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A B S T R A C T   

Due to the high failure rates associated to endodontic disinfection, this study aimed to investigate the antibac-
terial properties of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with Ca(OH)2 for endodontic 
disinfection procedures. Ca(OH)2 NPs production and physicochemical characterization were carried out as well 
as multiple antibacterial tests using three bacterial strains and an ex vivo model of endodontic infection with 
extracted human teeth. Agar diffusion test and broth dilution determined the inhibition growth zones (n = 5) and 
the minimal inhibitory concentration (MIC, n = 5), respectively. Cell viability was assessed using Live/Dead 
staining with confocal microscopy (n = 5). Data was analysed using ANOVA followed by post-hoc analysis. After 
24 h of incubation, Ca(OH)₂ NPs demonstrated a MIC of 10 µg/mL for Porphyromonas gingivalis (p < 0.001) and 
Enterococcus faecalis and 5 µg/mL for Fusobacterium nucleatum (p < 0.001). Although the agar diffusion test did 
not exhibit any inhibition area for Ca(OH)2 nor for Ca(OH)₂ NPs, this was probably due to the buffering effect of 
the agar medium. However, the antibacterial capacity was confirmed in an ex vivo model, where instru-
mentalized teeth were infected with Enterococcus Faecalis and treated after 28 days of culture. A significant 
reduction in bacterial metabolic activity was confirmed for Ca(OH)2 NPs (40 % reduction with a single dose) and 
confirmed by Live/Dead staining. In conclusion, Ca(OH)₂-loaded PLGA NPs present promising antibacterial ef-
ficacy for endodontic disinfection procedures.   

1. Introduction 

The American Association of Endodontics (AAE) reports that over 
15.1 million root canal therapy procedures are performed annually in 
the United States (Kojima et al., 2004). While success rates for this 
procedure can be as high as 95 %, these rates decrease in cases diag-
nosed with necrotic non-vital pulp tissue, which is often caused by 
pathogenic microorganisms (Gulabivala and Ng, 2023; Burns et al., 
2022). The root canal system possesses a complex architecture and the 

location of microorganisms in isthmuses, accessory and lateral canals, 
and dentinal tubules can make complete eradication of bacteria highly 
challenging (Trope and Bergenholtz, 2002; Ricucci and Siqueira, 2010; 
Nair et al., 2005; Vera et al., 2012; Narayanan and Vaishnavi, 2010). 
Even with mechanical debridement and chemical cleaning, completely 
eliminating bacteria from the root canal system is difficult to achieve 
(Siqueira and Rôças, 2022; Hulsmann et al., 2005). Intracanal medica-
tions are used between visits to decrease bacterial load, but their efficacy 
is limited, especially for bacteria residing in anatomically complex areas 
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such as the dentinal tubules (Heling et al., 1992). Despite advances in 
endodontics, success rates have remained similar over the decades, 
indicating that current intracanal medications have limitations and 
cannot achieve the desired effect (Burns et al., 2022; Goldberg et al., 
2020). 

