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Simple Summary: Previous studies using a metabolomics approach in relation to prostate cancer
(PCa) risk assessment have focused on endogenous metabolism. As far as we know, the associations
between circulating metabolites derived from exogenous sources, such as diet or lifestyle, and PCa
risk have not been widely studied. In our work, we examined the associations between endogenous
and exogenous plasma metabolites and PCa risk in a case–control study conducted in the frame of
the EPIC study. The main findings of our study include novel negative and positive associations of
food metabolites, such as cyclamate and biomarkers of plant-based foods, respectively, with PCa
cancer risk. Furthermore, a few microbial metabolites were associated with PCa risk, suggesting
the potential role of microbiota in prostate cancer development. Our results reinforce the use of
nutritional metabolomics to deepen the understanding of the complex role of diet and its potential
mechanisms of action in prostate carcinogenesis.

Abstract: Background and Objective: Nutrimetabolomics may reveal novel insights into early
metabolic alterations and the role of dietary exposures on prostate cancer (PCa) risk. We aimed
to prospectively investigate the associations between plasma metabolite concentrations and PCa
risk, including clinically relevant tumor subtypes. Methods: We used a targeted and large-scale
metabolomics approach to analyze plasma samples of 851 matched PCa case–control pairs from
the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Associations be-
tween metabolite concentrations and PCa risk were estimated by multivariate conditional logistic
regression analysis. False discovery rate (FDR) was used to control for multiple testing correction.
Results: Thirty-one metabolites (predominately derivatives of food intake and microbial metabolism)
were associated with overall PCa risk and its clinical subtypes (p < 0.05), but none of the asso-
ciations exceeded the FDR threshold. The strongest positive and negative associations were for
dimethylglycine (OR = 2.13; 95% CI 1.16–3.91) with advanced PCa risk (n = 157) and indole-3-lactic
acid (OR = 0.28; 95% CI 0.09–0.87) with fatal PCa risk (n = 57), respectively; however, these associ-
ations did not survive correction for multiple testing. Conclusions: The results from the current
nutrimetabolomics study suggest that apart from early metabolic deregulations, some biomarkers of
food intake might be related to PCa risk, especially advanced and fatal PCa. Further independent
and larger studies are needed to validate our results.

Keywords: EPIC; nutrimetabolomics; nested case–control; prostate cancer

1. Introduction

Prostate cancer (PCa) is the second-most frequent malignancy in men worldwide.
According to GLOBOCAN, 1,414,000 new cases of PCa were recorded and 375,304 PCa
deaths occurred in 2020 [1]. PCa is a disease that displays notable diversity in clinical,
morphological, and molecular aspects [2]. Age, ethnicity, and family history are well-
known non-modifiable risk factors that play a key role in the development of PCa [3], while
modifiable risk factors such as physical activity and metabolic syndrome are suggestive
intermediate risk factors, especially between coronary heart diseases and PCa [4]. However,
the role of diet, obesity, and smoking are still not completely understood [5]. In this context,
the systematic quantification and characterization of low-molecular-weight compounds in
body fluids through the use of metabolomics may help to not only identify novel biomarkers
of PCa risk but to also dissect the role of internal (e.g., genome) and external risk factors
(diet, lifestyle, environment, gut microbiota) in PCa pathogenesis and progression.
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Over the last decade, metabolomics has been extensively employed in various en-
deavors aimed at identifying novel biomarkers of PCa risk [6]. Epidemiological studies
using metabolomics in relation to PCa risk have predominately used a targeted approach
and measured endogenous metabolites [7]. Specially, the associations between circulating
concentrations of metabolites related to energy, amino acid and lipid metabolism, and
PCa risk have previously been reported in four nested case–control studies within the
European Prospective Investigation into Cancer and Nutrition (EPIC) cohort [8–11]. Briefly,
the findings included either positive or inverse associations for individual metabolites
and metabolite patterns comprised of acylcarnitines, amino acids, biogenic amines, fatty
acids, glycerophospholipids, hexoses, and sphingolipids with PCa risk, including overall,
advanced, and fatal subtypes. As far as we know, the associations between circulating
metabolites derived from exogenous sources such as diet or lifestyle and PCa risk have not
been widely studied, and in the case of the EPIC cohort, have not been investigated.

