species derived from the metric percentage of affected

colonies or individuals. To validate the ability of the proposed method to assess

the health status, it was compared to a more commonly used but time-consuming

and expert-required metric based on the injured surface percentage of the

colonies or individuals. For the validation, one of the most extensive (>47,500

colonies) demographic datasets of the octocoral Paramuricea clavata was used to

conduct a comprehensive metric comparison.

4. The results showed a highly significant correlation between metrics from both

methods (ρ = 0.86), confirming that the percentage of affected colonies provides

a reliable assessment of the health status of gorgonian populations over broad

spatial and temporal scales.

5. Bearing in mind that this metric can be applied to different MHF species, such as

sponges, bryozoans and calcareous algae, and by non-scientific personnel

(managers and trained volunteers), its implementation can contribute to inform

and enhance the effectiveness of the conservation and management plans for key

MHF species at the scale of the Mediterranean Sea.
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1 | INTRODUCTION

Coastal benthic ecosystems are highly diverse and productive marine

environments (Seitz et al., 2014) characterized by their outstanding

contribution of goods and services (Barbier et al., 2011). Nonetheless,

they are significantly under threat, facing multiple stressors and

cumulative impacts from human activities (Bevilacqua et al., 2020).

Notably, the Mediterranean Sea, with about 20–30% of endemism

(Bianchi & Morri, 2000; Coll et al., 2010), is one of the most exposed

regions to anthropogenic pressures (Cramer et al., 2018; Halpern

et al., 2008).

In the Mediterranean Sea, the coralligenous assemblages are

among the most threatened habitats. These assemblages are endemic

calcareous formations of biogenic origin in the Mediterranean

produced by the accumulation of encrusting algae growing in dim

light conditions, which have high ecological importance and

exceptional biodiversity as they harbour approximately 10% of

Mediterranean species (Ballesteros, 2006). These assemblages and

the key species shaping them, marine habitat-forming (MHF) species,

are subject to different synergistic stressors related to anthropogenic

pressures (Di Camillo et al., 2023); mainly overharvesting, pollution,

invasive species, and more recently, warming-driven mass mortality

events (MMEs; Ballesteros, 2006; Bevilacqua et al., 2021; Cebrian

et al., 2021, Garrabou et al., 2022b). These MMEs are associated with

marine heatwaves (MHWs), which are extreme events characterized

by abrupt and prolonged periods of high sea surface temperature at a

particular location (Oliver et al., 2018; Scannell et al., 2016). In recent

decades, MHWs have been increasing in frequency, intensity, and

duration in the Mediterranean Sea, resulting in an increase in severe

MMEs, especially from the surface down to 30 m depth, over large

spatial scales (Darmaraki et al., 2019; Garrabou et al., 2022b). In

addition, since MMEs affect a broad diversity of phyla at different

spatial scales and wide depth ranges (e.g., Garrabou et al., 2009,

2022b), it is crucial to develop cost-effective methods to assess the

impacts of MMEs and the health status of affected populations

addressing relevant scales of observation.

Despite the ecological importance of MHF species

(e.g., Ballesteros, 2006), only the response of some species and

populations to global change has been addressed (e.g., Garrabou

et al., 2009, 2021; Linares et al., 2005; Verdura et al., 2019). MHF

species provide structural complexity that increases biodiversity and

supports the associated key ecosystem services (de Ville d'Avray

et al., 2019). Furthermore, these species, especially octocorals and

sponges, are characterized by slow population dynamics and long

lifespans, which results in a high vulnerability to natural and

anthropogenic stressors (Garrabou & Harmelin, 2002; Linares

et al., 2007; Montero-Serra et al., 2018a, 2019; Teixid�o

et al., 2011). These features highlight the urgency of establishing

cost-effective methods to scale up empirical observations and

accurately evaluate the impacts of climate change and other

stressors on these species. This information is essential to inform

and support the implementation of effective conservation and

management plans.

