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model for glue the Kuperstein-Sonnenschein background is used. The structure of the flavor
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at zero temperature. Above the deconfinement transition chiral symmetry is restored. A

complete holographic renormalization is performed and the chiral condensate is calculated

for different quark masses both at zero and non-zero temperatures. The 0++, 0−+, 1++, 1−−

meson trajectories are analyzed and their masses and decay constants are computed. The

asymptotic trajectories are linear. The model has one phenomenological parameter beyond
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1 Introduction

The AdS/CFT correspondence [1–3] has been one of the most fruitful arenas for research

in fundamental physics in the last decade. Having the possibility of mapping strongly-

coupled field theories to weakly coupled gravity has set the stage for a large amount of

effort devoted to use this idea in order to obtain new results on the physics of the strong

interactions (see [4], for an introduction). It is clear that a precise and controllable string

dual of QCD is far from our present understanding. However, it is possible to build models

that describe interesting strong coupling phenomena which share many similarities with

real world physics. For the physics of pure glue, models descending from string theory, [5–8]

have provided important clues towards the confinement of color. Phenomenological mod-

els for glue inspired and motivated from the AdS/CFT correspondence ranged from very

simple like AdS/QCD [9] to more sophisticated versions, namely “Improved Holographic

QCD” that capture rather accurately the dynamics of glue at both zero [10, 11] and finite

temperature [12–15].

In this context, the holographic description of chiral symmetry breaking (χSB) has

been thoroughly studied. Early examples were studied in the Maldacena-Nunez [6, 7]

and Klebanov-Strassler backgrounds [8]. Later, more QCD-like χSB, in the sense that

the operator condensing was bilinear of fundamental fields, was described in [16–18]. In

the beginning chiral symmetry breaking involved abelian chiral symmetry, [6–8, 16–18].

A major breakthrough was the Sakai-Sugimoto model [19] where the broken symmetry is

non-abelian U(Nf )L ×U(Nf )R → U(Nf )V , as opposed to just a U(1). However, the model

of [19] and generalizations of it have its own limitations. Just as an example, one can

mention the absence of a tower of excited pions.

All the aforementioned models come from well controlled approximations to string

theory and, accordingly, are top-down approaches. A different possibility is to use string

theory just as inspiration and define ad hoc holographic models using some QCD features

as inputs. This is the bottom-up approach. The obvious question is whether the output

extracted from such models is larger than their input, and we believe that experience has

shown that the answer is yes. The benchmark bottom-up models for chiral symmetry

breaking and meson physics are the hard wall model [20, 21] based on the Polchinski-

Strassler background [9] and the soft wall model [22].

In the present work, we analyze in detail several aspects of a bottom-up model pre-

sented first in [23]. It gives a explicit realization of the framework for chiral symmetry
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breaking first advocated in [24]: the quarks and antiquarks are introduced by a brane-

antibrane pair. A key point of the dynamics is the condensation of the lowest lying bi-

fundamental scalar which comes from the strings connecting the brane to the antibrane.

Around flat space this scalar has negative mass squared and this is called the tachyon.

This corresponds precisely to a QCD-like chiral symmetry breaking. We need an effective

action to describe this dynamics and we will resort to the tachyon-DBI action proposed by

Sen in [25]. Once we have decided that we will use this action, we still have to choose an

expression for the tachyon potential and a holographic geometry in order to use as curved

background. For these choices, we will constrain ourselves to the (arguably) simplest pos-

sibilities. Another interesting property of considering brane-antibrane tachyonic actions

is that there is a natural Wess-Zumino term, which correctly incorporates to the model

features like parity and charge conjugation symmetries and anomalies; see the discussions

in [24].

So far our ingredients are those of a top-down approach. However, it is not possible

to stay in a limit in which the approximation to string theory is controlled if one wants

to reproduce some QCD features in this context. For instance, we will need a background

with curvature comparable to the string scale. We do not regard this point as a nega-

tive feature, but just as a sign that our approach should be considered of the bottom-up

type. This has its own advantages, since for instance it seems impossible to get Regge

trajectories for excited mesons m2
n ∼ n from any top-down approach, because in those

cases the meson mass scale is parametrically smaller than the QCD string tension scale,

see for instance [26]. Therefore, the model discussed in this work should be regarded as a

phenomenological model, partly inspired by top-down consideration and in particular by

Sen’s action [25]. These top-down inputs will generate some dynamics (compared to other

bottom-up approaches) which will be crucial in the successful modeling of several QCD

features, see the discussions in [24] and also in section 6.1.

We will constrain ourselves to the abelian case of a single quark flavor but, unlike [16–

18], this is not an essential limitation, since we can make the model non-abelian by piling up

branes and antibranes, in the spirit of [19]. This elaboration, however, is left for future work.

In section 2, we will discuss the backgrounds (both for confined and deconfined phases)

and the gravity action of which they are solutions. In section 3, we will study in detail the

equation for the tachyon modulus τ and its bulk vacuum expectation value. In other words,

we find the open string vacuum and show how it dynamically breaks the chiral symmetry.

In section 4, we discuss in detail linearized open string excitations around the vacuum,

namely the meson physics. A good review of this kind of analysis in different holographic

frameworks is [27]. Apart from remarking several general qualitative properties, we end the

section with a quantitative phenomenological analysis. Section 5 provides a brief analysis

of the same kind of excitations, but in the deconfined phase. We conclude in section 6

with several discussions; we will convey the pros and cons of the present model and give

some ideas for future directions. We have relegated various technical comments to eight

appendices. In particular, in order to facilitate the reading of the text, we review the

meaning of the different constants and parameters that will appear throughout the paper

and for which physical reasons some of them are fixed in appendix A .
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2 The gravitational background

As acknowledged in the introduction, the model we will discuss does not come from any

controlled approximation to string theory. Notwithstanding, we will follow general insights

coming from string theory and effective actions developed in that framework, especially

in the non-critical setting, [28–34]. In this sense, the meson physics (in the quenched

approximation) is described by the dynamics of a D4-anti D4 system in a fixed closed

string background, [31].

We take the following gravitational two-derivative action [28] for the background fields:

S =

∫

d6x
√

g(6)

[

e−2φ
(

R + 4(∂φ)2 +
c

α′

)

− 1

2

1

6!
F 2

(6)

]

, (2.1)

with a constant c. We consider the solution discussed in [29] whose metric is given by:

ds26 ≡ −gttdt
2 + gzzdz

2 + gxxdx
2
3 + gηηdη

2 =
R2

z2

[

dx2
1,3 + f−1

Λ dz2 + fΛ dη
2
]

(2.2)

with:

fΛ = 1 − z5

z5
Λ

(2.3)

This is the AdS soliton, a double Wick rotation of an AdS6 Schwartszchild black hole. The

only active RR-form we consider is:

F(6) =
Qc√
α′
√

−g(6) d6x (2.4)

for some constant Qc which is proportional to the number of colors and that will not be

important in the following. The dilaton is constant:

eφ =
1

Qc

√

2c

3
(2.5)

The coordinate η is compactified and regularity of the metric at z = zΛ requires the

following periodicity condition:

η ∼ η + δη , δη =
4π

5
zΛ =

2π

MKK
. (2.6)

The AdS radius is given by:

R2 =
30

c
α′ (2.7)

The application of this geometry for a phenomenological non-critical strings/gauge duality

was first discussed in [28, 29]. The solution is dual to 1+4 dimensional gauge theory com-

pactified in a circle with (susy-breaking) antiperiodic boundary conditions for the fermions.

Thus, the low energy theory is 1+3 dimensional confining gauge theory coupled to a set of

massive Kaluza-Klein fields.
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One can consider the theory at non-zero temperature by compactifying to Euclidean

time tE. When both circles tE and η are compactified, there is a second solution competing

with (2.2):

ds26 =
R2

z2

[

−fTdt
2 + dx2

3 + f−1
T dz2 + dη2

]

(2.8)

while (2.4), (2.5), (2.7) still hold. We have introduced:

fT = 1 − z5

z5
T

(2.9)

and zT is related to the period of the euclidean time and therefore to the temperature as:

tE ∼ tE + δtE , δtE =
4π

5
zT =

1

T
. (2.10)

Since when we Euclideanize (2.2), (2.8) both solutions are related by the interchange tE ↔
η, zT ↔ zΛ, the symmetry makes obvious that there is a deconfining first order phase

transition at

Tc =
MKK

2π
=

5

4π zΛ
(2.11)

For T < Tc, the confining solution (2.2) is preferred and, conversely, (2.8) dominates for

T > Tc. Of course, this discussion is just a straightforward generalization of [35].

3 The tachyon vacuum expectation value

Our main interest will be to study a “tachyon-DBI” action for a single brane-antibrane

pair of the form advocated in [25]. In section 6.2 we will comment about the literature

related to effective actions including open string tachyon fields and the possible impact of

different choices of actions in a holographic model of this kind.

We take the brane-antibrane pair to be at a fixed value of η and we will not consider

oscillations of the transverse scalar, which has no QCD counterpart.1 The brane and

antibrane are at zero distance and are therefore overlapping. We have therefore a 5D

model for the quarks embedded in a 6D model for the glue. The Sen action reads:

S = −
∫

d4xdzV (|T |)
(

√

− detAL +
√

− detAR

)

(3.1)

The quantities inside the square roots are defined as:

A(i)MN = gMN +
2πα′

g2
V

F
(i)
MN + πα′λ ((DMT )∗(DNT ) + (DNT )∗(DMT )) (3.2)

where (i) = L,R and the complex tachyon will be denoted T = τeiθ. Indices M,N run

over the 5 world-volume dimensions while we will use µ, ν for the Minkowski directions

(indices to be contracted using ηµν). With respect to [25], we have included two constants

gV , λ in (3.2), which are related to the normalization of the fields to be discussed later.

1A different construction involving D4-anti D4 in this background was considered in [32–34]. The present

scenario is more successful in describing different features of QCD.
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The covariant derivative of the tachyon field is defined as:

DMT = (∂M + iAL
M − iAR

M )T (3.3)

For the tachyon potential we take:

V = K e−
1
2
µ2τ2

(3.4)

where K is a constant2 which in principle should be related to the tension of the D4-

branes. The gaussian is a simple choice that has been discussed in different situations

for instance in [36–38], but we warn the reader that it is not at all top-down derived for

the present situation and thus should be considered as an ingredient of the bottom-up

approach. We will comment further in section 6.2. For book-keeping, let us enumerate

here the constants that have been introduced up to now: R,α′, λ, gV ,K, µ, zΛ. In the

following, we will impose, on physical grounds, some relations among these constants and

in appendix A we will summarize these arguments.

We must first find the vacuum of the theory. We should set θ,AL, AR to zero because

of Lorentz invariance, but τ must have non-trivial dynamics, at least in the confined phase,

as will be argued below. We thus discuss here the function τ(z) that defines the vacuum.

The corresponding reduced action reads:

S = −2K
∫

d4xdze−
1
2
µ2τ2

g
1
2
ttg

3
2
xx

√

gzz + 2πα′λ(∂zτ)2 (3.5)

and the corresponding equation of motion:

τ ′′ +
πα′λ
gzz

τ ′3
(

g′tt
gtt

+ 3
g′xx

gxx

)

+
τ ′

2

(

g′tt
gtt

+ 3
g′xx

gxx
− g′zz

gzz

)

+
( gzz

2πα′λ
+ τ ′2

)

µ2τ = 0 (3.6)

We want to study this equation in both the confined and deconfined backgrounds of

section 2. For this, we need to explicitly substitute the components of the metric of each

background, as given in section 2. We will make these studies separately in the following

subsections. Before that, since the UV of both solutions is identical (up to O(z5)), the

analysis of the UV asymptotics of (3.6) is the same. We find that the near-boundary limit

z → 0 limit is given in terms of the two integration constants as:

τ = c1z +
µ2

6
c31z

3 log z + c3z
3 + O(z5) (3.7)

In order to find this expansion, we have imposed that:

R2µ2

2πα′λ
= 3 . (3.8)

This enforces that the scalar bifundamental operator dual to the scalar field (which has

mas m2
τ = −µ2/(2πα′λ)) has UV dimension 3 matching the dimension of q̄q in QCD. This

is in agreement with the usual AdS/CFT rule ∆(∆ − 4) = m2
τR

2. It is worth stressing

2We have included the constant dilaton in K, in order to avoid unnecessary cluttering of formulae.
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that (3.8) should be understood as a bottom-up condition on the parameters determining

the open string data µ, α′, λ and not on R, since in the quenched approximation one should

not think of the flavor branes affecting the closed string background.

The asymptotic expansions for τ in the confined and deconfined backgrounds start

differing at order O(z6). On the other hand, the IR behaviour for both cases is very

different, as will be discussed below.

3.1 The confined phase

Inserting the metric for the confining background (2.2) into (3.6), we obtain the following

equation of motion for the order parameter:

τ ′′ − 4µ2zfΛ

3
τ ′3 +

(

−3

z
+

f ′Λ
2fΛ

)

τ ′ +

(

3

z2fΛ
+ µ2τ ′2

)

τ = 0 (3.9)

Before going on, notice that equation (3.9) depends on two constants zΛ and µ. However,

such dependence can be easily reabsorbed by redefining the field and radial coordinate as

z → z̃ = z/zΛ, τ → τ̃ = µτ . The plots in this section will be performed by taking zΛ = 1,

µ2 = π, but it is automatic to find the solution for different values of the constants by

rescaling as mentioned above.

According to the discussion of [24], since the background is confining, we must require

the tachyon to blow up somewhere. Heuristically, one can think of the diverging tachyon as

a brane-antibrane recombination; if the tachyon were finite until the bottom of the space

one would have an open brane (and antibrane). In [24], it was argued that this would lead to

bulk flavor anomalies that do not match those of QCD.3 The fact that confinement requires

brane recombination (and therefore, chiral symmetry breaking) is a Coleman-Witten-like

theorem [41] for the present set-up, and it is analogous to a similar discussion of [42] for

the Sakai-Sugimoto model [19]. The difference is that the realization of chiral symmetry

breaking in [42] is geometrical while here it is driven by the field τ .

Equation (3.9) only allows the tachyon to diverge at exactly the end of space (the tip

of the cigar) z = zΛ, see appendix B for details.

