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Mesons with heavy flavor content are an exceptional probe of the hot QCD
medium produced in heavy-ion collisions. In the past few years, significant
progress has been made toward describing the modification of the properties
of heavy mesons in the hadronic phase at finite temperature. Ground-state and
excited-state thermal spectral properties can be computed within a self-
consistent many-body approach that employs appropriate hadron-hadron
effective interactions, providing a unique opportunity to confront hadronic
Effective Field Theory predictions with recent and forthcoming lattice QCD
simulations and experimental data. In this article, we revisit the application of
the imaginary-time formalism to extend the calculation of unitarized scattering
amplitudes from the vacuum to finite temperature. These methods allow us to
obtain the ground-state thermal spectral functions. The thermal properties of the
excited states that are dynamically generated within themolecular picture are also
directly accessible. We present here the results of this approach for the open-
charm and open-bottom sectors. We also analyze how the heavy-flavor transport
properties, which are strongly correlated to experimental observables in heavy-
ion collisions, are modified in hot matter. In particular, transport coefficients can
be computed using an off-shell kinetic theory that is fully consistent with the
effective theory describing the scattering processes. The results of this procedure
for both charm and bottom transport coefficients are briefly discussed.

KEYWORDS

effective hadron theories, chiral symmetry, heavy-quark spin-flavor symmetry, Dmesons,
B mesons, finite temperature, transport coefficients

1 Introduction

The discovery in 2003 of the charm-strange mesons Dp
s0(2317) [1] and Ds1(2460) [2],

with masses significantly lower than the quark-model predictions for the lowest lying scalar
and axial-vector c�s mesons, has generated intensive discussions on their internal structure
for the past 20 years. Together with the X(3872) charmonium-like state, which was first
observed also in 2003 [3], they are the first candidates of exotic mesons with multiquark
content in the heavy meson sector. Despite the enormous efforts, there exists still a lack of
consensus on whether the Dp

s0(2317) and Ds1(2460) are meson molecules, compact
tetraquarks or an admixture with c�s components. Yet there are compelling arguments in
favor of the molecular interpretation: their masses lie very close to the DK and DpK
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thresholds, respectively, and the mass difference between these two
excited states is very similar to that between the D and Dp ground
states (~ 140 MeV). Therefore the prevailing picture is that they
have a large component of molecular DK or DpK and coupled
channels [4–11], which is supported by lattice QCD data [12–15].

Closely related is the case of the broad structures observed in the
Dπ andDpπ invariant mass distributions [16–19] and reported as the
Dp

0(2300) and D1(2430) states by the Particle Data Group (PDG)
[20]. The value reported for the mass of the Dp

0(2300) strongly
depends on the production mechanism, ranging from ~ 2400 MeV
with γA reactions to ~ 2300 MeV from B-meson decays, and the
values reported by the LHCb collaboration for the charged partner
lie in the middle. The fact that these values are close to the mass of
the Dp

s0(2317), or are even larger, is in contradiction with
constituent quark model predictions. An answer to this puzzle is
naturally provided by the use of unitarized effective models in
coupled channels, which give rise to two Dp

0 poles in the energy-
region of theDp

0(2300), and two D1 poles in that of the D1(2430) [6,
8, 21–24]. Strong evidence that the Dp

0(2300) and D1(2430) states
could be interpreted as meson molecules with a two-pole structure
comes from the remarkably good agreement that the authors of Ref.
[22] found with the lattice QCD results of the lowest-lying energy
levels of Ref. [25]. More recently the authors of Ref. [24] showed
that, in addition to the pole reported in [25], a second pole on an
unphysical Riemann sheet is needed in the analysis of the
lattice data.

While heavy-quark spin symmetry (HQSS) is responsible for the
near degenerate patterns between the open-charm scalars,
Dp

s0(2317) and Dp
0(2300), and between the axial vectors,

Ds1(2460) and D1(2430), from heavy-quark flavor symmetry
(HQFS) one expects to find a similar degeneracy in the bottom
sector. For instance, unitarized effective field theory (EFT) models
that find the Dp

s0(2317) as a DK bound state predict a bottom
partner, a �BK bound state, with a similar binding energy [6, 26, 27],
in agreement with lattice QCD results [28]. The bottomed analogues
of the scalar Dp

s0(2317) and Dp
0(2300) are still to be found

experimentally, but the axial-vector B1(5721) and Bs1(5830) could
presumably be the bottom-flavor partners of the D1(2430) and
Ds1(2460).

A new venue to study the nature of heavy-flavor exotica has
recently emerged with relativistic heavy-ion collisions (HICs), where
an extremely hot quark-gluon plasma (QGP) is created. At high
collision energies, such as those at the Relativistic Heavy-Ion
Collider (RHIC) and the Large Hadron Collider (LHC),
abundant heavy quark-antiquark pairs are produced in the initial
hard scattering between partons. These pairs then propagate
through the rapidly expanding and cooling QGP. At a
temperature of about Tc = 156 MeV the hadronic medium is
eventually formed, and the interactions between the heavy
hadrons and the surrounding light mesons occur until the so-
called kinetic freeze-out at lower temperatures. This offers an
excellent opportunity to test the in-medium properties of the
heavy mesons produced, including those of heavy exotica.
Furthermore, the novel employment of femtoscopy techniques in
pp, pA and AA collisions at the LHC and RHIC to determine the
scattering parameters of D mesons with light-flavor hadrons will
certainly help probe the hadronic interactions, as well as the effects
of the hadronic medium [29–36].

The non-perturbative regime of hot hadronic matter can be
consistently treated using effective Lagrangians combined with
quantum field theory techniques at finite temperature, often
denominated as thermal EFTs. While finite-temperature lattice
QCD has been for many years a powerful theoretical source of
information on hot QCD matter, thermal EFTs are a
complementary tool that enable us to approach the QCD phase
transition from the chirally-broken phase of hadrons.