Calcium hydroxide (Ca(OH)2) is the most commonly used to sup-
plement chemomechanical preparation to enhance disinfection within 
the root canal system (Roig-soriano et al., 2022). Its antibacterial ac-
tivity is due to its alkalinity, which produces highly oxidant hydroxyl 
ions that act on the bacterial cell wall, resulting in damage to the 
cytoplasmic membrane through protein denaturation as well as DNA 
damage (Prathita et al., 2019). In addition, a high basic pH must be 
maintained to sustain the hydroxyl ions antibacterial activity, which 
alters the pH gradient of the cytoplasmic membrane, leading to protein 
denaturation (Mohammadi and Dummer, 2011). Ca(OH)2 elevated pH 
also damages the organic components of the cytoplasmic membrane, 
inhibits nutrient delivery, and causes DNA strand splitting, ultimately 
leading to DNA replication inhibition and harmful mutations, disrupting 
cellular activity (Imlay and Linn, 1988). However, evidence suggests 
that all three mechanisms of damage to the bacterial cytoplasmic 
membrane, protein denaturation and DNA damage, may occur simul-
taneously, and it is challenging to establish a chronological order in 
which these events take place (Imlay and Linn, 1988; Tamara et al., 
(2018), 2022 (2022).). Ca(OH)₂ uncoupling into calcium and hydroxyl 
ions is highly dependent on the vehicle used for the application, 
affecting the pH value and the degree of penetration inside the tubules 
(Pacios et al., 2004). Therefore, a suitable vehicle should allow high 
penetration through the tubules and a slow and steady release of calcium 
and hydroxyl ions with no undesirable effects on the initiation of hard 
tissue formation. In terms of intracanal medications there is still 
research and patent work to be undertaken, specially regarding the 
precise dose, treatment duration, dispensing method and delivery 
vehicle (Shabbir et al., 2022). Although different vehicles have been 
used to administer Ca(OH)₂, such as water-soluble, viscous, and oil- 
based vehicles (Mohammadi and Dummer, 2011), all of them carry a 
certain degree of adverse effects, ultimately affecting Ca(OH)₂ clinical 
performance (Mohammadi and Dummer, 2011). Therefore, there is an 
urgent medical need for a suitable and safe vehicle able to maintain Ca 
(OH)₂ properties during a prolonged time. 

Additionally, in endodontics, Ca(OH)₂ paste has also been utilized in 
the majority of regenerative endodontic procedures ahead of the triple 
antibiotic paste, according to a study conducted in 13 countries (Hati-
poğlu et al., 2023). This may be because the triple antibiotic has unfa-
vorable side effects like staining teeth. Therefore, in cases of 
regenerative endodontic procedure, the American Association of End-
odontics and the European Endodontic Society currently advise using Ca 
(OH)2 paste. 

Over the years, mixed results have been obtained regarding the 
antibacterial effectiveness of Ca(OH)₂ in eliminating bacteria from the 
root canal system (Han et al., 2001; Shuping et al., 2000; Estrela et al., 
2001; Liewehr, 2001). While many studies reported the high efficacy of 
Ca(OH)₂ as an antibacterial agent, others documented its inefficacy in 
eradicating bacteria and their by-products, especially in conditions 
similar to the clinical environment (Weiger et al., 2002; Gluskin et al., 
2020; Roig-soriano et al., 2022). Furthermore, Ca(OH)₂ has been shown 
to be ineffective in removing microorganisms that settle inside the 
dentinal tubules (Heling et al., 1992) because it cannot directly contact 
the bacteria inside the tubules, which is essential for exerting its anti-
bacterial effects (Jr and Lopes, 1999; Shaaban et al., 2023). This is likely 
due to the limited penetration of Ca(OH)₂, which can only reach up to 28 
and 126 μm inside the dentinal tubules, whereas bacteria can penetrate 
up to 400 μm in some circumstances (Info, 2017; Taschieri et al., 2014). 

To overcome these challenges without using new molecules that 
would require an extended follow-up at clinical level and improve the 
efficacy of Ca(OH)₂, recent drug delivery procedures have focused on 
nanotechnological approaches able to load active compounds and 

deliver them in a prolonged manner retaining the pharmaceutical 
properties (Bhatia, 2016; Kishen, 2012; Esteruelas et al., 2021; Fer-
nandes et al., 2022; Diogo et al., 2023). Among several nanoscopic 
systems, biodegradable polymeric nanoparticles (NPs) have shown to 
possess suitable properties and, especially poly-(lactic-co-glycolic) acid 
(PLGA), is accepted by the main regulatory agencies (Sánchez-López 
et al., 2020; Galindo et al., 2022; Esteruelas et al., 2022). PLGA NPs may 
be able to decrease potential adverse effects, and prevent or reduce the 
buffering effect produced by dentin and hydroxyapatite, as well as 
maintain the high alkaline pH value in which Ca(OH)₂ can retain its 
antibacterial capability (Mohammadi and Dummer, 2011; Diogo et al., 
2023). In a previous study (Elmsmari et al., 2021), our research team 
successfully optimized Ca(OH)₂-loaded PLGA NPs (Ca(OH)₂ NPs that 
displayed an extended drug release profile compared to free Ca(OH)₂ 
and significantly greater infiltration inside dentinal tubules of extracted 
teeth in contrast to free Ca(OH)2. The current study aims to examine the 
antibacterial capacity of this optimized Ca(OH)₂ NPs against three 
bacterial strains in order to elucidate the suitability of Ca(OH)₂ NPs for 
endodontic disinfection. The null hypothesis was that there was no 
difference in the antibacterial activity between Ca(OH)₂, Ca(OH)₂ 
nanoparticles, and control group against endodontic bacteria. 

