
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/367361618

A Review of Advances in Cold Spray Additive Manufacturing

Article  in  Coatings · January 2023

DOI: 10.3390/coatings13020267

CITATIONS

53
READS

1,165

5 authors, including:

Rodolpho Vaz

Stony Brook University

55 PUBLICATIONS   401 CITATIONS   

SEE PROFILE

Andrea Garfias

University of Barcelona

8 PUBLICATIONS   90 CITATIONS   

SEE PROFILE

Vicente Albaladejo

38 PUBLICATIONS   536 CITATIONS   

SEE PROFILE

Javier Sánchez Molino

University of Barcelona

53 PUBLICATIONS   357 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Rodolpho Vaz on 24 January 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/367361618_A_Review_of_Advances_in_Cold_Spray_Additive_Manufacturing?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/367361618_A_Review_of_Advances_in_Cold_Spray_Additive_Manufacturing?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodolpho-Vaz?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodolpho-Vaz?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Stony-Brook-Medicine?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodolpho-Vaz?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Garfias?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Garfias?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Barcelona?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Garfias?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vicente-Albaladejo?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vicente-Albaladejo?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vicente-Albaladejo?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Javier-Sanchez-Molino?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Javier-Sanchez-Molino?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Barcelona?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Javier-Sanchez-Molino?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodolpho-Vaz?enrichId=rgreq-29dd7debf493b4830fe0649fe624207b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzM2MTYxODtBUzoxMTQzMTI4MTExNDUyNTU3MUAxNjc0NTUxMjg4MzMy&el=1_x_10&_esc=publicationCoverPdf


 

 
 

 

 
Coatings 2023, 13, 267. https://doi.org/10.3390/coatings13020267 www.mdpi.com/journal/coatings 

Review 

A Review of Advances in Cold Spray Additive Manufacturing 

Rodolpho Fernando Vaz *, Andrea Garfias, Vicente Albaladejo, Javier Sanchez and Irene Garcia Cano 

Thermal Spray Centre CPT, Universitat de Barcelona, 08028 Barcelona, Spain 

* Correspondence: rvaz@cptub.eu 

Abstract: Cold Spray Additive Manufacturing (CSAM) produces freeform parts by accelerating 

powder particles at supersonic speed which, impacting against a substrate material, trigger a pro-

cess to consolidate the CSAM part by bonding mechanisms. The literature has presented scholars’ 

efforts to improve CSAM materials’ quality, properties, and possibilities of use. This work is a re-

view of the CSAM advances in the last decade, considering new materials, process parameters op-

timization, post-treatments, and hybrid processing. The literature considered includes articles, 

books, standards, and patents, which were selected by their relevance to the CSAM theme. In addi-

tion, this work contributes to compiling important information from the literature and presents how 

CSAM has advanced quickly in diverse sectors and applications. Another approach presented is the 

academic contributions by a bibliometric review, showing the most relevant contributors, authors, 

institutions, and countries during the last decade for CSAM research. Finally, this work presents a 

trend for the future of CSAM, its challenges, and barriers to be overcome. 

Keywords: cold spray; additive manufacturing; 3D-printing; geometries; properties; innovation 

 

1. Introduction 

Additive Manufacturing (AM) has been an industrial revolution in recent decades, 

starting with producing polymeric parts and advancing to metallic components. Many 

alloys and methods have been studied, some more industrially mature and others in a 

developing stage. The definition of Additive Manufacturing (AM) given by ISO/ASTM 

52,900:2015 standard [1] is the “process of joining materials to make parts from 3D model 

data, usually layer upon layer, as opposed to subtractive manufacturing and formative 

manufacturing methodologies”. Other nomenclatures have been used worldwide as syn-

onyms for AM, such as 3D printing, additive fabrication, rapid prototyping, and others. 

AM has been used to build prototypes, manufacture the final products, or even repair 

damaged components, innovating the global manufacturing industry [2–6]. Many com-

panies have invested in developing new AM techniques and materials, optimizing the 

process parameters, reducing costs, and making the AM a competitive piece of technology 

[7,8]. Different sectors have benefited from using AM [9,10], such as medical [11–16], aer-

ospace [17–20], automotive [21–23], supply chain [6,24–26], and others. Compared to the 

traditional subtractive manufacturing techniques, AM is characterized by being less 

wasteful, enhancing resource efficiencies, and changes in the design and production 

phases. Kozoir [27] presents the effectiveness of optimizing AM processing parameters to 

reduce the mass of models, keeping the desired mechanical properties. AM also extends 

the product life cycle by repairing high-cost parts, and reconfigures the value chains to be 

shorter, collaborative, and offer remarkable sustainability benefits [6,28]. In this way, AM 

offers clear benefits from the viewpoint of sustainability [29–31]. 
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The commercial use of AM emerged for polymers in the 1980s, introducing Stereo-

lithography (SL), which involves curing a photosensitive liquid polymer by a laser beam 

[32,33]. An evolution in equipment changed the raw material to the powder form, using 

Selective Laser Sintering (SLS) to fuse this powder [34]. Other classes of AM for polymers 

are Material Jetting (MJ) [35,36], Binder Jetting (BJ) [37,38], Material Extrusion (ME) 

[39,40], and Sheet Lamination or Laminated Object Manufacturing (LOM) [41]. The tech-

niques consolidated for polymers have been successfully applied for other materials also, 

such as BJ for ceramics and metals [37,42,43], LOM for metals [44,45], and ME for compo-

sites [40,46]. Various processes are available for metal AM processing for the most differ-

ent alloys and applications. The selection or choice of the adequate process depends on 

the part’s geometry, complexity, mechanical properties, and other factors [47,48]. 

The metal AM processes differ from the heat source and metal feeding method or 

type. Some options are the laser process, Selective Laser Melting (SLM) or Sintering (SLS), 

Direct Metal Laser Melting (DMLM) or Sintering (DMLS), or Laser Metal Fusion (LMF), 

besides the Electron Beam Melting (EBM) process [49–51]. These are methods which are 

applied to the parts that need low or no machining post-processing or are used directly as 

end-use products. Other processes are presented in the literature but are not capable of 

producing complex geometries, such as Gas Tungsten Arc Welding (GTAW) [52–54], Gas 

Metal Arc Welding (GMAW) or Wire Arc Additive Manufacturing (WAAM) [55–58], 

Plasma Arc Welding (PAW) [57,59–61], Friction Stir Energy Manufacturing (FSAM) 

[62,63], and Ultrasonic Additive Manufacturing (UAM) [64,65]. Examples of AM by weld-

ing processes that demand post-machining are repairing long fatigue cracks in hydro 

powerplant runners [66] or repairing eroded gas turbine blades [67]. 

Cold Spray (CS) is a thermal spray process designed for coatings that has extended 

its use to produce freeform parts [28,68–70]. CS produces harder microstructures than 

other AM processes, as studied by Gamon et al. [71], who present CSAM-ed Inconel 625 

with 600 HV. On the other hand, WAAM, SLM, EBM, DMLM, and BJ resulted in less than 

300 HV. Figure 1 presents the AM technology maturity, evidencing the actual industrial 

use of the laser processes, SLM and DMLM, as WAAM. The prediction is to use CSAM 

industrially in a short time, less than two years, but a long development journey for FSAM 

and UAM [72]. This work aims to present the trodden path by CS as an AM technique and 

the foreseen way to consolidate and diffuse CSAM in the industry. Figure 2 shows exam-

ples of AM-made products employing different strategies. 

 

Figure 1. AM maturity index for producing metallic parts. 
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(a) (b) (c) 

  
(d) (e) 

Figure 2. Metal AM parts. (a) DMLM-ed stainless steel gas turbine housing. Reprinted with permis-

sion from Ref [18], Elsevier, 2017. (b) DMLM-ed Ti6Al4V airfoil [18], (c) CSAM-ed Ti bracket. Re-

printed with permission from Ref [2], Elsevier, 2018. (d) CSAM-ed and DMLM-ed bimetallic thrust 

chamber. Reprinted with permission from Ref [73], NASA, 2021. (e) WAAM-ed stainless steel bridge 

in Amsterdam. Reprinted with permission from Ref [74], Elsevier, 2019. Unit: mm. 

This paper presents and discusses the evolution and advances of CSAM critically, 

following the scheme shown in Figure 3. 

 

Figure 3. Flowchart of the topics presented in the work. 
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2. Cold Spray Process 

This section describes the CS process, its fundamentals, principles, parameters, and 

their selection, which is essential to understanding and placing CS as an AM process. CS 

is a thermal spray process investigated and presented by many authors as an alternative 

to producing AM freeform parts. It has severe differences from the laser, welding, and 

other thermal spray processes since CS does not change the properties of the feedstock 

powder by heating or melting during the AM part fabrication because the powder is kept 

below its recrystallization temperature during the spraying time [75–77]. However, CSAM 

produces parts with a very high density, >99%, due to the very high velocity imposed on 

the particles, reaching supersonic velocity values [78–80]. Therefore, the correct selection 

of feedstock powder, deposition parameters, and strategy are fundamental for achieving 

high Deposition Efficiency (DE) and good CSAM performance [81–84]. CS also prevents 

materials oxidizing during the deposition due to the relatively low temperature that the 

material absorbs at the spraying time [85]. In addition, CS avoids other harmful effects 

seen in other AM or thermal spray processes, such as evaporation, melting, recrystalliza-

tion, tensile residual stresses, debonding, and gas releasing, besides the ability to deposit 

high-reflective metals such as Cu and Al [28,83,86,87]. A great CSAM advantage is the 

possibility of the deposition of dissimilar materials, e.g., a sandwich-like structure of Cu 

and Al [88], which is not feasible by welding. 

Historically, CS has been presented in the literature by different names: “kinetic en-

ergy metallization”, “kinetic spraying”, “solid-state deposition”, or “high-velocity pow-

der deposition”, and others [78,89]. Its principle and physics of operation were studied 

during the XX century, with the operational evolution starting in the 1980s. Still, its com-

mercial development started just in the early 2000s [86,89,90], increasing its expansion 

from the R & D sector to the industry since then, and with a prediction of widespread 

industrial use in less than two years [91]. CS is the thermal spraying process to which a 

large number of studies and publications have been devoted over recent years, presenting 

its principles and physics, but, nowadays, emphasizing industrial or real applications of 

the technique and mainly its use in the AM field [2,28,81,92–97]. The monetary benefits 

are imperative to select CSAM as an industrial production technology. A comparison 

among the metal AM technologies was presented by Munsh et al. [91], and CSAM was 

highlighted as the lowest cost per volume fabricated and the highest deposition rate, 

reaching kg·h−1 [79,81]. Besides the component at hand, the advantages of AM over tradi-

tional or subtractive fabrication processes include the redesign potential of the whole sys-

tem, which is not easily measurable [91]. 

CSAM produces a coating or bulk component generated by a solid-state cohesion 

during the powders’ impact on a substrate. The working gas is previously heated in a 

chamber, reaching high pressure, flowing through a de Laval or similar convergent–di-

vergent nozzle, accelerating it to supersonic velocities, and dragging the feedstock pow-

ders. [68,78,98]. The working gas pressure classifies CS, as presented schematically in Fig-

ure 4. Low-Pressure Cold Spray (LPCS) operates under 1 MPa, and High-Pressure Cold 

Spray (HPCS) uses higher pressure levels. A Medium-Pressure Cold Spray (MPCS) is a 

commercially available system, Titomic D623. LPCS is limited to a few materials and can 

be portable or manually operated, accrediting it for in-field operation and repair services. 