In the IR, generically the two linearly independent solutions behave as a constant and√
z − zΛ and they are regular at the tip. There is however a one parameter “boundary”

family of solutions that (1) depends on a single parameter (2) diverges at the tip. This is

the solution we should allow in the IR. If we call the single parameter C then the acceptable

IR solution is:

τ =
∞
∑

n=0

(zΛ − z)
3(2n−1)

20 Cn gn(z) (3.10)

where

gn(z) = 1 +

∞
∑

m=1

Dn,m

(

1 − z

zΛ

)m

(3.11)

3Anomalies in the hard wall model have been discussed in [39, 40]. In that case, appropriate IR boundary

conditions have to be imposed on the gauge fields in order to get rid of the IR contribution to the gauge

variation of the Chern-Simons term. In our case, that contribution is killed due to the divergent tachyon.
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For the first few constants we have

C0 = C , C1 = − 13

6µ2C
, C2 =

247

72µ4C3
, C3 = − 26975

1296µ6C5
(3.12)

C4 =
6381505

31104µ8C7
, C5 = − 276207997

103680µ10C9
, C6 =

1402840243831

33592320µ12C11

and the first few functions

g0(z) = 1 − 9

20

(

1 − z

zΛ

)

+ O
(

(

1 − z

zΛ

)2
)

(3.13)

g1(z) = 1 − 1479

3380

(

(1 − z

zΛ

)

+ O
(

(

1 − z

zΛ

)2
)

(3.14)

g2(z) = 1 − 8481

4940

(

(1 − z

zΛ

)

+ O
(

(

1 − z

zΛ

)2
)

(3.15)

g3(z) = 1 − 396189

82004

(

(1 − z

zΛ

)

+ O
(

(

1 − z

zΛ

)2
)

(3.16)

As C increases, the radius of convergence of this series increases.

The condition that the solution should end up in the one parameter family described

above is our “‘regularity condition”. It relates the two UV initial conditions, the source

(mass) c1 and the vev (chiral condensate) c3. This is a dynamical determination of the

condensate as a function of the mass by the condition τ(z = zΛ) = ∞. This relation will

be found numerically.

In practice, one has to solve numerically the equation of motion (3.9) arranging the

asymptotics to be (3.7) in the UV and (3.10) in the IR. One can implement a standard

shooting routine whose inputs are c1 and some UV and IR cutoffs, where the numerical

solution is required to match the mentioned asymptotics. The value of c3 leading to (3.10)

is the limiting point between a behavior of diverging derivative of τ and a behaviour where

τ remains finite everywhere, see figure 1.

In fact, for fixed c1 there are two values of c3 for which τ diverges at zΛ, since τ

can diverge to +∞, for a particular c3 > 0; or to −∞, for a particular c3 < 0, (we are

assuming by convention that c1 > 0). However, the c3 < 0 solution is unstable and should

be discarded. This can be understood by comparing the free energy of both solutions or,

alternatively, by realizing that there is a tachyonic mode in the pseudoscalar sector. In

the massless quark case c1 = 0, both solutions are related by τ → −τ and are physically

equivalent. They are just related by a rotation in the direction of the Goldstone pion, which

is exactly massless. This behaviour is completely analogous to the one described in [18].

For illustrative purposes, we plot in figure 1 the result of numerically integrating (3.9) and

the behaviour of τ(z) for different values of c3.

In figure 2, we plot the values of c3 and C obtained dynamically, as a function of c1.
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Figure 1. All the graphs are plotted using zΛ = 1, µ2 = π and c1 = 0.05. The vertical line at

z = zΛ = 1 represents the IR end of space (tip of the cigar). On the left, the solid black line

represents a solution with c3 ≈ 0.3579 for which τ diverges at zΛ. The red dashed line has a too

large c3 - in particular, it corresponds to c3 = 1 - such that there is a singularity at z = zs where

∂zτ diverges while τ stays finite (a behaviour of the type τ = k1 − k2

√
zs − z, that is unacceptable

since the solution stops at z = zs where the energy density of the flavor branes diverges). The red

dotted line corresponds to c3 = 0.1; this kind of solution ought to be discarded because the tachyon

stays finite everywhere. The plot in the right is done with the same conventions but with negative

values of c3 = −0.1,−0.3893,−1. For c3 ≈ −0.3893 there is a solution of the differential equation

such that τ diverges to −∞. As explained in the text, this solution is unstable. Thus, the physical

solution for this particular value of c1 is uniquely determined to be the solid line of the graph on

the left.

Figure 2. The values of c3 and C determined numerically as a function of c1. In the first plot we

portray c3 in terms of c1, for c1 ≤ 1. In the second plot we show c3 for a larger range of c1. The

third plot depicts the constant C entering the IR expansion as a function of c1. Again, we have

used zΛ = 1, µ2 = π for the plots.

3.2 The deconfined phase

Inserting the metric (2.8) in (3.6), we obtain the following equation for τ in the deconfined

phase:

τ ′′ +
µ2z2fT

3
τ ′3
(

−4

z
+

f ′T
2fT

)

+

(

−3

z
+
f ′T
fT

)

τ ′ +

(

3

z2fT
+ µ2τ ′2

)

τ = 0 (3.17)

The IR behaviour of this equation is quite different from the one of (3.9). First of all τ is

not allowed to diverge at any point. The difference with respect to the confining case is

that since there is a horizon, one can allow the branes not to recombine as long as they

end on the horizon. Then, they will not generate any anomaly.

Still, one has to discard solutions for which τ ′ diverges at some z < zT (with τ remain-

ing finite). Those solutions yield infinite energy density and are physically inconsistent,

– 8 –
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Figure 3. Plots corresponding to the deconfined phase. All the graphs are plotted using zT = 1,

µ2 = π. For the first plot we have taken c1 = 0.05. The solid line displays the physical solution

c3 = −0.0143 whereas the dashed lines (c3 = −0.5 and c3 = 0.5) are unphysical and end with a

behaviour of the type τ = k1 − k2

√
zs − z. The second and third plots give the values of c3 and cT

determined numerically by demanding the correct IR behaviour of the solution, as a function of c1.

just as in the confining case. It turns out that this condition uniquely selects a value for

c3, for which τ reaches the horizon at z = zT taking there a finite value, say τ |z=zT
= cT ,

as shown in the first plot of figure 3.

Thus, we have a one parameter family of physical solutions (which again fix c3 in

terms of c1 as expected on physical grounds). In a similar fashion to the confined case, by

redefining the field and radial coordinate as z → z̃ = z/zT , τ → τ̃ = µτ , the dependence

of the equation on these two parameters can be reabsorbed. Near the IR, these solutions

read, in terms of the parameter τ(zT ) ≡ cT :

τ = cT − 3cT
5zT

(zT − z) − 9cT
200zT

(8 + µ2c2T )(zT − z)2 + . . . (3.18)

Once c1 is fixed, c3 and cT are dynamically determined by this IR condition, and their

values can be found numerically; using a standard shooting technique. Notice that for

c1 = 0, the solution is simply τ = 0 and chiral symmetry is unbroken. We display some

plots with numerical results in figure 3.

3.3 Holographic renormalization, the quark mass and the quark condensate

On general AdS/CFT grounds, we expect the integration constants c1, c3 of the UV ex-

pansion (3.7) to be related to the source and vacuum expectation value of the boundary

operator associated to the bulk field τ , which is the scalar quark bilinear q̄q. Namely c1
should be, essentially, the quark mass and c3 the quark condensate. In this section, we will

make this connection precise.

As has been pointed out many times — see for instance [43, 44] — in QCD the quark

mass runs all the way to zero in the far UV, a fact that cannot be matched in a holographic

model with AdS asymptotics (such that the mq we will define is the UV value, which does

not run further). If we want to make a phenomenological analysis, the most natural option

is to identify the mq of the model with the QCD quark mass measured at a scale around

1 or 2GeV. It is conceivable that this feature can be ameliorated by using the tachyon

action in a holographic setup which incorporates asymptotic freedom, as in “Improved

holographic QCD” [10, 11].
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The quark condensate is defined as:

〈q̄ q〉 = −δSren

δmq
(3.19)

where in order to find Sren we have to follow the procedure of holographic renormalization,

see for instance [48]. The first step is to regularize the action by placing a UV cut-off at

z = ǫ, namely Sreg =
∫ zΛ

ǫ L, where we have defined, from (3.5):

L = −2K e−
1
2
µ2τ2

g
1
2
ttg

3
2
xx

√

gzz + 2πα′λ(∂zτ)2 (3.20)

Since we are just concerned with the variation of Sreg with respect to mq, we compute the

functional derivative with respect to τ :

δSreg =

∫ zΛ

ǫ

(

δτ
∂L
∂τ

+ δτ ′
∂L
∂τ ′

)

dz =

∫ zΛ

ǫ

d

dz

(

δτ
∂L
∂τ ′

)

(3.21)

and therefore
δSreg

δτ
= − ∂L

∂τ ′

∣

∣

∣

z=ǫ
(3.22)

We are interested in
δSreg

δc1
= δτ

δc1

δSreg

δτ . In order to compute δτ
δc1

, one should take into

account that c3 is a non-trivial function of c1. We find by explicit computation, using the

UV expansion (3.7):

δSreg

δc1
= KR5µ2

(

2c1
3ǫ2

+
2

3
c31µ

2 log ǫ+ 2c3 −
1

3
c31µ

2 +
2

3
c1∂c1c3

)

(3.23)

where we have disregarded terms that vanish as ǫ→ 0. We now have to write the appropri-

ate covariant counterterms that should be added to Sreg in order to define the subtracted

action Ssub = Sreg + Sct:

Sct = −KR
∫

d4x
√−γ

(

−1

2
+
µ2

3
τ2 +

µ4

18
τ4 log ǫ+

µ4

12
α τ4

)

(3.24)

where γ corresponds to the induced metric at z = ǫ, namely
√−γ = R4ǫ−4. We have

introduced a constant α which captures the scheme dependence of the condensate and

reflects an analogous scheme dependence in field theory. It will be further discussed in

appendix C. The renormalized action is just Sren = limǫ→0 Ssub. It is now straightforward

to find:
δSren

δc1
= −(2πα′KR3λ)

(

−4c3 + c31µ
2(1 + α)

)

(3.25)

Notice that the term with c1∂c1c3 in (3.23) drops out because there is one with the opposite

sign in δSct

δc1
that cancels it. We now want to evaluate the quark condensate (3.19). The

quark mass is proportional to c1, and we take it to be

mq = β c1 (3.26)

where β is a constant.

The arbitrariness of this multiplicative constant related to the normalization of the

fields has been stressed (in analogous situations) in [44, 49]. We finally obtain

〈q̄q〉 =
1

β
(2πα′KR3λ)

(

−4c3 +

(

mq

β

)3

µ2(1 + α)

)

(3.27)
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Figure 4. The finite jump of the quark condensate and its derivative with respect to c1 when the

confinement-deconfinement transition takes place. The values zΛ = zT = 1 and µ2 = π have been

used in the plot.

3.4 The jump of the condensate at the phase transition

The first term of the expression for the quark condensate (3.27) depends on the quantity

c3 that is determined dynamically via the numerical integration. The second term depends

on the quark mass and a scheme dependent constant α. We now compute an observable

which is independent of this second term by finding the jump of the quark condensate

when the theory is heated such that it undergoes the deconfinement phase transition.

Concretely, we take a fixed mass (fixed c1) and compare c3 for a confined theory and

deconfined theories, such that zΛ = zT , namely at the phase transition point. We have

that ∆〈q̄q〉 ≡ 〈q̄q〉conf −〈q̄q〉deconf = −4 1
β (2πα′KR3λ)∆c3. In figure 4 we plot ∆c3, which in

practice is nothing else that the difference between the first plot in figure 2 and the second

plot of figure 3. It turns out to be a monotonously decreasing function, at least in the

range of c1 which we have been able to study numerically. We plot the result in figure 4.

Let us now discuss how the quark condensate changes when tuning the temperature,

while keeping fixed the quark mass and the QCD scale. We will plot the quantity:

〈q̄q〉R =
mq

T 4
c

(〈q̄q〉T − 〈q̄q〉0) , (3.28)

where 〈q̄q〉T is the condensate evaluated at temperature T . We have included the power

of Tc in the denominator in order to make the quotient dimensionless. Let us start by

computing the explicit value of 〈q̄q〉0 from (3.27). We will consider small quark masses

(compared to the QCD scale or MKK) so we can neglect the last term of (3.27) and use

the value c3 ≈ 0.37z−3
Λ computed for small c1 in the first plot4 of figure 2. Inserting the

value of zΛ in terms of Tc (2.11) and advancing the value of the normalization constant

that will be found in (4.34), we have 〈q̄q〉0 ≈ −0.3Ncβ T
3
c . Turning on the temperature

but staying below the phase transition, the functions of the metric do not depend on the

temperature and therefore 〈q̄q〉R = 0 for T < Tc. This is just a consequence of large-N

volume independence. In order to compute the result in the deconfined phase, we would

like to use the values of c3 as a function of c1 plotted in figure 3. From the figure, one can

4We remind the reader that the plots were done by fixing zΛ = 1 and zT = 1 respectively. The values

for generic zΛ, zT are obtained just by rescaling c1 = (c1|zΛ=1)z
−1
Λ and c3 = (c3|zΛ=1)z

−3
Λ , and similarly in

the deconfined phase, substituting zΛ by zT .
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Figure 5. Behaviour of 〈q̄q〉R as a function of the temperature. We have taken Nc = 3, β = 1,

mq/Tc = 1/40 for the plot.

fit, for small c1zT the value of c3 to be c3z
3
T ≈ −0.286c1zT . Using this expression, together

with (3.26), (2.10), (4.34), we have 〈q̄q〉T ≈ 0.09NcmqT
2. Finally, we reach the result:

〈q̄q〉R ≈ Nc
mq

T 4
c

(0.3β T 3
c + 0.09mqT

2) , (T > Tc) (3.29)

We illustrate the behaviour of 〈q̄q〉R in figure 5. Notice that, since we are considering light

quarks, the constant term is the largest until T ≫ Tc.

This is in rough qualitative agreement with lattice results, see figure 4 of [50]. In our

case, the jump at the phase transition is sharp due to the large N limit.

4 Meson excitations: the confined phase

Up to now, we have discussed the vacuum (saddle point) of the model. We will now discuss

in turn the different excitation modes, by expanding the action (3.1) up to quadratic order

in all the fields. In this section, we will only refer to the confined phase and therefore 〈τ〉(z)
is computed as in section 3.1.