In this context, the aim of this work is to validate the Mortality

Rapid Assessment Method based on the quantification of the

percentage of affected colonies or individuals, a cost-effective metric

to provide a large-scale and long-term assessment of the health status

of key MHF species in a rapid and easy manner. To do so, the

proposed metric was compared with a more commonly used but time-

consuming metric based on the quantification of the percentage of the

injured surface of each of the colonies or individuals. The metric

comparison is tested and validated using an extensive and

representative demographic dataset of the red gorgonian (Paramuricea

clavata), one of the most affected species by MMEs. In fact, this

dataset was selected since encompassed 24 years of data and

populations displaying contrasted MMEs impacts, allowing to test the

ability of the Mortality Rapid Assessment Method to inform on

populations health status (e.g., Garrabou et al., 2022b; Linares

et al., 2008). Although the metric percentage of affected colonies or

individuals, on which is based the Mortality Rapid Assessment Method,

was designed and applied in gorgonian species, its applicability can be

extended to other organisms (e.g., sponges, bryozoans, and calcareous

algae; see Table 1) inhabiting coastal benthic ecosystems.

2 | METHODS

2.1 | Metrics to assess the health status

The percentage of injured surface (used in the traditional method to

assess the health status) consists of quantifying the percentage of

death tissue of each colony of the same local population by in situ

visual scuba diving sampling. The degree of damage is assessed on a

five-unit interval scale based on the total surface area of the colony or

individual. It has been shown to be an effective and robust metric in

determining the severity of mass mortality in several taxa (Table 1).

However, it is time-consuming and expert-required, since determining

the injured extend in most of MHF species is often challenging.

In contrast, the percentage of affected colonies or individuals

(used in the Mortality Rapid Assessment Method) is based on the

quantification of the percentage of injured colonies or individuals in

the local populations (see below in the section “Demographic dataset”

the definition of local population) by in situ visual scuba diving

sampling.

Based on previous studies, a colony or individual was considered

to be affected by mortality when it showed injuries or cover by

epibionts (i.e., epibionts on the already death tissue of the colony or

individual) over ≥10% of its surface (Garrabou et al., 2009, 2019;

Linares et al., 2008). The affected colonies are separated into three

categories that inform the timing of mortality impact: (i) recent

mortality or necrosis (denuded colony axis and/or colony overgrowth

by pioneer species), (ii) old mortality or epibiosis (colony

overgrowth by non-pioneer species such as bryozoans, sponges, and

calcareous algae), and (iii) colonies affected by both recent necrosis

and epibiosis, integrating recent and past disturbance events

(Figure 2; Linares et al., 2005). Thus, in both metrics, the assessment
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can be conducted for recent mortality, old mortality, or both (see

below in the section “Metrics comparison”).
The Mortality Rapid Assessment Method has been used as an

easily implemented metric to assess the general health status of

populations from different MHF species (Table 1). Moreover, it has

been performed not only by scientists but also by non-scientific

personnel such as managers of marine protected areas and trained

volunteers through marine citizen science initiatives (see Figuerola-

Ferrando et al., 2023; Table 1). To facilitate its application in

conservation and management, the percentage of affected colonies or

individuals can be translated into a MMEs severity category to easily

determine the health status of each population (Garrabou

et al., 2022b; Linares et al., 2008) and inform managers or other

stakeholders. Four severity classes were defined according to the

percentage of affected colonies/individuals: non-impact populations

(<10% of affected colonies/individuals), low-impact populations (≥10

and <30% of affected colonies/individuals), moderate-impact

populations (≥30 and <60% of affected colonies/individuals), and

severely impact populations (≥60% of affected colonies/individuals).

2.2 | Demographic dataset

Information from both metrics, (i) percentage of injured surface and

(ii) percentage of affected colonies, was collected by experts during

different sampling campaigns. This dataset includes a total of 47,523

P. clavata colonies dwelling in seven north-western Mediterranean

locations and 59 sites encompassing large latitudinal (from 38 to

43�N) and longitudinal (from 0 to 9�E) ranges sampled between 1998

and 2021 (Figure 1, Table 2). These locations (i.e., general monitoring

areas) are characterized by contrasting temperature regimes

(Bensoussan et al., 2010), and during the studied period, the different

sites (i.e., specific sampling areas within locations) underwent

contrasting local MMEs, potentially leading to distinct levels of injury

among the inhabiting populations (Garrabou et al., 2022b).