In the present study, we aimed to investigate the prospective association between
endogenous and exogenous plasma metabolite concentrations and the risk of overall PCa
and PCa clinical subtypes in a nested case–control study within the EPIC cohort. In
order to find possible nutritional biomarkers related to PCa risk, a large-scale targeted
nutrimetabolomics approach was carried out for the detection and quantification of diet-
related metabolites. Furthermore, to add evidence on metabolic alterations preceding the
development and progression of PCa, we measured a series of endogenous metabolites,
including some not previously reported in previous EPIC studies.

2. Materials and Methods
2.1. Study Population

EPIC is an on-going multi-center and prospective study designed to investigate the
relationships between diet, lifestyle, environmental, genetic factors, and cancer risk. From
1992 to 1998, the EPIC study enrolled over 153,000 men aged 35–70 y, mostly from the
general population of 19 centers in 8 western European countries (Denmark, Germany,
Greece, Italy, The Netherlands, Spain, Sweden, and the United Kingdom). Details of
the EPIC study have been previously described [12,13]. Non-fasting blood samples from
139,600 men were collected at baseline and immediately stored in liquid nitrogen tanks
(−196 ◦C) at the central biobank of the International Agency of Research on Cancer (IARC;
Lyon, France) and associated centers in Germany, Greece, Italy, The Netherlands, Spain, and
United Kingdom. Since only women were recruited in France, Norway, Naples (Italy), and
Utrecht (The Netherlands), these centers were not included in the current study, and male
participants’ data from Germany, Italy, Spain, The Netherlands, and the United Kingdom
were included in the current analysis. Participants’ blood samples and data from Denmark,
Greece, and Sweden were not available for the current study. In addition to the data and
blood samples’ availability, participants were eligible if the date of blood collection was
known, and if they had no prevalent cancer other than non-melanoma skin cancer at the
time of blood collection. All EPIC study procedures were reviewed and approved by
the ethical review board of the IARC and the local ethics committees in the participating
countries. All participants gave written informed consent prior to the study.

2.2. Follow-Up and Case–Control Selection

Information on PCa incidence and tumor subtypes was gathered by linking records
to cancer registries at both the regional and national level, with the exception of Germany
where a combination of methods was used. The data include health insurance records,
cancer and pathology monitoring, and active follow-up. Self-reported incident cancers
were confirmed through medical records and the vital status of each participant was
collected from regional or national mortality registries. The cases included male patients
diagnosed with first primary and incident PCa (defined as code C61 in the 10th revision
of the International Statistical Classification of Diseases and Related Health Problems
[ICD-10]) after blood collection and before the end of follow-up in August 2014. Incident
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PCa cases were matched to male controls by age (±6 months), study center, length of
follow-up period, time of day (±1.0 h), and fasting status (<3.0, 3.0–6.0, >6.0 h) at blood
collection in a nested case–control study design. Controls were randomly selected from
male cohort participants who were alive and without cancer (excluding non-melanoma skin
cancer) at the time the cases were diagnosed. A sampling method was used to determine
incidence density, where a control could become a case later or be a control for more than
one case.

PCa subtypes were classified according to the tumor–node–metastasis (TNM) system
and histological grade in the following categories: localized (tumors confined within the
prostate with no metastasis upon diagnosis; ≤T2 and N0/x and M0, or coded as localized,
n = 303), advanced (tumors that had spread beyond the prostate at diagnosis; T3–4 and/or
N1–3 and/or M1, or coded as advanced, n = 157), low–intermediate (Gleason score < 8,
or grade coded as well, moderately, or poorly differentiated, n = 589), and high grade
(Gleason score ≥ 8, or grade coded as undifferentiated, n = 116). Fatal cases were defined
as PCa listed as the underlying cause of death on the death certificate during the follow-up
(n = 55).

2.3. Dietary, Lifestyle, and Anthropometrics Assessment

Habitual dietary data, including alcohol intake during the year before recruitment,
were collected using validated center-specific self-reported dietary questionnaires [12,13].
Also, at the time of enrollment, participants provided detailed information on their lifestyle,
including smoking status and physical activity, sociodemographic factors, and medical
history through standardized questionnaires. Anthropometric measurements were taken
by trained professional study personnel in all EPIC centers, except for the Oxford center
(UK), where participants reported their own anthropometrics measurements, which were
later on validated [12,14].