We define the vector and axial vector fields as:

VM =
AL

M +AR
M

2
, AM =

AL
M −AR

M

2
(4.1)

The notation for the associated field strengths will be VMN , AMN . We use a gauge Az =

Vz = 0. We split the relevant fields as:

Vµ(xµ, z) = ψV (z)Vµ(xµ) ,

Aµ(xµ, z) = A⊥
µ (xµ, z) +A‖

µ(xµ, z) = ψA(z)Aµ(xµ) − ϕ(z) ∂µ(P(xµ)) ,

θ(xµ, z) = 2ϑ(z)P(xµ) ,

τ(xµ, z) = 〈τ〉(z) + s(xµ, z) = 〈τ〉(z) + ψS(z)S(xµ) . (4.2)

where Vµ and Aµ are transverse vectors ∂µVµ = ∂µAµ = 0. A few comments are in order:

we have used the residual gauge freedom to make Vµ transverse. We have anticipated the

behaviour of the equations of motion in order to write down the terms containing P(x),

associated to the pseudoscalars. The symbol 〈τ〉(z) represents the tachyon vev in the bulk,

as discussed in section 3.
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The different bulk fields are dual to the field theory quark bilinears due to the boundary

couplings:5
∫

d4xVµJ µ
V ,
∫

d4xAµJ µ
A ,
∫

d4xPJP ,
∫

d4xSJS, where the J ’s are the different

bilinear quark currents: J µ
V = q̄γµq, J µ

A = q̄γµγ5q, JP = q̄γ5q, JS = q̄q − 〈q̄q〉.
We also define the useful quantity:

g̃zz = gzz + 2πα′λ(∂z〈τ〉)2 (4.3)

In the rest of this section, we will discuss the explicit prescriptions to compute the

masses and decay constants for the different mesonic modes. In particular, the decay

constants will require computing two-point correlators for which one has to holographically

renormalize. We give here the complete set of counterterms which make the on-shell action

finite.

Sct = −KR
∫

d4x
√−γ

(

− 1

2
+
µ2

3
τ2 +

µ4

18
τ4 log ǫ+

µ4

12
ατ4+ (4.4)

+
(2πα′)2

g4
V

1

2
γµργνδ(VµνVρδ +AµνAρδ)

(

log ǫ+
1

2

)

+
R2µ2

3
γµν(DµT )∗(DνT )

(

log ǫ+
1

2

)

)

This expression completes (3.24) by including all the active fields we are considering. The

terms of 1/2 inside the brackets of the second line are finite contact terms that have been

chosen for convenience.

We now discuss in turn each of the modes.

4.1 Vector mesons

The quadratic action corresponding to the vector mesons that comes from expanding (3.1)

reads:

SV = −(2πα′)2

g4
V

K
∫

d4x dze−
1
2
µ2τ2

[

1

2
g̃

1
2
zzVµνV

µν + gxxg̃
− 1

2
zz ∂zVµ∂zV

µ

]

, (4.5)

where we have constrained ourselves to the confining phase in which gtt = gxx. Here and

in the following, it should be understood that the µ, ν indices are contracted using the flat

Minkowski metric, since we have explicitly written the factor of gxx = R2/z2. The equation

of motion can be easily derived:

1

e−
1
2
µ2τ2

g̃
1
2
zz

∂z

(

e−
1
2
µ2τ2

gxxg̃
− 1

2
zz ∂zψ

V (z)

)

− q2ψV (z) = 0 (4.6)

where we have gone to Fourier space and defined the 4d-momentum such that for the eigen-

modes it corresponds to the mass eigenvalues q2 = −m2
V . The above equation explicitly

depends on only two parameters zΛ and µ2. It is easy to check that zΛ just gives an overall

scale to m2
V (and, in fact, to all dimensionful quantities that will appear later) and µ2 only

enters through the combination τ̃2 = µ2τ2. This was the same combination in the tachyon

equation (see the comment below (3.9)), and in fact one can fix the value of µ2 without

5The various discrete symmetries and their realization are detailed in [24].
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Figure 6. The Schrödinger potential associated to the vector excitation for different values of the

quark mass. From bottom to top c1 = 0, 0.5, 1, 2, 3, 4. For illustrative purposes, on the right we

plot the second normalizable “wavefunction” for c1 = 1.

any loss of generality. From now on, we will set µ2 = π, zΛ = 1 in all the plots, although

we will keep the parameters explicit in the equations.

Finally, notice that (4.6) depends implicitly on c1 (the quark mass) through the bulk

vacuum expectation value of τ . In short, the vector spectrum given by the model depends

just on a multiplicative constant zΛ and the parameter c1, namely the quark mass. All the

other parameters that we have defined drop out from this computation.

4.1.1 Schrödinger formalism and the mass spectrum

In order to gain some insight in the problem, let us transform equation (4.6) to a Schrödinger

problem, following appendix D. We immediately read C(z) = M(z) = 0 and:

A(z) = e−
1
2
µ2τ2

gxxg̃
− 1

2
zz , B(z) = e−

1
2
µ2τ2

g̃
1
2
zz , (4.7)

such that the Schrödinger radial variable is defined by:

u =

∫ z

0

√

B(z̃)

A(z̃)
dz̃ =

∫ z

0

√

g̃zz(z̃)

gxx(z̃)
dz̃ . (4.8)

Notice that u ∈ [0,∞). It is now a straightforward exercise to obtain the Schrödinger-like

potential (D.7), for a given c1. One has to compute numerically τ(z) as in section 3.1, then

evaluate (D.7) and finally implement the variable change (4.8). Some examples are plotted

in figure 6.

We observe that the potentials move up as we increase c1. This is of course expected

on general grounds, since meson masses should grow with increasing quark masses, but

this feature is missing from the hard wall or soft wall models. In [23], we made a phe-

nomenological fit including the strange-strange meson masses in the analysis, finding good

agreement with experimental data.

One can check that the leading contribution to V (u) near u = 0 is of the form V (u) =
3
4u

−2 + . . . . This just comes from the UV AdS asymptotics. Let us now find the leading

IR contribution to V (u). For large u (namely near z = zΛ), we have that gxx ≈ R2/z2
Λ

and g̃zz ≈ 2πα′λ(∂zτ)
2. Using the expressions in appendix D, a little algebra shows that
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Figure 7. Vector meson masses as a function of c1 (proportional to the quark mass). On the left,

we plot the fitted straight lines together with several points computed numerically, for the seven

lowest-lying vector modes, in the range c1 < 1. On the right, we go to larger values of c1 and, for

clarity, only plot the three ligthest states. The dashed lines correspond to the linear fits valid for

small c1 whereas the solid line are the actual values found numerically.

for large u, we have du
dz ≈ µ√

3
zΛ∂zτ and therefore u ∼ µ√

3
zΛτ . The function Ξ behaves

as Ξ ≈
(

R
zΛ

)
1
2
e
− 3u2

4z2
Λ what finally leads to V (u) = 9

4z4
Λ
u2 + O(u). Therefore, V (u) grows

quadratically at large u, a fact that leads to standard Regge trajectories for large excitation

number n [22]. Asymptotically, the slope of these trajectories is limn→∞
dm2

n

dn = 6
z2
Λ
, as can

be found by evaluating (D.9).

By using standard numerical shooting techniques, we have computed the mass spec-

trum. In particular, we have computed the first seven states, changing the quark mass

parameter in the range 0 < c1 < 5. We plot some results in figure 7. It turns out that

for small c1 the growth of meson mass on the quark mass is linear. This is just what one

expects from a Taylor expansion if we consider the meson masses as function of the quark

masses. This was a result already found in [23]. We have:

zΛm
(1)
V ≈ 1.45 + 0.718c1, zΛm

(2)
V ≈ 2.64 + 0.594c1, zΛm

(3)
V ≈ 3.45 + 0.581c1, (c1 ≤ 1)

zΛm
(4)
V ≈ 4.13 + 0.578c1, zΛm

(5)
V ≈ 4.72 + 0.577c1, zΛm

(6)
V ≈ 5.25 + 0.576c1. (4.9)

At around c1 ≥ 1, the graphs start departing from the straight line, as can be seen on

the second plot in figure 7.

4.1.2 Current-current correlator and normalization of the action

We have discussed the vector spectrum, but we are also interested in the decay constants

of each state. In order to compute them, we have to fix the multiplicative constant asso-

ciated to the normalization of the action associated to the vector modes. We will follow

the reasoning of [20, 21] and match the correlator ΠV to the quark bubble perturbative

computation at large Euclidean momentum. In fact, all the discussion of this subsection is

completely parallel to [20, 21], since it only depends on the asymptotically AdS structure.

We however repeat the argument in the present notation for the sake of clarity.

The current-current correlator is defined as:
∫

d4x eiqx〈Jµ(x)Jν(0)〉 = (ηµνq
2 − qµqν)ΠV (q2) . (4.10)
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As usual, we compute it holographically from the on-shell action. Integrating by parts

in (4.5) and adding the counterterm from (4.4), we find:

SV =
(2πα′)2K

g4
V

∫

d4q

(2π)4
e−

1
2
µ2τ2

gxxg̃
− 1

2
zz Vµ(q, z)∂zV

µ(−q, z)
∣

∣

∣

z=ǫ
+

− KR5(2πα′2)

g4
V

∫

d4q

(2π)4

(

q2Vµ(q, ǫ)V µ(−q, ǫ)
(

log ǫ+
1

2

))

(4.11)

where Vµ(q, z) = ψV (q, z)V µ
0 (q), and ψV (q, z) is the solution to (4.6) subject to V (q, ǫ) = 1

and with normalizable behaviour in the IR. At small z, the solution for ψV (q, z) can be

expanded in terms of two integration constants as:

ψV = b1(q) +

(

b2(q) +
1

2
b1(q)q

2 log
z

zΛ

)

z2 + . . . (4.12)

Substituting this expression into (4.11) and taking two derivatives with respect to V µ
0 (q),

we find that:

ΠV (q2) = −4
KR(2πα′)2

g4
V

b2
q2

(4.13)

where we have set b1(q) = 1 consistent with the two-point function prescription and the

non-trivial q2-dependence comes through b2(q), which has to be found by integrating nu-

merically and demanding the physical IR behaviour.

Before entering into numerical integration, we are interested in computing the limiting

behaviour for ΠV for large q2. In order to do this, we consider again the equation written

in Schrödinger form and notice that, for small z:

u ≃ z , α(u) ≃ u−
1
2ψV (u) (4.14)

The leading large q behaviour is not affected by the details of the Schrödinger potential,

so we may just approximate it by an expression that interpolates between its UV and IR

behaviours, as discussed in subsection 4.1.1. Namely, we can just write:

− ∂2
uα+

(

3

4u2
+ c2u2

)

α+ q2α = 0 , (4.15)

where we should take c2 = 9
4z4

Λ
. However, we will see that the value of c2 does not matter

for the normalization we want to make. (4.15) is nothing else than the soft wall model

of [22]. The general solution of (4.15) is:

α(u) = k1
e

−cu2

2√
u

U

(

q2

4c
, 0, cu2

)

+ k2
e

−cu2

2√
u
L−1

−q2

4c

(cu2) (4.16)

where U stands for the confluent hypergeometric function and L for a generalized Laguerre

polynomial. IR normalisability requires k2 = 0. We now substitute in (4.14) and fix k1 by

demanding that limz→0 ψ
V (q, z) = limu→0 u

1
2α(u) = 1.

ψV (q, u) =
q2

4c
Γ

(

q2

4c

)

e
−cu2

2 U

(

q2

4c
, 0, cu2

)

(4.17)
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Figure 8. We plot the value of b2/q
2, proportional to the vector current-current correlator. The

plot is a comparison of the approximation found in the text from a simplified Schrödinger problem,

eq. (4.18) (red dashed line) to the actual numerical result (solid line). The numerical plot was made

by taking c1 = 0.1, µ2 = π.

We can now expand this expression for small u ≈ z and compare to (4.12), in order to read

b2 and, accordingly ΠV from (4.13). The leading pieces at large q2 for b2 read:

lim
q2→∞

b2
q2

=
1

4
log
(

z2
Λq

2
)

− 1

4
(1 + log 4 − 2γ) − c2

3q4
+ . . . , (4.18)

where γ is Euler’s constant. Therefore, the leading piece which we can compare to the

quark bubble via (4.13) is:

ΠV (q2) = −KR(2πα′)2

g4
V

log
(

z2
Λq

2
)

(4.19)

By matching this expression to the perturbative result, we find:6

(2πα′)2KR
g4
V

=
Nc

12π2
(4.20)

One may wonder how good the results obtained from the simple Schrödinger problem we

have discussed (4.15) are as an approximation to the full problem (4.6). In figure 8, we

compare (4.18) to the value of b2(q
2)/q2 computed numerically.

4.1.3 Decay constants

We are now interested in determining the decay constants of our mesonic states. We start

by writing the current-current correlator as a sum rule.

ΠV (q2) =
∑

n

F 2
n

(q2 +m2
n − iǫ)

(4.21)

6Notice that we are dealing with abelian flavor symmetry. There is a factor of 1
2

difference with respect

to [20] since in that paper they deal with a non-abelian case and define Tr(tatb) = 1
2
δab. This also makes

different the definition of the decay constants, for instance the fπ defined in [20] is the fπ we will use divided

by
√

2.
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Figure 9. The decay constant, in units of z−1

Λ
for the four lowest-lying, the seventh and the twelve-

th vector mode (from bottom to top), as a function of c1. The numerical plot was made by taking

µ2 = π and Nc = 3.

The idea is to derive the form of the sum rule holographically. In appendix E we give a

general description on how to write holographically a two-point correlator as an infinite

sum. Then we use properties of the normalizable modes in order to determine the values of

Fn. The argument follows [20, 21] so we directly quote the result in the present notation:7

F 2
n =

Nc

6π2

R

m2
n

(

d2ψ
(n)
V

dz2

∣

∣

∣

z=0

)2

(4.22)

where ψ
(n)
V , n = 1, 2, . . . ,∞ are the solutions of (4.6) normalized as:

∫

B(z)(ψ
(n)
V )2dz = 1 (4.23)

with B(z) given in (4.7). Again, we can compute numerically the values of the decay

constants given by the model. We have plotted them in figure 9. One can see that the

dependence on excitation number is rather mild for small quark masses and for a large

number of modes.

4.1.4 Regge trajectories for vector mesons and linear confinement

Typical holographic models lead to a behaviour of the masses with the excitation number

as m2
n ∝ n2, for large n [51]. However, experiment and semiclassical quantization of a

hadronic string (assuming linear confinement) suggest that m2
n ∝ n in QCD. Circumvent-

ing this problem was the motivation for developing the soft-wall model [22]. As pointed

out above and also in [24], a model including an open string tachyon with action (3.1) and

gaussian tachyon potential, naturally implements this behaviour. In figure 10, we plot the

results of some numerical computations which display this feature. We remind the reader

that, as we saw in section 4.1.1, for vector mesons limn→∞m2
n+1 −m2

n = 6/z2
Λ. This seems

to be born out by the figure.

7Notice our definition of Fn is different from [20].

– 18 –



J
H
E
P
1
1
(
2
0
1
0
)
1
2
3

Figure 10. Results corresponding to the forty lightest vector states with c1 = 0.05 and c1 = 1.5.