2. Materials and methods 

This study was conducted with the approval of the ethical committee 
with code (END-ELB-2020–01) to assess the antibacterial effect of Ca 
(OH)₂ NPs for endodontics disinfection procedures. The antibacterial 
efficacy of the NPs was evaluated through several antibacterial tests 
using three bacterial strains: Porphyromonas gingivalis (Pg) (ATCC 
33277), Fusobacterium nucleatum (Fn) (ATCC 25586), and Enterococcus 
faecalis (Ef) (ATCC 19433) (Alghamdi, 2020; Tomazinho et al., 2007; 
Eduardo and De, 2002), in accordance with the guidelines proposed by 
the Clinical and Laboratory Standards Institute (CLSI) (M07-A10, 2015; 
M02-A12, 2015). 

2.1. Preparation of calcium hydroxide nanoparticles 

The preparation and characterization of Ca(OH)₂ NPs has been car-
ried out as described elsewhere (Elmsmari et al., 2021). Briefly, Ca(OH)₂ 
NPs were prepared using the solvent displacement method, and they 
were optimized using a central composite design. The optimized Ca 
(OH)₂ NPs were measured using photon correlation spectroscopy (PCS) 
to determine the average size and polydispersity index (PI) after 1:10 
dilution at 25 ◦C, using a Zetasizer Nano ZS (Malvern Instruments, 
Malvern, UK). In addition, transmission electron microscope observa-
tion was carried out after negative staining using uranyl acetate (2 %) 
and measurement of the diameter of the Ca(OH)₂ NPs was carried out 
using ImageJ software (Sánchez-López et al., 2017; Cano et al., 2018; 
Sánchez-López et al., 2018). Subsequently, the antibacterial capacity 
was assessed using several methods (Fig. 1). 

2.2. Minimal inhibitory concentration (MIC) 

To determine the minimal inhibitory concentration (MIC), a broth 
microdilution method was used according to the guidelines proposed by 
the Clinical and Laboratory Standards Institute (CLSI) (M07-A10, 2015; 
M02-A12, 2015) (Fig. 2A). Serial dilutions were carried out (1:2, 1:5, 
1:10, 1:20, 1:50, 1:100, 1:200; 1:500) for both the Ca(OH)₂ nano-
particles (NPs) and Calcium hydroxide 98 % extra pure ACROS Or-
ganics™ (Fisher Scientific, USA) mixed with Milli-Q water at the same 
concentrations, starting at a concentration of 1 mg/mL. Subsequently, 
100 μL from each dilution was added to a 96-Well Microplate (Fisher 
Scientific, USA). 

The bacterial suspension turbidity for the three bacterial strains 
Porphyromonas gingivalis, Fusobacterium nucleatum, and Enterococcus 
faecalis was adjusted to an optical density of 0.1 (equivalent to 0.5 
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Fig. 1. Flowchart of the experiments carried out in the present study.  

Fig. 2. Scheme of the bacterial assays developed. A) Microdilutions used for antibacterial assesments as recommended by CLSI protocol and B) Agar diffusion 
test protocol. 
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McFarland) by adding brain heart infusion (BHI, Condalab, Spain) 
media and measuring absorbance in a spectrophotometer (Cary 60 
UV–Vis Spectrophotometer, Agilent, USA) at a wavelength of 600 nm. 
Then, each diluted well was inoculated with 100 μL of the adjusted 
bacterial suspensions (Jarkhi et al., 2022; Afdilla et al., 2022). All ex-
periments were performed by triplicate. 