2.4. Targeted Metabolomics Analysis and Quality Control Assessment

Plasma samples were leftovers from a previous EPIC study. Therefore, samples ex-
perienced one freeze–thaw cycle before analysis and had been stored at −80 ◦C. Plasma
samples were analyzed using the multi-analyte targeted metabolomics platform developed
at the Nutrimetabolomics laboratory of the University of Barcelona [15], which enables the
simultaneous detection and quantification of more than 1000 compounds from endogenous
and exogenous origin. For the current study, we analyzed a subset of 591 compounds,
including metabolites from the endogenous (n = 146, 25%) and exogenous metabolome
(n = 445, 75% [e.g., diet, smoking, alcohol consumption]). The rationale for including these
compounds in that proportion was based on the following two observations: (i) endoge-
nous metabolites were selected because they are involved in the main metabolic pathways
(lipid, amino acid, glucose, and tricarboxylic acids metabolism) but at the same time dif-
fer from those analyzed in previous EPIC sub-studies; and (ii) exogenous metabolites
were selected to test new associations as well as others previously observed in obser-
vational and experimental studies. Diet-derived compounds comprised (poly)phenols,
artificial sweeteners, xanthines, alkaloids, and their phase I/II metabolites, as well as gut
microbiota-transformed derivatives. Of note, we included the analysis of four glucosi-
nolates (glucoberteroin, glucobrassicanapin, glucolepidiin, and glucoraphanin) and four
isothiocyanates (allyl isothiocyanate, butyl isothiocyanate, phenethyl isothiocyanate, and
benzyl isothiocyanate), whose presence (either through their dietary intake estimation or
isolated forms in human PCa cell lines) has been suggested to reduce PCa risk [16,17].

In short, plasma samples were thawed at 4 ◦C, then proteins were precipitated us-
ing Sirocco Plates (Waters, Milford, MA, USA) before transferring the supernatants to a
96-well injection plate along with 14 isotopically labeled external standards. Ultra-high-
performance liquid chromatography (1290 Infinity UHPLC System; Agilent, Santa Clara,
CA, USA) coupled to tandem mass spectrometry (MS/MS) QTRAP 6500 (Sciex, Framing-
ham, MA, USA) was used to conduct analyses, using the operating conditions described
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elsewhere [15]. Calibration curves were created for all analyzed metabolites at 12 different
concentrations between 0.10 and 4000 µg/L. Analyst 1.6.2 and SCIEX OS-Q 2.1 software
(ciex, Framingham, MA, USA) were used for data acquisition and processing, respectively.

Metabolite data (expressed as ng/mL) were preprocessed using an in-house pipeline
that uses the POMA [18] and metaboprep [19] R/Bioconductor packages. Data preprocess-
ing included the removal of any metabolite with a coefficient of variation ≥30% in internal
quality controls, and of endogenous and exogenous metabolites with >20% and >90% of
missing values, respectively. The remaining missing values were imputed to zero. These
filtering steps resulted in the removal of 445 metabolites, thus leaving a total of 146 metabo-
lites (45 endogenous and 101 exogenous) for further analysis (Supplementary Figure S1).
Filtered data were log2-transformed after the addition of a pseudocount and correction of
batch effects was performed using the ComBat function from the sva R-package [20].

2.5. Statistical Analyses

A multivariable conditional logistic regression model was employed to estimate
the risk of PCa for each metabolite. The analyses were conditioned on the matching
variables and further adjusted for smoking status (never, past, current, unknown), physical
activity (inactive, moderately active, active, unknown), educational level (none, primary,
technical/professional, secondary, longer, unknown), marital status (married or cohabiting,
single or not cohabiting), body mass index (BMI) (<22.5, 22.5–24.9, 25–29.9, ≥30.0 kg/m2),
and alcohol intake (non-consumers, <5, 5.0–14.9, 15–29.9, ≥30.0 g/day). Resulting p values
were corrected with the Benjamini–Hochberg false discovery rate (FDR) method to account
for multiple testing. Spearman’s correlation coefficient was used to assess the correlation
between metabolite concentrations in plasma and the habitual baseline intake (g/d) of
30 selected foods and food groups (Supplementary Table S3). The statistical software of
choice for all analyses was R (R software, Vienna, Austria) version 4.2.2.

3. Results
3.1. Characteristics of Participants

The current study included 851 pairs of first incident PCa cases and matched controls
(1:1). The mean age (SD) of participants at blood collection was 55.4 (7.06) years, and the
mean time from blood collection to PCa diagnosis among cases was 14 years. There were
no marked differences in baseline characteristics between the cases and controls (Table 1).
According to the stage and grade of the disease, PCa cases were mostly localized (n = 303)
and low–intermediate grade (n = 589), representing 35.6% and 69.2% of the total number
of PCa cases, respectively (Table 1). A total of 57 PCa cases (6.70%) resulted in a fatal PCa
outcome. The distribution of metabolite concentrations by case–control status is shown in
Supplementary Table S1.