On the right, the horizontal line signals the asymptotic value 6 of the Regge trajectory, the lower

line corresponds to c1 = 0.05 and the upper line to c1 = 1.5. Masses are given in units of z−1

Λ
.

4.2 Axial-vector mesons

The quadratic action corresponding to the axial vector mesons that comes from expand-

ing (3.1) picks an extra term with respect to (4.5), coming from the covariant derivative of

the tachyon:

SA = −(2πα′)2

g4
V

K
∫

d4x dze−
1
2
µ2τ2

×
[

1

2
g̃

1
2
zzAµνA

µν + gxxg̃
− 1

2
zz ∂zAµ∂zA

µ +
4R2g4

V

3(2πα′)2
µ2τ2gxxg̃

1
2
zzAµA

µ

]

(4.24)

The equation of motion can be derived to be:

1

e−
1
2
µ2τ2

g̃
1
2
zz

∂z

(

e−
1
2
µ2τ2

gxxg̃
− 1

2
zz ∂zψ

A(z)

)

− k
µ2τ2

z2
ψA(z) − q2ψA(z) = 0 (4.25)

where we have introduced a new constant k as the combination:

k =
4R4g4

V

3(2πα′)2
(4.26)

We observe that τ only enters through the combination µ τ so µ is immaterial since it can

be rescaled away. On the other hand, the constant k, that did not enter the parity even

sector does affect the physics. In fact, by comparing (4.6) to (4.25), one can see that the

difference between the equation for the vectors and the one for the axials in controlled by k.

Therefore, it is natural to guess that k somehow enhances or suppresses the effects of chiral

symmetry breaking on the P-odd spectra. In the following, we will see how the physics

depends on this parameter. The model of our previous work [23] was more constrained

since, in terms of the present notation, k was fixed to 12
π2 .

4.2.1 Schrödinger formalism and the mass spectrum

The functions for converting to a Schrödinger problem A(z), B(z) are as before (4.7). On

top of that, we have here a non-trivial M(z) given by M(z) = B(z) k µ2τ2/z2. It is easy
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to check that the leading piece in the UV of the Schrödinger potential is 3/4u2 as for the

vectors. However, the leading IR behaviour is modified due to the term proportional to k

to VIR(u) = 9
4z4

Λ

(

1 + 4k
3

)

u2. From this observation, one can immediately realize that the

model gives different Regge slopes for vectors and axials and that the leading behaviour of

ΠA(q2) at large Euclidean momentum coincides, consistently, with the vector one (4.19).

We will later comment further on these issues.

The qualitative appearance of the Schrödinger potentials for the axial excitation is

similar to the ones for the vectors. But the value of the potentials in the axial case is

always higher due to the terms coming from M(z). Thus, for equal excitation number and

quark mass, the axial mode is always heavier than the vector mode (with the difference

controlled by k). For small values of c1, the dependence of the meson masses on the quark

masses is linear

zΛm
(1)
A ≈ 2.05 + 1.46c1, zΛm

(2)
A ≈ 3.47 + 1.24c1, zΛm

(3)
A ≈ 4.54 + 1.17c1, (c1 ≤ 1)

zΛm
(4)
A ≈ 5.44 + 1.13c1, zΛm

(5)
A ≈ 6.23 + 1.11c1, zΛm

(6)
A ≈ 6.95 + 1.10c1. (4.27)

For this calculation, we used k = 18
π2 as it is found by the fit of the parameters in sec-

tion (4.5), whereas in [23], we used k = 12
π2 . For larger c1, the plots of the meson mass

dependence on the quark mass for the axial excitation look similar to the vector case, see

the plot on the right of figure 7.

4.2.2 Current-current correlator and the pion decay constant

By explicit computation it is easy to check that the UV expansion of the solution to (4.25)

is given in terms of the two integration constants as:

ψA = b1 +

(

b2 +
1

2
b1(q

2 + π k c21) log
z

zΛ

)

z2 + . . . (4.28)

For the case of the axial vector, the corresponding sum rule generalising (4.21) reads:

ΠA(q2) =
f2

π

q2
+
∑

n

F 2
n

(q2 +m2
n − iǫ)

(4.29)

where of course now the n run over the axial resonances. The Fn here are computed in

essentially the same way as for the vector case, namely using (4.22) with a normalization

condition (4.23).

Now, we are also be able to compute the value of fπ. We do this by directly computing

the 2-point function at zero-momentum, namely:

f2
π = − Nc

6π2
b2|q=0 (4.30)

where we have used the expansion (4.28), which up to that order, is also valid for the axial

case. The value of b2 to be inserted in (4.30) is found numerically by solving (4.25) with

q2 = 0, with initial condition ψA|z=ǫ = 1 and demanding IR normalizability.

From the figure, we observe that the decay constant grows with the quark mass for

small quark masses and then starts decreasing. We can also observe that increasing the
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Figure 11. The pion decay constant and its derivative as a function of c1 - the quark mass. The

different lines correspond to different values of k. From bottom to top (on the right plot, from

bottom to top in the vertical axis) k = 12

π2 ,
24

π2 ,
36

π2 . The pion decay constant comes in units of z−1

Λ
.

parameter k, increases the value of the pion decay constant. This is in agreement with

the intuitive notion given above that k somehow controls the amount of chiral symmetry

breaking.

4.3 Scalar mesons

We now deal with the scalar excitation. The quadratic action reads:

S=−2πα′K λ

∫

d4xdze−
1
2
µ2τ2

[

g2
xxgzz g̃

− 3
2

zz (∂zs(x, z))
2−2µ2g2

xxg̃
− 1

2
zz τ(z)τ(z)

′s(x, z)∂zs(x, z)

+
µ2

2πα′ λ
(µ2τ(z)2 − 1)g2

xxg̃
1
2
zzs(x, z)

2 + gxxgzz g̃
− 1

2
zz (∂µs(x, z))

2
]

(4.31)

From (3.1), it can be seen that there is also a linear term in the bulk action, but can be

easily shown to be a total derivative.

We can read the functions that are used to rewrite this problem is Schrödinger form,

as defined in appendix D:

A(z) = e−
1
2
µ2τ2

g2
xx

gzz

g̃
3/2
zz

, B(z) = e−
1
2
µ2τ2

gxx
gzz

g̃
1/2
zz

, (4.32)

C(z) = −2µ2e−
1
2
µ2τ2 g2

xx

g̃
1/2
zz

τ(z)∂zτ(z) , M(z) =
µ2

2πα′ λ
e−

1
2
µ2τ2

(µ2τ2 − 1)g2
xxg̃

1
2
zz .

Notice that B(z)/A(z) takes the same value as for the vector and axial excitations, which

means that the definition of the u-radial coordinate is the same as in those cases. The

expression built from B(z), C(z) and M(z) which enters the Schrödinger potential takes a

remarkably simple form:

1

B(z)

(

M(z) − 1

2
∂zC(z)

)

= − 3

z2
(4.33)

We will find the UV and IR limiting behaviour of the associated Schrödinger potential.

At small z ≈ u, we find Ξ ≈ R
3
2 /u

3
2 and one can immediately compute from (D.7) the

UV leading term to be V (u) = 3
4u2 . Similarly, the term that dominates for large u is

quadratic 9u2

4z2
Λ
. Thus, we have found that the UV and IR asymptotics are the same as for
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Figure 12. The Schrödinger potentials associated to the scalar excitation for c1 = 0, 0.5, 1, 2, 3, 4.

the vector case and, as a first approximation, we can use the soft wall equation (4.15).

Thus, we can again match the asymptotic behaviour of the current-current correlator to

the perturbative result. For that, we make an argument similar to [43] assume that the

qq̄ operator is dual to the tachyon rescaled by some constant β, such that the boundary

coupling is, schematically,
∫

β(τ/z)qq̄. This is what we anticipated in the relation between

c1 and the quark mass (3.26). Then, matching the large q2 result ΠS(q2) = Nc

8π2 q
2 log q2

and reasoning as in the the vector case, we find:

(2πα′)KR3λ

β2
=

Nc

8π2
(4.34)

In figure 12, we depict the associated Schrödinger potential for different values of c1. Com-

paring figure 12 to figure 6, one can check that the potentials for the scalars are above those

of the vectors. Thus, for equal excitation number, scalar mesons are typically heavier than

vectors in the present model.

The relation of the lowest scalar meson masses to c1 follows

zΛm
(1)
S ≈ 2.47 + 0.683c1, zΛm

(2)
S ≈ 3.73 + 0.488c1, zΛm

(3)
S ≈ 4.41 + 0.507c1, (c1 ≤ 1)

zΛm
(4)
S ≈ 4.99 + 0.519c1, zΛm

(5)
S ≈ 5.50 + 0.536c1, zΛm

(6)
S ≈ 5.98 + 0.543c1. (4.35)

We point out that the scalar meson masses do not depend on the parameter k.

4.4 Pseudoscalar mesons

We now focus on the pseudoscalar mesons. With respect to the previous modes, there is an

extra complication because the physical modes are a combination of two bulk fields θ and

A
‖
µ. However, we will see that it is possible to find a combination of the fields for which

one obtains a standard Sturm-Liouville problem.

The quadratic action reads:

S = −(2πα′)2K
∫

d4xdze−
1
2
µ2τ2

[ 1

g4
V

gxxg̃
− 1

2
zz (∂zA

‖
µ)2

+
λ

2πα′ τ
2g2

xxg̃
− 1

2
zz (∂zθ)

2 +
λ

2πα′ τ
2gxxg̃

1
2
zz(∂µθ + 2A‖

µ)2
]

(4.36)
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Defining ϕ(z) and ϑ(z) as in (4.2) and Fourier transforming P(xµ), we can write the

equations of motion for A
‖
µ and θ as:

1

e−
1
2
µ2τ2

g̃
1
2
zz

∂z(e
− 1

2
µ2τ2

gxxg̃
− 1

2
zz ∂zϕ(z)) − k

µ2τ2

z2
(ϕ(z) − ϑ(z)) = 0 (4.37)

k
µ2τ2

z2
∂zϑ(z) + q2∂zϕ(z) = 0 (4.38)

These two equations can be combined into one by solving (4.37) for ϑ and inserting this

into (4.38).

e−
1
2
µ2τ2

τ2g2
xxg̃

− 1
2

zz ∂z

[

1

e−
1
2
µ2τ2

τ2gxxg̃
1
2
zz

∂zψ
P (z)

]

− k
µ2τ2

z2
ψP (z) − q2ψP (z) = 0 (4.39)

where we have defined:

ψP (z) = −e− 1
2
µ2τ2

gxxg̃
− 1

2
zz ∂zϕ(z) (4.40)

and we have used the definition of k in (4.26). We can transform equation (4.39) to a

Schrödinger form following appendix D. Comparing (4.39) to (D.2) (and inserting C(z) =

0) , we find:

A(z) = e
1
2
µ2τ2

τ−2g−1
xx g̃

− 1
2

zz , B(z) = e
1
2
µ2τ2

τ−2g−2
xx g̃

1
2
zz ,

M(z)

B(z)
= k

µ2τ2

z2
. (4.41)

Notice that the value of B/A coincides with those for the rest of modes and, therefore,

the Schrödinger coordinate u is the same for all the possible excitations. Let us compute

the IR (large u) leading behaviour of such a Schrödinger potential. It turns out to be

VIR(u) ≈ 9
4z4

Λ
(1 + 4k

3 )u2, as for the axials. The coefficient of this quadratic term is what

controls the slope of the Regge trajectories for highly excited mesons. Thus, the outcome

of the present model in this respect is that vectors and scalars have the same Regge slope,

whereas the slopes for axials and pseudoscalars coincide and are larger than the vector one.

An important observation is that the natural normalization condition is not (D.4) but,

looking for the kinetic term of the pseudoscalar field in (4.36), we obtain:

(2πα′)2K
∫ zΛ

0
dze−

1
2
µ2τ2

[ 1

g4
V

gxxg̃
− 1

2
zz (∂zϕn(z))2 +

4λ

2πα′ τ
2gxxg̃

1
2
zz(ϑn(z) − ϕn(z))2

]

=
1

2
.

(4.42)

Rewriting this expression in terms of ψP , we find:

1

2
=

(2πα′)2K
g4
V

∫ zΛ

0
dz e

1
2
µ2τ2

g−1
xx

(

g̃
1
2
zzψ

P
n (z)2 +

2πα′

4λg4
V τ

2
g̃
− 1

2
zz (∂zψ

P
n (z))2

)

= (4.43)

=
(2πα′)2K

g4
V

∫ ∞

0
du

(

gxxτ
2α(u)2 +

2πα′

4λ g4
V

e
1
2
µ2τ2

g
− 3

2
xx τ

−2

[

∂u

(

e−
1
4
µ2τg

3
4
xxτα(u)

)]2
)

where in the last line we have changed to the Schrödinger variables following the conventions

of appendix D. There are some subtleties related to the UV behaviour of (4.43) which are

worth explaining. Since the leading UV behaviour of our model is the same as in the hard
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wall [20, 21] or soft wall [22] models, the following arguments are analogous in all these cases.

However, we are unaware of any reference where the discussion below is explicitly shown.

It turns out that this UV behaviour is qualitatively different for massless (c1 = mq = 0) or

massive (c1 ∼ mq > 0) quarks. We will study both cases separately below.

4.4.1 The mq = 0 case

We will now study the qualitative properties of the physical spectrum for mq = 0. In this

case, the τ ∼ u3 near the UV and therefore Ξ = (AB)
1
4 ∼ u−

3
2 , which implies that

VUV (u) =
15

4u2
+ . . . (4.44)

The first correction represented by the dots comes at order u3. One can then find the

UV expansion for α(u) that solves (D.6) in terms of the two integration constants which

we denote k1, k2 as α(u) = k1u
− 3

2 + 1
4k1m

2
nu

1
2 − 1

16k1m
4
nu

5
2 log u + k2u

5
2 + . . . We now

want to insert this in the last line of (4.43) and check whether the integral converges near

u = 0. The first term is always convergent so we focus on the second term which behaves as
∫

0 duu
−3[∂u(u

3
2α(u))]2. Therefore, for mn = 0, this mode is UV-normalizable irrespective

of the values of k1 and k2. Thus, one can always tune k2/k1 in order to find a solution

that is well-behaved in the IR. This means that for mq = 0 there is always a normalizable

solution with mn = 0, which corresponds to the expected massless Goldstone boson. On

the other hand, if mn 6= 0, one has to impose k1 = 0 in order to have UV-normalizability.

Then, as in a standard Sturm-Liouville problem, there will be a discrete set of massive

modes, where mn is selected by matching the normalizable UV and IR behaviours.