In this work we use thermal EFTs to access the finite-
temperature properties of charm and bottom mesons in a hot
medium. To this end, we will revisit the calculations that we
presented in a series of works on charmed mesons [37–40] and,
in addition, we will present extensions of the calculations to the
heavy mesons with bottom flavor [40]. We note that, although it will
not be discussed here, our findings in the charm sector have been
checked against lattice QCD calculations at the level of Euclidean
correlators [41] and that we have also studied the thermal
modification of the X(3872) exotic state and its spin-flavor
partners when these are assumed to be of molecular nature [42].

The rest of the article is organized as follows. In Section 2 we
discuss the main ingredients of our thermal EFT approach to
address the in-medium properties of open heavy-flavor mesons:
The effective hadron-hadron interactions, the use of the imaginary-
time formalism to evaluate properties of a system in thermal
equilibrium (e.g., thermal corrections to the mass and decay
width), and the evolution in real-time to tackle the description of
a system out of equilibrium and compute transport coefficients. We
will review the key ideas and refer to our previous works for
technical details [37–39]. Section 3 presents novel results for
bottomed mesons. These include self-energies, spectral functions
and transport coefficients, alongside a comparison with selected
results from our previous works in the charm sector. We end with a
final discussion and conclusions in Section 4.

2 Formalism

In this work we use a thermal effective field theory approach that
was developed in a series of works [37, 38] for charmed hadrons. It is
based on unitarized heavy-meson chiral perturbation theory
(HMChPT) combined with thermal field theory techniques using
the imaginary-time formalism to address the thermal effects on the
properties of heavy mesons in a mesonic medium at finite
temperature. The kinetic theory describing the heavy-meson
dynamics in the hot medium can be derived using the real-time
formalism [39]. The resulting kinetic equation depends on thermal
scattering amplitudes and spectral functions. For the calculation of
transport coefficients it is sufficient to assume a system near
equilibrium and employ equilibrium quantities. In the following
we summarize the main steps to compute some relevant quantities at
finite temperature.

2.1 Interactions between open heavy-flavor
mesons and light mesons

We start by outlining the main features of the interactions
between open-heavy flavor mesons, i.e., mesons with one charm
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or bottom quark H ∋ {D,Ds, Dp, Dp
s , �B, �Bs, �B

p, �Bp

s }, and the light
Goldstone bosons Φ ∋ {π, K, �K, η} within the framework of
HMChPT, an effective field theory that has been widely used in
the last years to describe the interactions between open-heavy flavor
mesons and light mesons [6, 43–46], with chiral symmetry and
heavy-quark spin-flavor symmetry (HQSFS) as its guiding
principles. When combined with a unitarization technique such
as the solution of the Bethe-Salpeter equation in the on-shell
factorization scheme [47, 48], the potentials of the HMChPT lead
to the dynamical generation of quasi-bound states from the s-wave
scattering of heavy flavored mesons off Goldstone bosons. In
particular, it provides a description of the lightest scalar and axial
vector open-charm states (i.e., Dp

0(2300), Dp
s0(2317), D1(2430) and

Ds1(2460)) as hadronic molecules, as well as predictions for their
counterparts in the open-bottom sector.

The Lagrangian of HMChPT expanded at next-to-leading order
(NLO) in the chiral expansion and at leading order (LO) in the
inverse of the mass of the heavy meson mH reads [21, 49–52],

L � LLO + LNLO, (1)
with the subscripts LO and NLO referring to the chiral power
counting, and

LLO � LChPT
LO + 〈∇μH∇μH

†〉 −m2
H〈HH†〉 − 〈∇μHp]∇μH

p†
] 〉

+m2
H〈Hp]Hp†

] 〉 + ig〈HpμuμH
† −HuμHp†

μ 〉

+ g

2mD
〈Vp

μuα∇βH
p†
] − ∇βV

p
μuαH

p†
] 〉ϵμ]αβ,

(2a)

LNLO�
+ h3〈HuμuμH

†〉 + h4〈∇μH∇]H
†〉〈uμu]〉 + h5〈∇μH uμ, u]{ }∇]H

†〉
+ ~h0〈HpμHp†

μ 〉〈χ+〉 − ~h1〈Hpμχ+H
p†
μ 〉 − ~h2〈HpμHp†

μ 〉〈u]u]〉
− ~h3〈Hpμu]u]H

p†
μ 〉 − ~h4〈∇μH

pα∇]H
p†
α 〉〈uμu]〉

− ~h5〈∇μH
pα uμ, u]{ }∇]H

p†
α 〉,

(2b)

where LChPT
LO and LChPT

NLO encode the chiral Lagrangians of the pure
light-meson sector. In the charm sector, H and Hp

μ denote the
antitriplets of pseudoscalar D-mesons, (D0 D+ D+

s ), and vector Dp-
mesons, (Dp0

μ Dp+
μ Dp+

s,μ), respectively, while in the bottom sector
they correspond to the pseudoscalar �B-mesons, (�B− �B0 �B0

s ), and
vector �Bp-mesons, (�Bp−

μ
�Bp0
μ

�Bp0
s,μ). The octet of Goldstone bosons are

contained in the unitary matrix u � exp(iΦ/ �
2

√
fπ) in the building

blocks uμ = i(u†∂μu − u∂μu
†) and χ+ = u†χu† + uχu, with the quark

mass matrix χ � diag(m2
π , m

2
π , 2m

2
K −m2

π). For our calculations, we
rely on the values from the Fit-2B in Ref. [53]. We employ the
relation {hi} � {~hi} that is applicable at LO in the heavy-quark mass
expansion. For the specific values, please refer to our previous works
[37, 38]. In the bottom sector we take advantage of the heavy-quark
mass scaling of the low energy constants (LECs),
{hBi }M̂−1

B � {hDi }M̂−1
D , for hHi ∈ {hH0 , hH2 , hH3 , hH4 M̂2

H, h
H
5 M̂

2
H}.

The tree-level potential for the process H(p)Φ → H(p)Φ reads

V ij s, t( ) � 1

f2
π

Cij
LO

4
s − u( ) − 4Cij

0 h0 + 2Cij
1 h1[

− 2Cij
24 2h2 p2 · p4( ) + h4 p1 · p2( ) p3 · p4( ) + p1 · p4( ) p2 · p3( )( )( )

+ 2Cij
35 h3 p2 · p4( ) + h5 p1 · p2( ) p3 · p4( ) + p1 · p4( ) p2 · p3( )( )( )],

(3)

where s � (p1 + p2)2, t � (p1 − p3)2, and u � (p1 − p4)2 are the
standard Mandelstam variables, and the superindices i, j denote the
incoming and outgoing channels from the coupled-channel basis.