At the same time, HPCS is the CSAM used for many materials, but has heavier and more 

equipment than LPCS, employing a bigger gun, heat exchanger, energy source, robot, and 

acoustic enclosure (soundproof booth) for the operation, because the noise usually ex-

ceeds 100 dB [2,10,99,100]. This change in gas pressure and equipment configuration in-

fluences the sprayed particle velocity since the high velocity of particles is a consequence 

of high gas pressure and the nozzle design [101–105]. Another difference between the 

LPCS and HPCS is the powder feeding; for the first one, the particles are dragged by the 

working gas in the nozzle directly, using a downstream mode. On the other hand, HPCS 

uses an upstream injection mode, and the powder feeder is connected to a feeding gas 
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line, which improves the powder flowability, and increases the range of powders which 

are CS sprayable [90,106]. 

 

Figure 4. LPCS and HPCS schemes. Reprinted with permission from Ref [2], Elsevier, 2018. 

The bonding mechanism of the solid-state particles to a substrate still has to be un-

derstood entirely. However, it is believed that their high energy at the impact disrupts the 

oxide films on the particle and substrate surfaces, pressing their atomic structures into 

intimate contact with each other under short high interfacial pressures and temperatures. 

This mechanism is called Adiabatic Shear Instability (ASI) [107,108]. It supports the suc-

cess in coating ductile materials, such as Cu and Al, and flops in spraying brittle materials, 

such as ceramics or carbides [78]. At the impact, most of the kinetic energy from the in-

flight particles is converted into heat or the plastic deformation of the substrate and the 

particle, which can produce strain, ultimately shear instability, and jetting. With an in-

crease in local temperature, thermal softening alters the capacity of the material to trans-

mit shear forces, and eventually, the softening process dominates over strain hardening 

[109–111]. Hassani-Gangaraj et al. [112] show the jetting happening with or without the 

material having a thermal softening capacity, proposing that CS jetting is formed as a re-

sult of strong pressure waves in the particles, expanding the particle edges. This mecha-

nism is related to hydrodynamic processes that promote jetting, such as liquid droplet 

impacting, shaped-charge jetting, and explosion welding. The critical velocity (Vcr) of par-

ticle for the bonding was mathematically related to the bulk speed of sound, which was 

minutely commented by Assadi et al. [113], who refuted those conclusions and sustained 

the ASI as the strongest and the primary bonding mechanism for CS-ed particle. Chen et 

al. [114] also proposed a low-velocity impact-induced metal bonding, in which the con-

ventionally accepted metal jetting and melting may not be prerequisites for solid-state 

impact-induced bonding. 
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2.1. Cold Spray Parameters 

The properties of CSAM-ed parts, such as density, porosity, adhesion, or hardness, 

depend on the CS spraying parameters, which have to be set to spray the particles in a 

specific velocity range or deposition window [79,80,85,103]. A velocity of a particle below 

a Vcritical or Vcr value does not promote the particle bonding, and an excessive velocity, 

Verosion or Ver, results in the erosion of the substrate instead of a deposition consolidation. 

This ideal velocity depends on the particles’ properties and substrate materials 

[80,115,116]. Table 1 lists the Vcr and Ver for the most CSAM-ed materials. 

Table 1. Window of deposition for CS. 

Material Vcritical [m·s−1] Verosion [m·s−1] Ref. 

Al 625 1250 [79,117] 

316L 550 1500 [79,117–119] 

Cu 570 1000 [79,120] 

Ti 700 1750 [79,117,121] 

Ti6Al4V 750 2500 [122] 

Ni 570  [117,120] 

Inconel 718 600 1700 [123,124] 

Process parameters optimization is based on particular applications and equipment, 

working gases, substrate and feedstock materials’ characteristics, and others. Typically, 

these parameters include the gas type, temperature, pressure, nozzle geometry, throat 

size, and deposition robot strategy. In addition, a critical point is the feedstock powder 

material itself, particle size distribution, shape, and particle attributes, such as oxide skins 

and mechanical properties, which influence the ability to form a compacted layer 

[78,80,83–85,99]. 

For the CSAM, the working or main gas commonly used is N2 or He, or N2/He mix-

tures, but for LPCS and MPCS, compressed air is a low-cost option also [2,90,125,126]. N2 

has a lower cost than He and, due to the high consumption of the working gas, it is the 

choice for the main gas. For CS using He instead of N2, the particles are propelled with a 

higher velocity due to He’s higher atomic mass [126–130], e.g., CS-ed 316L (particle size 

28 μm) with He reaches 750 m·s−1, but less than 500 m·s−1 with N2 as the working gas [131]. 

The CS working gas temperature is set up to high values in the CS gun heating chamber, 

e.g., 1100 °C for spraying 316L [132]; however, after passing through the nozzle, the gas 

expands, reducing the density and temperature [131,133]. Lee et al. [134] presented a CFD 

gas flow simulation in which a CS gas heating chamber at 1200 K and 20 bar resulted in 

less than 800 K in the CS gas jet, but a velocity higher than 1300 m·s−1. Considering the 

heat transfer inertia from the gas to the particle and the short time of exposition, the tem-

perature of the particles is much lower than 800 K, maintaining the sprayed particles be-

low their recrystallization temperature. It influences the properties of the sprayed mate-

rial, such as the particles’ cohesion, adhesion, strength, and others. For example, for Ti 

coatings, the cohesion measured by TCT (Tubular Coating Tensile) [135] had a linear re-

lation with the gas temperature [121], and higher cohesion corroborates a material with a 

lower porosity, higher strength, and DE. However, by selecting a high gas temperature, 

the cold work and hardness in the material are dwindled by partial recovery and recrys-

tallization phenomena [136,137]. 

The Standoff Distance (SD) is how far the substrate surface is from the gun nozzle 

exit. This distance has an optimum value, where the velocity of particles reaches the peak, 

impacting the substrate with the highest energy possible. A relation presented in the lit-

erature as a reference for an excellent SD is seven times the gas jet diameter. Further, the 

pressure reduces drastically [86], e.g., for a 3 mm gas jet diameter, the SD should be 

21 mm. Turbulences, the oscillation of the gas jet, and the irregular distribution of the par-

ticles impacting the substrate are also seen to increase the SD, which reduces the DE [138], 
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as confirmed experimentally for CS-ed Al, Cu, and Ti [139]. The adherence of CSAM-ed 

Ti6Al4V on the steel substrate increased by optimizing the SD parameter, reaching the 

best value of 50 mm without delamination [140], showing that the relation of an SD seven 

times the gas jet diameter proposed by Kosarev et al. [86] is just a starting point for pa-

rameter optimization and not a rule. 

The robot path and velocity influence the characteristics and properties of the CS-ed 

material; the step between the sprayed single tracks has to be optimized to guarantee good 

adherence and produce a flat and smooth deposit surface because an insufficient overlap-

ping distance results in a wave surface [138]. Therefore, rotating is one of the most applied 

strategies for CSAM, building up the part by coating a rotating pipe-like substrate, result-

ing in parts with symmetry, such as the one presented in Figure 2d, after the post-machin-

ing process. This strategy promotes the good adhesion and cohesion of particles but limits 

the geometries feasible to the symmetrical ones. The use of alternate directions, Figure 5b 

with the CS laden-jet particles in the Z-direction, increased the material’s isotropy when 

compared to the traditional strategy, Figure 5a with the CS laden-jet particles in the Z-

direction, for CS-ed Cu thick parts [141]. Compression tests in the X- and Y-direction in-

dicated different crack propagation paths for the bidirectional strategy, revealing that the 

robot path influences the preferential direction for crack propagation [142]. The robot path 

also may change the angle of the impact of particles, drastically affecting the DE and ma-

terial microstructure. For CSAM, the robot path has a crucial function since the part side-

walls grow up and follow an angle, which has to be rectified to the designed and desired 

inclination. An adequate robot programme can spray on the inclined sidewall with a jet 

angle that corrects it, improving DE [92,143–145]. 

  
(a) (b) 

Figure 5. Different robot path strategies for CS-ed deposition. (a) Traditional or bidirectional, and 

(b) cross-hatching. 

CS almost always uses conventional powders as feedstock materials developed for 

Air Plasma Spray (APS), High-Velocity Oxy-Fuel (HVOF), or laser processes in a spherical 

and finer particle size range at best. Various techniques are available to produce metallic 

powders, which are chosen by the chemical composition, characteristics, and/or proper-

ties required for the powder [146]. For the CS, the particles’ metallurgical, morphological, 

and physico-chemical characteristics influence the spraying success and material perfor-

mance [83]. Since CS does not promote recrystallization during the deposition, a deposit 

with a refined microstructure is obtained by selecting a small grain-size feedstock powder. 

It improves the mechanical properties; however, a larger gain size promotes more ductil-

ity to the particle. Using HT to reach the ideal powder microstructure was an alternative 

presented by Poirier et al. [147] for CS-ed H13 tool steel and by Story and Brewer [148] for 

aluminum alloys, resulting in a DE increase from 35 to 60% and from 70 to 90% to Al7075 

and Al6061, respectively. Silvello et al. [84] summarized the relationship between powder 

characteristics, CS process parameters, and the CS-ed material properties by modeling 
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and the experimental results. Table 2 presents coefficients for the model proposed using 

modeFRONTIER software, in which negative values represent inverse input/output rela-

tionships. It is noticed that the particle diameter and hardness influence the CS-ed mate-

rial characteristics, highlighting the porosity, which is responsible for some CS drawbacks, 

such as a short fatigue life. 

Table 2. Correlation behavior among the different input/output for CS [84]. 

Input /  

Output 

Particle 

Diameter 

Particle 

Hardness 

Gas 

Pressure 

Gas 

Temperature 

Particle 

Velocity 

Deposit 

Hardness 
Porosity DE FR 

Particle 

diameter 
1 0 0 0 −0.431 −0.187 −0.213 0.104 0.097 

Particle 

hardness 
0 1 0 0 0 0.935 0.109 0 −0.324 

Gas 

pressure 
0 0 1 0 0.594 0.417 −0.682 0.768 0.804 

Gas 

temperature 
0 0 0 1 0.498 0.297 −0.471 0.592 0.897 

Particle 

velocity 
−0.431 0 0.594 0.498 1 0.682 −0.734 0.803 0.817 

Deposit 

hardness 
−0.187 0.935 0.417 0.297 0.682 1 0 0 −0.352 

Porosity −0.213 0.109 −0.682 −0.471 −0.734 0 1 0 −0.819 

DE 0.104 0 0.768 0.592 0.803 0 0 1 0 

FR 0.097 −0.324 0.804 0.897 0.817 −0.352 −0.819 0 1 

CS powders must be characterized before spraying, measuring their particle size dis-

tribution by the ASTM B214 standard [149], a sieving separation of the larger and smaller 

particles, or the laser scattering, classifying the particle size distribution by measuring the 

laser-illuminated flowing particles. The powder flowability is measured by the time 

elapsed to flow a certain powder mass through a certified Hall flowmeter, following the 

ASTM B213-20 standard [150], which is used to measure the powder’s apparent density, 

as indicated by the ASTM B212-21 standard [151]. A previous characterization of the pow-

der is imperative since powders with a flowrate higher than 1 g·s−1 tend to build up and 

block the gas flow in the nozzles for LPCS [146]. For HPCS, Vaz et al. [132] presented the 

flowability for different 316L, resulting in 9 and 17 g·s−1 for the irregular and spherical 

shapes, respectively. This powder characteristic impacted the CS powder feeding, which 

was 0.43 and 0.55 g·s−1 for the irregular and spherical shapes, respectively. By machine 

learning, Valente et al. [152] show how to predict a novel powder flowability on a per-

particle basis, which can help scholars develop their alloys and powders for CSAM. 