After 24 h, bacterial growth was assessed in terms of turbidity, which 
was measured at 600 nm using a plate spectrophotometer (Infinite M 
Nano, TECAN, Switzerland). Wells containing the broth medium only 
were used as a negative control to examine the equipment and medium 
sterility. Additionally, some wells containing the broth growing medium 
and bacteria were used as a positive control to test the growing ability of 
the medium. The MIC was defined as the lowest concentration of the 
antimicrobial agent that inhibited bacterial growth (M07-A10, 2015), 
and the significance level was determined. 

2.3. In vitro antibacterial therapeutic efficacy 

To measure the growth inhibition zones, the agar diffusion test was 
used (n = 3) (Jarkhi et al., 2022; Afdilla et al., 2022). Brain heart 
infusion agar (BHI Agar) (Condalab, Spain) plates were prepared and 
inoculated with Enterococcus faecalis, which has a high prevalence in 
cases of necrotic endodontic infections (Jr et al., 2008; Lacevic et al., 
2004; Gomes et al., 2005). The antibacterial properties of Ca(OH)₂ NPs, 
free Ca(OH)₂, and a control (1x PBS) were tested as described elsewhere 
(M02-A12, 2015). The plates were incubated under anaerobic condi-
tions at 37 ◦C for 24 h, and the diameters of the inhibition growth were 
measured for each compound. All experiments were performed by 
triplicate (Fig. 2B). 

2.4. Ex vivo antibacterial therapeutic efficacy 

For the ex vivo model, extracted single-root teeth with straight canals 
were used, with the patient informed consent. No data associated with 
the patient was recorded concerning the extracted teeth. The extracted 
teeth were preserved in individual containers in a saline solution with 
0.5 % sodium hypochlorite (NaOCl, Proclinic, Spain) (Elmsmari et al., 
2021). 

Root canal opening access was performed with a round diamond bur 
at high speed, and then the teeth were crowned, standardizing their 
length to 13 mm. Subsequently, root canals were instrumented with 
Reciproc Blue R25® (VDW, Germany) according to manufacturer in-
structions. 4.2 % NaOCl irrigation was used during the instrumentation 
process to allow the correct progression of the instrument inside the root 
canal and to simulate clinical conditions. Then, teeth were cut hori-
zontally with a diamond blade and a clinical handpiece at 3 and 6 mm 
from the apex, dividing the teeth into coronal, medial, and apical blocks. 
Finally, teeth were randomly divided into three experimental groups 
(control, Ca(OH)2 NPs, and Ca(OH)2) and were sterilized by gas plasma 
(Sterrad, ASP, USA). 

Sterile samples were incubated in BHI media for two days to ensure 
complete rehydration and sterility. Then, they were inoculated with 
Enterococcus faecalis at an optical density of 0.1 at a wavelength of 600 
nm. Samples were incubated under anaerobic conditions for 28 days 
with media renewal every two days to develop a mature biofilm (Azim 
et al., 2016). Finally, treatments with Ca(OH)2 NPs or Ca(OH)2 at 1 mg/ 
mL were applied. 

2.5. In vitro metabolic activity 

Resazurin assay was used to quantify the metabolic activity, as it is 
proportional to the number of bacteria and their viability (n = 5). The 
samples were washed twice with PBS and incubated with 300 μL of 
resazurin sodium salt at 30 µg/mL (Sigma-Aldrich, Spain) for 30 min at 
37 ◦C. The absorbance was measured at 570 and 600 nm using 100 μL of 
each sample (Infinite M Nano, TECAN, Switzerland). The metabolic 

activity was normalized against the control, consisting of teeth incu-
bated for 28 days without antibacterial treatment, and considered 100 % 
metabolic activity. 

2.6. Visual observation of bacterial viability 

In order to visually observe bacterial viability, it was assessed using 
Live/Dead staining with confocal microscopy observation. The samples 
were stained with LIVE/DEAD® BackLight™ Bacterial Viability Kit 
(Invitrogen™, Spain) according to the manufacturer’s instructions. 
Adherent bacteria were stained with 300 μL of the dye-solution reagent 
for 15 min at 37 ◦C, and then washed with 1x PBS. Images were acquired 
at three random coronal, medial, and apical regions using a confocal 
laser microscope at 10x magnification (DMI8, Leica, Germany) using 
FITC and Texas Red excitation/emission filters for live and dead cells, 
respectively. 