Following Garrabou et al. (2019), a local population was

considered as a group of colonies, individuals, or cover of the same

species (ranging from tens to thousands depending on the species)

dwelling in a specific geographic location defined by spatial

coordinates and depth range until they are no longer present. Based on

genetic studies, local populations are separated by no more than

20 metres, without genetic connectivity between them (Mokhtar-

Jamaï et al., 2011). Note that at the same geographic location, several

records for the same species from different years and depth ranges can

be obtained, as depth-related gradients (e.g., temperature, disturbance

intensity, light, or food availability; see Montero-Serra et al., 2018b)

drive a vertical disconnection, generating different local populations.

2.3 | Metrics comparison

To validate the effectiveness of the percentage of affected colonies

approach, the values of both metrics from each local population of theT
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demographic dataset, obtained by experts, were correlated using

Spearman's rank correlation. First, the comparison was performed

pooling together all mortality types, and second, only recent mortality

data, in all locations together and separately. Note that in recent

mortality correlations, locations displaying low sample sizes (mean

number of mortalities per site and year <10) were removed from the

analysis.

3 | RESULTS

Approximately one-third of the P. clavata colonies showed mortality

(17,639), including recent injuries (3089 colonies; Table 2). The

percentage of affected colonies was significantly positively correlated

with the mean percentage of injured surface including old and recent

mortality (ρ = 0.86, p < 0.001) and considering only recent mortality

(ρ = 0.95, p < 0.001; Figure 3; Sup Table S1 and S2). The narrow

range between the confidence intervals (0.83–0.89 in all mortality;

0.93–0.96 in recent mortality; Tables S1 and S2) revealed few

uncertainties in the correlation prediction. However, the range of the

mean percentage of injured surface values increased as the impact

category worsened (i.e., moderate and severe categories) because of

the low sample size and few or no populations reaching values

between 75% and 100% of the mean injured surface, especially with

regard to the recent mortality correlations (Figure 3). It is noteworthy

that most of the recent mortality values (Figure 3b) are below 25% of

the mean injured surface, only exceeded by a value of 46.2%

corresponding to one of the most affected sites in the Medes Islands

during the 2018 MHW (see www.t-mednet.org), which resulted in a

severely impacted population (76.7% of the colonies affected; see

Figure S2).

Additionally, Spearman's rank correlation coefficients showed

strong correlations at all locations for both, all mortality (ranging from

ρ = 0.89 to ρ = 0.96), and recent mortality datasets (ρ = 0.96 to

ρ = 0.98; Supplementary Figure S2 and Table S2). Although the

confidence intervals varied slightly by location, ranging from narrower

(e.g., Medes: 0.93–0.97) to wider (e.g., Eivissa: 0.76–0.98; Table S1),

the correlation remained consistently strong. The locations exhibiting

the highest levels of affection were Columbretes (mean injured surface

of 92%, and 96% of affected colonies), Scandola (mean injured surface

of 86%, and 93% of affected colonies), and Cap de Creus (mean

injured surface of 72%, and 100% of affected colonies; Figure S2A).

Among the studied P. clavata populations, the moderate impact

category was the most prevalent category (45% of the affected

F IGURE 1 General location of the study area in the Mediterranean Sea (a). Study locations in the northwestern Mediterranean (b). Specific
sample sites in each location of Cap de Creus (c), Port-Cros (d), Scandola (e), Eivissa (f), Columbretes (g), Medes (h), and Marseille (i) in which both
metrics are extracted. Geographic scale and local specific coordinates are indicated for the Western Mediterranean (B) and in each location (c – i)
in decimal degrees. Note than sites may overlap on the map (see the number of sites per locations in Table 2).
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populations), followed by the low impacted category (29% of the

affected populations). In contrast, the severe and non-impacted

categories were less frequently observed (19% and 7% of the affected

populations, respectively). Regarding recent mortality, the non-

impacted and low impacted categories included the majority of the

studied populations (58% and 31%, respectively), leaving only a 10%

of the populations with moderate impact, and 1% with severe impact

categories (Figure 3).

4 | DISCUSSION

This study validated the Mortality Rapid Assessment Method as a

reliable and cost-effective approach to assess the health status of the

red gorgonian P. clavata populations that can be extended to other

MHF species. Furthermore, the definition of four health status impact

categories derived from the method offers valuable insights for the

design and implementation of conservation and management plans.