An irregular shape of the particles does not necessarily result in a coating or CSAM-

ed part with worse properties [153–155]. The high deformation of the CS-ed particles at 

the impact can act as compensation for their shape irregularity and even for the particle 

size distribution, which enables using coarse particles, as presented by Singh et al. [153], 

who obtained similar material strength by coarse and fine Cu particles. CS-ed 316L coat-

ings using water-atomized powders, which had an irregular shape, presented corrosion 

behavior and a wear-resistance performance very similar to, or even better than, the coat-

ings obtained with spherical gas-atomized powders [132], indicating the viability of using 

a lower-cost raw material for CS, since the 316L gas-atomized powders are more expen-

sive than the water-atomized ones. Wong et al. [155] obtained very similar porosity values 

(3.0 ± 0.5%), DE (100%), and hardness (200 ± 10 HV) for CS-ed Ti coatings employing ir-

regular and spherical shape powders, but considering coating quality, the authors sug-

gested the medium-sized spherical powder the best CS option. For Ti6Al4V, spherical 
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particles presented a higher hardness and cohesive strength than a very irregular powder 

obtained by the Armstrong process, as shown by Munagala et al. [156]. In addition, the 

powder size distribution influences the CS-ed particles’ velocity; smaller particles reach 

higher velocities than bigger and weightier ones, as presented in a simulation performed 

for 5, 25, and 50 μm Al particles. The first one resulted in a velocity higher than 600 m·s−1, 

but the last one was lower than 500 m·s−1 [157]. For CS-ed Cu particles, small particles, 

5 µm, reached a velocity of 700 m·s−1, while big particles, 90 µm, accelerated up to 

300 m·s−1. Bagherifard et al. [119] presented a 316L fine powder, –29 + 12 μm, with a higher 

spraying velocity than coarse particles, –45 + 19 μm, which resulted in a material with 

higher particle deformation, mechanical properties, and electrical conductivity. Mean-

while, the Vcr is dependent on the particle size, and smaller particles have a much higher 

Vcr than the bigger ones, resulting in an even higher velocity, meaning small particles may 

not bond, and an optimum size range is achieved for each material, which is generally 

between 10 and 60 μm. When improving the temperature of particles, Vcr is reduced, re-

vealing the need to improve the CS working gas temperature to increase the temperature 

of smaller particles and the velocity of bigger particles [133,158,159]; however, higher gas 

temperatures put the equipment in an undesired condition, overloading it and promoting 

nozzle clogging. 

The literature explains how the CS nozzle wall at a high temperature induces clog-

ging because low-melting-point hot particles flow through the nozzle and collide against 

the nozzle’s inner hot wall, inducing the bonding between the particles and nozzle wall, 

resulting in nozzle clogging [157,160]. Different solutions have been evaluated by re-

searchers aiming to reduce the clogging and improve the nozzles’ service life: the assem-

bly of cooling systems surrounding the nozzle to reduce its temperature [157]; redesigning 

the nozzle for a bi-material component, using glass and WC [161]; aligning the sprayed 

particles by an electric field and avoiding them to touch the nozzle’s hot wall [162]; and 

others. Clogging can be solved by cleaning methods, such as spraying hard particles at 

high temperatures or a chemical cleaning with acids. However, besides the monetary loss 

of clogging, it reduces the DE, can overload the gun chamber dangerously, and imposes 

maintenance stops during the deposition, generating undesired temperature transitions 

for large CSAM-ed parts. Sun et al. [10] comment that clogging has been one of the limi-

tations of a more industrial CSAM application. 

2.2. Challenges for CSAM 

CSAM is a technique with great benefits compared to other AM methods. Therefore, 

it has excellent potential to be implemented in the solid-state AM industry to produce 

free-standing parts or repair worn components [2,163]. Yet, CSAM is still an emerging 

technology facing several challenges that need to be studied, such as low as-sprayed geo-

metric tolerances, inferior mechanical properties compared to wrought materials, residual 

stresses, and low DE-depositing hard materials. In this section, these challenges are dis-

cussed, along with the strategies studied to overcome them. Figure 6 presents a scheme of 

the pros and cons of CSAM over other metal AM processes. It also indicates the advances 

studied and investigated to overcome the drawbacks. 
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Figure 6. CSAM advantages and drawbacks, and the alternatives presented in the literature to over-

come them. 

2.2.1. Possible CSAM Geometries 

The AM technologies rely on building an object layer by layer. Thus, controlling ge-

ometric tolerances is imperative to produce complex shapes or near-net-shape parts. Still, 

CSAM has to be more precise, and the literature presents some reasons for this CSAM 

limitation. First, because the velocity profile of the particles in the jet spot that exits the 

nozzle is uneven, the center of the laden-jet particles has a higher density of particles and 

greater velocities, promoting a superior deposition on this region than on the jet periph-

ery. Cai et al. [138] simulated the single-track deposit profile, concluding that a 2D distri-

bution profile approximately fits a Gaussian curve. Ikeuchi et al. [164] evaluated different 

machine learning approaches to accurately preview the CSAM track profile, saving much 

experimental time and CSAM spraying costs. Furthermore, Kotoban et al. [165] investi-

gated the relationship between the shape of a single-track coating and the DE, concluding 

that in the first layer deposition, the particles on the jet periphery have a slight decrease 

in DE compared to the jet core, producing a triangle shape deposit that sharpens layer by 

layer. Finally, Wu et al. [166] developed a model to compensate the layer thickness by 

optimizing the robot velocity at the different regions on the substrate surface, resulting in 

a smoother CS-ed material surface. 

Knowing that CSAM-ed deposits tend to produce pyramid-shaped coatings, some 

robot path trajectories and strategies have been developed to obtain near-net-shape parts 

[144,167–173]. For instance, Wu et al. [167] established a new stable layer-by-layer build-

ing strategy that sprays at a deflected angle towards the inclined walls of the pyramid-

shaped coating, which allows building components with straight walls. Another example 

is the work of Vaz et al. [144], where a new method was implemented that consists of 

spraying with a circular movement at an angle different than the normal and allows free-

standing building with controlled shapes, as presented schematically in Figure 7, but well 

described in the literature by Vaz et al. [144]. Yet, further studies on deposition strategies 

and the production of free-standing components are encouraged since they can expand 

the application areas of CSAM. 
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Figure 7. Metal Knitting, a CSAM alternative strategy to the traditional deposition. Reprinted with 

permission from Ref. [171], Springer Nature, 2020. Unit: mm. 

CSAM can produce arrayed structural components, as presented in Figure 8 for 

CSAM-ed Ti on stainless steel. It was made by masking the substrate to shadow the areas 

where the sprayed material was not supposed to cover. Masking has been presented in 

the literature for other thermal spray processes, using tapes, pastes, shields, or other high-

temperature resistant material removed after the coating deposition [174–177]. CFD has 

been developed to understand the influence of the masks on the CS gas flow, disturbances 

on the particle’s trajectory, and the formation of bow shockwaves, which reduces the gas 

velocity [178]. It suggests using a higher particle velocity and setting the CS parameters 

to suppress this harmful effect of the masking strategy. Klinkov et al. [179] presented a 

model showing the impact of the mask on the particle behavior, velocity, and trajectory. 

The distance of the mask to the substrate cannot be excessive because it affects the depo-

sition geometry, decreasing the width of the masked zone and diminishing the accuracy 

of the CSAM-ed geometry. An industrial application of the CSAM masking strategy is the 

fabrication of compact heat exchangers for electronic devices [180–183]. As well as array 

structures, diverse geometries are feasible, such as Braille impression for blind people or 

raised areas in molds for plastic injection, among others. 

 

Figure 8. CSAM-ed Ti on stainless steel using masking strategy. Unit: mm. 

Applying CSAM with other processes is a hot topic for industrial applications, e.g., 

for a unique component, some regions can be CSAM-produced, which is faster, and others 

can be DMLM-made, resulting in more details or complex geometries. Another CSAM use 

is joining dissimilar materials because CS has no metallurgic union with the substrate. It 
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is helpful for composites, e.g., a carbon-fiber-reinforced polymer or a sintered SiC. This Al 

interlayer strategy was tested by Xie et al. [184] for joining TiN/Ti6Al4V, but using a hot 

dip to make a 25 μm-thick Al coating; however, it can promote an undesired atomic dif-

fusion depending on the materials and process temperatures and time, which is prevented 

by using CSAM. These hard- or impossible-to-weld materials can have a surface coated 

by a thick CSAM weldable material, e.g., Al or 316L, which can be joined on other struc-

tures quickly. Champagne Jr and Champagne III [185] presented this method for using CS 

directly as the joining element and growing a CSAM-ed volume on the part to be arc-

welded on another element. This joining was tested for a light-alloy magnesium ZE41A-

T5, employing Al as the filler metal [186], joining Al 6061 to a ZE41A Mg alloy using CS 

sprayed Al as the transition material on the Mg alloy surface and welded to Al 6061 by 

FSW [187,188], and joining Al to Cu by FSW with a Ni interlayer [189]. Daroonpavar et al. 

[190] presented CS with the capability to make a corrosion-resistant coating on an AZ31B 

Mg alloy, employing the metallurgically incompatible Ta–Ti–Al layers, also reducing the 

wear rate from 1010 to 108 μm3·N−1·m−1. 

2.2.2. Improving the Mechanical Properties 

To date, CS processes have been used mainly in the aerospace, automotive, marine, 

and defense industries, where the performance requirements of the deposits are very de-

manding [99,163]. Therefore, one of the main issues with CSAM is the mechanical prop-

erties of the deposits. Apart from the hardness, which tends to be greater than the bulk 

due to the cold work hardening of particles during impact [132,144,191], the as-sprayed 

deposits present less favorable mechanical properties, such as lower strength, ductility, 

electrical and thermal conductivity, and wear resistance. It is attributed to the inherent 

microstructural defects of the CS process, such as micro-pores and interparticular bound-

aries [2,191]. Moreover, as the particles are arranged layer by layer, anisotropic responses 

have been reported in the literature for CSAM-ed deposits [141]. The literature presents 

anisotropy for other processes that deform the material in a preferential direction, e.g., 

cold rolling [192–194], extrusion [195], friction stir welding [196], or even laser AM pro-

cesses [197,198]. For CSAM, high isotropy was observed in a plane parallel to the substrate 

surface [141,199–201], but in a vertical or Z-direction, the material had lower strength. This 

behavior is presented in the literature for CSAM-ed Cu [171], Al [202], and 316L [203]. 

Moreover, the use of CS is also limited by the intrinsic characteristics of the materials. 