2.7. Statistical analysis 

All experiments were performed in duplicate by independent oper-
ators and the same supervisor. The data were analyzed using GraphPad 
Prism v6 (Graphpad software, Inc). The mean and standard deviation 
(±) were used to present the data. Significant differences were assessed 
by applying either one or two-way ANOVA followed by post-hoc anal-
ysis, with a significance threshold of 0.05. 

3. Results and discussion 

3.1. Average size of calcium hydroxide nanoparticles 

The optimized formulation of Ca(OH)2 NPs was characterized by 
means of PCS obtaining a PI of 0.077 and an average size around 170 nm 
(Elmsmari et al., 2021). Moreover, surface charge was highly negative 
and NPs demonstrated the ability to encapsulate Ca(OH)2. These results 
are in accordance with other formulations based on PLGA nanoparticles 
encapsulating different compounds (Esteruelas et al., 2022; Sánchez- 
López et al., 2017; Sánchez-López et al., 2018). Moreover, these data 
was supported by TEM nanoparticles observation where Ca(OH)₂ NPs 
were found to be spherical and non-aggregated (Fig. 3A). Moreover, the 
average size of the obtained images was analyzed and frequency dis-
tribution was calculated (Fig. 3B). An average size of 129 nm was 
calculated with all diameters being less than 200 nm, lower than the 
obtained using photon correlation spectroscopy. Moreover, frequency 
distribution obtained by both techniques show similar results with 
smaller nanoparticles in the case of TEM measurements (Fig. 3C, 3D). 

Since a single parameter can not be used to adequately describe 
sample distribution, less than 200 nm particle size and spherical shape 
was confirmed using PCS and TEM investigations (López-Machado et al., 
2021). Moreover, due to the measurement of the hydrodynamic ratio by 
PCS, TEM results provide slightly small nanoparticles since it constitutes 
a direct measurement (Sánchez-López et al., 2018). Moreover, pH was 
also measured obtaining an alkaline pH (9.65) that favours calcium 
hydroxide therapeutic efficacy. 

3.2. Minimal inhibitory concentration (MIC) 

After 24 h of incubation, the antibacterial activity of Ca(OH)₂ NPs 
and free Ca(OH)₂ was assessed against three bacterial strains, Porphyr-
omonas gingivalis, Fusobacterium nucleatum, and Enterococcus faecalis, and 
was evaluated after several dilutions (Fig. 3). As can be observed on 
Fig. 4, both Ca(OH)₂ NPs and free Ca(OH)₂ showed statistical differences 
(p < 0.0001) against the control thus highlighting their antibacterial 
activity. Furthermore, at low concentrations (2 µg/mL for E. faecalis and 
F. nucleatum and 2 and 5 µg/mL for P. gingivalis), due to Ca(OH)₂ NPs 
prolonged release, statistical differences were obtained. 

As can be observed in Table 1, Ca(OH)₂ NPs had a MIC of 10 µg/mL 
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for Porphyromonas gingivalis and Enterococcus faecalis and 5 µg/mL for 
Fusobacterium nucleatum. Ca(OH)₂ had a MIC of 5 µg/mL for Enterococcus 
faecalis and was below 1 µg/mL for Fusobacterium nucleatum and Por-
phyromonas gingivalis (Table 1). Therefore, Ca(OH)₂ NPs showed the 
ability to retain Ca(OH)₂ antibacterial activity against different bacterial 
strains. Moreover, as previously demonstrated, Ca(OH)₂ NPs released 
the active compound in a prolonged manner showing higher MIC. The 
proposed Ca(OH)₂ NPs reduced the MIC concentration reported by 
previous studies against Enterococcus faecalis and Porphyromonas gingi-
valis (Sabrah et al., 2013) and, in addition, a previous attempt to pro-
duced Ca(OH)₂ NPs obtained a similar MIC reduction (6 µg/ml 
approximately). However, these NPs were not biodegradable (Bhardwaj 
et al., 2015). 