For instance, in the sector with strangeness S = 0 and isospin I = 1/2,
which are the quantum numbers of the Dp

0(2300), we have
{Dπ, Dη, Ds �K}, and for S = 1 and I = 0, as for the Dp

s0(2317), we
have {DK, Dsη}. We refer the reader to Ref. [38] for the values of the
coefficients Cij

k in the isospin basis.
The partial-wave projection with angular momentum ℓ is then

obtained through the relation

V ij
ℓ

s( ) � 1
2
∫+1

−1
d cos θ( ) Pℓ cos θ( )V ij s, t s, cos θ( )( ), (4)

where θ is the scattering angle between the initial and final particles
in the center of mass, and Pℓ(cos θ) the Legendre polynomial of
order ℓ.

2.2 Thermal equilibrium properties

A hadron gas forms once the temperature is turned on. The
relative abundance of each hadron species in thermal equilibrium is
determined by the corresponding thermal distribution functions,
i.e., the Bose-Einstein distribution for mesons and the Fermi-Dirac
distribution for baryons. At temperatures T ~ 100 − 150 MeV light
mesons become the primary components of the medium and heavy
mesons behave as Brownian particles scattering of the light mesons.
We exploit this scenario and employ the HMChPT potential
presented above to describe the dynamics of the heavy mesons
with the light mesons in the bath.

In order to incorporate the effects of the hot medium, it is
necessary to follow the techniques of thermal field theory. There
exist two complementary formulations of thermal field theory that can
be used to describe a system in thermal equilibrium, the “imaginary-
time” and the “real-time” formalisms. In the imaginary-time
formalism (ITF), also called Matsubara formalism owing to the
pioneering work by Matsubara [54], time is treated as a purely
imaginary quantity and then one performs an analytical
continuation from Euclidean to Minkowski spacetime at the end
of the calculation. In the real-time formalism, in contrast, the
calculation is done in Minkowski spacetime, considering explicitly
the evolution in real time [55, 56]. While the latter is capable of
describing systems even outside thermal equilibrium, and thus
appropriate to address out-of-equilibrium properties and transport
coefficients, as we will discuss in the next section, the ITF has the
advantage of resembling in a more intuitive way the zero temperature
field theory. For instance, the main difference in the form of the
propagators and the diagrammatic structure of the perturbative
expansion, in the ITF, is the acquisition of thermal weights in the
phase-space integrals compared with those at T = 0, as we will show
below. An approach based on the ITF has been developed in the recent
years to study the properties of open heavy-flavor mesons in hot
hadronic matter at vanishing baryonic density [37, 38, 57].

To compute the thermal corrections to a given quantity, such as
the two-meson propagator or the self-energy, the ITF provides some
simple rules that basically consist in replacing the zeroth component
of the four-momenta of the particles by discrete Matsubara
frequencies iωn, with ωn = 2nπ/β for bosons and β = 1/T, and
transforming the integration over internal energies into a
summation over Matsubara frequencies. Then, by using some
established computational techniques based on contour integrals
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and analytic continuation, the calculations can be done similarly as
in the vacuum field theory. For details, we encourage the reader to
consult the classical Refs. [58–62].

Using the rules above, the thermal two-meson propagator takes
the form

G E, p;T( ) � ∫ d3q

2π( )3 ∫dω∫ dω′ SH ω, q;T( )SΦ ω′, p − q;T( )
E − ω − ω′ + iε

× 1 + f ω, T( ) + f ω′, T( )[ ],
(5)

with pμ = (E, p) the momentum in the center of mass of the two-
meson system. In the above equation, in addition to the medium
corrections arising from the ITF, i.e., the additional weighting
factors containing appropriate combinations of Bose-Einstein
distribution functions f(ω, T) � (eβω − 1)−1, the meson masses
are dressed by the spectral functions SH and SΦ. Note that this
is a compact expression with the integrals over energy extending
from −∞ to +∞.

In the case of zero temperature, it is customary to regularize the
vacuum contribution to the two-meson propagator, for example, by
introducing a hard cutoff in the three-momentum integration. We
useΛ = 800 MeV, a value that corresponds to the scale of the degrees
of freedom that were integrated out when constructing the meson-
meson interaction amplitude from the effective Lagrangian, and that
is consistent with the regularization scheme used in Ref. [53], from
where we adopted the values for the LECs of the NLO potential. This
regularization scheme is straightforward to extend to finite
temperature. The tree-level potential in Eq. 3 does not change at
finite temperature because in the ITF thermal corrections enter in
loop diagrams [60, 61].

The thermal effects on the unitarized scattering amplitude
T ij(s) from an incoming channel i to an outgoing channel j are
then obtained by solving the on-shell Bethe-Salpeter equation in a
full coupled-channel basis, with the s-wave interaction kernel of

Eq. 3 and the thermal two-meson propagator of Eq. 5 (see
Figure 1A):

T ij E, p;T( ) � V ij s( ) + V ik s( )Gk E, p;T( )T kj E, p;T( ). (6)
The spectral functions dressing the meson propagators in Eq. 5

take into account the modifications due to the presence of
interactions with the medium. At finite temperature the heavy
meson retarded propagator is defined by

DH ω, q;T( ) � 1
ω2 − q2 −m2

H − ΠH ω, q;T( ), (7)

where mH is the mass of the heavy meson in the vacuum,
renormalized by the vacuum contribution of the retarded self-
energy ΠH (see Figure 1B). For the purpose of our calculations,
using the vacuum propagator for the light meson and thus a δ-type
spectral function is a good approximation, as we discussed in our
previous works [37, 38].