For example, only soft and ductile materials, such as Cu and Al, are easily deposited, 

which is deducted from the number of papers linking “cold spraying” and “aluminum” 

or “copper” keywords. In contrast, hard materials (e.g., Maraging steels, Ti6Al4V, Inconel 

718, etc.) with the poor capability to deform at a solid state can hinder the formation of a 

dense component [28]. Therefore, recent studies focus on optimizing the CS process pa-

rameters to obtain the ideal Vcr for each material so that quality coatings are produced 

[77,99,123,204–206]. For instance, Li et al. [205] did a literature review on the solid-state 

CS-ed Ti alloys, focusing on the process parameters, deposition characteristics, and limi-

tations of these materials. Another example is the work of Pérez-Andrade et al. [123], 

which presents the optimization of parameters and post-treatment processes for obtaining 

high-quality thick deposits of Inconel 718 for AM applications. 

CS-ed coatings also tend to be influenced by compressive residual stresses generated 

by the severe impact deformation of the particles. Such compressive stresses can be bene-

ficial up to a certain point. However, if they are too high, the adhesion of the deposit is 

usually hindered, and a crack can nuclei and grow in the interface substrate/coating, or it 

can completely detach, de-coating from the substrate [207,208]. For CSAM, these residual 

stresses are accumulated layer by layer, and if the particles have poorly adhered to the 

substrate, the deposit separates from the substrate. Making freeform parts is not a prob-

lem because the substrate has to be eliminated and only acts as a base or support. Still, 

with the employment of CSAM as a repairing method, this detachment and low adhesion 

is highly prejudicial of the excellent performance of the repairing service. 
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These challenges represent a drawback for CSAM compared to other AM methods. 

Nevertheless, several process strategies have been successfully explored in the literature, 

such as post-processing methods (e.g., HT) or hybrid deposition technologies, such as La-

ser-Assisted Cold Spray (LACS) and Cold Spray Shot Peening (CS-SP). 

Heat Treatments (HT) are one of the most effective ways to enhance the microstruc-

ture of CSAM-ed deposits [2]. The tailoring of the final properties of a broad range of 

materials with HT, such as Cu [136,208–210], Al alloys [208,211–213], Ti alloys [208,214–

216], Ni alloys [81,123,124,204,217–219], 316L [119,208,220], among others, is reported in 

the literature. Furthermore, HT relieves residual stresses, reduces the microstructural de-

fects (e.g., porosity and particle boundaries), and improves the cohesion between particles 

which significantly influences the material performance, since the failure mechanism dur-

ing the stress loading changes from an interparticular mode to a cleavage-like and ductile 

mode. In the first one, the crack grows surrounding the particles and detaches one to the 

other. HT promoted a metallurgical bonding of particles, increasing cohesion, material 

strength, and plasticity or ductility. Dimples evidenced it in SEM images of the fracture 

surface [202,210,221–223]. For Inconel 718, Sun et al. [124] applied induction for heating 

the material, which represents a possibility to select the CSAM-ed part region to be HT-

ed, instead of the whole material, e.g., treat only the component areas that are exposed to 

wear or friction. The induction HT promoted the cohesion of the particles by the eddy 

current, as well as the atomic diffusion, which resulted in higher mechanical properties 

due to higher dislocations and twin densities in the neck formed between the particles 

than in the particles’ center [224]. Due to the hardness reduction, Zhang et al. [225] pre-

sented the HT-positive effects on the post-machining process of Al7075. Another heating 

process is Electric Pulse Processing (EPP), in which applying high-density electron 

charges through the material promotes changes in the microstructure and mechanical be-

havior of alloys, such as precipitates distribution, yield strength, elongation, and hardness 

[226]. For example, for CSAM-ed Cu, Li et al. [210] show an expressive improvement in 

its mechanical properties, reaching a UTS of 200 MPa over 100 MPa in the as-sprayed 

condition and elongation of 20% over 2%. 

Particularly, annealing is considered a simple post-processing method that positively 

impacts the as-sprayed CSAM microstructure. It promotes diffusion and recrystallization 

processes that mitigate the undesired microstructural defects and change the mechanical 

properties; the work-hardened deposits are softened, increasing their ductility, but reduc-

ing their hardness compared to their as-sprayed counterparts. 

Spark Plasma Sintering (SPS) is a technique developed for ceramics and powder met-

allurgy that has improved CSAM-ed density and mechanical properties. SPS is pressing 

compacted powder and applying a pulsed current discharge that can reach thousands of 

Amperes but low voltage under pressure. It generates plasma between the intimate close 

particles, which results in micro welding, forming necks at contact points, atomic diffu-

sion, and plastic flow [224,227–229]. In addition, Joule heating and plastic deformation 

enhance the sinter’s densification, improving the particles’ cohesion and material strength 

[230]. For the CS-ed TiC–Cu composite, SPS eliminated the interparticular region [231]. 

The SPS temperature was directly related to improving the mechanical properties, ductil-

ity, and decreasing the hardness of the CSAM-ed Cu, as presented by Ito and Ogawa [230], 

who selected 50% of the Cu melting point as the maximum SPS temperature for 5 min. 

This short time is an advantage of SPS over annealing, which typically keeps the material 

in the furnace for hours. Figure 9 shows the microstructures of CSAM-ed Ti6Al4V as-

sprayed and after SPS post-treatment. 
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Figure 9. SPS effect on CSAM-ed Ti6Al4V microstructure. 

Another HT that has recently drawn attention in the field of CSAM is Hot Isostatic 

Pressing (HIP), which is presented in detail by Bocanegra-Bernal [232] and by Atkinson 

and Davies [233]. The HIP technique can be used directly to consolidate a powder or sup-

plementary to densify a cold-pressed, sintered, or cast part. This method can eliminate the 

pores and micro-cracks of the material by compressing the samples with high tempera-

tures, e.g., 1000 °C for Ti alloys, to an isostatic pressure in the order of hundreds of MPa 

at the same time, resulting in fully isotropic material properties [234,235]. It has been suc-

cessfully applied to metals, composites, and ceramics obtained by different processes. 

However, few studies are available in the literature for CSAM, and they are focused on 

hard materials that are difficult to deposit by CS, such as Ti [236,237], Ti6Al4V [237–239], 

and Inconel 718 [123]. 

Figure 10 presents the densification and phase changes, precipitating β in an α ma-

trix, in CSAM-ed Ti6Al4V employing N2 and He as the CS working gas. However, this 

post-treatment cannot close exposed porosity because the HIP gas fills these pores. A so-

lution is a pre-HIP process of encapsulating the sample and converting those into internal 

pores to be removed by the HIP. The HIP also cannot remove large internal pores since 

diffusion bonding does not occur when metal/metal contact is not intimate. It happens 

when the CS-ed material has low plasticity even in high temperatures, if the surfaces of 

the internal defect are oxidized, or if there is a gas inside the pore that does not diffuse, 

e.g., air, He, or N2 [232]. It represents a limitation for CSAM HIP use if the CS-ed deposi-

tion process cannot produce parts with very low porosity and a very thin interparticular 

region, which occurs when spraying low-ductility powders. 
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Figure 10. Effect of HIP on the microstructure of CSAM-ed Ti6Al4V, densification, and phase 

change. SEM images with (a,c,e,g) low magnification and (b,d,f,h) high magnification. Reprinted 

with permission from Ref. [238], Elsevier, 2019. 

The melting or sintering AM processes drastically change the microstructure of the 

feedstock material during the processing, and CS represents an advantage over SLM or 

DMLM in this point. However, a hybrid process of coating a CSAM-ed part can signifi-

cantly improve its wear and corrosion performance, as presented by Vaz et al. [240] coat-

ing CSAM-ed Maraging with HVOF-sprayed WC. In addition, Feng et al. [241] used in-

duction heating to remelt AlCoCrCuFeNi HEA, improving the wear resistance by phase 

transformations. Laser remelting or glazing has been investigated as a post-treatment on 

CSAM, eliminating micropores within the deposit and enhancing the cohesion of parti-

cles. Remelting changes the ASI and other CS bonding mechanisms for metallurgical 

bonding. Laser remelting of CS-ed Al onto steel substrate presented an FeAl intermetallic 

formation, improving its wear resistance [242]. For Ti, Astarita et al. [243] and Marrocco 

et al. [244] obtained a thin and dense remelted layer, which improved the corrosion be-

havior in a 3.5% NaCl solution, reaching the same performance as a wrought Ti bulk. 

Kumar et al. [245] showed an improvement in the wear resistance for the Ti-based MMC. 

The laser glazing applied on CS-ed Inconel 625 eliminated the cold-worked micro-

structure, generating a columnar dendritic one. It reduced the hardness but eliminated 

the interconnections between the pores, increasing the material corrosion performance 
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[246]. Zybala et al. [247] improved the surface hydrophobicity of CSAM-ed irregular pow-

ders Ti6Al4V and Ti after laser surface post-treatment. This condition is attractive for 

CSAM-ed parts developed for the Oil and Gas sector, where Ni-based alloys have been 

employed as CO2 and H2S corrosion-resistant materials. Other cheaper heat sources can 

be studied, and it is a lack in the literature, e.g., PAW, used by Pukasiewicz et al. [248,249] 

for HVOF-sprayed FeMnCrSi coatings, or GTAW, applied by Zabihi and Soltani [250] for 

FS Al-based MMC coatings. 

Plasma Electrolytic Oxidation (PEO) or micro-arc oxidation has been used to produce 

hard ceramic coatings on Al and other alloys [251]. It improves their wear and corrosion 

resistance due to the formation of the protective ceramic coating on the material enabled 

by the plasma discharges, supported by an aqueous electrolyte [252]. For CS-ed Al, Rao 

et al. [253] presented a stable, well-adhered, and harder PEO layer formed on the CS-ed 

Al7075 coating, 1353 and 144 HV, respectively, which resulted in a higher dry sliding wear 

resistance. It also improved the corrosion resistance, with a three-order lowered corrosion 

current density. Using PEO on CS-ed Al + Al2O3 on a Mg alloy substrate, Rao et al. [254] 

reduced the sliding and abrasion wear rates ten times, mainly due to the increase in hard-

ness from 700 to 1300 HV. 

The infrared irradiation as a heating source for the HT of CSAM-ed Cu alloys was 

tested by Chavan et al. [255]. This heat source is cheaper than laser equipment and has a 

wavelength range similar to lasers. Still, a significant advantage of infrared irradiation is 

the absence of a furnace, a chamber, or a controlled atmosphere, as occurs for annealing. 

It enables this system for CSAM in situ repairs or repairing large components that do not 

fit in conventional furnaces, e.g., oversized axles or injection molds. Infrared irradiation 

has been previously used for arc-sprayed Zn alloys coatings, improving wear and corro-

sion resistance [256]. 