Table 1. Baseline characteristics of participants.

Characteristics All
(N = 1702)

Cases
(n = 851)

Controls
(n = 851)

Age at blood collection, years (SD) 55.4 (7.06) 55.3 (7.06) 55.4 (7.06)

Body mass index, kg/m2 (SD) 1 26.7 (3.43) 26.6 (3.24) 26.9 (3.60)

Body mass index, kg/m2 n (%) 1

<22.5 130 (7.60) 67 (7.90) 63 (7.40)
22.5–24.9 339 (19.9) 172 (20.2) 167 (19.6)
25–29.9 927 (54.5) 473 (55.6) 454 (53.3)
≥30.0 306 (18.0) 139 (16.3) 167 (19.6)

Smoking status, n (%) 1

Never 559 (32.8) 297 (34.9) 262 (30.8)
Former 665 (39.1) 323 (38.0) 342 (40.2)
Current 458 (26.9) 217 (25.5) 241 (28.3)
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Table 1. Cont.

Characteristics All
(N = 1702)

Cases
(n = 851)

Controls
(n = 851)

Alcohol intake, n (%) 1

Non-consumers 164 (9.60) 83 (9.80) 81 (9.5)
<5.0 g/day 317 (18.6) 156 (18.3) 161 (18.9)

5.0–14.9 g/day 371 (21.8) 187 (22.0) 184 (21.6)
15.0–29.9 g/day 358 (21.0) 186 (21.9) 172 (20.2)
≥30.0 g/day 492 (28.9) 239 (28.1) 253 (29.7)

Physical activity, n (%) 1

Inactive 355 (20.9) 179 (21.0) 176 (20.7)
Moderately inactive 535 (31.4) 263 (30.9) 272 (32.0)
Moderately active 405 (23.8) 199 (23.4) 206 (24.2)

Active 369 (21.7) 193 (22.7) 176 (20.7)

Marital status, n (%) 1

Married or cohabiting 1569 (92.2) 787 (92.5) 782 (91.9)
Not married or cohabiting 133 (7.80) 64 (7.50) 69 (8.10)

Educational level, n (%) 1

None 181 (10.6) 95 (11.2) 86 (10.1)
Primary or equivalent 545 (32.0) 268 (31.5) 277 (32.6)

Secondary 230 (13.5) 113 (13.3) 117 (13.7)
Technical/Professional 338 (19.9) 167 (19.6) 171 (20.1)

Longer (University) 327 (19.2) 164 (19.3) 163 (19.2)

Cases only
Age at diagnosis, years (SD) 1 69.2 (7.0)

Time to diagnosis, years (SD) 1,2 14.0 (2.18)

Stage, n (%)
Localized 303 (35.6)
Advanced 157 (18.4)

Grade
Low–intermediate grade 589 (69.2)

High grade 116 (13.6)
Death from prostate cancer, n (%) 57 (6.70)

1 Unknown values for some participants; the calculations of percentages exclude missing values. 2 Time between
blood collection and diagnosis.

3.2. Associations Between Plasma Metabolites and PCa Risk

A total of 31 metabolites of the 146 included for multivariate conditional logistic re-
gression models were associated with the risk of PCa (p ≤ 0.05), but none of the associations
were statistically significant after controlling for multiple testing (Supplementary Table S2).
Specifically, 15 and 16 metabolites were inversely and positively associated with the risk of
PCa overall and by clinical subtypes, respectively. Metabolites of note were predominately
of exogenous origin, including derivatives of (poly)phenols (16), amino acids (9), amines (1),
organic acids (1), organosulfur compounds (1), food additives (1), xanthine alkaloids (1),
and furan compounds (1).