The light-meson contribution to the self-energy of the heavy
meson can be obtained by closing the light-meson line in the
corresponding T -matrix element (see Figure 1C), i.e., by
integrating over the light-meson four-momenta q′μ = (E′, q′). In
the ITF it is defined as

ΠH iωn, q;T( ) � −1
β
∫ d3q′

2π( )3 ∑m DΦ iωm − iωn, q′( )T HΦ iωm, p( ).
(8)

Using the spectral Lehmann representation for the light meson
propagator and the T matrix, and performing the summation over
the Matsubara frequencies ωm of the internal HΦ, it reads

ΠH iωn, q;T( ) � 1
π
∫ d3q′

2π( )3 ∫ dE

× ∫ dω
SΦ ω, p − q( ) f E, T( ) − f ω, T( )[ ]

E − iωn − ω
Im T HΦ E, p;T( ).

(9)

FIGURE 1
(A) Diagrammatic representation of the Bethe-Salpeter equation in coupled channels in Eq. 6. At finite temperature, the T matrix (hatched blob) is
obtained from the unitarization of the interaction kernel (small dot) with dressed internal heavy-meson propagators (double red lines). (B)Dyson equation
for the dressed heavy-meson propagator in Eq. 7. (C) Heavy-meson self-energy in Eq. 8. The heavy meson is dressed by the unitarized interaction with
pions.
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We note that the self-energy entering in Eq. 7 can only
contain thermal corrections after mass renormalization.
However, the self-energy computed with Eq. 9 contains both
vacuum and thermal corrections. We regularize it by dropping
the vacuum contribution, which is identified with the expression
obtained when taking the limit T → 0 of Eq. 9. See [38] for
details.

Finally, the spectral function necessary to dress the heavy meson
in the two-meson propagator is computed from the imaginary part
of the retarded meson propagator,

SH ω, q;T( ) � −1
π
Im DH ω, q;T( ). (10)

Eqs 5–10 are interrelated to each other. As a result, solving this
set of coupled equations requires an iterative approach until self-
consistency is achieved. This process is outlined in Figures 1A–C,
where the T -matrix amplitude is depicted as a hatched blob, the
perturbative amplitude V(s) is represented by a small dot, and the
propagator of the heavy meson dressed by the medium is shown
with double red lines.

2.3 Non-equilibrium properties

Since heavy mesons have large masses compared to the
surrounding light mesons their time evolution is typically
described by a Fokker-Planck (or Langevin) or a Boltzmann
approach. The essential components of these approaches are
transport coefficients, which can be calculated from the scattering
amplitudes of heavy-flavor mesons with light mesons in the
hadronic gas. These transport coefficients are typically derived
assuming that the light scattering partners are in thermal
equilibrium, and they are often calculated as functions of
temperature and momentum.

In Ref. [39] we calculated the transport coefficients of D
mesons in the hadronic phase incorporating medium
corrections to the scattering amplitudes. To do so, we extended
the kinetic theory of D mesons using the more general Kadanoff-
Baym equations, so as to account for thermal and off-shell effects.
This off-shell kinetic theory also applies to describe the
propagation of �B mesons, as it is valid for any heavy species
that can be treated as Brownian particles propagating in a medium
of light mesons. In fact, the separation of scales between the heavy-
meson mass and the other scales in the system that is exploited to
convert the off-shell kinetic equation into a Fokker-Planck
equation is larger for the �B meson than for the D meson. In
addition, the quasiparticle approximation that we showed to be
sound for the D mesons is even better for �B, since their thermal
width is of the same order as that of the Dmesons, but their mass is
considerably larger, as we will see in Section 3.

Let us summarize our main results. For a detailed derivation, we
recommend to consult our previous work [39] and references
therein. Starting from the Kadanoff-Baym equations and
performing a Wigner transform along with a gradient expansion
[55], we arrive to the following form of the off-shell transport
equation for the time ordered Green’s function of the heavy
meson G<

H(X, k),

kμ − 1
2
∂ReΠR X, k( )

∂kμ
( ) ∂

∂Xμ
iG<

H X, k( )

� 1
2
iΠ< X, k( )iG>

H X, k( ) − 1
2
iΠ> X, k( )iG<

H X, k( ). (11)

The lesser and greater Green’s functions and the self-energies in Eq. 11
are functions of the center-of-mass coordinateX = (t, X) and the four-
momentum k = (k0, k) of the external heavymeson. Note that k0 and k
are independent variables, although related through the non-
equilibrium spectral function SH(X, k). Hence the reason we
denote this kinetic equation to be “off-shell”, as the heavy meson
is not on its mass shell. The self-energy ΠR

H(X,k) is the extension of
the retarded self-energy of Eq. 8 to the non-equilibrium case, and the
lesser Π<(X, k) and greater Π>(X, k) self-energies can be written in
terms of the (retarded) T matrix of Eq. 6 in the so-called T -matrix
approximation [55, 63, 64]. Inserting appropriate definitions of these
quantities, Eq. 11 can be written in the following form:

kμ − 1
2
∂ReΠR X, k( )

∂kμ
( ) ∂

∂Xμ iG
<
H X, k( )

� 1
2
∫ dk01

2π
d3q

2π( )3 W k0, k + q, k01, q( )iG<
H X, k0, k + q( )[

− W k0, k, k01, q( )iG<
H X, k0, k( )]. (12)

The off-shell collision rate of a heavy meson with energy k0 and
momentum k to a final heavy meson with energy k01 and momentum
k − q, with momentum loss q ≡ k − k1, is defined as

W k0, k, k01, q( ) ≡ ∫ d4k3
2π( )4

d4k2
2π( )4 2π( )4δ k01 + k02 − k03 − k0( )δ 3( ) k2 − k3 − q( )

× T k01 + k02 + iε, k − q + k2( )∣∣∣∣ ∣∣∣∣2iG>
Φ X, k2( )iG<

Φ X, k3( )iG>
H X, k01, k − q( ).