Shot Peening (SP) is a post-treatment technique of cold working by propelling glass, 

ceramic, or steel balls against the material, reducing the material’s surface roughness, in-

ducing the surface compressive residual stress, and, consequently, increasing the part’s 

fatigue resistance by retarding crack initiation [257]. Moridi et al. [258] showed the SP 

applied for CSAM-ed Al6082, reduced roughness from Ra 12.4 to 4.7 μm and improved 

the depth of the compressive stress layer from 350 to 400 μm, but without a significant 

compressive stress value improvement. Furthermore, due to porosity and plastic defor-

mation reduction, the hardness and corrosion resistance were improved in CS-ed Zn by 

SP post-process [259]. Similar mechanisms and results were obtained by Ball-Burnishing 

(BB), a process in a ceramic or hard ball, with a diameter of <10 mm, which compresses 

and deforms the CS-ed material, as occurs with SP, but without impact, more similar to a 

rolling process. BB was applied to CS-ed 17-4PH stainless steel, improving the depth from 

130 to 190 μm of 200 MPa compressive residual stress [260,261]. In general, any technique 

that improves the part’s fatigue life is attractive for CSAM; however, SP has presented 

low effectiveness and does not indicate more research interest or industrial promisor use. 

Waterjet Cavitation Impact (WCI) is another technique presented in the literature 

that should be tested for CSAM, since there is a lack of this in the literature, aiming to 

improve the material surface properties, especially the compressive residual stress. Cavi-

tation is a phenomenon in which the static pressure of a liquid reduces to below the liq-

uid’s vapour pressure, forming microbubbles that collapse when subjected to a higher 

pressure. It generates shock waves that impact the material surface [262]. For WCI, the 

material is exposed to a water jet under controlled conditions, promoting its plastic defor-

mation and densification, as occurs for SP. WCI has been applied in the industry since the 

1990s for parts produced by different techniques and exposed to fatigue degradation, such 

as gears, shafts, and other [263]. Good results have been exposed in the literature, Zhang 

et al. [264] reached 175 MPa compressive residual stress in a 2A12 Al alloy by a WCI with 

a water jet under 75 MPa and 20 degrees off-normal inclined; Soyama and Okura [265] 

presented how WCI resulted in a significant improvement in the fatigue life of Ti6Al4V. 
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Cold Rolling (CR) was experimented with for CS-ed Cu on steel by Bobzin et al. [266], 

resulting, after a 14% thickness reduction, in cracks and delamination on the coating/sub-

strate interface, which was resolved by annealing at 500 °C before CR, a Thermo-Mechan-

ical Treatment (TMT) or Hot Rolling (HR). It resulted in good adhesion to the substrate 

without cracks in the Cu coating but lower hardness due to the annealing process that 

dwindled the cold working in the particles from the CS-ed deposition. Tariq et al. [267] 

employed TMT for CSAM-ed Al-B4C MMC, reducing by 60% in thickness, improving the 

mechanical properties, increasing UTS from 35 to 131 MPa, and elongation from 0.5% to 

5% due to the interfaces of the particles dramatically enhanced by the diffusion activity. 

TMT has been applied for materials that have poor formability at room temperatures, such 

as Mg alloys [268] or TiAl-based alloys [269,270], as well as the CSAM-ed Ni-Al [271], 

A380 alloy [272], and Al-B4C [267]. Depending on the CSAM part’s geometry designed, 

such as plate-like, TMT is adequate. However, TMT promotes a considerable anisotropy 

for a bulk-like shape due to the unidirectional plastic deformation induced by the post-

treatment. 

Friction Stir Processing (FSP) imposes a friction force on the CSAM-ed material that 

softens the surface, increasing the amount of shear straining in the processed region and 

promoting dynamic recrystallization. Microstructural changes and grain refinement 

showed this, altering the CSAM-ed material’s mechanical properties, porosity, and cohe-

sion of particles [273]. The literature presents the FSP applied for Al alloys [274], Mg alloys 

[275], MMC [276], and 316L [220], focusing on the improvement of their tribological and 

corrosion performance. Ralls et al. [220] studied CS-ed 316L + HT + FSP, showing that the 

post-treatments eliminated the δ-ferrite contained in the powder by atomic diffusion. In 

addition to that, the authors observed a reduction in porosity to values close to zero and 

hardness from 330 to 190 HV, as HT-ed; however, FSP increased it from 190 to 280 HV. 

On the other hand, FSP harmed the CSAM-ed 316L wear resistance, from 2.27 × 10−9 to 

1.02 × 10−9 mm3·N−1·mm−1. Table 3 summarizes the CSAM post-treatments presented in the 

literature, considering their main effects and results studied by scholars. 

Table 3. Post-treatments applied for CSAM. 

Material Post-Treatment Post-Treatment Effects Obtained Ref. 

Cu HT 
Improved conductivity, mechanical properties, isotropy, 

and ductility; reduced hardness. 
[208,210,230,277,278] 

Cu SPS 
Improved mechanical properties and ductility, reduced 

hardness. 
[230] 

Cu FSP 
Microstructure changed, refining grain size, improved me-

chanical properties and ductility, reduced hardness 
[210] 

Cu EPP 
Microstructure changed, refining grain size, improved me-

chanical properties and ductility, reduced hardness 
[210] 

Cu-Al 
Infrared irradia-

tion HT 

Improved electrical conductivity, maintained the elastic 

moduli, improved cohesion of particles, reduced hardness. 
[255] 

TiC-Cu SPS 
Promoted phase change and sintering Ti-C-Cu, eliminated 

interparticular region, increased hardness. 
[231] 

Al6082 SP 

Improved compressive stress layer depth, changed the fa-

tigue fracture mechanism from intercrystalline to transcrys-

talline. 

[258] 

Al-Mg-Sc-Zr HIP 
Maintained a very low porosity, improved mechanical 

properties, improved the compression resistance. 
[237] 

Al-Al2O3 HT 
Promoted phase change, reduced porosity and hardness, 

improved mechanical properties and ductility. 
[213] 

Al-B4C HT 
Improved mechanical properties and ductility, reduced 

hardness. 
[267] 
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Al-B4C- TMT 
Improved adhesion, mechanical properties, and ductility, 

reduced hardness. 
[267] 

316L HT 
Reduced porosity and hardness, maintained phase compo-

sition, improved ductility and fatigue performance. 
[119,208,220,279] 

316L HIP 
Reduced porosity and hardness, maintained phase compo-

sition, improved ductility and fatigue performance. 
[119,237] 

316L HT + FSP 
Improved mechanical properties, reduced porosity, re-

duced hardness negligibly, reduced the wear resistance. 
[220] 

Ti HT 
Maintained the same porosity, increased the mechanical 

properties and ductility. 
[208,216,280] 

Ti HIP 
Reduced porosity from 4.3 to 2.2%, improved mechanical 

properties, changed pores morphology. 
[236,237] 

Ti Remelting 
Reduced hardness, transformed microstructure, eliminated 

interparticular region, improved corrosion behavior. 
[243,244,281] 

Ti6Al4V HT 
Reduced porosity, promoted phase changes, improved me-

chanical properties and ductility, reduced hardness,  
[154,214,282] 

Ti6Al4V HIP 
Reduced porosity, promoted phase changes, grain refine, 

improve mechanical, improve the ductility. 
[237–239,282] 

Ti6Al4V Remelting 
Improved hardness, increased surface roughness, coeffi-

cient of friction in wear testing, and tensile residual stress. 
[247,283] 

Invar 36 HT 
Improved mechanical properties, ductility, reduced the 

compressive residual stress. 
[284] 

Inconel 625 HT Increased hardness and the fatigue performance. [217] 

Inconel 625 Remelting 

Reduced hardness, transformed cold worked microstruc-

ture in the particles to columnar dendritic, improved corro-

sion behavior. 

[246] 

Inconel 718 HT 
Reduced porosity, improved mechanical properties and 

ductility, reduced the compressive residual stress. 
[81,124,204,218,219,285] 

Inconel 718 
HIP + solution 

HT + aging HT 

Reduced porosity and compressive residual stress, im-

proved conductivity. 
[123] 

2.2.3. Avoiding Post-Treatments 

The first post-treatment needed for CSAM-ed parts is the machine processes because 

CSAM cannot produce parts with the final geometry or roughness, which is a challenge 

for CSAM, as stated by Kumar and Pandey [126]. However, with the development of more 

complex robot manipulations, the machining has been planned for specific and essential 

areas of the component, such as bearing houses, screws, or axles journals, among others. 

Regarding the materials’ properties and characteristics, Laser-assisted Cold Spray 

(LACS), also called Supersonic Laser Deposition (SLD), is a relatively recent manufactur-

ing process that combines the CS process with a complementary laser that heats the dep-

osition zone while spraying. This method combines the benefits of both technologies, the 

CS solid-state deposition of metals at short times with little material waste and the bond-

ing strength by heating the deposition zone with a laser without increasing the oxygen 

levels within the deposit [108,286,287], even applied for the LPCS process [288]. Lupoi et 

al. [289] and Bray et al. [290] presented LACS as an option to suppress the disadvantage 

of N2 as a working gas (with a low particle velocity) by the implementation of a laser 

source to illuminate the spraying location. It softens the substrate during the CS deposi-

tion, promoting particle plasticity, even by phase transformation. Barton et al. [291] 

showed an Fe-based alloy transforming the ferritic into an austenitic phase, which is more 

ductile; and Birt et al. [287] concluded that LCAS is capable of depositing Ti6Al4V using 

N2 as the working gas with densities as high as or higher than those deposited using He 
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without the laser assistance. Furthermore, the adhesion of CoNiCrAlY onto Inconel 625 

and Cu onto Al were improved by particles/substrate local melting at a micro level and 

intermetallic formation [292], heating the particles to 80% of the powder melting point 

[293]. 

Another LACS option presented in the literature is using the laser to heat, clean, and 

ablate the substrate milliseconds before the CS deposition. It intends to soften the sub-

strate, allowing the particles to deform and consolidate CS-ed material at an impact ve-

locity lower than its Vcr [294]. The use of CSAM for hard materials has been one of the 

biggest challenges for the industry and researchers. 

Regarding the selection of laser parameters, the laser (CO2, Nd-YAG, or Yb-fiber), 

wavelength, pulse duration, and energy affect the penetration depth of the thermal energy 

transferred by phonons to the metal [295]. Therefore, their optimization and selection de-

pend on the materials’ characteristics and properties. For example, some authors pre-

sented experiments for a LACS employing power between 1 and 5 kW, with expressive 

benefits to the CSAM microstructure and DE using high-power laser assisting [293,296–

298]. Still, an excessive heat input can result in grain growth and hardness reduction, i.e., 

the LACS process results in annealing effects on the cold-worked particles during depo-

sition [299]. 

Overall, LACS increases the temperature of the particles at the impact, improving the 

DE and reducing porosity in the deposit microstructure, as presented by Olakanmi et al. 

[296], reaching pore- and crack-free Al-12Si CS-ed on stainless steel. LACS also broadens 

the range of CS-ed materials [290]. As a result, LACS has successfully deposited dense 

parts of hard materials with high DE, such as oxide-free Ti [290], Ti6Al4V [287], MMC 

[300], Stellite-6 [289], CrMnCoFeNi high entropy alloy (HEA) [301], Fe91Ni8Zr1 [291,299], 

15-5 PH stainless steel [302], and AISI 4340 [297]. Another methodology employed for 

substrate pre-heating and adhesion improvement was induction, presented by Ortiz-Fer-

nandez and Jodoin [303], spraying Al onto Ti6Al4V, resulting in higher DE and lower 

porosity. 

During CS, particles are accelerated and sprayed at high velocities. At the moment of 

impact of the first layer, these particles are deformed and remain attached to the substrate. 