3.2.1. Metabolites and Risk of Overall PCa Risk

Significant associations (p ≤ 0.05) between plasma metabolites and the risk of overall
PCa are shown in Figure 1. Men with higher concentrations of cyclamate, trimethylamine N-
oxide (TMAO), and 3,4-dihydroxybenzoic acid had a higher risk of overall PCa, while lower
risk of PCa was seen with higher concentrations of 3,5-dihydroxy-4-(sulfooxy)benzoic acid,
3-(3′-methoxyphenyl)propanoic acid-4′-glucuronide, 6-amino-5-(N-methylformylamino)-1-
methyluracil (6-AMMU), N-(2-hydroxyphenyl)acetamide sulfate (HPAA sulfate), and 3-(3′-
methoxyphenyl)propanoic acid-4′-sulfate. The strongest positive and strongest negative
associations were for TMAO and 6-AMMU with overall PCa risk (OR = 1.10; 95% CI
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1.01–1.20; and OR = 0.89; 95% CI 0.79–1.00, respectively). (Supplementary Table S2 and
Figure 2).
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Figure 1. Volcano plot showing the magnitude of associations (odds ratio [OR]) and statistical
significance (−log10 p values) for plasma metabolites and overall prostate cancer risk in the nested
case–control within the EPIC cohort. Significant associations (above the dotted horizontal line) were
set at −log10 p-values ≥ −1.30 (p ≤ 0.05).

All metabolites associated with overall PCa risk overlapped with the risk of at least
one PCa subtype in the same direction (Supplementary Table S2 and Figure 2).

3.2.2. Metabolites and Risk of Clinical Subtypes of PCa

The metabolites positively and inversely associated with the risk of each PCa clinical
subtype at a p < 0.05 are shown in Figure 2. According to the odds ratios and 95% CI,
the strongest positive and inverse associations (respectively) were seen for higher plasma
concentrations of 3-(3′,4′-dihydroxyphenyl)propanoic acid (OR = 1.25; 95% CI 1.06–1.48)
and indole-3-lactic acid (OR = 0.28; 95% CI 0.09–0.87) with fatal PCa; TMAO (OR = 1.17;
95% CI 1.06–1.30) and 2-hydroxyglutaric acid (OR = 0.66; 95% CI 0.46–0.95) with low-grade
PCa; hypoxanthine (OR = 1.48; 95% CI 1.01–2.15) and indole-3-propionic acid (OR = 0.65;
95% CI 0.44–0.97) with high-grade PCa; betaine (OR = 1.45; 95% CI 1.00–2.11) and 2-
hydroxyglutaric acid (OR = 0.58; 95% CI 0.33–0.99) with localized PCa; and dimethylglycine
(OR = 2.13; 95% CI 1.16–3.91) and 3-hydroxybenzaldehyde (OR = 0.56; 95% CI 0.33–0.94)
with advanced PCa.



Cancers 2024, 16, 4116 8 of 15
Cancers 2024, 16, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 2. Volcano forest plot showing odds ratios and 95% CI for the associations between plasma 

metabolites and five relevant clinical tumor subtypes of prostate cancer in the nested case–control 

study within the EPIC cohort. Only significant associations at p < 0.05 (not FDR adjusted) are shown. 

Abbreviations: 3-MPPAG = 3-(3′-methoxyphenyl)propanoic acid-4′-glucuronide; 3-MPPAS = 3-(3′-

methoxyphenyl)propanoic acid-4′-sulfate; 4-HHPPA = (R/S)-2-hydroxy-3-(4′-hydroxyphenyl)pro-

panoic acid; 6-AMMU = 6-amino-5-(N-methylformylamino)-1-methyluracil; CMPF = 3-carboxy-4-

methyl-5-propyl-2-furanpropionic acid; DHPPA = 3-(3′,4′-dihydroxyphenyl)propanoic acid; 

DHSBA = 3,5-dihydroxy-4-(sulfooxy)benzoic acid; HPAA sulfate = N-(2-hydroxyphenyl)-acetamide 

sulfate; TMAO = trimethylamine N-oxide. 

Figure 2. Volcano forest plot showing odds ratios and 95% CI for the associations between
plasma metabolites and five relevant clinical tumor subtypes of prostate cancer in the nested
case–control study within the EPIC cohort. Only significant associations at p < 0.05 (not
FDR adjusted) are shown. Abbreviations: 3-MPPAG = 3-(3′-methoxyphenyl)propanoic acid-
4′-glucuronide; 3-MPPAS = 3-(3′-methoxyphenyl)propanoic acid-4′-sulfate; 4-HHPPA = (R/S)-
2-hydroxy-3-(4′-hydroxyphenyl)propanoic acid; 6-AMMU = 6-amino-5-(N-methylformylamino)-
1-methyluracil; CMPF = 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid; DHPPA = 3-(3′,4′-
dihydroxyphenyl)propanoic acid; DHSBA = 3,5-dihydroxy-4-(sulfooxy)benzoic acid; HPAA sul-
fate = N-(2-hydroxyphenyl)-acetamide sulfate; TMAO = trimethylamine N-oxide.