F IGURE 2 Red gorgonian (Paramuricea clavata) colonies in a good health status (a) and varying injuries: recent mortality (necrosis; b), old
mortality (epibiosis; c), and recent and old mortality (necrosis and epibiosis; d). All images are from MedRecover research group.

TABLE 2 Information of the sampling localities of the studied populations, including the number of sites per locality, depth range (in meters),
sampling period (in years), total number of Paramuricea clavata monitored colonies, and total number of P. clavata affected colonies (“All”: all
mortality including recent and old mortality; and “Recent”: only recent mortality data) in which information of both metrics are extracted.

Locality
Sites
(n)

Depth
range (m) Sampling period (years)

Total

monitored
colonies

Total affected

colonies
(all/recent)

Cap de Creus (Cap de Creus Natural Park, Spain) 8 16–32 2017, 2019, 2021 3855 1843/574

Columbretes (Columbretes Islands Marine Reserve, Spain) 8 31–43 2001, 2004, 2008, 2009,

2011, 2021

1573 736/16

Eivissa (Nature reserves of Es Vedrà, Es Vedranell and the

Illots de Ponent, Spain)

7 30–55 2010, 2016, 2021 2254 837/279

Medes (Natural Park of Montgrí, les Illes Medes i el Baix

Ter, Spain)

11 14–22 2016–2021 9140 4363/1394

Marseille (Parc National des Calanques, France) 11 8–36 1998, 2000–2006, 2020 13,417 4477/759

Port – Cros (National Parc of Port-Cros, France) 9 20 1999–2003, 2005–2009 9579 2968

Scandola (Scandola Marine Protected Area, France) 5 21–25 2003–2011, 2017, 2020 7705 2415/67

TOTAL 59 8–55 1998–2021 47,523 17,639/3089
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4.1 | High correlation between metrics

A significant positive correlation between both metrics (i.e., the

percentage of affected colonies, and the percentage of injured

surface) was revealed when considering all mortality and recent

mortality. In addition, the relationship between the two metrics is

consistent and robust regardless of the location. Bearing in mind the

history of MMEs (see www.t-mednet.org), the warmest locations that

had suffered more, such as Columbretes, showed higher maximum

values in the mean percentage of injured surface and larger

confidence intervals compared to less affected locations. These small

differences among locations—which do not impact the correlation

between the metrics—only reinforce the variability within

Mediterranean locations linked to recurrent MMEs with different

intensities and periods of recovery, in addition to the impacts of other

regional and local stressors such as storms, fishing gears, and diving

frequency, among others.

4.2 | Assessing immediate and long-term impacts
on MHF species

The proposed metric disaggregates immediate and past disturbance

events that can occur at both local and regional scales. These

disturbances include filamentous and mucilaginous algal blooms

(Berdalet et al., 2017; Cerrano & Bavestrello, 2008; Piazzi

et al., 2018), diving frequentation (Linares & Doak, 2010), storms

(Teixid�o et al., 2013), fishing gear (Betti et al., 2020b), and MHWs

(Garrabou et al., 2022b), causing injuries in gorgonians and other

species. When examining the recent mortality data in the studied

P. clavata populations, the underlying disturbances led to minor

effects on the total percentage of affected colonies. This resulted in

populations mostly categorized as non-impacted or low-impacted by

recent mortality. Thus, the remaining impact primarily steamed from

populations with recurrent disturbances. These results are in line with

previous studies (Cerrano et al., 2005; Linares et al., 2005). However,

the recent increase in MHWs frequency and intensity (Garrabou

et al., 2022b), characterized as one of the main impacts on gorgonian

populations, coupled with other global and local stressors

(e.g., Zentner et al., 2023), could cause changes in these relationships,

increasing the percentage of recent injuries to the affected gorgonian

populations (Estaque et al., 2023).

4.3 | Potential application to other species and
beyond

Assessing the conservation status of different species is particularly

challenging, especially when integrating recent and past mortalities.