In the subsequent layers, the particles now impact the deposited material, causing the so-

called tampering or tamping effect: new particles crush the previous layers of deposited 

material, causing compaction of the coating, thereby reducing porosity, a peening effect 

[89,304]. This effect can also be activated by mixing larger particles with the CS feedstock 

particles to deform the deposited material [305], as presented by Ghelichi et al. [306], mix-

ing –30 + 5 with –90 + 45 μm Al particles, and Lett et al. [140], mixing –45 + 15 with –250 + 

90 μm Ti6Al4V particles. Luo et al. [219,307] studied the effects of in situ CS-SP on the 

microstructure of Ti, Ti6Al4V, and Inconel 718. They presented it as an effective way to 

increase the DE while reducing porosity and improving inter-particle bonding and cohe-

sion. 

However, the –24 + 7 μm Inconel 718 were mixed with –187 + 127 μm stainless steel 

particles in different concentrations, and this last did not participate in the final sprayed 

material. Still, it acted for the peening effect, resulting in a drastic porosity reduction from 

5.5 to 0.2%, improving the DE from 22 to 33%, and improving the hardness from 420 to 

510 HV0.3 [219]. For CS-SP-ed Ti6Al4V, increasing the mass of larger particles from 50 to 

90% vol. in the feedstock powder, the porosity reduced from 6 to 0.2% [140] and induced 

compressive residual stress of 444 MPa·m−1, instead of the tensile residual stress of 

126 MPa·m−1 obtained without SP. Hybrid use of CS was shown by Li et al. [308], spraying 

on the AA2219 alloy GTAW welded joint, altering the residual stress drastically and even 

promoting the compressive residual stress in some areas near the welding bead. Daroon-

parvar et al. [305] listed the use of CS-SP for different coatings on Mg alloy substrates, 

using other materials for the coating and SP; e.g., Ni with 410 stainless steel 150–200 μm 

and Al6061 with 1Cr18Ni stainless steel 200–300 μm, among others. 
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2.2.4. Measuring of Properties 

Regarding the characterization, CSAM-ed samples have been evaluated as other 

thermal sprayed coatings. Conventional characterization techniques, such as optical or 

light microscopy, SEM, and microhardness have been seen in the literature [309]. These 

are potent tools for experts in the CSAM theme because the researchers can infer im-

portant materials’ properties from the material microstructure. By image analysis, the 

Flattening Ratio (FR) is obtained, a measure of the compression of a sphere along a diam-

eter to form an ellipsoid-like splat; the higher the FR, the higher the material plasticity. 

Electron Back Scattering Diffraction (EBSD) is a technique capable of identifying material 

phases at each analysis point and presenting the 3D orientation of the crystal lattice at 

each point. It has been used in CSAM to interpret the orientation in crystallographic 

planes in the different particles, which is even more important for the characterization of 

CSAM post-treatments [200]. Figure 11 shows CSAM-ed Ni/FeSiAl in as-sprayed and HT-

ed conditions, Figure 11a,b, respectively. HT promoted a recrystallization, grain 

coarsening, and phase transformation in the material, as interpreted from the size of each 

colored area, which is more significant in Figure 11b. This image has fewer areas without 

a defined atomic lattice plane of the crystalline structure, as seen in the as-sprayed 

condition as dark green. These dark green areas represent patterns uninterpreted by the 

detector, which is related to the severe particle deformation during the CS deposition. The 

improvement in this indexing rate from 78 to 90% represents the recrystallization 

phenomena from HT post-treatment [310]. 

 

Figure 11. EBSD image of CSAM-ed Ni/FeSiAl before and after HT. (a) As-sprayed condition and 

(b) annealed condition. Reprinted with permission from Ref. [310], Elsevier, 2019. 

Porosity has been calculated by CSAM cross-section image analysis [130,132,311], but 

other techniques have been presented in the literature as alternatives for higher accuracy 

in porosity measurements or a non-destructive approach, e.g., gas or He pycnometry 

[312,313], X-ray microtomography [314,315], laser-ultrasonic inspection [316], water ab-

sorption or the Archimedes method [317], and electrochemical impedance spectroscopy 

[318]. In addition, microhardness (Vickers and Knoop) employing low loading and nano-

hardness techniques have been used to determine the hardness gradient in single parti-

cles. At the same time, microhardness utilizing higher loadings results in a macro evalu-

ation of the material and fracture toughness by interpreting cracks grown due to the in-

denter loading [309,319]. Furthermore, the same Berkovich indenter used for the nano-

hardness test provides the material elastic moduli, as described in the ISO 14577-1:2015 

standard [320–322], an important property to preview the deformation of the material un-

der the service loading. 

Using CSAM for repairing processes or as a hybrid stage above a substrate made by 

other processes infers the need for good adhesion, which is the bonding strength between 

the CS-ed material and substrate. For thermally sprayed coatings, the ASTM C633-13 



Coatings 2023, 13, 267 21 of 46 
 

 

standard [323] is the most used technique to measure its adhesion, known as Tensile Ad-

hesion Testing (TAT), which is basically comprised of a thermal-spray-coated disk, dia. 

1 in., that is attached with epoxy to a complimentary uncoated plug and detached by a 

uniaxial tensile loading, the relation loading-area results in the bonding strength, in MPa 

or ksi [309,324]. However, for bulks, ASTM C633-13 [323] is inadequate. A technique 

within the sample machined from the CSAM-ed freeform part has been presented in the 

literature as a more effective method, modified tensile testing, based on the ASTM E8-22 

standard [325]. Ichikawa et al. [326] machined adhesion samples of CSAM-ed Cu onto an 

Al substrate, eliminating the interference of a bonding agent, epoxy adhesive, and guar-

anteeing the rupture in the Cu/Al interface. Boruah et al. [327] used a similar technique, 

but with CS Ti6Al4V on a washer surrounding an exposed pin-like substrate, which are 

tensile together, rupturing in the coating/substrate interface. Figure 12 shows the schemes 

for TAT and ASTM E8-22 modified adhesive testing. 

 

Figure 12. Schemes for CSAM adhesive testing. Reprinted with permission from Ref. [327], El-

sivier, 2020. 

The surface properties and the whole component quality are important for AM parts. 

Tensile testing has been done for different materials and fabrication strategies to measure 

the materials’ strength and ductility [186,211,282]. Machining samples in different CSAM-

ed part directions make the interpretation of mechanical isotropy possible, as performed 

by Yang et al. [200], Ren et al. [222], and Wu et al. [328]. The literature has presented the 

CSAM-ed mechanical resistance and ductility as a consequence of a good cohesion of par-

ticles, which TCT can easily measure. The TCT principle coats the circumference of two 

cylinders together head-to-head that are pulled in a universal testing machine. The stress 

or cohesion of particles is calculated as a relation between the loading collected and the 

coating thickness value, following the instructions of the EN 17,393:2020 standard [135]. 

Residual stress is crucial information for developing the CSAM as an industrial pro-

cess, and the realization of the CSAM limitations is perhaps the main motivation behind 

the scholars’ efforts to provide a reliable framework to study residual stresses in CS-ed 

deposits, initially by means of experimental and theoretical analyses, and later by finite 

element modeling. The residual stresses are divided into three types: the first order is 

macro-stresses homogeneous over multiple grains; the second order is micro-stresses over 

single grains; and the third order is micro-stresses in single grains, but with being inho-

mogeneous over the smallest areas such as unit cells [329]. Non-destructive diffraction 

measurement techniques for micro-stress have been used for CS-ed material, X-ray, and 

neutron diffraction. The first has a shallow penetration in the material, in order of mi-

crometers, accrediting it just for superficial evaluation [258]. However, FEA was applied 

by Wang et al. [330] to simulate the residual stress along the CSAM-ed Cu part from X-

ray diffractometry superficial residual stress results. 
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On the other hand, neutron diffraction penetrates the material in order of centime-

ters, but needs a long time exposition to achieve good results, in order of tens of minutes 

per measurement point [309]. Both methods are restricted to crystalline materials, and 

neutron diffraction has been studied for CSAM, as presented by Luzin et al. [331] and 

Vargas-Uscategui et al. [332] for Ti, Sinclair-Adamson et al. [333] for Cu, Loke et al. [334] 

for Al6061, and Boruah et al. [335] for Ti6Al4V. Despite being restricted to a few facilities 

worldwide and being an expensive technique, neutron diffraction has presented valid re-

sults in understanding the evolution of residual stress in CSAM deposition. In addition, 

it helps researchers to find new deposition strategies to reduce the regions with deleteri-

ous tensile fields. 

Incremental Hole Drilling (IHD) is semi-destructive testing presented in the litera-

ture for the first-order residual stress measurement, which has been used for different 

materials and processes of fabrication for decades, including thermally sprayed coatings 

[336–338]. The IHD principle is based on drilling a small hole, <1 mm, into the material 

and collecting data about the deformations around the drilled hole using optical instru-

ments or strain gauges. The material deformation or relaxation is related to the residual 

stress in the volume of the removed material through drilling [339], and the testing pro-

cedure is ruled by the ASTM E837-20 standard [340]. IHD is a technique routinely used 

for cast or rolled materials, and its use for CSAM promises high accuracy, easy sample 

preparation, and fast results. However, the literature still needs documents discussing the 

results and limitations and comparing IHD to other residual stress techniques, focusing 

on CSAM-ed bulks, which is a need to be filled by scholars. 

In situ Coating Properties (ICP) measure the substrate curvature during and after 

deposition. The evolution of the sample curvature can be linked to the evolution of 

stresses in the thermally sprayed material using a variety of models [341]. Figure 13 shows 

an example of typical curves obtained by the ICP sensor, where there is evidence of the 

spraying time or deposition stress and the cooling time until room temperature, culminat-

ing in the residual stress. For HVOF sprayed coatings, normally, tensile residual stress is 

obtained, as indicated in Figure 13, with positive curvature values; however, for CS-ed 

coatings, the residual stress has negative curvature values, which is compressive. ICP has 

the advantages of being fast and not demanding the machining of samples, but it is limited 

to coatings, as shown by Sigh et al. [342], comparing ICP to X-ray for Inconel 718 coatings 

thinner than 1 mm, resulting in similar compressive residual stress values for both tech-

niques. Furthermore, ICP does not apply to larger CSAM-ed parts, even though ICP re-

sults help the researchers optimize the CS parameters used for CSAM, mainly regarding 

improving adhesion. 

 

Figure 13. Typical curves obtained with ICP sensor. 
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Mechanical elements under cyclic loadings are subject to fatigue, reducing their life 

cycle. For CSAM-ed parts, Sample et al. [343] presented the influence of different CS prop-

erties, e.g., hardness, tensile properties, residual stress, etc., on the material fatigue per-

formance. For CSAM-ed parts and CS-coated materials, different fatigue tests have been 

presented in the literature, which are designed and classified by the force or loading type: 

direct (axial) stress, plane bending, rotating beam, alternating torsion, or combined stress. 

Rotating beam and bending fatigue testing evaluate the parts exposed to revolutions un-

der loading, such as axles, shafts, or wheels. Rotation bending exploits a rotating bending 

moment obtained through a rotating unbalanced mass, while the rotation beam places the 

load in the center of a supported sample at the ends. Applying CS as a coating improved 

the sample fatigue life by inserting compressive residual stress in the surface [258,344–

348]. 