Cancers 2024, 16, 4116 9 of 15

3.3. Correlations Between Metabolites and Dietary Intakes

Spearman’s correlations between plasma metabolites and the usual intake of selected
foods and food groups are shown in Figure 3 and Supplementary Table S3. All individual
metabolites were not correlated or weakly correlated with the individual and combined
intake of foods, showing in the case of positive correlations rho coefficients between
0.05 (p = 0.05) and 0.46 (p < 0.001). The strongest correlations were for trigonelline and
hypoxanthine ((rho = 0.46) with coffee (rho = 0.25), cyclamate with artificial sweeteners
(rho = 0.44), HPAA sulfate with non-white bread (rho = 0.32), 4-hydroxyproline betaine with
citrus fruits (rho = 0.27), 4-hydroxyproline with meat (rho = 0.25), and TMAO (rho = 0.25)
and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF) (rho = 0.20) with fish. All
the above-described correlations had a p value < 0.001.

Cancers 2024, 16, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 3. Heatmap showing significant (p < 0.05) Spearman’s correlations between plasma concen-

trations of 31 metabolites and the habitual intake of selected foods and food groups in the nested 

prostate cancer case–control study within the EPIC cohort. Full data on rho coefficients and statisti-

cal significance for each pair of correlations are shown in Supplementary Table S2. Abbreviations: 

3-MPPAG = 3-(3′-methoxyphenyl)propanoic acid-4′-glucuronide; 3-MPPAS = 3-(3′-methoxy-

phenyl)propanoic acid-4′-sulfate; 4-HHPPA = (R/S)-2-hydroxy-3-(4′-hydroxyphenyl)propanoic acid; 

6-AMMU = 6-amino-5-(N-methylformylamino)-1-methyluracil; CMPF = 3-carboxy-4-methyl-5-pro-

pyl-2-furanpropionic acid; DHPPA = 3-(3′,4′-dihydroxyphenyl)propanoic acid; DHSBA = 3,5-dihy-

droxy-4-(sulfooxy)benzoic acid; HPAA sulfate = N-(2-hydroxyphenyl)-acetamide sulfate; TMAO = 

trimethylamine N-oxide. 

4. Discussion 

In the current study, we used a comprehensive targeted metabolomics approach to 

assess the association of plasma concentrations of almost 150 metabolites with PCa risk in 

851 matched PCa case–control pairs of participants of the EPIC cohort. Although associa-

tions between 31 metabolites and risk of PCa, including overall and relevant clinical sub-

types, were found, these did not survive correction for multiple testing. The metabolites 

included endogenous and diet-related compounds from several metabolite classes. Addi-

tionally, some metabolites were derived from microbial metabolism, highlighting the 

Figure 3. Heatmap showing significant (p < 0.05) Spearman’s correlations between plasma concentra-
tions of 31 metabolites and the habitual intake of selected foods and food groups in the nested prostate
cancer case–control study within the EPIC cohort. Full data on rho coefficients and statistical signifi-
cance for each pair of correlations are shown in Supplementary Table S2. Abbreviations: 3-MPPAG = 3-
(3′-methoxyphenyl)propanoic acid-4′-glucuronide; 3-MPPAS = 3-(3′-methoxyphenyl)propanoic acid-
4′-sulfate; 4-HHPPA = (R/S)-2-hydroxy-3-(4′-hydroxyphenyl)propanoic acid; 6-AMMU = 6-amino-5-
(N-methylformylamino)-1-methyluracil; CMPF = 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid;
DHPPA = 3-(3′,4′-dihydroxyphenyl)propanoic acid; DHSBA = 3,5-dihydroxy-4-(sulfooxy)benzoic
acid; HPAA sulfate = N-(2-hydroxyphenyl)-acetamide sulfate; TMAO = trimethylamine N-oxide.
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4. Discussion

In the current study, we used a comprehensive targeted metabolomics approach to
assess the association of plasma concentrations of almost 150 metabolites with PCa risk
in 851 matched PCa case–control pairs of participants of the EPIC cohort. Although asso-
ciations between 31 metabolites and risk of PCa, including overall and relevant clinical
subtypes, were found, these did not survive correction for multiple testing. The metabo-
lites included endogenous and diet-related compounds from several metabolite classes.
Additionally, some metabolites were derived from microbial metabolism, highlighting the
potential role of gut microbiota in PCa carcinogenesis. Our findings, if validated in future
studies, could be used to improve the detection of men at increased risk of PCa through the
development of novel risk calculators [21] or nomograms [22].

