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Abstract: Polyphenols are phytochemicals naturally present in wines that arouse much interest in 

the scientific community due to their healthy properties. In addition, their role as descriptors of 

various wine qualities, such as the geographical origin or the grape variety, cannot be 

underestimated. Here, Pinot Noir and Xarel·lo monovarietal samples belonging to the sparkling 

wine production process have been studied, corresponding to base wines from a first alcoholic 

fermentation (plus malolactic in some cases), base wines resulting from tartaric stabilization, and 

sparkling wines from a second alcoholic fermentation aged for 3 and 7 months. One of the objectives 

of this paper is to obtain valuable chemical and oenological information by processing a huge 

amount of data with suitable chemometric methods. High-performance liquid chromatography 

coupled with ultraviolet spectroscopy and tandem mass spectrometry (HPLC-UV-MS/MS) has been 

used for the determination of polyphenols in wines and related samples. The method relies on 

reversed-phase mode and further detection by multiple reaction monitoring. Concentrations of 

relevant phenolic compounds have been determined, and the resulting compositional data have 

been used for characterization purposes. Exploratory studies by principal component analysis have 

shown that samples can be discriminated according to varietal and quality issues. Further 

classification models have been established to assign unknown samples to their corresponding 

classes. For this purpose, a sequential classification tree has been designed involving both variety 

and quality classes, and an excellent classification rate has been achieved. 

Keywords: wines; phenolic compounds; HPLC-UV-MS/MS; data processing; principal components 

analysis; classification 

 

1. Introduction 

Phenolic compounds are important phytochemicals naturally occurring in 

oenological products such as musts and wines. Despite the great structural diversity, they 

are often classified into various families, featuring phenolic acids, stilbenes, and 

flavonoids as the most remarkable classes in grape-derived matrices. The basic structural 

skeletons are depicted in Table S1 (Supplementary Material), and additional descriptions 

can be found elsewhere [1,2]. This large group of molecules exhibits remarkable 

antioxidant attributes responsible for beneficial features such as anti-inflammatory, 

cardioprotective, antineoplastic, or antimicrobial activities [1,3]. 

Citation: Oliva, E.; Mir-Cerdà, A.; 

Sergi, M.; Sentellas, S.; Saurina, J. 

Characterization of Sparkling Wine 

Based on Polyphenolic Profiling by 

Liquid Chromatography Coupled to 

Mass Spectrometry. Fermentation 

2023, 9, 223. https://doi.org/10.3390/ 

fermentation9030223 

Academic Editors: Claudia Gonzalez 

Viejo and Sigfredo Fuentes 

Received: 13 January 2023 

Revised: 20 February 2023 

Accepted: 23 February 2023 

Published: 25 February 2023 

 

Copyright: ©  2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Fermentation 2023, 9, 223 2 of 12 
 

 

Beyond the well-known healthy properties, the role as descriptors of different food 

features dealing with the geographical origin, botanical variety, agricultural practices, or 

fermentation processes cannot be underestimated [4,5]. Phenolic compounds are 

originally present in the grapes, especially in peels and seeds, while the levels in pulp are 

lower. Hence, the maceration process during the vinification is fundamental to lixiviate 

these compounds from the solid matter to the must. In white and rosé wines, the 

maceration is minimal (or very limited), so their phenolic content is significantly lower 

(up to 10- to 50-fold lower) compared to red wines. Regarding the family type, 

hydroxycinnamic acids are mainly detected since they are widespread in the pulp, while 

anthocyanins or tannins, which provide red color and astringency to the wine, are quite 

residual [6–8]. 

In recent years, several authors investigated the descriptive ability of polyphenols to 

assess different wine features. Significant differences in compositional values were found 

among grape varieties, such as among Agiorgitiko and Xinomavro [9], Chardonnay, 

Macabeu, Xarel·lo, and Pinot Noir [10,11], Zweigelt and Rondo [12], Vranac, Kratosija, 

and Cabernet Sauvignon [13], Gran Negro, Brancellao, Mouraton [14], Campania 

autochthonous red grapes [15], and others [16,17]. Mono- and poly-varietal wines could 

also be distinguished under analogous approaches relying on compositional differences 

[18]. The geographical origin and “Terroir” were other qualitative features addressed 

through phenolic profiling. Some illustrative examples are mentioned as follows, such as 

the case of Chinese [19], South America [20,21], Mendoza (Argentina) [22], Iberian 

Peninsula [23], Aquitaine (France) and Rioja (Spain) [24], Spanish [5,25], Czech [26] wines. 

More comprehensive authentication studies were established considering varietal, 

geographical, and vintage features simultaneously [27]. Based on data fusion approaches, 

in some cases, phenolic profiling was combined with other sources of information, such 

as the elemental composition [28–30], biogenic amines and amino acids [31], or organic 

acids [32] for a more exhaustive description of wine samples. In general, in these 

examples, conclusions achieved with the assistance of statistics and chemometrics 

allowed a more efficient extraction of the underlying patterns. 