(13)

The labels of the momenta correspond to the choice of a generic
scattering process H(k) + Φ(k3) → H(k1) + Φ(k2). Each of the two
terms of the right-hand side of Eq. 12 can be identified as the
collision gain and loss terms respectively. It is important to note that
in Eq. 13 there is an implicit sum over the different species Φ and H
that can interact with the external off-shell heavy meson.

Next, one may exploit the separation of scales between the
meson masses to arrive to an off-shell Fokker-Planck equation for
iG<

H(t, k). While the derivation of a transport equation for heavy
mesons required the use of real-time techniques, the actual
calculation of the heavy-flavor transport coefficients can be
addressed in a near-equilibrium regime, in which the
temperature is at least locally well defined. While thermal local
equilibrium can be safely considered for the light mesons, it is also
reasonable to assume that the heavy mesons are not far from
equilibrium. Then Eq. 12 can be written as follows:

∂

∂t
iG<

H t, k( )

� ∂

∂ki
Â k;T( )ki iG<

H t, k( ) + ∂

∂kj
B̂0 k;T( )Δij + B̂1 k;T( ) k

ikj

k2
[ ]iG<

H t, k( ){ },
(14)

with Δij = δij − kikj/k2, and the transport coefficients Â(k0, k;T),
B̂0(k0, k;T), and B̂1(k0, k;T) defined off shell and at temperature T.
The drag force coefficient is given by

Â k0, k;T( ) ≡ 〈1 − k · k1
k2
〉, (15)
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and the transverse and longitudinal momentum diffusion
coefficients read.

B̂0 k0, k ;T( ) ≡ 1
4
〈k21 −

k · k1( )2
k2

〉, (16a)

B̂1 k0, k ;T( ) ≡ 1
2
〈 k · k − k1( )[ ]2

k2
〉. (16b)

The angle brackets 〈F(k, k1)〉 denote the average of the generic
quantity F(k, k1), which is defined as

〈F k, k1( )〉 � 1

2k0
∑

λ,λ′�±
λλ′∫∞

−∞
dk01 ∫∏3

i�1

d3ki
2π( )3

1
2E22E3

SH k01 , k1;T( )
× 2π( )4δ 3( ) k + k3 − k1 − k2( )δ k0 + λ′E3 − λE2 − k01( ) T k0 + λ′E3 , k + k3;T( )∣∣∣∣ ∣∣∣∣2
× fΦ λ′E3;T( )~fΦ λE2;T( )~fH k01 ;T( ) F k, k1( ),

(17)

where f (Ei; T) is the equilibrium occupation number, i.e., the Bose-
Einstein distribution function, and ~f(Ei;T) � 1 + f(Ei;T) �
−f(−Ei;T) is the Bose enhancement factor. Eq. 17 incorporates the
equilibrium quantities presented in the previous section, i.e., the
equilibrium thermal scattering amplitudes and spectral functions. In
particular, it is a sum of four terms (λ, λ′ = ±) that evaluate the T matrix
in different energy regions. The relevance of the contribution of each of
these terms to the transport coefficients is discussed in the next section.

3 Results

The formalism described in the previous section provides a
framework to compute the in-medium properties of heavy mesons.
Here we present our results for D and �B mesons for temperatures
below the deconfinement transition temperature Tc ~ 155 MeV in
HICs [65, 66]. This applicability limit of our approach is inherent to
the effective theory with hadronic degrees of freedom and massive
Goldstone bosons upon which it is built. Therefore it is important to
be careful when interpreting the results at our highest temperatures
T ~ 150 MeV, as the system will begin the transition into the
deconfined phase. Additionally, while the unitarized version of
HMChPT extends the validity of the low-energy theory to higher
energies, for temperatures exceeding T ~ 150 MeV, the thermal
energies of the mesons may fall outside the energy region of
applicability of the theory, as we noted in Ref. [37].

For temperatures T ≲ 150 MeV, pions give the largest
contribution to the medium corrections. This is because they
are the lightest mesons and therefore the most abundant species
in the thermal bath. Unless otherwise stated, in the calculations
presented in this work we only consider the thermal effects due to
pions and neglect the contribution of the heavier kaons and eta
mesons. We note that the results in the charm sector were already
published in our previous works [37–39] and are reproduced here
for the sake of comparison between the bottom and charm
sectors.

3.1 Self-energies

We start with the discussion of the self-consistent results of the
self-energy of the ground-state heavy mesons in a pionic medium at
finite temperature, displayed as a function of the energy in Figure 2,

for zero three-momentum and scaled by the mass of the heavy
meson in vacuum. We show the results for three different values of
the temperature of the medium, T = 80, 120 and 150 MeV, in
different line styles.

The real part of the self-energy is related to the thermal correction to
the mass. This is evident from the expression of the heavy-meson
retarded propagator at finite temperature in Eq. 7. In the quasiparticle
approximation, which we will see is well-grounded for both D and �B
mesons, and if the thermal propagator’s pole is close to the vacuum pole,
the mass shift is roughly given by ΔmH ≈ Re ΠH(mH, 0; T)/(2mH).
Therefore, as shown in the first row panels of Figure 2 for charmed
mesons and in the third row for bottomed mesons, the negative
character of the real part of the self-energy indicates that the masses
of the heavy mesons will decrease as temperature rises. The fact that the
real part of the self-energy is more negative for the non-strange mesons
than for the strange mesons is explained by the large attractive
interaction in the D(p)π and �B(p)π channels after unitarization.
Furthermore, one can see that the values of the real part of self-
energy over the heavy meson mass at a particular temperature are
similar forD(s) andDp

(s), as well as for �B(s) and �Bp

(s). Although it appears
to be less negative for bottom than for charm, it is of comparable size in
both sectors. These findings are closely connected to theHQSFS intrinsic
of the interaction. It is also important to note that the quantitative
comparison of the results in the two flavor sectors may be impacted by
the details of the numerical calculations, e.g., by the choice of the infinite
integration limits, or the limitations of the effective theory at high
energies. The authors of Ref. [57] neglected the shift of the in-
medium mass of the heavy mesons by setting to zero the real part of
the respective self-energies. Although small compared to the vacuum
mass, |ΔmH|/mH ~ 1 − 2%, we consider that it is important and keep the
full self-energy for the calculation of the spectral function.