Several previous studies using metabolomics to assess the prospective associations
between circulating metabolites and PCa risk have been published. The majority of these,
however, have focused on the analysis of metabolites of endogenous origin [8–10,23–27]
and/or the use of overall risk of PCa as the main outcome [24,25,27]. This meant that the
analysis of exogenous metabolites and other PCa clinical subtypes, including mortality,
have been largely unexplored. In the framework of the EPIC cohort, targeted metabolomic
studies have previously investigated the associations between prediagnostic levels of
circulating endogenous metabolites and the overall risk of PCa, by tumor characteristics,
and mortality [8–11,23]. To the best of our knowledge, none of those studies have analyzed
a large panel of exogenous metabolites and elucidated their association with PCa risk.

4.1. Endogenous Metabolites and PCa Risk

Endogenous metabolites associated with PCa risk identified in our study included
derivatives of amino acid metabolism, nucleotide metabolism, organic acids, and amines.

Among amino acid derivatives, we identified negative associations for indole-3-lactic
acid and indole-3-propionic acid with risk of fatal and high-grade PCa, respectively, al-
though these associations were no longer significant after correction for multiple testing.
These results contrast with those reported by Mondul et al. [28], who despite finding in-
verse associations for two indole metabolites, indole-3-propionic acid and indole-3-butyric
acid, they were with regard to the risk of a nonaggressive PCa subtype. We observed a
suggestion of negative associations for (R/S)-2-hydroxy-3-(4′-hydroxyphenyl)propanoic
acid and 4-hydroxyproline with low-grade and high-grade PCa risk, respectively. To our
knowledge, no previous study has reported the negative association between (R/S)-2-
hydroxy-3-(4′-hydroxyphenyl)propanoic acid and PCa risk. On the other hand, an inverse
association between a closely related metabolite, 4-hydroxyphenylpyruvic acid, and risk of
lethal PCa was previously reported in the ATBC (Alpha-Tocopherol, Beta-Carotene Cancer
Prevention) study by Huang et al. [29].

The result for 4-hydroxyproline is partially opposite to the result published by Schmidt
et al. within the EPIC cohort [9]. These authors reported that plasma concentrations of trans-
4-hydroxyproline were inversely associated with overall PCa risk; however, this association
was not statistically significant after controlling for multiple testing. High concentrations
of betaine, dimethylglycine, and TMAO were positively associated with advanced and
localized PCa risk in our study, although associations did not remain after FDR correction.
These results contrast with the null associations reported between these three metabolites
and the overall and lethal PCa risk in nested case–control studies within the JANUS [27] and
PLCO (Prostate, Lung, Colorectal, and Ovarian Cancer Screening) [30] cohorts, respectively.
However, they are in agreement with the positive association between serum TMAO
and aggressive PCa risk observed in a nested case–control study in the ATBC study [28].
Betaine, dimethylglycine, and TMAO are systemic breakdown products of dietary choline,
whose serum concentrations have also been associated with an increased risk of lethal
PCa [30]. Our results, therefore, appear to confirm previous research suggesting that the
choline metabolism pathway may modulate PCa risk, especially the lethal outcome [31].
In the present study, we found 2-hydroxyglutaric acid to have a negative association
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with future PCa risk for both low-grade and localized PCa subtypes. This association is
opposite to that found by Huang et al. [32], who observed a positive association between
2-hydroxyglutaric acid and PCa-specific mortality among those in the ATBC study. The
positive association between hypoxanthine and high-grade PCa risk in the present study
contrasts with the negative associations found for this metabolite and the purine derivatives
N1-methylinosine, AMP, and ADP with the risk of fatal PCa in a case–cohort study of
the Cancer Prevention Study-II Nutrition Cohort [33]. Our finding would confirm that
dysregulation in purine metabolism may precede the onset of PCa.

4.2. Diet- and Microbial-Related Metabolites and PCa Risk

To the best of our knowledge, this is the first large prospective study to assess the
association between exogenous metabolites and PCa risk. Metabolites comprising the
diet-related panel associated with PCa risk in the current study were predominantly
derivatives of plant-based foods, especially (poly)phenol by-products. To our knowledge,
epidemiological evidence on prospective associations between (poly)phenols and PCa risk
is scarce and is limited to the use of dietary exposure biomarkers [34–36] and systemic
concentrations of isoflavones and lignans [37]. Overall, the results from observational
studies using dietary (poly)phenols exposure reported null or inconclusive associations
with PCa risk [34–36]. Regarding isoflavones and lignans, although we included several
compounds from these (poly)phenol subclasses for their analysis, none of them were
found to be significantly associated with PCa risk. These null results, therefore, should be
confirmed in further studies using nutritional biomarkers.