In this paper, white and rose base wines and sparkling wines were analyzed to 

evaluate the ability of polyphenols as variety and quality descriptors. Although varietal 

issues were commonly addressed based on phenolics—various representative examples 

have been cited above—to the best of our knowledge, the use of such data for quality 

assessment had not been considered previously. The quantification of phenolic acids and 

flavonoids was carried out by high-performance liquid chromatography-ultraviolet 

detection coupled with tandem mass spectrometry (HPLC-UV-MS/MS). The complex 

multivariate nature of the relationships between features and concentrations entailed that 

extracting the underlying information was difficult. Hence, statistical and chemometric 

methods were required to establish patterns to characterize and authenticate the wine 

samples. Conclusions were drawn concerning the influence of varietal and quality wine 

features on the compositional profiles and, despite the fact that no selective markers were 

found, some compounds were up-expressed in some wine classes. 

2. Materials and Methods 

2.1. Chemicals and Solutions 

All phenolic acids and flavonoids used were of analytical grade. Gallic, 

homogentisic, protocatechuic, caftaric, gentisic, vanillic, caffeic, chlorogenic, syringic, 

ferulic, and p-coumaric acids, and (+)-catechin, (−)-epicatechin, ethyl gallate, tyrosol, 4-

hydroxytyrosol, resveratrol, procyanidin B1, procyanidin B2, rutin, myricetin, quercetin, 

kaempferol, and apigenin were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Pure stock standard solutions were prepared at a concentration of 5000 mg L−1 using 

methanol (UHPLC-Supergradient, Panreac ApplyChem, Castellar del Vallès, Spain) and 

dimethyl sulfoxide (for analysis, 99.9%, Panreac ApplyChem, Castellar del Vallès, Spain) 
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—for phenolic acids and flavonoids, respectively. Stock solutions were stored at −18 °C. 

Formic acid (>96%, Merck KGaA, Darmstadt, Germany), methanol, and water (Elix3, 

Millipore, Bedford, MA, USA) were used to prepare the mobile phase components. 

For calibration purposes, standard solution mixtures at concentrations from 0.02 to 

10 mg L−1 were prepared in methanol:water (1:1, v:v) and were stored at 4 °C until use. 

2.2. Oenological Samples 

Samples analyzed in this paper were kindly provided by Codorniu S.A. (Sant 

Sadurní d’Anoia, Spain). They are monovarietal products summarized in Table 1, 

including base wines, stabilized wines, and sparkling wines elaborated with a white grape 

(Xarel·lo) produced in Penedès (Catalonia, Spain) and a red grape (Pinot Noir) from Conca 

de Barberà and Costers del Segre (both from Catalonia, Spain). This range of wine 

products is representative of the different steps in the elaboration of sparkling wines 

following the traditional Champenoise method [10,33]. In more detail, monovarietal base 

wine, either from Xarel·lo or Pinot Noir varieties, resulted from the first alcoholic 

fermentation developed in stainless steel tanks at 15 to 18 °C. When necessary, malolactic 

fermentation (MLF) was also applied to reduce the unpleased sour taste due to high levels 

of malic acid. Subsequently, the monovarietal base wines were clarified and stabilized to 

avoid further precipitation of tartrate salts, thus resulting in the so-called stabilized wines. 

The last step consisted of the second alcoholic fermentation in the bottle. After that, 

samples aged in contact with lees for 3 and 7 months were collected for analysis. 

Table 1. Set of samples under study. 

Sample Code Sample Type Grape Variety Quality 

BWPA Base wine Pinot noir A 

SWPA Stabilized wine Pinot noir A 

3MPA Sparkling wine (3 months aged) Pinot noir A 

7MPA Sparkling wine (7 months aged) Pinot noir A 

BWPB Base wine Pinot noir B 

SWPB Stabilized wine Pinot noir B 

3MPB Sparkling wine (3 months aged) Pinot noir B 

7MPB Sparkling wine (7 months aged) Pinot noir B 

BWPC Base wine Pinot noir C 

SWPC Stabilized wine Pinot noir C 

3MPC Sparkling wine (3 months aged) Pinot noir C 

7MPC Sparkling wine (7 months aged) Pinot noir C 

BWPD Base wine Pinot noir D 

SWPD Stabilized wine Pinot noir D 

3MPD Sparkling wine (3 months aged) Pinot noir D 

7MPD Sparkling wine (7 months aged) Pinot noir D 

BWXA Base wine Xarel·lo A 

SWXA Stabilized wine Xarel·lo A 

3MPA Sparkling wine (3 months aged) Xarel·lo A 

7MXA Sparkling wine (7 months aged) Xarel·lo A 

BWXB Base wine Xarel·lo B 

SWXB Stabilized wine Xarel·lo B 

3MXB Sparkling wine (3 months aged) Xarel·lo B 

7MXB Sparkling wine (7 months aged) Xarel·lo B 

BWXC Base wine Xarel·lo C 

SWXC Stabilized wine Xarel·lo C 

3MXC Sparkling wine (3 months aged) Xarel·lo C 
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7MXC Sparkling wine (7 months aged) Xarel·lo C 