In summary, for mq = 0 the UV structure of the Schrödinger potential and normal-

izability condition ensures the existence of a massless Goldstone boson together with a

discrete tower of massive excitations, as expected.

4.4.2 The mq 6= 0 case

Near the UV, we now have τ ∼ u and therefore Ξ = (AB)
1
4 ∼ u

1
2 , and

VUV (u) = − 1

4u2
+ . . . (4.45)

where the first correction in the dots is O(u0). We can find again the UV solution in terms

of two integration constants α(u) = k1u
1
2 log u + k2u

1
2 + O(u

5
2 ). Now, requiring that the

last term of (4.43) is UV-finite requires setting k1 = 0. Again, one has a Sturm-Liouville

problem with a discrete spectrum.

Figure 13 depicts a few Schrödinger potentials for the pseudoscalar mode, for different

values of c1.

Let us now look at the lowest-lying excitation when mq is small. This should be

a pseudo-Goldstone boson with its mass given by the Gell-Mann-Oakes-Renner relation.

One indeed can find this following the argument of [20]: for zero quark mass, the q2 = 0

solution of (4.37), (4.38) is given by ϑ(z) = −1, ϕ(z) = ψA
q2=0(z)−1, where we have defined

ψA
q2=0(z) as the solution at zero momentum of (4.25) with boundary condition ψA

q2=0 = 1.
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Figure 13. On the left, we plot the associated Schrödinger potential for small quark mass, con-

cretely c1 = 0, 0.001, 0.005, 0.01. Even if the UV behaviour is completely different for c1 = 0, we

see that for small c1, the potential looks very similar to the massless case except precisely around

u = 0. On the right, we plot the same but with larger values of c1, in particular c1 = 0, 0.5, 1, 2, 3.

All plots have been done taking k = 12

π2 . As for the axial case, increasing k amounts to pushing up

the IR part of the potential.

Consequently, regarding (4.30), z−1∂zψ
A
q2=0|z=0 = −6π2

Nc
f2

π . We now find perturbatively

the small m2
π solution just by integrating (4.38) and we obtain:

− 1 = m2
π

∫

z2

µ2kτ2
∂zψ

A
q2=0dz (4.46)

Using that this integral is dominated by the small z region and taking into account
∫

z3

τ2 ≈
∫

z3

(c1z+c3z3)2
≈ 1

2c1c3
, we can substitute the relations between c1, c3 and mq, 〈q̄q〉 (3.26),

(3.27) together with (3.8), (4.20) and (4.26) to find the GOR relation [52]:

− 4mq〈qq̄〉 = m2
πf

2
π (4.47)

We have obtained this expression by making a series of approximations. However, we can

crosscheck it with the values for the mass obtained by the standard numerical computation,

see figure 14. (4.47) is very accurate for small masses. When going to larger masses (up to

c1 ≈ 1), we can fit the mass of the lowest lying pseudoscalar to
√

amq + bm2
q. We include

here the masses of the first six pseudoscalar modes in terms of c1

zΛm
(1)
P ≈

√

3.53c21 + 6.33c1, zΛm
(2)
P ≈ 2.91 + 1.40c1, zΛm

(3)
P ≈ 4.07 + 1.27c1, (c1 ≤ 1)

zΛm
(4)
P ≈ 5.04 + 1.21c1, zΛm

(5)
P ≈ 5.87 + 1.17c1, zΛm

(6)
P ≈ 6.62 + 1.15c1. (4.48)

where we have also set k = 18
π2 for this calculation.

4.5 Mesonic excitations: a brief phenomenological analysis

We now make a phenomenological analysis of our model by comparing our results for

the spectrum and the decay constants of light unflavored mesons to their experimental

values. An extensive study of meson spectrum appeared in [23], without including the

decay constants. We will fit the three parameters of the model, zΛ, c1 and k, using mesons

with isospin 1 and JPC = 1−−, 1++, 0−+, 0++. Since zΛ ∼ Λ−1
QCD and c1 ∼ mq, it turns out
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Figure 14. We plot the mass of the lowest lying pseudoscalar as a function of c1 (namely, the quark

mass). On the left, we crosscheck the GOR relation (where for 〈qq̄〉, fπ we have introduced the result

found numerically in the chiral limit) to some points computed numerically. The approximation is

very good for small c1, and deviations start seeing visible around c1 = 0.03. On the right, we have

fitted b in the expression mπ =
√

−4mq〈qq̄〉
f2

π
+ bm2

q and checked that the fit is rather good up to

c1 = 1. the parameter k has been taken to be 12

π2 in these plots.

JCP Meson Measured (MeV) Model (MeV) 100|δO|/O
1−− ρ(770) 775 800 3.2%

ρ(1450) 1465 1449 1.1%

1++ a1(1260) 1230 1135 7.8%

0−+ π0 135.0 134.2 0.5%

π(1300) 1300 1603 23.2%

0++ a0(1450) 1474 1360 7.7%

Table 1. The results of the model and the experimental values for light unflavored meson masses.

that there is a single phenomenological parameter k, apart from those inherent of QCD

physics.

The experimental values of the meson masses which are used are quoted by [53].

We fit the three parameters of our model to the masses of the light mesons which

appear in table 1 and the decay constants appearing in 2. To make the fit we minimize the

rms error

ǫrms =

(

1

n

∑

i

(

δOi

Oi

)2
)

1
2

(4.49)

where n is the number of the observables minus the number of the fitted parameters,

n = 9 − 3. The values of the parameters minimizing ǫrms read

z−1
Λ = 549 MeV , c1lzΛ = 0.0094 , k =

18

π2
(4.50)

The rms error then is ǫrms = 14.5% and the comparison between the experimental and

model values appears in table 1, for the masses and in table 2, for the decay constants.
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JCP Meson Measured (MeV) Model (MeV) 100|δO|/O
1−− ρ(770) 216 190 12%

1++ a1(1260) 216 228.5 5.8%

0−+ π0 127 101.3 20.2%

Table 2. A comparison of the results to the experimental values for the decay constants of light

unflavored mesons.

5 Meson melting in the deconfined phase

We briefly discuss in this section the fate of the mesonic modes when the gauge theory

undergoes a deconfining phase transition [54], namely when we use the background of

equation (2.8). The first observation is that, as we saw in section 3.2, the tachyon cannot

diverge at any point in this case and, therefore, the brane reaches the horizon, and we only

have “black hole embeddings”, in analogy with the terminology introduced in [55, 56]. This

means that there is no discrete spectrum above the deconfining phase transition. When

we are considering small quark masses, this is perfectly realistic.

However, in the real world, charmonium and bottomonium do survive the QCD phase

transition. We want to study this problem in the present model, and therefore we will

compute the spectral functions at different values of mq/T . In particular, we will focus in

the vector excitation.

We start by discussing the associated Schrödinger potential for the vector excitation in

the deconfined background, at zero momentum. The expressions in (4.7) are modified to:

A(z) = e−
1
2
µ2τ2

g
1
2
xxg

1
2
tt g̃

− 1
2

zz , B(z) = e−
1
2
µ2τ2

g
1
2
xxg

− 1
2

tt g̃
1
2
zz , (5.1)

where one should remember that now gµν refers to the metric (2.8). Notice that
√

B/A

diverges at z = zT as a single pole, such that
∫
√

B/Adz diverges and the horizon z = zT
corresponds to u = ∞ in the Schrödinger coordinate. V (u) is exponentially decreasing for

large u. For completeness, we write in appendix G the functions determining the potential

for the rest of modes. In figure 15, we show several examples of potentials computed

numerically, for different values of c1 ∼ mqzT ∼ mq/T . In the second and third plots, we

also compare it to the potentials in the confined phase for the same value of c1. Namely,

we show how the potentials for the vector excitations are modified at the phase transition.

They share the same UV behaviour, but are drastically modified in the IR due to the

different behaviour of the tachyon and the metric.

In [59], it was shown that a step-like potential gives quasi-particle behaviour. Moreover,

if the position of the step coincides with that of a barrier in the confined phase, the quasi-

particle mass is related to the mass of the meson before the phase transition. The third

plot seems to point along that line. However, in the present model the potentials for the

deconfined phase are never step-like enough, nor present bumps, and thus do not create

sharp peaks in the spectral function, as we will see below.

Once we have the potentials, it is straightforward to compute the spectral function from

the retarded correlator which is computed following the prescription of [60]. In practice,
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Figure 15. The Schrödinger potentials associated to the vector excitation in the deconfined phase,

at zero momentum, for different values of c1 ∼ mq/T . In the first plot c1 = 0.01, 1, 2, 3, 4. The

second and third plot (respectively c1 = 1, 2) make a comparison with the potentials in the confined

phase for the same values of c1.

Figure 16. The spectral function (divided by ω2) in units of Nc

12π
for c1 = 0.01, 1, 2, 3, 4, from top

to bottom.

what one has to do is to impose ingoing boundary conditions at the horizon (α(u) ∼ ei ω u

near u = ∞)8 and find the behaviour of the wavefunction near the boundary, namely com-

pute b1, b2 matching the numerical result to the UV-expansion (4.12). Then, the spectral

function is given by:

ρ(ω) = −Im GR(ω) =
Nc

3π2
Im

(

b2
b1

)

(5.2)

where we have replaced the parameters of our model by Nc

3π2 , using (4.20). We show in

figure 16 some examples of this computation. We have plotted 12π
Nc

ρ(ω)
ω2 in terms of ω for

various values of c1.

In [57], a bottom-up holographic model was built in order to discuss the physics of the

J/Ψ above the phase transition (see also [58] for related work). In the model of [57], there

is also no discrete spectrum but, for low enough temperature, by engineering the potential,

the J/Ψ shows up as a peak in the spectral function (or, alternatively, as a small negative

imaginary part of the associated quasinormal frequency). Namely, it has quasi-particle

behaviour.

We now discuss the results comparing to [57]. The authors of [57] showed how the

Schrödinger potential should look like to find some qualitative physical properties of the

J/Ψ meson. In our model, the potentials are found dynamically, and look similar to [57]

8Even if we use the notation with u since it is better for illustrative purposes, we have found easier to

perform the numerical computations in the z-coordinate.
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except for the important fact that they fail to have the dip of [57]. As a consequence, the

J/Ψ decay constant is too low (see figure 9) and a clear peak in the spectral function is

absent. One may compare our figure 16 to figure 3 in [57].

It does not seem possible to introduce the dip feature in our model without inserting

at least a new scale in the problem. Notice that the ΛQCD does not play any role in

the deconfined case for the present model, apart from setting the value of T at which the

transition takes place. In other words, the zΛ does not appear at all in the deconfined

background. We speculate that one should modify the background by including some

dependence on ΛQCD in the deconfined phase in order to improve the model in these

respects. It would be interesting to investigate whether analyzing the tachyon action in

the less simple but well motivated backgrounds of “improved holographic QCD” models [47]

might ameliorate the issue along this path.

6 Discussion

6.1 Summary and general comments on the model

In this paper, we have analyzed in detail several issues of the holographic model presented

in [23]. The main ingredient is to describe the open string (meson) physics by using tachyon

condensation, captured by Sen’s action [25], as first advocated in [24]. The “tachyon”,

namely the lowest lying bifundamental scalar of the brane-antibrane system, is dual to the

quark mass scalar bilinear operator and its condensation corresponds to chiral symmetry

breaking. In order to make explicit computations, it is necessary to give an explicit form of

the tachyon potential and to choose a curved gravitational background. We have considered

extremely simple possibilities for both, see (3.4) and (2.2).

As we have already remarked, the model is inspired by string theory but is phenomeno-

logical. It does not provide a well controlled approximation to string theory in any limit.

In this sense, it should be considered a bottom-up model. Nevertheless, the main point

we want to make in this work is that it can be very useful to incorporate top-down de-

rived ingredients as (3.1) into bottom-up models. We will make a comparison between

qualitative properties of our model and the soft wall model [22] and modifications thereof.

Successes of [22] include a reasonable qualitative and quantitative matching of properties

of the measured mesonic states, including the Gell-Mann-Oakes-Renner relation and the

Regge trajectories. These are also found in our model, together with the following extra

appealing properties, which are automatic in our general set-up:

• The model incorporates confinement in the sense that the quark-antiquark potential

computed with the usual AdS/CFT prescription [63] confines. Moreover, magnetic

quarks are screened. The background solution stems from a gravitational action,

that allows, for instance, to compute thermodynamical quantities. All of this are

properties associated to the background geometry and were already discussed in [29].

• The string theory nature of the bulk fields dual to the quark bilinear currents is

readily identified: they are low-lying modes living in a brane-antibrane pair.
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• Chiral symmetry breaking is realized dynamically and consistently, because of the

tachyon dynamics. See [61, 62] for discussion and possible solutions in the soft-wall

model context.

• In the present model, the mass of the ρ-meson grows with increasing quark mass,

or, more physically, with increasing pion mass. This welcome physical feature is

absent in the soft wall model, [22]. It occurs here because the tachyon potential

multiplies the full action and in particular the kinetic terms for the gauge fields, which

therefore couple to the chiral symmetry breaking vev. In our previous work [23], we

exploited this fact in order to fit the strange-strange mesons together with the light-

light mesons, with rather successful results. In [64], the authors added the strange

quark mass to the hard wall model and computed the dependence of vector masses

on the quark mass. In that case however, this dependence of the vector masses

originated only from the non-abelian structure and therefore misses at least part of

the physics.9

• The soft wall requires assuming a quadratic dilaton in the closed string theory back-

ground. It has been shown that such a quadratic dilaton behaviour can never be

derived from a gravitational action while keeping the geometry to be that of AdS.10

That the background is not found as a solution is a shortcoming if for instance one

wants to study the thermodynamics of the underlying glue theory. The thermody-

namics of the soft wall model is therefore ill-defined. In the present model, we found

the background as a solution of a two-derivative approximation to non-critical string

theory, see section 2. In order to obtain Regge behaviour, we also needed a further

assumption: that the tachyon potential is asymptotically gaussian. However, this is

rather natural since this potential has appeared in the literature, for instance [36, 37].

Still, we warn the reader that the formalism of [36, 37] cannot be directly and con-

trollably connected to the present setup.

• Considering that the dynamics is controlled by a tachyon world-volume action au-

tomatically provides the model with a WZ term of the form given in [37, 66, 67].

We have not discussed this term at all in this work, but in [24] it was shown that

properties like discrete symmetries (parity and charge conjugation) and anomalies

are, in general, correctly described by analyzing this term.