The imaginary part of the self-energy relates to the thermal
width acquired by the heavy meson due to interactions with pions
within the medium. The panels in the second and fourth rows of
Figure 2 show the imaginary part of the self-energy of the charmed
and bottomed mesons, respectively, over their respective mass in
vacuum. The insets provide a zoom in the region E ≈ [mH − 2mπ,mH

+ 2mπ]. Similar features are observed in all the panels. The imaginary
part of the self-energy is essentially zero for energies below mH −
2mπ, above which it starts decreasing mildly. This initial drop at
around mH is exclusively caused by the presence of the thermal
medium, which allows for the absorption of two thermal pions.
These absorption processes make it possible for the scattering
amplitude to be non-zero even below the two-meson threshold
due to the so-called Landau cut [58, 67] of the two-meson
propagator (see also our discussion in Refs. [38–40]). Our
calculations show that also the self-energy of the heavy meson
can reveal the effects of the Landau cut, thanks to the self-
consistency of our approach. This effect becomes more relevant
at higher temperatures, i.e., T ≳ 100 MeV, where the pion density is
larger. A substantially larger drop takes place at mH + 2mπ, which is
the energy where the heavy meson at rest can emit two pions. This
later growth of the magnitude of the imaginary part of the self-
energy takes place at similar rates for all temperatures, since the
emission of two pions is also possible in vacuum for a large enough
energy of an off-shell heavy meson, and it is related to the unitary cut
of the propagator. As a result of the combination of the Landau and
unitary cut effects, and by virtue of the relation between Im ΠH and
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the thermal decay width, we expect the ground-state spectral
functions to broaden as the temperature of the thermal medium
increases. Similarly as it happened for the real parts, the magnitude
of Im ΠH/mH at a given temperature is similar in size when
comparing results for pseudoscalar and vector mesons, and it is
somewhat larger in the bottom sector than in the charm sector. As a
reminder, the real and imaginary parts of the self-energy are
connected by analyticity constraints, which means that the
oscillations seen in the real part are fully determined by the
structure of the imaginary part that we have described in detail here.

3.2 Spectral functions

The spectral function for the ground-state heavy mesons follows
the standard definition in terms of the retarded propagator—see Eqs

7, 10—, in which the self-energy is responsible for the thermal
corrections with respect to the vacuum propagator. In Figure 3 we
show the energy dependence of the spectral function of the charmed
mesons (top panels) and the bottomed mesons (bottom panels) at
rest, at the same temperatures as for the self-energy described above.
The vertical solid lines depict the corresponding value of the mass in
vacuum. From these plots, the drop of the mass and the increase of
the width anticipated from analyzing the self-energies become
manifest. This is evident as the maximum of the spectral
function shifts towards lower energies and it becomes wider with
increasing temperature.

In the quasiparticle approximation, the spectral function admits
a Lorentzian shape peaked at the quasiparticle energy Ek(T) (with
M(T) ≡ Ek at rest) and a spectral width γk(T) ≪ Ek(T). For the
spectral functions in Figure 3, which are narrow, the quasiparticle
approximation is indeed justified. Figure 4 shows the values of the

FIGURE 2
Real and imaginary parts of the pion contribution to the self-energy of the ground-state heavy mesons at several temperatures (see legend). Panels
in the two top rows correspond to charmed mesons, and panels in the two bottom rows to bottomed mesons. Different columns correspond to states
with angular momentum and strangeness (J, S) = (0, 0), (0, 1), (1, 0), (1, 1), in this order.
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mass (left panels) and the decay width (right panels) as a function of
the temperature determined by analyzing the position and the width
of the peak of the spectral functions. For the charmed mesons, we
find a reduction in mass ≈ 45 MeV and ≈ 25 MeV for the non-
strange and the strange states, respectively, at the highest
temperature T = 150 MeV, and corresponding thermal widths of
≈ 70 MeV and ≈ 20 MeV. For the respective bottomed mesons, the
reduction in mass is ≈ 30 MeV and ≈ 20 MeV, and the acquired
width is ≈ 90 MeV and ≈ 30 MeV. The thermal masses of the D(p)

and D(p)
s mesons were calculated using lattice QCD simulations in

Ref. [68]. We show their results in the top left panel of Figure 4,
although for the comparison with our calculations one has to keep in
mind that a systematic shift is to be expected due to the use of
heavier than physical pions in the lattice. Indeed, smaller thermal
modifications at a given temperature are consistent with the lower
abundances of heavier pions.

We remind that in the self-consistent calculations of the self-
energies and the spectral functions, only the impact of the thermal
pions is taken into account, arguing the contribution of other light
mesons to be presumably suppressed. The contribution of each of
the light mesons in the medium to the thermal width of the heavy
meson can be easy analyzed from its definition in terms of the
retarded self-energy in the quasiparticle approximation,

Γk � −zk
Ek

Im Π Ek, k;T( ), (18)

with zk ≈ 1. Since Im Π(Ek, k; T) is given by the integration over the
imaginary part of the unitarized scattering amplitude, Im T , and we
have access to all the matrix elements T ij, we can readily assess the
effect of the four elastic channels for the interactions of a heavy
meson with the light pseudoscalars (π, K, �K, η). We showed in
Ref. [39] that the effect of the inelastic channels is negligible. In

Figure 5 we show, in logarithmic scale, the contribution to the width
of the D meson (left) and the �B meson (right) coming from the
different light mesons, averaged over momenta [39]. At low
temperatures, the kaons and the η mesons have a negligible
contribution because of their small abundances, as expected. The
only relevant contribution is that of the pions. Close to T = 150 MeV,
the more massive mesons contribute several MeV to the heavy-
meson decay width, but are still subdominant compared to the pion.