BWXD Base wine Xarel·lo D 

SWXD Stabilized wine Xarel·lo D 

3MXD Sparkling wine (3 months aged) Xarel·lo D 

7MXD Sparkling wine (7 months aged) Xarel·lo D 

Apart from winemaking aspects, products were classified into four qualities (here 

coded as A, B, C, and D, with A being the top quality and D the lower one) according to 

agricultural and vinification criteria. The initial classification of the products in the 

qualities A, B, C, and D was carried out by expert oenologists to pre-establish the 

oenological, sensory, and commercial possibilities of the future wines. In general, the 

highest quality wines were likely to be aged for several years and generate very select 

products with a high market value. On the other hand, qualities C and D were used to 

produce large volumes of wines that can only be aged for a short time, from 9 to 18 

months, and were marketed at much lower prices. Briefly, the type of grape plantation 

(ecological or conventional), the type of harvest and transport (manual for class A or 

mechanized for B, C, and D), the vineyard productivity (ca. from 6000 for A to more than 

10,000 kg per hectare for D) were the factors that conditioned the quality assignation. In 

addition to the harvest and transport, the pressure applied in the pressing to obtain the 

most was a fundamental issue in the wine quality. The higher the pressure, the higher the 

production yield was obtained, but the quality was lower since a stronger extrusion led 

to a higher proportion of astringent compounds and unwanted acids. In addition, the 

sensory freshness of the product diminished, and the aging possibilities were more 

limited. Moreover, MLF was applied to wines of C and D qualities to improve the 

organoleptic features leading to creamy flavors characteristic of high levels of lactic acid. 

Conversely, products of A and B quality were not subjected to MLF, so they presented 

fresh and fruity flavors in the mouth. 

2.3. Analytical Procedure 

Wines and related samples were filtered with 0.45 nylon filters (Whatman, Clifton, 

NJ, USA) and analyzed by HPLC-UV-MS/MS through the multiple reaction monitoring 

(MRM) acquisition mode. This method was previously established and validated by Mir-

Cerdà et al. [34]. The chromatography equipment was composed of an Agilent 1100 Series 

liquid chromatograph (Agilent, Technologies, Palo Alto, CA, USA) –equipped with a 

vacuum degasser (G1322A), binary pump (G1312A), and autosampler (G1367A)– coupled 

to an Applied Biosystems 4000 QTrap hybrid triple quadrupole/linear ion trap mass 

spectrometer (AB Sciex, Framingham, MA, USA). 

The chromatographic separation relied on reversed-phase mode (Kinetex C18 

column, 150 mm length × 4.6 mm I.D, 2.6 µm particle size from Phenomenex, Torrance, 

CA, USA) using 0.1% (v/v) formic acid aqueous solution and acetonitrile (ACN) as the 

components of the mobile phase. The elution gradient was: 0 to 10 min, 3% to 15% ACN; 

10 to 20 min, 15% to 45% ACN; 20 to 22 min, 45% to 90% ACN; 22 to 24 min, 90% ACN; 

24 to 24.2 min, 90% to 3% ACN; 24.2 to 30 min, 3% ACN. The flow rate was 0.7 mL min−1, 

and the injection volume was 5 µL. UV detection was performed in the spectral range 

from 190 to 400 nm. 

Mass spectrometry with MRM mode was used for analyte confirmation and 

quantification using the corresponding standards. The electrospray source operated in 

negative mode at −2500 V at a temperature of 700 °C. Nitrogen used as nebulizer and 

auxiliary gas was set at 20, 50, and 50 arbitrary units for the curtain gas, the ion source gas 

1, and the ion source gas 2, respectively. Declustering potential (DP), collision energy (CE), 

collision exit cell potential (CXP), and ion transitions pairs were optimized elsewhere [34] 

(see Table S2 in the Supplementary Material for detailed information). LC-UV-MS/MS 
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chromatograms were acquired and processed with Analyst 1.6.2 (AB Sciex, Framingham, 

MA, USA). For quantitative purposes, standard solutions of each analyte. 

Samples were analyzed randomly in triplicate. Quality control (QC) and blank 

samples were measured every 10 samples. The calibration curve, prepared in the 

concentration range from 0.02 to 10 mg L−1, was run at the beginning and at the end of the 

sample set. 

2.4. Data Analysis 

Statistical tests, ANOVA, and boxplots were performed using Microsoft Excel 

(Microsoft Corporation, Redmond, WA, USA), with α = 0.05 chosen as the significance 

level. Multivariate studies for preliminary data exploration by Principal Component 

Analysis (PCA) and sample classification by Partial Least Squares-Discriminant Analysis 

(PLS-DA) were carried out with SOLO (Eigenvector Research, Inc., Manson, WA, USA). 

More information on the chemometric algorithms and possibilities in food 

characterization and authentication can be found in the literature [35–37]. 

3. Results 

Concentrations of remarkable phenolic acids and flavonoids occurring in the set of 

samples were determined by the HPLC-UV-MS/MS method described in the experimental 

section. This analytical method was previously developed and validated by Mir-Cerdà et 

al. [34]. Samples were analyzed randomly in triplicate. QC and blanc solutions were 

injected every 10 samples to check the method’s reproducibility and control the carryover. 

Analytes were quantified using the calibration curve prepared with the corresponding 

standard solutions, which were injected at the beginning and end of the analyses. Table 

S3 in the Supplementary Material details the compositional profiles of the samples under 

study. 

Overall, caftaric acid was the most abundant compound, with concentrations 

generally higher than 10 mg L−1, reaching values ca. 26 mg L−1 in some Pinot Noir wines. 