In summary, we regard our model as being in the general framework of [22], but with

several qualitative improvements due to the dynamics built in the action (3.1). Moreover,

our starting assumptions are rather simple and well motivated from a top-down perspective,

such that the ad hoc input is scarce. It is also encouraging to find that quantitative fits

9On the other hand, the quark mass dependence of the ρ-meson can be seen in different top-down models,

see [65] for a recent work in the context of the Klebanov-Strassler model.
10This was shown in the second reference of [12–15]. In [10, 11] such behavior can be implemented for

glue, but the metric changes appropriately, an important ingredient for implementing confinement in the

glue sector.
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to experimental data are reasonably good, see [23] and section 4.5, but those are not the

main aim of the present work.

We have also found several aspects in which the model does not capture features which

are known from perturbative QCD.

The main issue is the leading large q2 contribution to ΠV (q2) − ΠA(q2) as will be

discussed in section 6.3. We have also seen that our model does not work that well for large

quark masses11 as it would grossly underestimate the decay constants for charmonium and

no clear peaks are observed in the corresponding spectral functions in the deconfined phase

(see the discussion of section 5). It would be interesting to know whether mild corrections

of the model could ameliorate these issues or whether these are unsurmountable differences

of models of this class to actual QCD physics.

The behaviour of d〈q̄q〉
dmq

for small mq (figure 2) has been investigated in earlier classic

works [68–70]. However, the leading IR divergence-free correction, is of order 1/N2 at

large N, originating from a pion loop, [71, 72]. The leading-N corrections come from the

four-derivative terms and are dominated by the scalar meson contribution. The behavior

is qualitatively similar to what we find. For large mq we have not been able to calculate

the asymptotic behavior but generically speaking we do not expect it to necessarily match

that of QCD, as discussed in [68–70]. The reason is that the UV asymptotics of the bulk

gravity solution are not necessarily the same as in QCD.

6.2 Comments on effective actions for the open string tachyon

The notion that a scalar bifundamental in a brane-antibrane system should be the holo-

graphic dual of QCD-like chiral symmetry breaking is rather simple and robust, see for

instance [31, 75–78].

What is not obvious, however, is which effective action is best in order to describe a

brane-antibrane system if curved spacetime. We have used the simple proposal of [25], but

one should keep in mind that other alternatives might also be useful. We provide here a

short guide to the literature on the issue.

Garousi and collaborators, starting from the early work [79], have tried to use explicit

string theory computations in order to constrain the tachyon generalization of the DBI and

WZ actions [80–82], see also [83]. In [38], an action for a Dp-D̄p system based on a particular

symmetriced trace prescription was proposed.12 There are subtle differences between the

proposal of [38] and the one by Sen [25], which may have dramatic consequences. In fact,

we have checked that using the symmetrized trace action of [38] for our model, one still

finds Regge trajectories for vector and axial mesons but the slope for the axials changes,

11Perhaps this is not surprising since for heavy quarkonium perturbative methods and in particular non-

relativistic QCD (see [73, 74] for reviews) are accurate and it may be naive to expect that a dual theory

can be a good approximation to the physics.
12In [38], a trace is needed even for a single brane-antibrane pair since the degrees of freedom are 2×2

matrices. In order to non-abelianize the flavor group in our case, one should also deal with the problem of

how to implement traces on a non-abelian generalization of Sen’s action (3.1). Investigating the physical

consequences on the dual theory of this non-abelianization and of different proposals for the effective

action [80–82] would be very interesting, but is beyond the scope of the present work.
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see appendix H. The study of other physical properties inferred from the action of [79] is

beyond the scope of the present work.

In [84], it was discussed how to take into account the brane-antibrane distance in the

string action. This is important for holographic duals, specially if one wants to insist in

top-down approaches. A reason is that, in the weakly coupled picture, if one has brane and

antibrane on top of each other in flat space, the tachyon would create a real instability (it

cannot be compensated by the AdS curvature). Therefore one should think of separated

branes as in the Sakai-Sugimoto model [19]. With this in mind, generalizations of [19],

based on the action proposed in [84] where constructed in [85–87].

In a beautiful recent paper [88], building on the work [89], Niarchos proposed a different

way of building the effective action which should better capture the physics of a separated

brane-antibrane system. This may be useful in holographic modeling and in particular to

improve the Sakai-Sugimoto model. We also refer the reader to [88] for a more exhaustive

overview of the literature of tachyon effective actions.

6.3 On the OPEs and the slope of the Regge trajectories

There has been some debate in the literature on whether the large Euclidean momentum

behaviour of two-point correlators can be used to constrain the behaviour of the QCD

spectrum of excited mesons. The main point is to compare infinite sums like (4.21) (or,

more precisely, differences of such sums: vector minus axial or scalar minus pseudoscalar) to

the large q2 behaviour expected from the operator product expansion (OPE). In particular,

there is the question of whether different Regge slopes in the vector and axial (or scalar

and pseudoscalar) channels

(mV,A
n )2 ∼ Λ2

V,An+ const for large n (6.1)

are consistent with the OPEs. Notice that this is a theoretical question, irrespective of

the experimental observation of the spectra. Let us give a brief and incomplete overview

about the debate regarding this issue. For instance, in [90], a model with ΛV 6= ΛA was put

forward. Later, in [91], it was claimed that this model was inconsistent with the OPEs, but

the arguments of [91] were called into question in [92], due to subtleties in the regularization

of infinite sums like (4.21). More recently, works like [93–95] claim that the Regge slopes

should be equal whereas the opposite conclusion was reached in [96–98].

We have found above that in our model, there are different asymptotic Regge slopes

ΛA > ΛV . However, the coefficients of the leading logarithms in the large q2 correlator

for vectors and axials coincide, consistently. In order to illustrate this fact, let us remem-

ber that, asymptotically in the UV, our model resembles the soft wall of [22], see equa-

tion (4.15). In the soft wall model, the Regge slope is controlled by the constant c of (4.15),

but the quotient F 2/Λ2 is independent of c [99]. This quotient is indeed what controls the

coefficient of the leading logarithm [92]. We thus have limq2→∞
(

ΠV (q2) − ΠA(q2)
)

= 0

together with different Regge slopes. However, this is not enough to comply with the

OPEs. The leading contribution to
(

ΠV (q2) − ΠA(q2)
)

at large q2 should be of order q−4

because QCD does not have dimensionful quantities that allow to rewrite for instance a
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q−2 term. We can resort to numerics to compute
(

ΠV (q2) − ΠA(q2)
)

in our model and the

result does not comply with the q−4 expectation. This fails in the axial channel as shown

in appendix F.

The obvious guess is that, since our holographic model is clearly not exactly QCD,

it includes operators or condensates which are absent in QCD, modifying the subleading

pieces of the correlators.

The same kind of problem is present for any holographic model we are aware of,

see [99] for a discussion concerning the soft wall.13 However, this seems to us more of a

technical problem that may be resolved by finding the appropriate potentials than a general

obstruction to this class of models. Settling these issues requires further work.

6.4 Outlook

As we have discussed, our simple model is quite successful in describing many features

of QCD. A lot of effort has been devoted in bottom-up models to estimate other QCD

related properties as for example form factors, see for instance [100–108]. To reproduce

such computations in the present setting and compare the results is an interesting problem

that we leave open for the future. We have not studied non-trivial baryon number or

chemical potentials, which would clearly be worthy extensions of the model.

There are some aspects of the present that would be worth improving, like the physics

associated to heavy quarks (compared to the QCD scale). We have just explored the result

of working with Sen’s action in the simplest confining holographic background available

in the literature [28, 29]. Therefore, it is still left to understand the consequences of

implementing the tachyon action in different backgrounds, as for instance those which go

under the name of improved holographic QCD [10, 11, 47] or modifications thereof.

It could also be interesting to try to introduce the quarks beyond the quenched ap-

proximation and therefore compute the backreaction of the tachyon action for the fun-

damental fields on the gravity background. For a review of unquenched flavor in critical

(ten-dimensional) string theory backgrounds, see [109].

Of course, it would be worth to provide a non-abelian generalization of this model,

for which one should provide a technical prescription on how to take traces in the action.

Another line of obvious interest would be to use the model for baryons. Since quark masses

play a more dynamical role than in other bottom-up approaches, this could be interesting

for the physics of the sigma-term.

Finally, and most importantly, we would like to point out that using an effective open

string action like (3.1) in the framework of holography can well have interesting applications

beyond the realm of strong interactions. For instance, many bottom-up technicolor models

have appeared in the literature, see [110] for a review. It is a very interesting question

to understand whether chiral symmetry breaking controlled by an action like (3.1) may

offer new dynamical possibilities for the modeling of electroweak symmetry breaking. On

the other hand, in the last years, many phenomenological models have been constructed

in order to address some issues of superconductors and other condensed matter systems,

13A.P. thanks O. Cata for a discussion on this subject.
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for a review see [111]. Again, we would like to remark that (3.1) could hopefully lead to

interesting new dynamics in different set-ups.
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A Book-keeping summary of the parameters of the model

We summarize here the parameters of the our model. There are two parameters coming

from the background, the AdS radius R and the position of the cigar tip zΛ.

The action of the flavor brane-antibrane pair also includes α′ and two more parameters

gV and λ which are related to the normalization of the vector and tachyon fields respectively.

The tachyon potential also includes two constants, K which is an overall factor in front

of the action and µ2. It should also noticed that µ can be absorbed in τ(z) by redefining

τ̃ → µτ . Then this parameter disappears from all equations. We used µ2 = π, for the

numerics through our analysis, but this does not affect any physical results of our model.

Another parameter which exists in the model is c1 which appears in the UV asymptotic

of the tachyon expectation value (3.7). c1 is proportional to the quark mass, with a

proportionality constant β which was introduced in (3.26), however β does not appear in

the equations for the spectrum or the decay constants, so its value is not relevant for the

model predictions.

In total we have the following parameters R, zΛ, α′, gV , λ, K and c1. R, α′ and λ

are related by equation (3.8), which relates the tachyon mass to the dimension of its dual

operator. Then, we relate gV and λ to the number of colors Nc in QCD by matching the

results of the vector and scalar two point functions as calculated in bulk on the one hand

and in QCD on the other hand. The results are given in (4.20), (4.34), which relate gV to λ.

Hence, finally the spectrum and the decay constants depend on zΛ, c1 and a combination

of R, gV and α′ which was named k and is given by, (4.26),

k =
4R4g4

V

3(2πα′)2
(A.1)
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B Analysis of singularities in the tachyon differential equation

B.1 Confining background

In this appendix, we will investigate the existence of singular solutions of the tachyon

equation of motion (3.9). It was argued already that τ can diverge only at the tip of the

cigar. Therefore what is left to investigate is solutions where τ ′(z) diverges at a point

z0 ∈ [0, zΛ], but τ(z) remains finite at the same z0. We call these solutions “spurious”.

Taking into account τ ′(z) ≫ τ(z) in the neighborhood of z0, the leading terms of eq. (3.9)

are the first and the second one. Hence, the leading order equation is (we set µ = 1 in the

sequel as it can be absorbed in the normalization of τ and zΛ = 1)

τ ′′(z) − 4

3
zf(z)τ(z) = 0 (B.1)

with solution in the vicinity of the divergence

τ ′(z) =
1

√

g(z)
=

1
√

C − 4
3z

2
(

1 − 2
7z

5
)

, τ(z) =

∫ z

0

dz
√

g(z)
+ τ0 (B.2)

where g(z) = C − 4
3z

2
(

1 − 2
7z

5
)

. The function g(z) has either one or three real roots. In

particular, there are the following three cases

1. C < 0 : There are no roots of g(z) in the interval [0, 1], since the only one root is at

z0 > 1. It should also pointed out that for z ∈ [0, 1], g(z) is negative so the solution

does not exist.

2. 0 < C < 20

21
: There is a single real zero at z0 ∈ [0, 1]. While, the other two real zeros

lie outside that interval.

3. When C = 20

21
the divergence happens exactly at the tip of the cigar.

4. C > 20

21
: Again there is no real zero in [0, z0].

If g(z) has a real root z0 ∈ [0, 1], then it follows from (B.2) that τ ′(z) diverges at

z = z0, but τ(z) is regular there. Only in case that z0 is a double root of g(z), both τ(z)

and τ ′(z) diverge at the same point. We are particularly interested in the above case where

the acceptable solution diverges at some point z0 in order to obtain the effect of chiral

symmetry breaking in the dual quantum field theory. This is only managed if we tune the

initial conditions (C here). There are two possibilities which lead to a double root of g(z),

in the context of the above approximation

1. C = 0 : In that case the double root is at z0 = 0. Then, eq. (B.1) has not real

solutions, so it is not considered here.

2. C = 20

21
: The double root now is at z = 1.
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The only rigorous result of the aforementioned analysis is that “spurious” singularities

are generic if 0 < C < 20
21 .

If the tachyon diverges as a power law τ ∼ (z − z0)
−a with a > 0, τ ′

τ ∼ 1
z−z0

and the

approximation described above is still valid, provided z0 6= 1. But then, this is not a valid

solution since the solution in the above approximation is of the form (B.2). This excludes

such a divergence if z0 6= 1.

The only other option of divergence of τ(z), and/or τ ′(z) at a point z0 ∈ [0, 1] is the

case where τ ′2τ term is dominating. The relevant equation then is

τ ′′(z) + τ ′(z)2τ = 0 (B.3)

which leads to

τ ′(z) = C e−
1
2
τ(z)2 (B.4)

For τ(z) ≫ 1, an approximate solution to eq. (B.3) is

1

τ(z)
e

1
2
τ(z)2 ≃ Cz + . . . (B.5)

Therefore, τ(z) diverges only if z → ∞ which is not allowed in the present geometry as

z ∈ [0, 1]. Hence this case is excluded.

From the above mentioned, we conclude that the only place where τ(z) diverges is at

z = 1. In order to find the solution of diverging τ(z) we must tune the initial conditions in

the UV, see section 3. We also showed that “spurious” singularities in the interior of the

interval [0, 1] are generic for a range of initial conditions.

The existence of “spurious” singularities has been verified numerically, and it fits the

asymptotics (B.2). An example of this behavior is shown in figure 17. We solve numerically

eq. (3.9) for arbitrary initial conditions, meaning that the mass and the vev are not tuned

according to the plot in figure 2. In particular, we have chosen c1 = 0.1, c3 = 0.439. In this

case we notice that τ ′(z0) ≫ τ(z0) at z0 = 0.8696 < 1. The right part of figure 17 includes

the plot of the derivative of the numerical solution (red line) and the expression for τ ′(z)

given in eq. (B.2) (dashed blue line), near z0. On the left part we have plotted τ(z) and

the asymptotic solution (B.2) (blue dots). The parameters of the expressions in (B.2) are

C = 2.71758 < 20
21π and τ0 = −0.28. For those values the asymptotic solution (B.2) fits

the numerical solution of the full equation near z0.