Using axial cyclic loading, three- and four-point bending fatigue testing have been 

presented in the literature. Xiong and Zhang [349] showed the improvement of mechani-

cal resistance and fatigue life for an AZ91D Mg alloy after an LPCS-ed Al coating; Yama-

zaki, Fukuma, and Ohno [350] presented a low level of improvement in the fatigue life of 

CSAM repaired 316L samples, accrediting the repairing services for this material. Ševeček 

et al. [351] studied the benefits of CS-ed coatings on the Zircaloy-4 high-temperature fa-

tigue life and displacement under cyclic loading. Considering the CSAM-ed bulk, Julien 

et al. [202] used compact tension specimens, following the ASTM E399-22 standard [352], 

to evaluate the fracture toughness (KIC) of CSAM-ed Al6061. Wrought reference samples 

had much higher values than the CSAM-ed ones, 26.5 over 13.0 MPa·m0.5, resulting from 

the CS-ed typical microstructure and the interparticular crack growth. A higher KIC reduc-

tion was presented by Kovarik et al. [221] for CSAM repairing Al, Ti, Ni, and Cu compared 

to rolled materials. Making the CSAM-ed parts have similar properties to bulks produced 

by traditional processes represents a challenge for CSAM’s industrial application. Schol-

ars have employed efforts to find solutions and possibilities to achieve solutions for this, 

such as post-treatments. Regarding the material fatigue life, Li et al. [353] proposed a prob-

abilistic fatigue modeling for a GH4169 Ni alloy, using the weakest link theory applied to 

calculate the number of cycles to crack initiation. Similar modeling should be performed 

for CSAM-ed materials to compare how their microstructure defects and characteristics 

influence the material performance, deviating the experimental results from the mathe-

matical and statistical model formulated. 

3. Bibliometric Analysis 

This section presents CSAM from an academic viewpoint, considering how the liter-

ature, scholars, and institutions cover the theme of CSAM. Bibliometric analysis has 

gained immense popularity in many research areas in the last decade due to being a pow-

erful tool for interpreting the massive amount of data available nowadays, which, de-

pending on the theme studied, may reach hundreds or even thousands of relevant docu-

ments [354]. Scholars use bibliometric analysis for different reasons, such as uncovering 

emerging publishing and journal performance trends, looking for investigation collabo-

rators, or exploring the intellectual structure of a specific domain in the study [355]. The 

exciting use of bibliometric research is to identify knowledge gaps in the literature, help-

ing the researchers to generate a novelty character in their future works filling these gaps. 

It is not a new technique, the term bibliometrics was presented in the 1960s [356], and 

the evaluation of metrics regarding an area of interest in scientific publishing has been 

developed for more than a century [357]. Nowadays, in the big data era, this tool has been 

even more helpful in filtering and interpreting a large amount of information and data 

available for scholars. For AM, it is not different, and the bibliometric analysis has been 

related to the AM impact on business [358], on the supply chain [26], on industry 4.0 [359], 

AM-specific applications in orthopedics [360], or the general AM overview and trends 

[361], among others. Regarding CS, the literature presents the use of bibliometric analysis 
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for a general overview comparing CS to other thermal spray processes [362–364]; how-

ever, there is a gap in the literature presenting the evolution of publishing focused on 

CSAM, or who the researchers and the institutions involved in this important theme are. 

This work aims to understand the research status and development trends in the 

CSAM field, and identify the most relevant themes of study in the CSAM field, as there 

are some remarkable challenges. Therefore, it is important to carry out a bibliometric anal-

ysis that maps the current guidelines in this domain, which can inspire scholars in their 

future research lines and works. Furthermore, it gives them insights into the most active 

authors and journals that publish this theme and the countries that invest more in AM-

related research. It provides a scientific cartography that reveals the dynamics and struc-

ture of scientific fields. For this purpose, a bibliometric analysis is conducted to map 

CSAM R&D trends. 

3.1. Data Mining Strategy 

The bibliometric data was extracted from the Scopus database using a query string 

containing keywords to search in the title, abstract, and keyword fields. Since this work 

has aimed to see the trend in publishing on CSAM over the last decade, the query string 

was refined to exclude articles published before 2012 and those in other languages. The 

following string retrieved more than 450 items as of 27 December 2022: TITLE-ABS-KEY 

(cold AND spray* AND additive AND manufactur*) OR TITLE-ABS-KEY (cold AND 

spray* AND 3d AND print*) AND PUBYEAR > 2011. These documents were subjected to 

further text cleaning and bibliometric analyses. 

Due to their irrelevance to the studied theme, some articles were eliminated after a 

manual screen or database cleaning. The articles were limited to the subject area “materi-

als science” OR “engineering” OR “physics and astronomy” OR “chemistry” OR “chemi-

cal engineering” OR “energy” OR “mathematics”. The articles listed were carefully re-

viewed by reading their abstracts or full paper. The documents with an unclear relation-

ship with the theme studied were eliminated, refining the results, resulting in the number 

of works for the statistical analysis being 439. Finally, the bibliometric analysis software 

VOSviewer was used to analyze the publications. VOSviewer is a software that graph-

ically presents the bibliometric network mapping, which facilitates the interpretation of 

maps and data. The main networks are co-citation, bibliographic coupling, co-author, 

and/or co-word analysis. The authors and index keywords were selected for the co-occur-

rence analysis. VOSviewer identified many similar keywords, and to make the data more 

coherent, they were classified manually, such as “cold spray”, “cold spraying”, “cold gas 

dynamic spray”, and “cold gas spray”, which were merged to “cold spray”. 

3.2. Results and Discussions 

Figure 14 presents the scientific productivity regarding the CSAM theme, limited to 

the last decade (2012–2022). The number of published documents each year indicates this 

technology’s academic impact or interest by researchers, funding institutions, and jour-

nals. The number of documents per year significantly rose from 4 documents in 2012 to a 

maximum of 84 papers in 2022. This trend remained steady from 2020 and 2021, keeping 

around 81 publications per year. It is reasonable because the number of research groups 

researching CSAM and their productivity has not maintained the growth rate, despite the 

increasing number of researchers, groups, and equipment observed in the last decade [68]. 
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Figure 14. Year-wise publication of documents in CSAM field. 

Furthermore, implementing the LPCS process demands less investment because the 

equipment is less expensive, and the noise level during the operation is low [2,99]. Addi-

tionally, an LPCS gun is light and typically uses compressed air as the working gas and 

can be manipulated manually or using a small robot. However, to operate with HPCS 

equipment, a reasonable noise-insulated booth is demanded, as a facility for dozens of N2 

or He bottles [10], as well as the fact that the equipment costs of hundreds of thousands 

of dollars and a large size robot to support the gun, following the robot classification pro-

posed by Dobra [365]. 

As seen in Figure 15, Halin Liao, who has an h-index of 61 in the Scopus database, is 

the researcher with more publications on the CSAM topic, with 35 documents. Liao has 

been a researcher at the Laboratoire Interdisciplinaire Carnot de Bourgogne/Université 

Bourgogne Franche-Comté (France) since 1994, and is co-author of 500 articles in diverse 

themes, such as materials characterization and performance, surface engineering, coat-

ings, tribology, and corrosion, among others. Due to the relation of Liao with many other 

authors, his affiliation figures in the first position among the most important research 

groups, as seen in Figure 16, followed by Trinity College Dublin, due to the strong and 

numerous collaborations between Lupoi, Yin, and Chinese co-authors. 

 

Figure 15. Number of documents per author. 
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Figure 16. Number of documents by affiliation. 

Most of the works published are in collaboration with researchers from Chinese in-

stitutions. For example, Shuo Yin, who has an h-index 36 in the Scopus database, is the 

second author in the number of published articles and worked with Halin Liao and 

Chaoyu Chen in France. Since 2015, he has been a researcher at Trinity College Dublin, 

where Rocco Lupoi, who has an h-index 31 in the Scopus database and is sixth on the 

publishers’ list, develops his research too. Bertrand Jodoin, who has an h-index 33 in the 

Scopus database, is the fifth influential author in Figure 15 and works at the University of 

Ottawa (Canada). 

China has the highest volume of documents published, mainly for collaborative 

works, as presented in Figure 17. China also leads this ranking, as it occurs in many other 

areas, due to the vast number of PhD students and active researchers at the Universities 

and research centers, as well as due to the massive amount of investments and R & D by 

governmental programs [366–369]. Even with an expressive high number of articles pub-

lished by Chinese authors, the most cited articles in CSAM have only 6 Chinese figuring 

among the 25 co-authors enrolled in Table 4. However, the situation in the United States 

is worse because none of the important works presented in Table 4 has American co-au-

thorship, for which the majority are Europeans. It reflects the importance given by the 

scientific community for the Chinese and American works, which could be by a lack of 

novelty seen in most of the hundreds of published works. Another consideration is that 

most works did not present new concepts but did an application and some important dis-

cussion on the concepts previously proposed by other original documents. Original doc-

uments or review articles have been cited more, as seen in Table 4. That article type is 

essential to consolidate the concepts but does not typically promote many citations, such 

as original or review articles [370,371]. It has caused a preoccupation by the Chinese insti-

tutions, which have looked at methodologies to make their work more recognized by the 

scientific community [372,373]. 
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Table 4. The articles most cited in CSAM theme. 

Title Citations Contributions and Goals Ref. 

Cold spraying—A material’s perspec-

tive 
592 

An overview regarding the CS principles, ASI bonding 

mechanism, materials characteristics, and applications. 
[77] 

Cold spray additive manufacturing 

and repair: Fundamentals and appli-

cations 

372 

Summarizing and reviewing the CSAM-related work, com-

paring CSAM to fusion-based AM techniques, presenting 

the effects of HT on a CSAM-ed material’s properties, and 

CSAM real applications. 

[2] 

Solid-state additive manufacturing 

and repairing by cold spraying: A re-

view 

235 

Summarizing and reviewing the CSAM-related work, dif-

ferent possibilities of CSAM application, alloys, process pa-

rameters, post-treatments, and their effects on CSAM-ed 

material mechanical properties. 

[374] 

Cold gas dynamic manufacturing: A 

non-thermal approach to freeform 

fabrication 

217 

Introducing the application of CS as an AM technique to 

produce freeform parts, comparing CSAM to other AM 

processes and CSAM strategies. 

[169] 

Cold gas dynamic spray additive 

manufacturing today: Deposit possi-

bilities, technological solutions and 

viable applications 

212 

Presenting the evolution in investments in CSAM, adhesion 

and cohesion mechanisms for CSAM-ed material, listing 

materials and applications, characteristics, and industrial 

applications. 

[68] 

Potential of cold gas dynamic spray 

as additive manufacturing technol-

ogy 

212 

Presenting the CSAM principles, geometric characteristics, 

and materials’ properties, as well as the potential in using 

CSAM and its compatibility with other metal AM tech-

niques. 

[97] 

 

Figure 17. Number of documents by country. 