Other hydroxycinnamic acids, such as coutaric, caffeic, and coumaric acids, were also 

remarkable, with concentration values ranging from 0.2 to 3.5 mg L−1. The content of 

hydroxybenzoic acids was lower. Gallic acid was the most representative molecule, 

occurring at concentrations between 0.2 and 1.6 mg L−1, while other detected compounds 

were present at sub-mg L−1 levels (for instance, vanillic, syringic, 4-hydroxybenzoic, 3,4-

dihydroxybenzoic, and 2,5-dihydroxybenzoic). Regarding flavonoids, astilbin was found 

in concentrations ranging from ca. 0.5 to 5 mg L−1. Other identified flavonoids generally 

occurring at sub-mg L−1 levels were catechin, epicatechin, and procyanidin dimers. 

The compositional profiles were moderately stable throughout the winemaking 

process, from the base and stabilized wines to the sparkling wines obtained after a second 

alcoholic fermentation in the bottle (e.g., 3-month and 7-month-aged sparkling wines). 

This finding was confirmed by ANOVA, concluding that differences in the phenolic 

composition between base, stable and sparkling wines were not significant (p-values > 

0.05). In contrast, it was found that polyphenolic profiles were highly dependent on 

product quality and variety. For all compounds tested, both factors were statistically 

significant, as well as their interaction. 

In order to illustrate the significance of quality and variety on the phenolic 

concentration graphically, various representative examples are shown in Figure 1. In the 

case of gallic acid, for instance, the amount found in the samples increased from high to 

low qualities. It was also evidenced that, in general, Pinot Noir samples were richer than 

Xarel·lo ones. A similar pattern was also identified for other phenolic acids and flavonoids 

(e.g., vanillic acid, astilbin, catechin, or epicatechin). For other (di)hydroxybenzoic acids, 

contents also increased with decreasing the quality, but differences between Pinot Noir 

and Xarel·lo were not noticeable. The behavior of caftaric acid was more peculiar since the 

highest levels were obtained for the samples of the best quality. As mentioned above, the 
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full compositional data are in Table S3 (Supplementary Material). Here, a heatmap is 

depicted with the average analyte concentrations for each type of sample to visualize 

globally the compositional patterns (see Figure 2). Although no specific class biomarkers 

were found, some concentrations were up-or down-regulated in some types of samples, 

so the data would be a valuable source of information to characterize and authenticate 

this type of wine samples. As can be seen in Figure 2, the greater the intensity of the red 

hue, the greater the concentration of analytes, while white and pale colors indicate low 

concentrations. In line with the previous comments, it can be seen that Pinot Noir is richer 

in phenolic compounds; also, qualities C and D contain higher concentrations of the 

analytes. As exceptions to this behavior, caffeic and caftaric acids are more abundant in 

quality A samples, and coumaric and coutaric acids are over-expressed in the xarel·lo 

variety. 

 

Figure 1. Boxplots with the polyphenol concentrations in the different types of samples. (a) Gallic 

acid, (b) caftaric acid, (c) astilbin, (d) catechin. 

The dataset, consisting of the compositional profiles of the phenolic acids and 

flavonoids in the samples, is huge, and the potential relationships between variables and 

sample features are often of multivariate nature. For this reason, extracting global 

information on the potential role of polyphenols as the descriptors of wine quality or 

varietal issues is a difficult task. However, chemometric methods for exploratory analysis 

and sample classification can deal with the multivariate nature of the compositional data, 

thus providing more comprehensive and accurate information. 

The dataset was preliminarily studied by PCA. The matrix dimension was 112 × 18, 

with 112 being the number of 98 sample replicates plus 16 QCs and 18 the number of 

target compounds under study. Data were autoscaled to equalize the influence of the most 

abundant compounds (e.g., caftaric, gallic, caffeic and coutaric acids, astilbin, and 

catechin) with those occurring at lower levels (e.g., syringic, ferulic, and 4-hydroxybenzoic 

acids). PCA results are depicted in Figure 3. In agreement with previous exploratory 

results, the distribution of samples in the space of the principal components (PCs), PC1 

versus PC2 (Figure 3a), revealed patterns related to the variety and quality of wines. PC1 

mainly described the sample quality, with the best quality to the left and the lowest to the 

right. PC2 discriminated the samples according to variety, with Xarel·lo on the top and 

Pinot Noir on the bottom sectors. Moreover, QCs were grouped in a compact group in the 
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center of the model, thus suggesting that data were highly reproducible throughout the 

chromatographic sequence of analysis and supporting the soundness of the conclusions. 

 

Figure 2. Heatmap expressing the average concentration of the phenolic compounds in the set of 

samples. The red color intensity indicates the concentration level. Sample acronyms have been 

defined in Table 1. 

The loading plot showed the distribution of phenolic compounds in the space of PCs 

(Figure 3b). It was deduced that, in general, the highest qualities corresponded to the 

poorest samples. Although there are no selective markers of quality or variety for this type 

of product, it was interestingly observed that some compounds predominated in the Pinot 

Noir variety (e.g., gallic, vanillic, and hydroxybenzoic acids, astilbin, and hydroxytyrosol) 

while other were comparable or even more abundant in Xarel·lo (e.g., caftaric, coutaric, 

and caffeic acids). All these sets of complex compositional differences were responsible 

for the sample distribution commented on above. 