Given that some MHF species are differentially affected by warming-

related as well as to other disturbances (Bevilacqua et al., 2021;

Cerrano et al., 2000; Garrabou et al., 2009; Garrabou et al., 2022b;

Linares et al., 2007; Perez et al., 2000), the studied metric could be

applied to other MHF species, especially sessile invertebrates from

rocky coastal benthic ecosystems. In fact, to date, the metric

percentage of affected colonies/individuals has been successfully

implemented in other octocoral species (e.g., Eunicella cavolini,

E. singularis, Leptogorgia sarmentosa, and Corallium rubrum), hexacorals

F IGURE 3 Correlation between the metric mean percentage of injured surface and the metric percentage of affected colonies, for all
mortality (a; Spearman's rank correlation ρ = 0.86, p < 0.001) and recent mortality (b; Spearman's rank correlation ρ = 0.95, p < 0.001; see
Table S1 and S2 for details). Points represent the mean mortality value of each location, site, and year. Impact category is represented by a colour
scale, from light to dark according to the percentage of affected colonies; non-impact populations (<10% of affected colonies), low-impact
populations (≥10 and <30% of affected colonies), moderate-impact populations (≥30 and <60% of affected colonies), and severely impact
populations (≥60% of affected colonies).
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(e.g., Balanophyllia europaea, Cladocora caespitosa, Leptopsammia

pruvoti, Madracis pharencis, and Oculina patagonica), porifera

(e.g., Agelas oroides, Crambe crambe, and Sarcotragus fasciculatus), and

in the calcareous algae from the phylum Rhodophyta

(e.g., Lithophyllum stictaeforme and Mesohphyllum alternans; see the

completed list of species and references in Table 1). However, in

some species, the assessment is reduced only to partial and total

recent mortality without distinguishing between recent and old

injuries. For example, in sponges, the dead “skeleton” is only apparent

in situ for short periods of time (approximately 1 month depending on

sea conditions) before being detached from the substratum (Cebrian

et al., 2011; Smith, 1941; Wulff, 2006). Eventually, this limitation

hinders our ability to accurately assess the impacts of past MMEs not

only on sponges but also on other species for which the affected

tissues do not remain for long periods after the disturbance, as

observed in the case of gorgonians.

Taken together, these findings demonstrate that the percentage

of affected colonies or individuals provides robust information for

assessing the health status not only of red gorgonian populations but

also of other MHF species from coralligenous assemblages and

beyond. In addition, the applications of this metric made by non-

scientific personnel (such as managers of marine protected areas and

trained volunteers through marine citizen science, which undergo

training and specific recommendations including a minimum of logged

dives; e.g., 40 dives, see Figuerola-Ferrando et al., 2023; Garrabou

et al., 2022a, for details), are reliable and can help to expand our scales

of observation, complementing more complex and time-consuming

methodologies implemented by research teams. These methodologies

encompass various metrics, including colony/individual size, diameter,

and injured surface, population size structure, and density. The

integration of combined metrics will gain a more comprehensive

understanding of the health status of coralligenous assemblages'

populations and their MHF species (see Di Camillo et al., 2023) in light

of the dramatic increase in the intensity and recurrence of MHWs and

other disturbances.

4.4 | Insights for management and conservation

As important as unravelling a population's conservation status are the

implications of this metric for conservation and management planning

at global and local scales. In this context, coralligenous assemblages

were considered a priority habitat in the European Marine Strategy

Framework Directive (MSFD; 2008/56/EC) and the Integrated

Monitoring Assessment Programme IMAP from the Barcelona

Convention (UNEP/MAP, 2017)—both aiming to improve the Good

Environmental Status (GES) of the seas. In recent decades,

conservation planning in benthic ecosystems has increasingly

embraced rapid assessment and effective monitoring tools from single

to multiple species, communities, or habitats (e.g., Alquezar &

Boyd, 2007; Parravicini et al., 2010). This underscores the potential

effectiveness of the Mortality Rapid Assessment Method

(i.e., applying the percentage of affected colonies or individual's metric

and translating the information into an impact category) in

contributing to the GES quantification of habitats by covering broad

spatial, temporal, and taxonomic scales. Notably, the impact category

assessment given by the percentage of affected colonies/individuals

acts as a baseline for an overview of the responses of MHF species to

global warming and other drivers of habitat degradation, supporting

adaptive management in coastal areas, specifically local-scale

management in marine protected areas (MPAs). For example,

identifying areas or species with worsened population health status. In

this context, the impact category assessment can support the

regulation to reduce the impact of other local stressors to enhance the

long-term viability of populations, such as high diver frequentation in

MPAs, where there is synergic positive interaction between local and

marine heatwave impacts (Zentner et al., 2023).
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