In addition to the agar diffusion test, the minimum inhibitory con-
centration (MIC) of Ca(OH)₂ NPs was compared to commercial Ca(OH)₂ 
in terms of inhibiting bacterial growth for three bacterial species. It was 
noted that after 24 h of incubation, both Ca(OH)₂ NPs and the com-
mercial Ca(OH)₂ could inhibit bacterial growth at all tested concentra-
tions (Shrestha et al., 2010; Carpio-perochena et al., 2017; Fan et al., 
2015; Wu et al., 2014; Kishen et al., 2008). Moreover, Ca(OH)2 NPs MIC 

was higher than the commercial free Ca(OH)₂ thus confirming Ca(OH)₂ 
prolonged release from Ca(OH)₂ NPs. 

3.3. Agar diffusion test 

The antibacterial performance of Ca(OH)₂ and Ca(OH)₂ NPs was also 
evaluated using the agar diffusion test against Enterococcus faecalis 
strain, which measures the growth inhibition zones in an agar plate. PBS 
was used as a control. However, using this assessment, neither Ca(OH)₂ 
nor Ca(OH)₂ NPs induced an observable inhibition area (Fig. 5). 
Therefore, these results indicate that the active compound is not able to 
produce inhibition of the bacterial growth under the study conditions. 
This may be due to the fact that the agar diffusion test uses BHI agar 
media which possesses a neutral pH (pH 7.4 ± 0.2). Therefore, this 
assessment confirmed that either free Ca(OH)₂ or Ca(OH)₂ released from 
NPs both need a high pH environment in order to exert its effect due to 
the fact that the dissociation of calcium and hydroxyl radicals is 
necessary in order to obtain bacterial inhibition (Athanassiadis et al., 
2007). 

Fig. 3. Morphological and physicochemical characterization of calcium hydroxide nanoparticles. A) Transmission electron microscope results, B) Frequency dis-
tribution results of the average size of transmission electron images obtained, C) Frequency distribution in number of particles obtained using dynamic light 
scattering, D) Frequency distribution in intensity obtained using dynamic light scattering. 
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3.4. Ex vivo metabolic activity and bacterial viability 

The metabolic activity of bacteria infecting teeth and treated with 
either Ca(OH)₂ NPs or free Ca(OH)₂ was analysed using the resazurin 
reduction assay. The results demonstrated that both Ca(OH)₂ NPs and Ca 
(OH)₂ significantly reduced (p < 0.05) the metabolic activity compared 
to the control (Fig. 6). Furthermore, although no significant differences 
between free Ca(OH)₂ and Ca(OH)₂ NPs were observed (p > 0.05), Ca 
(OH)₂ NPs showed a trend towards a more marketed reduction of the 
metabolic bacterial activity. This may be due to the fact that the NPs are 
able to interact with the bacterial membranes in a more effective manner 
and also due to NPs prolonged release, Ca(OH)₂ protection against 
degradation and higher internalization in the dentinal tubules. Simi-
larly, Podbielski et al. (Podbielski et al., 2003) showed that Ca(OH)2 
reduced bacteria viability, but none of the conditions they sued led to 
the complete biofilm eradication (Podbielski et al., 2003). 

Moreover, fluorescent images with ex vivo extracted human teeth 
were obtained staining viable bacteria using green fluorescence and 
dead ones using red label. These results confirm that both Ca(OH)₂ and 
Ca(OH)₂ NPs were able to decrease metabolic bacterial activity due to 
the release of hydroxyl ions at the therapeutic site of action. Despite the 
fact that no statistical differences were obtained on the metabolic ac-
tivity against free Ca(OH)2, Ca(OH)₂ NPs are able to decrease bacterial 
survival in a more effective manner than free Ca(OH)₂ and, at the same 
time, guarantee an increased internalization on the dentinal tubules as 
well as prolonged calcium hydroxide release (Elmsmari et al., 2021). In 
the apical region, a greater amount of dead bacteria was observed after 
the use of NPs (Fig. 7). Clinically this is the most important and critical 
area because it is the area where the bacteria have the greatest capacity 
to obtain nutrients, and the most difficult to disinfect because it is also 
the area furthest away from access to the canal system. Therefore, the 
higher penetration of Ca(OH)₂ NPs (Elmsmari et al., 2021) guarantee a 
more effective disinfection specifically in this complex area. 