Based on the natural trends confirmed from the boxplots, statistics, and PCA, further 

studies were attempted to classify the wine samples according to quality and variety 

attributes simultaneously using PLS-DA. For such a purpose, a preliminary model was 

established considering varieties and qualities simultaneously, so eight classes were 

created. Results shown in Figure 4 are similar to those from PCA except for the rotation 

of the axis and the higher class discrimination by PLS-DA. Subsequently, an 8-class 

classification tree was defined from which Pinot Noir vs. Xarel·lo types were first 

separated, as the principal quantitative differences were due to variety. Then, within Pinot 

Noir and Xarel·lo classes, further divisions relied on quality, with D being the first 

dismembered class, followed by C, and, finally, A and B classes were split apart. 

Quantitative results from this classification process are summarized in Table 2. As can be 

seen, Pinot Noir vs. Xarel·lo samples could be perfectly distinguished and assigned in both 

calibration and cross-validation steps, with a 100% of classification rate. In a similar way, 

the following classification models, once Pinot Noir vs. Xarel·lo were separated apart, 
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were also excellent, and only one misclassification occurred among the cross-validation 

results since one C sample was confounded with a D one. 

 

Figure 3. An exploratory study of samples and variables by principal component analysis. (a) The 

plot of scores; (b) The plot of loadings. 

 

Figure 4. PLS-DA results considering varieties and classes simultaneously. (a) The plot of scores; (b) 

The plot of loadings. 

Table 2. Results from two-class classification models obtained by PLS-DA according to the 

classification tree. 

Model 
Number of 

LV 

Calibration Validation 

Sensitivity Specificity Sensitivity Specificity 

Pinot Noir vs. Xarel·lo 4 1 1 1 1 

Within pinot noir      

D vs. others 3 1 1 1 0.93 

C vs. others 3 1 1 1 1 

A vs. B 3 1 1 1 1 

Within Xarel·lo      

D vs. others 3 1 1 0.91 1 

C vs. others 3 1 1 1 1 

A vs. B 3 1 1 1 1 
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4. Discussion 

It is well known that, in general, red wines are richer in polyphenols, mainly because 

of the winemaking process. In the red vinification, the must maceration in contact peels, 

seeds, brunch stalks, and other vine solids favors the lixiviation of polyphenolic 

substances to the liquid to be fermented. In the white vinification, this contact is avoided 

as much as possible, so the lixiviation is minimal, and the occurrence of polyphenols in 

the samples comes from the squeezed pulp. Conversely, a short maceration process is 

performed in rosé wines so that a small fraction of the skin and vine soluble components 

can pass into the must. In this set of wines, Pinot Noir samples of C and D quality were 

intended to produce rosé wines, and concentrations of phenolic molecules predominant 

in the peels and seeds, such as flavonoids, increased correspondingly. This finding is 

clearly shown in Figure 1a,c) for gallic acid and astilbin, respectively. 

Apart from these differences attributable to the extraction yield depending on the 

maceration process, the occurrence of up-expressed metabolites when comparing 

different wine varieties is a common trend. The influence of grape variety on the 

compositional profiles of phenolic acids and polyphenols has been pointed out elsewhere 

in various recent papers [9,11–13]. Anyway, specific class biomarkers are quite unusual. 

In the study, selective varietal molecules have not been found either, but the 

differences in the compositional profiles of Pinot Noir and Xarel·lo wines are statistically 

significant. In general, Pinot Noir samples display higher concentrations of most of the 

analytes while, as commented above, a reduced list of hydroxycinnamic acids is more 

characteristic of Xarel·lo. 

As a much more novel aspect to be highlighted, this work has also revealed 

interesting correlation patterns between the wine quality and the polyphenolic 

composition. When all the other oenological factors were maintained constant (i.e., for 

samples of the same variety and type), a progressive increase in the phenolic content was 

observed with decreasing quality, as shown in Figure 1. The only exception to this practice 

was for caftaric and caffeic acids, reaching the highest concentration values for samples of 

top quality (A quality). This apparently odd behavior could be explained as 

hydroxycinnamic acids are mainly found in the grape pulp; hence, they were better 

preserved when the products were treated under neat and careful conditions, as with the 

A quality. In contrast, the other phenolic acids and flavonoids coming from skins, seeds, 

and other grape residues already started their lixiviation towards the must during the 

harvest and transport to the cellar, when the integrity of some grape berries was broken, 

and there was a release of juices to the medium. This grape berry alteration increased with 

decreasing the product quality, and, reasonably, the concentrations of released 

polyphenols increased from the best to the poorest qualities. Accordingly, the 

concentration of gallic and vanillic acids, astilbin, and epicatechin, among others, were 

higher in the products of lower quality. 

The conclusions gained from boxplots and statistics were globally visualized by PCA. 