In accordance with the previous literature, we found some metabolites weakly to moder-
ately correlated with the habitual intake of potential food sources (Supplementary Table S3).
Putative biomarkers of plant-based foods, such as HPAA sulfate for whole grains [38] and
4-hydroxyproline betaine for citrus fruit [39], were associated with a reduced risk of overall
and high-grade PCa, respectively, while trigonelline for coffee [40] consumption had an
increased risk of high-grade PCa. These associations are intriguing, especially for citrus
fruit [41] and whole grains [42], whose intake have been reported to have no association
with PCa risk. Among putative biomarkers of non-plant-based foods, we observed positive
associations for cyclamate and TMAO with the risk of overall, low-grade, high-grade, and
localized PCa risks. Some artificial sweeteners, especially aspartame and acesulfame-K, are
suggested to be related to a higher cancer risk [43], but not cyclamate [44]. To the best of
our knowledge, this is the first study suggesting that an increased concentration of plasma
cyclamate may be associated with a higher risk of PCa. This finding, therefore, warrants
further research. On the other hand, circulating TMAO was consistently associated with
animal protein intake in a pooled analysis of 16 population-based studies [45]. To date,
there is still not enough evidence supporting a clear positive association between animal
protein intake and PCa incidence at the epidemiological level [46].

The observed associations between several microbial metabolites and PCa risk in
the current study suggest that host microbiota might play an important role in prostate
carcinogenesis and tumor progression [47]. For example, indole-3-lactic acid, which is
produced by the microbial metabolism of tryptophan, showed the strongest inverse associ-
ation with PCa risk, especially a fatal outcome. Observational and intervention studies in
humans have shown that intestinal microbiota may play a crucial role in the occurrence
and progression of PCa through short-chain fatty acids, testosterone, estrogen, folic acid,
and phenylacetylglutamine metabolites [48]. Although we did not include any of these
metabolites, our study is the first to include a considerable number of microbial metabolites
from endogenous and dietary origin and to report the prospective associations between
these metabolites and several PCa clinical subtypes. Noteworthy, the observed associa-
tions for the microbial metabolites of (poly)phenols highlight the probiotic role of these
phytochemicals in relation to PCa risk. Increasing evidence suggests that altering the gut
microbiome using prebiotic or probiotic interventions may prevent or delay prostate cancer
development [49].
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The major strength of our study is, on the one hand, the use of a validated high-
throughput and comprehensive targeted metabolomics method [15]. We were able to
analyze in a robust way a large set of almost 600 metabolites of different origins in a
large number of samples (891 matched pairs). Additionally, the large sample size of the
prospective study design, and the coverage of several European countries, makes this
study somewhat more complete and comprehensive compared to metabolomics studies
that used smaller sample sizes and lower country heterogeneity [24,26,32]. Our study
also has limitations. Firstly, none of our findings reached the multiple testing correction
(FDR) threshold, so they need to be interpreted with caution. Secondly, we relied on data
collected from self-reported dietary questionnaires for food intake information. In this
sense, although dietary questionnaires were validated in each center/country [50], their
use may have led to measurement errors, especially in food intake estimation, which may
affect the tested correlations between food intake and plasma metabolites. In view of these
limitations, our findings therefore should be interpreted with caution, especially those
associations between metabolites and PCa outcomes that are reported for the first time.

5. Conclusions

In conclusion, the results from the current nutrimetabolomics study suggest that the
plasma concentrations of several endogenous, dietary, and microbial metabolites might
prospectively be related to PCa risk. Noteworthy, our study generates new hypotheses to
investigate the role of diet and gut microbiota in PCa. In order to provide greater high-
quality epidemiological evidence on PCa risk, our results need to be further replicated in
other large prospective studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16234116/s1, Figure S1: flowchart showing the number of
metabolites available in each preprocessing step; Table S1: distribution of metabolite concentrations
by PCa cases and controls. Table S2: odds ratios and 95% CI for overall and six relevant clinical
subtypes of prostate cancer risk by log2 concentration of 147 plasma metabolites in a nested case–
control study within the EPIC cohort; Table S3: correlation coefficients for the relationship between
plasma concentrations of 31 metabolites and the habitual intake of selected foods and food groups in
a nested prostate cancer case–control study.
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