Collaborative works have characterized the articles and publishing in CSAM because 

of the mutual interests and the synergy in sharing equipment to develop the experiments 

and applying a kind of knowledge synergism to interpret the experimental results ob-

tained. Regarding the authors’ collaboration, the co-authorship relations were obtained 

by VOSviewer software, limiting the results to authors with more than ten articles pub-

lished, reducing the total of 972 authors to the 16 presented in Figure 18. The circle size 

around the authors’ names represents the number of articles in co-authorship, the color 

indicates a cluster of authors where the authors have more connections, and the line or 

link between the circles means the strength of their association; a thicker line means more 

collaborations. Chen and Xie are the leading authors in a cluster of Chinese cooperation, 

Yin and Lupoi are the most important authors in a cluster formed at Trinity College Dub-
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lin, and Liao is ahead of the French group. An interpretation of the map presented in Fig-

ure 18 is that its central persons are Liao, Xie, Chen, and Yin, indicating they act as bridges 

between the Chinese, Irish, and French institutions. 

 

Figure 18. Authors’ collaboration. Minimum of 10 articles per author. 

The journal with more documents published, 48 articles, was the Journal of Thermal 

Spray Technology (JTST), a journal focused on surfaces, coatings, and films, justifying 

why the CS authors chose it to submit and publish their works. However, JTST places in 

the 70th percentile, or Q2, and has a cite score of 4.6 in the Scopus database. The second 

influential journal, with 29 papers, was Surface and Coatings Technology (SCT), older 

than JTST, in the 88th percentile, Q1, and with a cite score of 7.6 in the Scopus database. 

Open access journals have increased their contribution to CSAM publishing, attracting 

authors due to the faster publishing process and free access to the readers. Between the 

ten more relevant publishers, MDPI’s journals Coatings, Materials, and Metals have 7, 10, 

and 10 documents published in the CSAM theme, respectively, from 2019 to 2022. MDPI’s 

Metals has increased its relevance in the scientific community, publishing 6 documents 

only in 2021, reaching the 76th percentile, Q1, and 3.8 in the Scopus database. 

Keywords represent the synthesis of the essential content of the documents, and their 

analysis aims to study the structure of the research related to the discipline. The analysis 

principle is based on the co-occurrence of keywords in the selected documents, revealing 

how closely they are connected in terms of the concepts they deal with, making it possible 

to understand the main themes of interest for the scholars. VOSviewer software identified 

more than 3000 keywords, and after a manual and critical evaluation, many of them were 

merged due to the similarity of their meaning. In addition, only keywords with at least 15 

occurrences were considered, resulting in 70 keywords for the study, which are graph-

ically presented in Figure 19b by their density, i.e., a darker and bigger circle represents 

more times the Keywords are listed: it results that “3d printing”, “additive manufactur-

ing”, and “cold spraying” are the main terms, followed by “manufacturing processes”, 

“additives”, “coatings”, and “microstructure” keywords. 
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Figure 19. Co-occurrences keywords. Minimum 15 occurrences. 

By analyzing the mapping network of co-occurrence, three clusters were formed, 

identified by the colors, Figure 19a. The clusters result from the link strength between the 

keywords, i.e., a stronger link means the same keywords group is used in more docu-

ments. VOSviewer resolution was set to 1.00 to avoid too small clusters. The smallest clus-

ter, the blue one, has 18 items. The primary term is “manufacturing processes”, which is 

a more generalist approach to making parts by CS, laser, and hybrid processes and is also 

linked to AM-processed materials, such as Cu, Ni, and composites. The other two clusters 

have the same number of items, 27; the green one has the main terms “cold spraying” and 

“additive manufacturing” that are strongly linked to “coatings”, which makes perfect 

sense since CS has been developed prior for coating. The authors usually present these 

keywords together. From the query string used for searching in the Scopus database, it 

was predictable that CS and AM would figure as the primary keywords for the papers. 

A relation is understood from the materials linked to CSAM, which are Cu, Ti, and 

Al, as observed reading the articles, but these are presented in Figure 19a with stronger 

links in the blue cluster. Additionally, material properties and process parameters are 

highlighted because most works are experimental and present the materials’ evaluation 

and testing. The red cluster presents the keyword “3d printing” linked to material prop-

erties, such as the microstructure, porosity, and strength. The keyword “3d printing” 

could be merged with “additive manufacturing”, mixing the red and green clusters, fol-

lowing the AM nomenclatures in the literature. It makes perfect sense, considering the 

content of the papers that present these keywords. However, the “3d printing” term is a 

legacy from the AM of polymers and has been presented as a friendlier expression to AM 

non-experts. On the other hand, “rapid prototyping” had been a keyword widely used for 

AM [78,89], but in the last decade, it has been substituted for “3d printing” and “additive 

manufacturing”, as indicated by Jemghili, Ait Taleb, and Khalifa [361]. It was confirmed 

by the VOSviewer keywords list andFigure 19, where “rapid prototyping” was not men-

tioned, indicating that this keyword has not been linked to CSAM. 

4. Summary and CSAM Future Trends 

This article briefly introduces CSAM, its characteristics, advantages over other AM 

processes, limitations, and some answers or alternatives to overtake them based on the 

literature. In addition, the paper presents challenges that still have to be overcome. Nev-

ertheless, the innovation potential of this research field is outcoming, and new applica-

tions have emerged in different industrial fields, supporting the crescent number of pub-

lications dedicated to CSAM industrialization. Based on the state-of-art and interpretation 

of the most recent literature contents, some trends are listed: 
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• CSAM for repairing services, with its application on expensive components or dam-

ages that do not need extensive restoration [2]. Improving the CSAM-ed geometries 

control generates a hot topic for research, including geometry construction simula-

tion, robot programming, and robot self-learning for an adaptative path, spraying 

angle, or gun displacement velocity. Research on this theme has been done by the 

Italian group of Politecnico di Milano [375], the Spanish group of Thermal Spray Cen-

ter [144], and the Australian company Speed3D, among others; 

• CSAM for hard materials, improving the CSAM-ed deposit adherence on materials 

such as Inconel, Ti6Al4V, HEA, or martensitic steels. For this, studies on the optimi-

zation of pre- and process-heating or CS parameters must be exploited. Some exam-

ples are using the expensive He as a working gas only for the first layers and N2 for 

the others, the CS-SP process, or introducing HT between the layers to reduce the 

tensile residual stress on the CSAM/substrate interface and improve the adhesion 

and repairing quality; 

• Improve CSAM-ed properties, reaching close or better than the wrought reference 

materials. As well as the well-established HT and HIP, new post-treatments have to 

be investigated in this theme. SPS presented good properties, but strict limitations in 

the geometries are feasible, requiring more flexibility for more complex geometries; 

• CS hybrid systems consolidation, such as CS-SP or LACS, to avoid post-treatments 

and eliminate steps in the AM production chain [286]. Most studies are related to CS-

ed coatings, promoting a better adhesion to the substrate and cohesion of particles, 

besides a low porosity. Therefore, CSAM hybrid systems’ use is a hot topic to provide 

a good performance CSAM-ed parts; 

• CSAM applied with other AM processes, optimizing the manufacturing chain to 

make the low complexity part areas by the fast CSAM process and dedicate the 

slower but more accurate laser process to the areas that demand more geometrical 

control. It is feasible because other AM techniques have increased their maturity as 

industrial processes; however, this mixing of methods is a lack in R & D, which is a 

hot topic for scholars. 

Regarding the bibliometric analysis, the literature characteristics and metrics were 

studied, collecting data from more than 420 documents published in the last decade for 

CSAM and related themes. The analysis covered several dimensions, including subject 

areas through keyword analysis, productive journals, the most influential authors, most 

cited documents, and referent affiliations and countries. The main results of the biblio-

metric analysis can be summarized as follows: 

• A total of 56% of the total publications in the CSAM theme were registered during 

the last three years, indicating the increase of academic interest in this research field, 

considering that in 2010 the number of documents published was zero. The main 

topics actively explored in the papers were related to the processing parameters’ op-

timization and other experiments focused on improving the CSAM-ed material’s per-

formance to make this process more industrially mature; 

• China is the country with more documents published, followed by the United States 

and France, where the most relevant research group in CSAM is from, the Université 

de Technologie de Belfort-Montbéliard, which is the affiliation of Liao, the author 

with the most documents published. The publishing mapping presents a collabora-

tion between Chinese and European institutions, signing for a fast CSAM industry 

maturity since the Chinese founding objectives are scientific development and even 

more advances in mass production; 

• The current scenario of publication in CSAM points to a future consolidation of 

CSAM as an industrial technique, first for specific applications in high-cost compo-

nents, such as multi-alloy nozzles for rockets in the aerospace industry or repairing 

expensive components, such as turbine blades or vanes. However, in the medium-

term and long-term, CSAM applications tend to expand their use; 
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• “Costs” is the keyword that indicates a crucial point for CSAM advances. For the 

feedstocks, scholars have studied less expensive materials and improved DE, reach-

ing more than 95% for some materials. A considerable challenge and trend for reduc-

ing processing costs and improving CSAM reliability is making the processing more 

independent of experts but easier for industrialization. 
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Abbreviation 

The following abbreviations are used in this manuscript: 
AM Additive Manufacturing 

APS Air Plasma Spray 

ASI Adiabatic Shear Instability 

BB Ball-Burnishing 

BJ Binder Jetting 

CFD Computational Fluid Dynamics 

CR Cold Rolling 

CS Cold Spray 

CSAM Cold Spray Additive Manufacturing 

CS-SP Cold Spray Shot Peening 

DE Deposition Efficiency 

DMLM Direct Metal Laser Melting  

DMLS Direct Metal Laser Sintering  

EBM Electron Beam Melting  

EBSD Electron Back Scattering Diffraction 

EPP Electric Pulsing Processing 

FR Flattening Ratio 

FS Flame Spraying 

FSP Friction Stir Processing 

FSAM Friction Stir Additive Manufacturing  

FSW Friction Stir Welding 

GMAW Gas Metal Arc Welding  

GTAW Gas Tungsten Arc Welding  

HEA High Entropy Alloy 

HIP Hot Isostatic Pressing 

HPCS High-Pressure Cold Spray 

HR Hot Rolling 

HT Heat Treatment 

HVOF High-Velocity Oxy-Fuel 

ICP In situ Coating Properties 
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IHD Incremental Hole Drilling 

JTST Journal of Thermal Spray Technology 

KIC Fracture Toughness 

LACS Laser-Assisted Cold Spray 

LMF Laser Metal Fusion 

LOM Laminated Object Manufacturing  

LPCS Low-Pressure Cold Spray 

MMC Metal Matrix Composite 

ME Material Extrusion  

MJ Material Jetting  

MMC Metal Matrix Composite 

MPCS Medium-Pressure Cold Spray 

PAW Plasma Arc Welding  

PEO Plasma Electrolytic Oxidation 

R&D Research and Development 

SCT Surface and Coatings Technology 

SD Standoff Distance 

SEM Scanning Electron Microscopy 

SL Stereolithography 

SLD Supersonic Laser Deposition 

SLM Selective Laser Melting  

SLS Selective Laser Sintering 

SP Shot Peening 

SPS Spark Plasma Sintering 

TAT Tensile Adhesion Testing 

TCT Tubular Coating Tensile 

TMT Thermo-Mechanical Treatment 

UAM Ultrasonic Additive Manufacturing 

UTS Ultimate Tensile Strength 

Vcr Critical Velocity 

Ver Erosion Velocity 

WAAM Wire Arc Additive Manufacturing  

WCI Waterjet Cavitation Impact 
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