Results proved that the phenolic composition was an excellent source of information to 

address variety and quality issues. The unsupervised data analysis showed the natural 

sample structuration and clustering, offering great possibilities for sample discrimination 

according to these features. PC1 mainly captured the influence of the quality, with wines 

of the best quality located to the left section and samples of lower quality distributed to 

the right. Conversely, PC2 retained the data variance dealing with the variety since Pinot 

Noir samples were mainly to the bottom and Xarel·lo samples to the top. Moreover, 

samples sharing the same quality and variety attributes clustered together regardless of 

other oenological aspects such as the wine type (base wine, stabilized wine, and sparkling 

wine) and aging (3 and 7 months). This means that although a slight decay in 

concentrations of the target phenolic acids and flavonoids was found, compositional 

differences throughout the winemaking process were much lower than those associated 

with varietal and quality attributes. Here, the analyte levels were maintained 
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approximately constant from the first to the second fermentation and aging, and the extent 

of oxidation, hydrolysis, and other (bio)chemical reactions was limited. 

Regarding the sample descriptors, the loading plot revealed that caffeic acid and its 

derivative (caftaric acid) were more characteristic of high-quality wines. Despite not being 

specific markers, the best samples displayed amounts significantly higher of these 

molecules. In comparison, the rest of the compounds were unexpressed in C and D wines. 

Pinot Noir and Xarel·lo wines were distinguishable from the levels of other phenolic 

species such as vanillic, syringic, and gallic acids, and astilbin, which predominated in 

pinot noir. Similarly, for instance, coutaric acid was more characteristic of Xarel·lo 

products. 

The promising sample discrimination already achieved by PCA without imposing 

any class supervision foresaw the great possibilities of this set of descriptors to conduct 

classification and authentication studies. This expectation was confirmed by PLS-DA, in 

which various illustrative cases were considered. Since the principal sample differences 

were attributable to the grape variety, the classification of wines into Pinot Noir and 

Xarel·lo was first assessed. All the samples were correctly assigned to their classes. 

Conclusions on the variety markers agreed with PCA. Further classification studies 

attempted according to the classification tree approach provided excellent results in the 

sample assignation according to qualities. Again, caftaric and caffeic acids were the 

principal markers of the top quality. 

5. Conclusions 

This manuscript proposes a new approach to characterize and classify wine samples 

based on polyphenolic profiling and chemometric methods for data processing. The 

quantitative information was efficiently interpreted based on principal component 

analysis and partial least squares-discriminant analysis, and the main sample patterns 

were encountered. Despite not being selective, some tentative quality descriptors such as 

caffeic and caftaric acids and some varietal markers (e.g., gallic acid, vanillic acid, and 

astilbin for pinot noir, and coutaric acid for Xarel·lo) were confirmed statistically since 

they were up-expressed in the corresponding classes. The conclusions on the descriptive 

potential of phenolic acids and polyphenols were based on a limited set of samples 

involving two grape varieties and four wine qualities. Hence, the example developed is 

just a proof of concept, but they could be generalized to cases dealing with other varieties 

and coupages. The results obtained are promising and open up new opportunities to study 

the qualities of wine products using polyphenolic profiles as a source of information. 

Likewise, the proposed approach can help to distinguish and authenticate wine samples. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/fermentation9030223/s1. Table S1. Chemical structures of principal 

families of phenolic compounds tentatively present in white wines. Table S2. MRM transitions for 

the detection of polyphenols by LC-ESI-MS/MS. Table S3. Concentrations of polyphenols in the set 

of samples. Sample nomenclature: must (M), base wine (BW), stabilized wine (SW), sparkling wine 

(3 months aged, 3M), sparkling wine (7 months aged, 7M), A-type Pinot Noir (PA), B-type Pinot 

Noir (PB), C-type Pinot Noir (PC), D-type Pinot Noir (PD), A-type XarelXarel·lo (XA), B-type 

XarelXarel·lo (XB), C-type XarelXarel·lo (XC), and D-type XarelXarel·lo (XD). 

Author Contributions: Conceptualization, J.S. and S.S.; methodology, E.O and A.M.-C.; software, 

S.S.; investigation, E.O. and A.M.-C.; data curation, E.O.; writing—original draft preparation, E.O., 

A.M.-C., J.S.; writing—review and editing, E.O., A.M.-C., M.S., S.S. and J.S.; supervision, M.S., S.S. 

and J.S.; funding acquisition, J.S. All authors have read and agreed to the published version of the 

manuscript. 

Funding: This research was supported by the project PID2020-114401RB-C22 financed by the 

Agencia Estatal de Investigación (AEI/10.13039/501100011033), Ministerio de Ciencia e Innovación, 

Gobierno de España. 

Institutional Review Board Statement: Not applicable. 



Fermentation 2023, 9, 223 11 of 12 
 

 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are contained within the article or Supplementary Material. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human 

Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 

1818–1892, doi:10.1089/ars.2012.4581. 

2. Lorrain, B.; Ky, I.; Pechamat, L.; Teissedre, P.-L. Evolution of Analysis of Polyhenols from Grapes, Wines, and Extracts. Molecules 

2013, 18, 1076–1100, https://doi.org/10.3390/molecules18011076. 

3. Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. 

Polyphenols and their potential role to fight viral diseases: An overview. Sci. Total. Environ. 2021, 801, 149719–149719, 

https://doi.org/10.1016/j.scitotenv.2021.149719. 

4. Saurina, J. Characterization of wines using compositional profiles and chemometrics. TrAC Trends Anal. Chem. 2010, 29, 234–

245, https://doi.org/10.1016/j.trac.2009.11.008. 