The process of unitarization of the scattering amplitude of Eq. 6
leads to the emergence of two poles in the sectors with strangeness
S = 0 and isospin I = 1/2 that correspond to the two-pole structure of
the Dp

0(2300), in the case of total angular momentum J = 0, and of
the D1(2430), in the case of J = 1. The same applies for the
counterparts in the bottom sector. In the sectors with (S, I) = (1,
0), the poles of theDp

s0(2317) and theDs1(2460) emerge for J = 0 and
J = 1, respectively, as well of their bottomed analogues. The
characterization of these states requires the analytical
continuation of T to complex energies. The pole position in the
complex-energy plane provides the mass and the half-width of these
states. While this is a well-established procedure at T = 0, the poles
search at finite temperature is a complex task for two reasons. Firstly,
one has to deal with the analytic continuation of imaginary
frequencies, and secondly, a numerical search of a singularity in
the complex plane within self-consistency is computationally
challenging. Alternatively, to determine the spectral properties of
the dynamically generated states at finite temperature, we use the
imaginary part of T on the real axis, shown in Figure 6, as a proxy for
their spectral shape. From the several coupled channels in each
sector, we choose to plot the diagonal element T ii for the channel i to
which the state couples more strongly in vacuum. The numerical
values of the vacuum properties and effective couplings are given in
our previous works [38, 40].

FIGURE 3
Spectral function of the ground-state charmed mesons (top panels) and bottomed mesons (bottom panels) at several temperatures (see legend).
The column description is the same as in Figure 2. Vertical lines depict the values in vacuum (T = 0).
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In the cases with zero strangeness, the proximity of the position
of the resonances to channel thresholds gives rise to complicated
structures. However, one can still clearly recognize a gradual
evolution of the peaks and widths as T increases. The strange
sectors are more straightforward. The T = 0 delta-type spectral
function (i.e., bound state) acquires a non-zero width, and the shift

and widening of the peak is comparable to that of the ground states.
Nevertheless, an increase in strength is visible on the right-hand side
of the distributions. This asymmetry can be explained by the fact
that the channel threshold is not sharp anymore due to the widening
of the D(p) or �B(p) meson, and it is lowered in energy due to the
decrease of the heavy-meson mass with temperature. Both of these

FIGURE 4
Temperature evolution of themass (left panels) and the width (right panels) of ground-state charmedmesons (top) and bottomedmesons (bottom).
Data points in the top left panel correspond to lattice QCD calculations from Ref. [68].

FIGURE 5
Contribution to the averaged thermal width of theDmeson (left panel) and the �Bmeson (right panel) from a thermal bath of pions, kaons, antikaons,
and η mesons.
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effects open the phase space for decay into this channel at lower
energies.

3.3 Transport coefficients

Now, we discuss the results of the transport coefficients for a
heavy meson propagating through the hadronic medium. We will
specifically focus on the comparison between D and �Bmesons. We
start with two of the transport coefficients defined in momentum
space, the drag force in Eq. 15 and the transverse diffusion
coefficient of Eq. 16a. To reduce the number of variables we
will present the results in the so-called static limit k → 0,
i.e., for a low-momentum heavy meson. In the off-shell version
of the Fokker-Planck equation (Eq. 14), these transport coefficients
also depend on the value of k0. Since the quasiparticle
approximation is excellent for the temperatures considered, we
will set k0 to the quasiparticle mass, that is k0 = Ek→0 =M(T). Then,
the only remaining dependence is on the temperature. In the left
panel of Figure 7 we present the comparison of the drag force
coefficient for the two heavy flavors as functions of temperature,
while the right panel displays the transverse diffusion coefficients.
In the static limit, we have checked that the longitudinal diffusion
coefficient B1(k

0, k → 0; T) is degenerate with B0(k
0, k → 0; T). As

explained in Ref. [39], these coefficients can be computed with
different degrees of approximation, but in this work we only
present the complete off-shell computation. This calculation
incorporates: 1) the exact thermal spectral function of the heavy
meson as required in the average of Eq. 17; 2) the full thermal
T -matrix appearing in the same equation; 3) quantum effects
encoded in the Bose enhancement factors; and 4) all kinematic

processes allowed by energy-momentum conservation, including
number-conserving (2 ↔ 2) and number-violating processes
(1 ↔ 3).

The 2↔ 2 scatterings are described by the λ = λ′ terms in Eq.
17, while the 1 ↔ 3 processes take λ = −λ′ This fact can easily be
grasped by looking at the signs of the energy conservation delta.
In Ref. [39] we reported that the number-violating processes
contribute very little to the transport coefficients, while the 2↔ 2
collisions make the leading contributions. Among the latter, the
case λ = λ′ = + corresponds to the standard term in which the
binary collision is taking place at an energy corresponding to the
sum of the incoming energies k0 + E3 (cf. Eq. 17). However the
case λ = λ′ = −, corresponds to a binary collision in which the
scattering matrix is evaluated at the energy difference k0 − E3. For
typical energies around the quasiparticle masses, this difference
probes the kinematic region below the two-particle threshold.
For interactions computed in vacuum, this region has a vanishing
T -matrix amplitude, and this entire process can be safely
neglected. However, for interactions self-consistently
calculated at T ≠ 0 the T -matrix has a non-vanishing support
in this region, due to the Landau cuts (see Section 3.1). We have
proven in Ref. [39] that the contribution of these processes
cannot be neglected and it becomes comparable to the
contribution stemming from the unitary cut. Eventually, we
have obtained transport coefficients that are up to a factor of
three larger with respect to previous results at the highest
temperatures. We nonetheless agree at low temperatures,
where the Landau cut disappears.