B.2 Deconfined background

We now look for singular solutions of the tachyon equation of motion in the deconfined

background, eq. (3.17). Considering again that τ ′(z) ≫ τ(z) at the vicinity of z0, with z0
being the point where τ ′(z0) → ∞, the leading terms of eq. (3.17) near z0 are

τ ′′(z) +
z2

3
f(z)

(

−4

z
+
f ′(z)
2f(z)

)

τ ′(z)3 = 0 , (B.6)

where f(z) = 1 − z5

z5
T

. The solution reads
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Figure 17. An example of a solution of type which diverges at z0 = 0.8696 < 1 was found

numerically. The numerical solution and its derivative are compared to the asymptotic solution

τ(z) =

∫ z

0

dz
√

C − 4
3z

2
(

1 − 3
28

z5

z5
T

)

+ τ0 (B.7)

The function g(z) = C− 4
3z

2
(

1 − 3
28

z5

z5
T

)

has a maximum in z = 0 and no other extrema

in the interval [0, zT ]. If this function is zero at some point z0, then τ ′(z0) is infinite and

τ(z0) is finite except if g(z0) = 0 has a double root. Similarly to the confining background

case, there are three choices

1. C < 0 : g(z) is not zero in the interval [0, zT ].

2. 0 < C < 25

21
z2

T
: g(z) has one real root in the interval [0, zT ] which is not a double

root. When, C = 25
21 the root of g(z) is at z0 = 1.

3. C > 25

21
z2

T
: There is no root of g(z) in [0, zT ].

So, for a suitable range of the initial conditions (C) we may have a solution with diverging

τ ′(z) and finite τ(z) at some point z0 ∈ [0, 1]. A double root is possible to be found in case

of C = 0, and it is at z = 0.

The discussion about the case where the term τ ′2τ of eq. (3.17) is leading, remains

the same as the one that follows eq. (B.3) in the previous appendix. Therefore, in case

of the deconfined background tachyon cannot diverge in the interval [0, 1] but “spurious”

singularities of the form τ ′(z) ≫ τ(z) exist in general.

C Scheme dependence of the condensate and the constant α

We have introduced an arbitrary constant α in (3.24) associated to a counterterm that

gives a finite contribution and therefore cannot be fixed by demanding the cancellation of

divergences. This is a common situation in holographic renormalization and is related to

scheme dependence of renormalization in the field theory side, as we now discuss.

The gauge invariant composite operator q†LqR must be defined by a subtraction in QFT.

To asses what enters in such subtractions we must study the OPE q†L(x)qR(y) as x → y.
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The operator can then be defined by point splitting, subtracting divergent contributions,

and then taking the limit x = y.

Apart from the identity operator, all other operators that can appear in the OPE

q†L(x)qR(y) do not provide divergences. These include the operator itself : q†L(x)qR(x) :

as well higher dimension operators. Therefore this composite operator can be defined by

normal ordering. To make this precise we use a Dirac basis, so that we have the real

part q̄(x)q(y) and the imaginary part q̄(x)γ5q(y). The imaginary part is finite and no

subtraction is needed. For the real part we introduce a momentum cutoff Λ as we will be

working in momentum space. We will therefore define

: q̄q := lim
Λ→∞

[

q̄q − a1Λ
3 − a2mΛ2 − a3m

2Λ − a4m
3 log

Λ2

m2
− a5m

3

]

(C.1)

where on the left-hand side we subtracted the most general expression of scaling dimension

3. This should be enough in a conformally invariant theory. If the theory is asymptotically

free, as in QCD, more subtractions are necessary, as there is one more relevant scale entering

the problem, namely ΛQCD. However in the model we consider in this paper, the physics

in the UV is conformal so these subtractions are enough.

To establish the coefficients in (C.1) we must require that the (perturbative, short

distance) part of the vev is finite when we remove the cutoff. We have

〈: q̄q :〉 = lim
Λ→∞

[

〈q̄q〉 − a1Λ
3 − a2mΛ2 − a3m

2Λ − a4m
3 log

Λ2

m2
− a5m

3

]

(C.2)

We calculate (in Euclidean space)

〈q̄q〉 = −NcTr

∫

d4p

(2π)4
−iq/+m

q2 +m2
= −4Ncm

∫

d4p

(2π)4
1

q2 +m2
(C.3)

= −2NcΩ3m

∫ Λ2

0

p2dp2

p2 +m2
= −2NcΩ3m

[

Λ2 −m2 log
Λ2 +m2

m2

]

= −2NcΩ3m

[

Λ2 −m2 log
Λ2

m2
+ O(Λ−2)

]

where Ω3 is the volume of th unit 3-sphere.

To renormalize we must choose

a1 = 0 , a2 = −2NcΩ3 = −a4 , a3 = 0 (C.4)

while a5 can be arbitrary. It is this arbitrariness that is reflected in the coefficient α in the

holographic renormalization setup in (3.27).14

In some cases, this scheme dependence can be fixed on physical grounds. For instance,

in supersymmetric cases, one can demand that the renormalized on-shell action is zero,

see [112] for an example. We could not find any convincing prescription to fix α in the

14In a theory like QCD, the arbitrariness involves the addition of a finite function m3f
“

m
ΛQCD

”

that

reflects the presence of an extra mass scale.
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present case. A possibility would be to demand that the condensate vanishes for asymp-

totically large quark masses, but we have checked numerically that it is not possible. This

is not surprising, since we have seen that our model works much better for small masses

than for large ones.

D Converting to Schrödinger form

In many cases, it is useful to write down the Sturm-Liouville problem which determines

the spectrum of any given mode as a Schrödinger-like equation. Let us start by writing a

generic quadratic five-dimensional action for a field Ψ(xµ, z):

S = −1

2
KΨ

∫

d4xdz
(

A(z)(∂zΨ)2 +B(z)ηµν∂µΨ∂νΨ + C(z)Ψ∂zΨ +M(z)Ψ2
)

, (D.1)

where we have allowed an arbitrary constant multiplying the action. Let us consider

Ψ = eiqxψ(z) and define asm2
n the discrete set of values of −q2 which satisfy the appropriate

normalizability conditions of the Sturm-Liouville problem. The discrete set of solutions

satisfy the equation of motion extracted from (D.1):

− 1

B(z)
∂z (A(z)∂zψn(z)) + h(z)ψn(z) = m2

nψn(z) (D.2)

where we have introduced:

h(z) ≡ 1

B(z)

(

M(z) − 1

2
∂zC(z)

)

. (D.3)

We can define the orthonormality condition:
∫

dzB(z)ψn(z)ψm(z) = δmn (D.4)

We now define a new radial variable u, and a rescaled field α in terms of a function Ξ as:

du =

√

B(z)

A(z)
dz , α = Ξψ , Ξ = (A(z)B(z))

1
4 , (D.5)

The Sturm-Liouville problem now takes the Schrödinger form:

− d2αn(u)

du2
+ V (u)αn(u) = m2

nαn(u) (D.6)

where the Schrödinger potential is:

V (u) =
1

Ξ

d2Ξ

du2
+ h(u) (D.7)

Substituting (D.4) in (D.5), we find that in the new variables, the normalization condition

is the canonical one: ∫

duαn(u)αm(u) = δmn (D.8)

In order to estimate the mass of the modes with large eigenvalues, it is sometimes useful

to employ a WKB formula:

d(m2
n)

dn
= 2π

[

∫ u2

u1

du
√

m2
n − V (u)

]−1

(D.9)

where u1 and u2 are the classical turning points.
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E Two-point function and sum rules

We describe here how, typically, the bulk solution needed to compute a two-point correla-

tor from the gravity side can be written in terms of an infinite sum. Physically, two-point

functions at arbitrary momenta are expressed as a sum over the discrete set of physical

states. This is not a new result but, however, we believe that explicitly making the discus-

sion as shown below can be illustrative. We remark that the argument of this appendix

is not general in the sense that we have not included in the reasoning the possibility of

having counterterms or other subtleties which may to be dealt with in a case by case basis.

Let us start with the equation:

− 1

B(z)
∂z (A(z)∂zψ(z)) + h(z)ψ(z) = −q2ψ(z) (E.1)

where we have used the notation of appendix D. We want to find a solution ψq(z) such

that in the boundary ψq(0) = 1, and which is IR-normalizable. Our goal is to write ψq(z)

in terms of the discrete infinite set of solutions ψn(z) of the Sturm-Liouville problem (D.2),

normalized as (D.4). Let us momentarily change to the notation with α(u), in which the

problem is converted to:

− d2α(u)

du2
+ V (u)α(u) = −q2α(u) (E.2)

and the discrete spectrum is αn(u) with (D.8) as normalization and the completeness

relation:
∑

n

αn(u)αn(u′) = δ(u− u′) (E.3)

We introduce:

G(u, u′) = −
∑

n

αn(u)αn(u′)
q2 +m2

n

(E.4)

such that it is a Green function,
[

d2

du2 − V (u) − q2
]

G(u, u′) = δ(u−u′). Let us assume now

that the UV boundary is at u = 0 and that UV-normalizability implies that αn(0) = 0,

such that G(0, u′) = 0. Regarding (D.5), αq = Ξψq, such that for generic momentum the

UV condition is αq(0) = Ξ(0). The solution we are looking for reads:

αq(u) = Ξ(u) +

∫ ∞

0
G(u, u′)(h(u′) + q2Ξ(u′))du′ (E.5)

We can translate this back to the original variables. After some manipulations, we get our

final result:

ψq(z) = 1 −
∑

n

ψn(z)

m2
n

∫ ∞

0

h(z′)B(z′)
Ξ(z′)

ψn(z′)dz′ − q2A(0)
∑

n

ψn(z)ψn(0)

m2
n(q2 +m2

n)
(E.6)

Two-point correlators are built from the on-shell action associated to this solution, which

can be typically found by computing the derivatives fo ψq(z) at the boundary. From the

last term in (E.6) one can find the decay constants of the states in the spectrum, as in

section 4.1.3. The second term is q-independent and in fact it can be thought of as the

q2 = 0 contribution. For the axial excitation, this is related to the pion decay constant

whereas for the vector excitation, this term is absent since h(z) = 0 in that case.
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F Axial current-current correlator

The axial current-current correlator is now derived following the same procedure as in

section (4.1.2). We are interested in the two point function in the limit of large Euclidean

momenta. We expect that the leading term will be the same as in the vector current

correlator, but the subleading term is different.

We define the correlator as
∫

x
eiqx < Jµ(x)Jν(0) >= (q2ηµν − qµqν)ΠA(q2) (F.1)

This is calculated by differentiating twice the on-shell bulk action. Integrating by parts

(4.24) we find

SA,reg =
(2πα′)2

g4
V

K
∫

d4q

(2π)4

(

e−
1
2
µ2τ2

gxxg̃
− 1

2
zz Aµ(q, z)∂zA

µ(−q, z)
)

z=ǫ

(F.2)

where Aµ(q, z) = ψA(q, z)A0(q). Then, we insert the asymptotic solution (4.28) into the

action

SA =
(2πα′)2

g4
V

KR
∫

d4q

(2π)4
A0

µ(q)Aµ
0 (−q)

(

2b2(q) + (q2 + kµ2c21)

(

1

2
+ log ǫ

))

(F.3)

where we have set b1 = 1. The last term is cancelled by the corresponding counterterm

from (4.4), so after differentiating twice with respect to A0(q) we find the final answer

ΠA(q2) = −4
KR(2πα′)2

g4
V

b2(q)

q2
(F.4)

We now compute b2(q) for large q2, similarly with section (4.1.2). We convert (4.25) to

Schrödinger form. Then, the new variable u reads

u ≃ z , u ≃ zΛ√
3
µτ (F.5)

in the UV and IR respectively. We calculate the asymptotic behavior of the Schrödinger

potential in the UV and IR

VUV ≃ 3

4u2
+ kµ2c21 , VIR ≃ c2u2 (F.6)

where c2 = 1
z4
Λ

(

9
4 + 3k

)

. Adding these two contributions we finally find the equation of

motion the axial modes

− ∂2
uα+

(

3

4u2
+ kµ2c21 + c2u2

)

α+ q2α = 0 (F.7)

where α(u) ≃ u−
1
2ψA(u) near z = 0. Its general solution reads

α(u) = k1
e

−cu2

2

√
u
U

(

q2 + kµ2c21
4c

, 0, cu2

)

+ k2
e

−cu2

2

√
u
L−1

(

q2 + kµ2c21
4c

, 0, cu2

)

, (F.8)
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we set k2 = 0, since the generalized Laguerre polynomial is going to infinity in the IR. k1

is found such that limz→0 ψ
A(q, z) = 1

ψA =
q2 + kµ2c21

4c
Γ

(

q2 + kµ2c21
4c

)

e
−cu2

2 U

(

q2 + kµ2c21
4c

, 0, cu2

)

(F.9)

By expanding the solution for large momenta we find

lim
q2→∞

b2
q2

=
1

4
log

(

z2
Λq

2
)

−1

4
(1+log 4−2γ)+

kµ2c21(2γ− log 4 + log q2)

q2
+

3k2µ4c41 − 8c2

24q4
+. . .

(F.10)

and eventually

ΠA(q2) = −KR(2πα′)2

g4
V

(F.11)

×
(

log
(

z2
Λq

2
)

− (1 + log 4 − 2γ) + 4
kµ2c21(2γ − log 4 + log q2)

q2
+

3k2µ4c41 − 8c2

6q4
+ . . .

)

We notice that for c1 = 0 the result coincides with the vector current two point function.

The 1/q2 term, which is absent in the QCD result, comes from the mass term of the axial

field (∼ τ2AµA
µ), see (4.24).

G Excitation equations in the deconfined phase

We assemble here the the Shrödinger functions, as defined in appendix B, for the equations

of motion of field excitation modes in the deconfined background (2.8), at vanishing spatial

momentum. These modes satisfy an equation of the form (D.2) but there is no discrete

spectrum.

In case of the vector excitations, we have already mentioned the functions giving rise

to the Schrödinger potential approach in (5.1). Then, the variable u reads

u =

∫ z

0

√

g̃zz(z̃)

gtt(z̃)
dz̃ , (G.1)

which remains the same for all different excitations.