5. Serrano-Lourido, D.; Saurina, J.; Hernández-Cassou, S.; Checa, A. Classification and characterisation of Spanish red wines 

according to their appellation of origin based on chromatographic profiles and chemometric data analysis. Food Chem. 2012, 

135, 1425–1431, https://doi.org/10.1016/j.foodchem.2012.06.010. 

6. Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol Screening of Pomace from Red and White Grape Varieties (Vitis 

vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367, https://doi.org/10.1021/jf049613b. 

7. Ivanova, V.; Stefova, M.; Vojnoski, B.; Dornyei, A.; Mark, L.; Dimovska, V.; Stafilov, T.; Kilar, F. Identification of polyphenolic 

compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 

2011, 44, 2851–2860, https://doi.org/10.1016/j.foodres.2011.06.046. 

8. Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. 

Food Chem. 2011, 126, 1821–1835, https://doi.org/10.1016/j.foodchem.2010.12.026. 

9. Tzachristas, A.; Dasenaki, M.; Aalizadeh, R.; Thomaidis, N.; Proestos, C. Development of a Wine Metabolomics Approach for 

the Authenticity Assessment of Selected Greek Red Wines. Molecules 2021, 26, 2837, https://doi.org/10.3390/molecules26102837. 

10. Izquierdo-Llopart, A.; Saurina, J. Liquid Chromatographic Approach for the Discrimination and Classification of Cava Samples 

Based on the Phenolic Composition Using Chemometric Methods. Beverages 2020, 6, 54, 

https://doi.org/10.3390/beverages6030054. 

11. Izquierdo-Llopart, A.; Saurina, J. Characterization of Sparkling Wines According to Polyphenolic Profiles Obtained by HPLC-

UV/Vis and Principal Component Analysis. Foods 2019, 8, 22, https://doi.org/10.3390/foods8010022. 

12. Stój, A.; Kapusta, I.; Domagała, D. Classification of Red Wines Produced from Zweigelt and Rondo Grape Varieties Based on 

the Analysis of Phenolic Compounds by UPLC-PDA-MS/MS. Molecules 2020, 25, 1342, 

https://doi.org/10.3390/molecules25061342. 

13. Pajović-Šćepanović, R.; Wendelin, S.; Eder, R. Phenolic composition and varietal discrimination of Montenegrin red wines (Vitis 

vinifera var. Vranac, Kratošija, and Cabernet Sauvignon). Eur. Food Res. Technol. 2018, 244, 2243–2254, 

https://doi.org/10.1007/s00217-018-3133-1. 

14. Figueiredo-González, M.; Martínez-Carballo, E.; Cancho-Grande, B.; Santiago, J.; Martínez, M.; Simal-Gándara, J. Pattern 

recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between 

their biosynthesis pathways. Food Chem. 2012, 130, 9–19, https://doi.org/10.1016/j.foodchem.2011.06.006. 

15. Muccillo, L.; Gambuti, A.; Frusciante, L.; Iorizzo, M.; Moio, L.; Raieta, K.; Rinaldi, A.; Colantuoni, V.; Aversano, R. Biochemical 

features of native red wines and genetic diversity of the corresponding grape varieties from Campania region. Food Chem. 2014, 

143, 506–513, https://doi.org/10.1016/j.foodchem.2013.07.133. 

16. Kapusta, I.; Cebulak, T.; Oszmiański, J. The anthocyanins profile of red grape cultivars growing in south-east Poland 

(Subcarpathia region). J. Food Meas. Charact. 2017, 11, 1863–1873, https://doi.org/10.1007/s11694-017-9568-4. 

17. Ivanović, M.; Razboršek, M.I.; Kolar, M. Simultaneous GC-MS Determination of Free and Bound Phenolic Acids in Slovenian 

Red Wines and Chemometric Characterization. Acta Chim. Slov. 2016, 63, 661–669, https://doi.org/10.17344/acsi.2016.2534. 

18. Larrauri, A.; Nuñez, O.; Hernández-Cassou, S.; Saurina, J. Determination of Polyphenols in White Wines by Liquid 

Chromatography: Application to the Characterization of Alella (Catalonia, Spain) Wines Using Chemometric Methods. J. AOAC 

Int. 2017, 100, 323–329, https://doi.org/10.5740/jaoacint.16-0407. 

19. Wu, Q.; Gu, H.-W.; Yin, X.-L.; Zhou, H.-H.; Chang, H.-Y.; Shi, J.; Chen, Y.; Yan, X.-F.; Liu, Z. Development of an HPLC-DAD 

Method Combined with Chemometrics for Differentiating Geographical Origins of Chinese Red Wines on the Basis of Phenolic 

Compounds. Food Anal. Methods 2021, 14, 1895–1907, https://doi.org/10.1007/s12161-021-02032-1. 

20. Carneiro, C.N.; Gomez, F.J.; Spisso, A.; Silva, M.F.; Azcarate, S.M.; Dias, F.D.S. Geographical characterization of South America 

wines based on their phenolic and melatonin composition: An exploratory analysis. Microchem. J. 2020, 158, 105240, 

https://doi.org/10.1016/j.microc.2020.105240. 