In addition, previous research has examined the efficacy of nano-
particles against E. Faecalis by confocal microscopy. In this area, Keskin 
et al. (Keskin et al., 2021) found that when Chitosan NPs were applied 
against E. Faecalis biofilms, there were no appreciable differences when 
compared to NaOCL (6 %) (Keskin et al., 2021). Other nanoparticles 
types, like silver, have also demonstrated to decrease E. Faecalis bacte-
rial biofilms in LIVE/DEAD ® testing conducted under Confocal Laser 
Scanning Microscopy (Rodrigues et al., 2018; Arias-Moliz et al., 2020). 

Although this results show the capacity of Ca(OH)₂ NPs to achieve 
suitable antibacterial capacity, the design of Ca(OH)₂ NPs may be 
further improved to increase its antibacterial properties either by 
increasing the Ca(OH)₂ concentration within the NPs or by combining it 
with other antibacterial agents such as antibiotics or ions (Godoy-Gal-
lardo et al., 2021). Moreover, the use of Ca(OH)₂ has been suggested to 
denature the collagen matrix or breakdown of the inorganic matrix of 
dentine (Mohammadi and Dummer, 2011). This potential detrimental 
effect should be quantified in future experiments. 

The null hypothesis has been rejected, and we found significant 
differences in antibacterial efficacy between the nanoparticle group and 
the control group. The minimum inhibitory concentration (MIC) in the 
nanoparticle group was higher than that in the commercial Ca(OH)₂ 
group. Regarding metabolic activity, there were no significant differ-
ences between the commercial Ca(OH)₂ group and the nanoparticle 
group, but there were differences compared to the control group. 

Fig. 4. Absorbance obtained assessing the minimal inhibitory concentration 
(MIC) of three bacterial strains A) Porphyromonas gingivalis, B) Fusobacterium 
nucleatum and C) Enterococcus faecalis with different concentrations after 24 h. 
Statistical significance was calculated using two-way ANOVA followed by 
Bonferroni post-hoc test. Significant differences against the control are repre-
sented as **** p < 0.0001 and differences between the same concentration 
between free Ca(OH)2 and Ca(OH)2 NPs are represented as ### p < 0.001 and 
##### p < 0.0001. 

Table 1 
Minimum inhibitory concentration values of Free Ca(OH)2 and Ca(OH)2NPs.   

Free Ca(OH)2 Ca(OH)2NPs 

Porphyromonas gingivalis < 1 µg/mL 10 µg/mL 
Fusobacterium nucleatum < 1 µg/mL 5 µg/mL 
Enterococcus faecalis 5 µg/mL 10 µg/mL  
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4. Conclusions 

Calcium hydroxide (Ca(OH)₂) has been considered the gold standard 
antibacterial agent in endodontics. However, innovative approaches 
have been explored to address limitations such as decreased antibacte-
rial activity due to the buffering effect of dentin and difficulties 
accessing intricate root canal networks. In this area, nanotechnology- 
based medications offer potential solutions for these challenges. 

This study shows that Ca(OH)₂ NPs possess an average size below 
200 nm and exhibited a minimum inhibitory concentration (MIC) of 10 
µg/mL for Porphyromonas gingivalis and Enterococcus faecalis, and 5 µg/ 
mL for Fusobacterium nucleatum. Although no inhibition area was 
observed in the agar diffusion test, probably due to the agar buffering 
effect, Ca(OH)₂ NPs significantly reduced bacterial metabolic activity, 
thus preserving the active compound effectiveness. 

To conclude, our findings highlight the potential of Ca(OH)₂ NPs as 
an antibacterial agent against several bacterial strains involved in end-
odontic infections being able to attain anatomically complicated infec-
ted areas such as the apical region. However, further testing, particularly 
against more resilient bacterial biofilms, is required before their clinical 
application can be carried out. 
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