To compare the results between D and �Bmesons in Figure 7 we
recall that a simple nonrelativistic approximation for the
momentum-space diffusion coefficient B0 has no leading-order

FIGURE 6
Imaginary part of the diagonal elements of the scattering amplitudes in the charm sector (top panels) and in the bottom sector (bottom panels) at
several temperatures. Different columns correspond to states with angular momentum, strangeness, and isospin (J, S, I) = (0, 0, 1/2), (0, 1, 0), (1, 0, 1/2), (1,
1, 0), in this order. Vertical lines in the sectors with strangeness depict the energy location of the bound states in vacuum.
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dependence on the heavy mass [69], but a dependence proportional
to the total cross section, B0 ∝ σ. From Figure 6 we have learnt that
the cross sections (proportional to Im T ) of �Bmesons are a factor 2-
3 larger than the those of D mesons. This explains why the B0
coefficient is 2-3 times larger for bottom than for charm. On the
other hand, the drag force coefficient does have a leading
dependence on the heavy mass MH. Again from Ref. [69] the
nonrelativistic expression goes like A ∝ σ/MH. Therefore, going
from charm to bottom, the gain factor from the cross section is
approximately compensated by the reducing factor due to the
increasing mass, as MD/M�B ≃ 1/3. Therefore we expect that
A�B meson ≲AD meson, which is what we observe in the left panel of
Figure 7.

Finally we plot in Figure 8 the so-called spatial diffusion
coefficient,

Ds T( ) � lim
k→0

T2

B0 Ek, k;T( ) � lim
k→0

T

A Ek, k;T( )MH
, (19)

where we express it with calligraphic font not to confuse it with Ds

mesons.

In the left panel of this figure we show our result for this
coefficient at low temperatures for D mesons (solid red line) and
for �Bmesons (dotted-dashed blue line). As expected, Ds is lower for
�B mesons than for D mesons, while the general trend is a
monotonically decreasing function of temperature. As for the
high temperature side, we plot two extractions from relativistic
heavy-ion collisions at high energies using Bayesian analyses to
estimate the temperature-behavior of this coefficient for the two
flavors separately [70]. While a clear ordering cannot be settled in
this extraction, a likely continuous matching can be observed around
Tc ≃ 155 MeV. According to these results, the absolute minimum of
the spatial diffusion coefficient might happen at the transition
temperature Tc. On the right panel of Figure 8 we plot our
results at low temperatures together with results of a
quasiparticle model for the quark-gluon plasma at high
temperature, which can distinguish charm and bottom quarks
[71]. An approximate matching is also seen in Tc and the flavor-
mass ordering of Ds is consistent in both sides of the transition.
Close to Tc a more refined model including a mixed phase with
hadronization processes should be able to fill the gap.

FIGURE 7
Transport coefficients of the �B meson in the static limit k → 0 (where B1 = B0), compared to the results for the D meson.

FIGURE 8
Off-shell spatial diffusion coefficient of the �Bmeson (normalized by the thermal wavelength) around Tc, together with the results for the Dmeson,
and compared to the calculations above Tc from the Bayesian calculation of Ref. [70] (left panel), and from the quasiparticlemodel of Ref. [71] (right panel).
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4 Conclusion

In this paper we have obtained the properties of mesons with
open heavy-flavor at finite temperature using an effective field
theory based on chiral and HQSF symmetries within the
imaginary-time formalism. The interaction of these pseudoscalar
and vector open heavy-flavor ground-state mesons with light
mesons (π, K, �K, η) is unitarized via a self-consistent coupled-
channel Bethe-Salpeter approach at finite temperature.

With this methodology, we have obtained the self-energies and,
hence, the corresponding spectral functions of open-charm (D(p),
D(p)

s ) and open-bottom (�B(p), �B(p)
s ) ground states. On the one hand,

we have determined that the values of the real part of self-energy
over the heavy meson mass at a particular temperature are similar
for D(s) and Dp

(s), as well as for �B(s) and �Bp

(s), as expected by HQSFS.
On the other hand, the imaginary parts of the self-energies for the
open heavy-flavor ground-state mesons becomes sizable with
temperature due to the combination of the Landau and unitary
cut effects at finite temperature. Therefore, the corresponding
spectral functions shift towards lower energies and become wider
with increasing temperature.

From the behavior of the spectral functions, we have quantified
the thermal dependence of the masses and the decay widths of the
open heavy-flavor ground states. We have observed a generic
downshift of the thermal masses with temperature, as large as of
a few tens of MeV at T = 150 MeV in a pionic bath, while the decay
widths increase with temperature up to values of some tens of MeV
at T = 150 MeV. Compared to recent lattice QCD simulations for
open-charm ground states [68], a similar trend can be determined
although a systematic shift is seen as a heavy non-physical pion mass
is used in the lattice.

As a byproduct of the unitarization, we have also obtained the
two-pole Dp

0(2300) and D1(2430) as well as the Dp
s0(2317) and

Ds1(2460) bound states (and the corresponding counterparts in the
bottom sector) as dynamically generated by heavy-light meson
scattering, and analyzed their behavior with temperature. The
two-pole structures in the non-strange charm and bottom sectors
gradually dilute with temperature with a smooth shift of their
maxima, in spite of the difficulty to assess their evolution with
temperature due to the closeness of the two-meson thresholds. As
for the bound states, the T = 0 delta-type states acquire non-zero
width, and the shift and widening of the peak is comparable to that
of the ground states.

And, finally, we have computed the transport coefficients for D
and �Bmesons propagating through an hadronic medium by means
of an off-shell kinetic theory that is consistent with the effective
field theory that describes the scattering processes of heavy mesons
with light mesons at finite temperature. In particular, we have
obtained the drag force and the diffusion coefficients in
momentum space, as well as the spatial diffusion one for both
mesons.

The diffusion coefficient of �B turns out to be 2-3 times larger
than that for the D meson, whereas the drag coefficient for �B
becomes smaller (or comparable) to the D meson one. This can
be understood as the diffusion coefficient is proportional to the cross
section (or imaginary part of the scattering amplitude) and this is
larger for �B, whereas the drag force scales with the cross section but
is also inversely proportional to the mass of the heavy meson. As for

the spatial diffusion coefficients, theD one is lower than that of the �B
meson as it is inversely proportional to the diffusion one in
momentum space. Moreover, the spatial diffusion coefficients for
D and �B mesons are monotonically decreasing functions of the
temperature up to Tc, where a mininummight be present in order to
match with the expected high-temperature behavior of the
coefficients in the QGP phase.
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