Fermentation 2023, 9, 223 12 of 12 
 

 

21. Belmiro, T.M.C.; Pereira, C.F.; Paim, A.P.S. Red wines from South America: Content of phenolic compounds and chemometric 

distinction by origin. Microchem. J. 2017, 133, 114–120, https://doi.org/10.1016/j.microc.2017.03.018. 

22. Urvieta, R.; Buscema, F.; Bottini, R.; Coste, B.; Fontana, A. Phenolic and sensory profiles discriminate geographical indications 

for Malbec wines from different regions of Mendoza, Argentina. Food Chem. 2018, 265, 120–127, 

https://doi.org/10.1016/j.foodchem.2018.05.083. 

23. Cosme, F.; Vilela, A.; Moreira, L.; Moura, C.; Enríquez, J.; Filipe-Ribeiro, L.; Nunes, F. Terroir Effect on the Phenolic Composition 

and Chromatic Characteristics of Mencía/Jaen Monovarietal Wines: Bierzo D.O. (Spain) and Dão D.O. (Portugal). Molecules 

2020, 25, 6008, https://doi.org/10.3390/molecules25246008. 

24. Quaglieri, C.; Prieto-Perea, N.; Berrueta, L.A.; Gallo, B.; Rasines-Perea, Z.; Jourdes, M.; Teissedre, P.-L. Comparison of Aquitaine 

and Rioja Red Wines: Characterization of Their Phenolic Composition and Evolution from 2000 to 2013. Molecules 2017, 22, 192, 

https://doi.org/10.3390/molecules22020192. 

25. Franquet-Griell, H.; Checa, A.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Determination of Polyphenols in 

Spanish Wines by Capillary Zone Electrophoresis. Application to Wine Characterization by Using Chemometrics. J. Agric. Food 

Chem. 2012, 60, 8340–8349, https://doi.org/10.1021/jf302078j. 

26. Pavloušek, P.; Kumšta, M. Authentication of Riesling Wines from the Czech Republic on the Basis of the Non-Flavonoid 

Phenolic Compounds. Czech J. Food Sci. 2013, 31, 474–482. 

27. Li, S.-Y.; Zhu, B.-Q.; Reeves, M.J.; Duan, C.-Q. Phenolic Analysis and Theoretic Design for Chinese Commercial Wines’ 

Authentication. J. Food Sci. 2017, 83, 30–38, https://doi.org/10.1111/1750-3841.13961. 

28. Fermo, P.; Comite, V.; Sredojević, M.; Ćirić, I.; Gašić, U.; Mutić, J.; Baošić, R.; Tešić, . Elemental Analysis and Phenolic Profiles 

of Selected Italian Wines. Foods 2021, 10, 158, https://doi.org/10.3390/foods10010158. 

29. Geana, E.I.; Marinescu, A.; Iordache, A.M.; Sandru, C.; Ionete, R.E.; Bala, C. Differentiation of Romanian Wines on Geographical 

Origin and Wine Variety by Elemental Composition and Phenolic Components. Food Anal. Methods 2014, 7, 2064–2074, 

https://doi.org/10.1007/s12161-014-9846-2. 

30. Izquierdo-Llopart, A.; Saurina, J. Multi-Sensor Characterization of Sparkling Wines Based on Data Fusion. Chemosensors 2021, 

9, 200, https://doi.org/10.3390/chemosensors9080200. 

31. Perestrelo, R.; Bordiga, M.; Locatelli, M.; Silva, C.; Câmara, J.S. Polyphenols, biogenic amines and amino acids patterns in 

Verdelho wines according to vintage. Microchem. J. 2019, 153, 104383, https://doi.org/10.1016/j.microc.2019.104383. 

32. Tang, K.; Ma, L.; Han, Y.-H.; Nie, Y.; Li, J.-M.; Xu, Y. Comparison and Chemometric Analysis of the Phenolic Compounds and 

Organic Acids Composition of Chinese Wines. J. Food Sci. 2014, 80, C20–C28, https://doi.org/10.1111/1750-3841.12691. 

33. Mir-Cerdà, A.; Izquierdo-Llopart, A.; Saurina, J.; Sentellas, S. Oenological Processes and Product Qualities in the Elaboration of 

Sparkling Wines Determine the Biogenic Amine Content. Fermentation 2021, 7, 144, https://doi.org/10.3390/fermentation7030144. 

34. Mir-Cerdà, A.; Carretero, I.; Coves, J.R.; Pedrouso, A.; Castro-Barros, C.M.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; 

Sentellas, S. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing 

membrane ultrafiltration performance. Sci. Total. Environ. 2023, 857, 159623. https://doi.org/10.1016/j.scitotenv.2022.159623. 

35. Sentellas, S.; Saurina, J. The Role of Chemometrics in Food Integrity and Authenticity. 2021, 167–200, 

https://doi.org/10.1142/9781786349958_0007. 

36. Jiménez-Carvelo, A.M.; González-Casado, A.; Bagur-González, M.G.; Cuadros-Rodríguez, L. Alternative data mining/machine 

learning methods for the analytical evaluation of food quality and authenticity–A review. Food Res. Int. 2019, 122, 25–39, 

https://doi.org/10.1016/j.foodres.2019.03.063. 

37. Berrueta, L.A.; Salces, R.M.A.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A 2007, 1158, 196–

214, https://doi.org/10.1016/j.chroma.2007.05.024. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 

to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