For axial-vector mesons A(z) and B(z) are the same as for the vectors (5.1), but now

we also have:

h(z) =
M(z)

B(z)
= kµ2 τ

2

z2
fT (z) . (G.2)

The Schrödinger functions appearing in the equations of motion of scalar excitation modes

are

A(z) = e−
1
2
µ2τ2

g
3
2
xxg

1
2
tt

gzz

g̃
− 3

2
zz

, B(z) = e−
1
2
µ2τ2

g
3
2
xxg

− 1
2

tt

gzz

g̃
1/2
zz

, (G.3)

C(z) = −2µ2e−
1
2
µ2τ2 g

3
2
xxg

1
2
tt

g̃
1/2
zz

τ(z)∂zτ(z) , M(z) =
µ2

2πα′ λ
e−

1
2
µ2τ2

(µ2τ2 − 1)g
3
2
xxg

1
2
tt g̃

1
2
zz .
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The function M(z), B(z) and C(z) combine to give a quite simple expression for the h(z)

defined in (D.3):

h(z) = − 3

z2
fT (z) (G.4)

Finally, for the pseudoscalars we have

A(z) = e
1
2
µ2τ2

τ−2g
− 3

2
xx g

1
2
tt g̃

− 1
2

zz , B(z) = e
1
2
µ2τ2

τ−2g−2
xx g̃

1
2
zz , h(z) =

M(z)

B(z)
= k

µ2τ2

z2
fT (z) .

(G.5)

H The action with the symmetric trace and Regge slopes

In [38], Garousi proposed an effective action for the brane-antibrane system which has

subtle difference with respect to Sen’s one [25], which we have used in this work. One may

wonder what would be the physical consequences of using such an action in our model. We

focus in this appendix on the behaviour of the spectra of highly excited vectors and axial

vectors. The equations for the vectors are not modified with respect to the main text. The

equations for the axials are different. It turns out that they still obey a Regge law m2
n ∝ n

for large excitation number n but with different slope compared to the main text. This

slope is still larger than the one for vectors. We will not deal in the present work with

other possible phenomenological implication of this different tachyon action.

Garousi’s action reads:15

S = −STr

∫

d4xdz e−T̂ 2
√

− det(gMN + F̂MN +DM T̂DN T̂ ) (H.1)

where hatted symbols are 2x2 matrices:

T̂ =

(

0 T

T ∗ 0

)

, F̂MN =

(

F
(L)
MN 0

0 F
(R)
MN

)

, DM T̂ =

(

0 DMT

(DMT )∗ 0

)

. (H.2)

with F
(i)
MN = ∂MA

(i)
N −∂NA

(i)
M andDMT = ∂MT+i(A

(L)
M −A(R)

M )T = ∂MT+2iAMT the usual

field strength and covariant derivative, where the definition (4.1) has been substituted. The

STr means that one has to symmetrice in F̂MN , DM T̂ , T̂ after expanding the square root,

and then take the trace.

The expression (H.1) is quite involved but we will see that in the particular case we

are interested, one can deal with it: we will consider quadratic excitations of the gauge

fields, while the tachyon phase is set to a trivial constant and the tachyon modulus is a

non-trivial z-dependent function (so we have to keep all orders in τ , ∂zτ). We again take

15We adapt it to our present framework, for instance defining the covariant derivative with a different

sign and disregarding the Bµν field. With respect to the main text, we will fix the value of some of the

constants that we have defined, namely g2
V = 2πα′, λ = 1/(2πα′), K = 1, µ2 = 2. Regarding (3.8), this

implies R2 = 3/2. This is inessential (the constants can be easily restored) and we have done it for the

sake of clarity of the equations. Our convention will be that indices M, N running over the five space-time

coordinates are contracted with the metric gMN whereas indices µ, ν running over the Minkowski directions

are contracted with the flat metric ηµν .
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a gauge with A
(i)
z = 0. This is enough to compute the vector and axial spectrum in the

tachyon background.

So let us compute the quadratic expansion in gauge fields. There are terms in A2
µ

coming from the covariant derivatives and terms with F (i)2. In principle, there could be

terms with, schematically, iτ∂zτAF coming from a DTDT F product, but these terms

would make the action complex and are removed by the symmetric trace prescription. In

the following, we make the computation in two steps: we first compute the A2
µ terms and

then compute the F 2 terms.

In order to compute the A2
µ terms, we can consider the action:

SA2 = −STr

∫

d4xdz e−T̂ 2
√

− det(gMN +DM T̂DN T̂ ) =

= −
∫

d4xdz
√

− det g STr

[

e−T̂ 2
√

det(δM
N +DM T̂DN T̂ )

]

(H.3)

We now compute the determinant. Being inside a STr, the T̂ matrices can be considered as

commuting objects, so
√

det(δM
N +DM T̂DN T̂ ) =

√

1 +DM T̂DM T̂ . We have to expand

the square root. In order to simplify notation, let us define sj, the coefficients of such

expansion:
√

1 + ξ =

∞
∑

j=0

(−1)j+1 (2j − 3)!!

j!2j
ξj ≡

∞
∑

j=0

sjξ
j (H.4)

Thus, also expanding the exponential:

LA2 = −
√

− det g
∞
∑

k=0

(−1)k

k!

∞
∑

j=0

sjSTr
[

T̂ 2k(DM T̂DM T̂ )j
]

(H.5)

The next step is to perform the symmetriced trace, and a major simplification comes out

because of the particular computation we are doing. Define:

Ĵ1 =

(

0 1

1 0

)

, Ĵ2 =

(

0 −1

1 0

)

(H.6)

such that (use T = T ∗ = τ):

T̂ = τ Ĵ1 DM T̂ = ∂Mτ Ĵ1 − 2iAM τ Ĵ2 (H.7)

The order zero term in AM , i.e. the action for the tachyon modulus is just

Lτ = −2
√

− det g e−τ2
√

1 + ∂Mτ∂Mτ , (H.8)

the same used in the main text. This means that the discussion of section 3 still holds.

We now isolate the quadratic term in AM . One out of the j factors of (DM T̂DM T̂ )j

has to be g−1
xx (−2iτ Ĵ2)

2AµA
µ while the other j − 1 factors are Ĵ2

1 g
−1
zz (∂zτ)

2 each. Notice

there cannot be crossed terms because ∂MτA
M = 0 in the case we are conisdering. Thus:

LA2 = −g−1
xx

√

− det g

∞
∑

k=0

(−1)k

k!

∞
∑

j=0

sjj τ
2k(g−1

zz (∂zτ)
2)j−1(−4AµA

µτ2)STr
[

Ĵ2k+2j−2
1 Ĵ2

2

]

(H.9)
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The j at the beginning of the second line of course comes because the AµA
µ term can be

chosen from any of the j factors in (DM T̂DM T̂ )j . In order to perform the symmetriced

trace, notice that, in general:

STr[Ĵ2n
1 Ĵ2

2 ] =
1

2n+ 1

(

(n+ 1)Tr[Ĵ2
2 ] + nTr[Ĵ1Ĵ2Ĵ1Ĵ2]

)

= − 2

2n+ 1
(H.10)

where we have used that Ĵ2
1 is the 2x2 identity matrix and Tr[Ĵ1Ĵ2Ĵ1Ĵ2] = −Tr[Ĵ2

2 ] = 2.

Substituting:

LA2 = −8g−1
xx

√

− det g

∞
∑

k=0

(−1)k

k!
τ2k+2

∞
∑

j=0

sjj (g−1
zz (∂zτ)

2)j−1AνA
ν 1

2k + 2j − 1
(H.11)

We should now resum the series. Let us use the identity:16

∞
∑

i=0

1

i!
xi

∞
∑

j=0

j sj

2i+ 2j − 1
yj =

y

2

∫ 1

0

exa2

√

1 + y a2
da (H.12)

Using x = −τ2 and y = g−1
zz (∂zτ)

2, we finally find:

LA2 = −4g−1
xx

√

− det g τ2AνA
ν

∫ 1

0

e−τ2a2

√

1 + g−1
zz (∂zτ)2a2

da (H.13)

Let us now compute the F 2 terms. We want to expand the determinant of (H.1) to second

order in F̂ but to all orders in DzT̂DzT̂ . The determinant reads:

− det(gMN + F̂MN +DM T̂DN T̂ ) =

g4
xx(gzz +DzT̂DzT̂ ) +

1

2
F̂µν F̂

µνg2
xx(gzz +DzT̂DzT̂ ) + g3

xxF̂
2
µz (H.14)

and thus the F 2 contribution to the square root is:

1

4
g

1
2
zz

√

(1 + g−1
zz DzT̂DzT̂ )F̂µν F̂

µν +
1

2
gxxg

− 1
2

zz
1

√

1 + g−1
zz DzT̂DzT̂

F̂ 2
µz (H.15)

Let us start by computing the term with F̂µν F̂
µν . We have to expand before taking the

symmetrized trace. Notice that now DzT̂ = ∂zτ Ĵ1 up to subleading terms. To shorten

notation, we define:

x ≡ −τ2 , y = g−1
zz (∂zτ)

2 (H.16)

The F̂µν F̂
µν term in the lagrangian density (H.1) then reads:

LF 2
µν

= −1

4
g

1
2
zz

∞
∑

k=0

xk

k!

∞
∑

j=0

sjy
jSTr[Ĵ2k+2j

1 F̂µν F̂
µν ] (H.17)

16In order to prove this, notice that
P∞

j=0 jsjy
j = y

2
√

1+y
and consider an auxiliary function g(a) =

P∞
i=0

1
i!
xi

P∞
j=0

j sj

2i+2j−1
yja2i+2j−1 such that ∂ag(a) = a−2exa2 a2 y

2
√

1+a2 y
. Since g(0) = 0 and g(1) is what

we want to compute, we arrive at (H.12).
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It is now easy to compute the symmetriced trace:

STr[Ĵ2k+2j
1 F̂µν F̂

µν ] =
1

2k + 2j + 1

(

(k + j + 1)Tr[F̂µν F̂
µν ] + (k + j)Tr[Ĵ1F̂µν Ĵ1F̂

µν ]
)

(H.18)

Now, Tr[F̂µν F̂
µν ] = F

(L)
µν Fµν(L) + F

(R)
µν Fµν(R) which, splitting in vector and axial part

and using notation of section 4 gives Tr[F̂µν F̂
µν ] = 2VµνV

µν + 2AµνA
µν . Similarly,

Tr[Ĵ1F̂µν Ĵ1F̂
µν ] = 2F

(L)
µν Fµν(R) = 2VµνV

µν − 2AµνA
µν and we find STr[Ĵ2k+2j

1 F̂µν F̂
µν ] =

2VµνV
µν + 2

2i+2j+1AµνA
µν . Inserting this in (H.17):

LF 2
µν

= −1

4
g

1
2
zz

∞
∑

k=0

xk

k!

∞
∑

j=0

sjy
j

(

2VµνV
µν +

2

2i+ 2j + 1
AµνA

µν

)

=

= −1

2
g

1
2
zz

[

ex
√

1 + yVµνV
µν +

(
∫ 1

0
ea

2x
√

1 + a2yda

)

AµνA
µν

]

(H.19)

The fact that for non-trivial tachyon the symmetric trace produces a coupling between the

left and right gauge fields was already pointed out in [38]. It results in different kinetic

terms for vectors and axials. We skip the details of the similar computation leading to F̂ 2
µz :

LF 2
µz

= −gxxg
− 1

2
zz

[

ex
1√

1 + y
(∂zVµ)2 +

(

∫ 1

0
ea

2x 1
√

1 + a2y
da

)

(∂zAµ)2

]

(H.20)

By comparing (H.19), (H.20) to (4.5), we find that the quadratic action for the vector exci-

tation is identical regardless the choice between Sen’s and Garousi’s actions. Nevertheless,

the axial part changes. From (H.19), (H.20) it can be read that, introducing notation of

appendix D:

Laxial = −
[

1

2
B(z)AµνA

µν +A(z)(∂zAµ)2 +M(z)A2
µ

]

(H.21)

with:

A(z) = gxxg
− 1

2
zz

∫ 1

0
e−τ2a2

(

√

1 + a2g−1
zz (∂zτ)2

)−1

da ,

B(z) = g
1
2
zz

∫ 1

0
e−τ2a2

√

1 + a2g−1
zz (∂zτ)2da ,

M(z) = 4gxxg
1
2
zzτ

2

∫ 1

0
e−τ2a2

(

√

1 + a2g−1
zz (∂zτ)2

)−1

da (H.22)

In order to proceed further, we need estimate the integrals near the IR, where z → zΛ and

the tachyon diverges, see section 3.1. We will use that in the limit where −x ≫ 1 and

y ≫ 1 with − y
x ≫ 1, it happens that:

∫ 1

0
ex a2

√

1 + y a2da ≈ −
√
y

2x
,

∫ 1

0
ex a2

(
√

1 + y a2)−1da ≈
log
(

y
−x

)

− γ + 2 log 2

2
√
y

(H.23)

where γ is Euler’s constant. The first equality is just found by neglecting the 1 inside the

square root. For the second computation, it is not possible to directly neglect the 1 since
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the result would be divergent, but one can express the integral as
∫ 1
0 (
√

1 + y a2)−1da +
∫ 1
0 (ex a2 − 1)(

√

1 + y a2)−1da, such that the first integral can be done explicitly and in the

second one the 1 inside the square root can be neglected.

We are now ready to compute the leading IR behaviour of the Schrödinger potential

which will determine the behaviour of the highly excited states. We will use that near the

IR (zΛ − z ≪ 1), we have:

gxx ≈ R2

z2
Λ

, gzz ≈ R2

z2
Λ

zΛ
5(zΛ − z)

, τ =
√
−x ≈ C (zΛ − z)−

3
20

g−1
zz (∂zτ)

2 = y ≈ 9zΛC
2

80R2
(zΛ − z)−

13
10 (H.24)

From (H.22)–(H.24) one can readily check that limz→zΛ
M(z)/B(z) = 0 and therefore the

term h(u) does not contribute in the IR to the Schrödinger potential (D.7). On the other

hand, we can obtain the relation of the z-coordinate to the u-coordinate of the Schrödinger

problem (D.5):

√

B(z)

A(z)
≈ 3zΛ

20

(zΛ − z)−1

√

− log(b(zΛ − z))
, u ≈ 3

10
zΛ
√

− log(b(zΛ − z)) . (H.25)

where b is a positive constant that will not be important in the following. We also compute:

Ξ = (AB)
1
4 ∼ e

− 5u2

6z2
Λ (H.26)

where we have not written multiplicative constants and powers of u which do not affect

the leading IR behaviour of the Schrödinger potential. Finally, from (D.7) we find

V (u) ≈ 25

9z4
Λ

u2 (H.27)

Since we have a quadratic potential in the IR, the behaviour for asymptotically highly

excited axials is still Regge-like. Unlike in the main text — section 4.2.1 — the slope found

using Garousi’s action does not depend on the constant k. Comparing to the vector modes

— section 4.1.1 — we see that the Regge slope for the axials is slightly larger, in particular

Λ2
A/Λ

2
V = 10/9, where ΛV,A are defined as in (6.1).
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