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1 Introduction

One of the important problems in holographic superconductivity [1, 2]1 is to disclose the

precise dictionary between gravity and the condensed matter system. This requires what

is called a “top-down” approach, starting with ten-dimensional string theory or M-theory

and a brane construction so that the field theory undergoing the phase transition can be

explicitly understood [5–9]. These theories contain many degrees of freedom whose dual

operator may condense and break a U(1) symmetry, thus leading to superconductivity.

Identifying the most relevant mode, the one which is dual to the operator that condenses

first and dominates the thermodynamics, is a priori a complicated task. However, an

important clue lies in the empirical observation that operators with lower dimensions and

higher R-charges generically have a higher critical temperature, and hence are prone to

condense earlier as the temperature is lowered (see e.g. [5, 6, 10]). Therefore, a first step

in the top-down approach would be the construction of consistent truncations that include

the lightest modes in the mass spectra arising from the higher dimensional theory. Here

we will consider the spectra of theories with maximal supersymmetry that are relevant

for holography, where the lightest modes are scalar fields, which can have negative masses

without inducing perturbative instabilities in AdS.

The three maximal supergravities with Anti-de Sitter vacua, in D = 7, 5 and 4, share

a number of features. First of all, they all come from Freund-Rubin reductions of ten- or

eleven-dimensional parent theories over an S4, S5 and S7, respectively. As a consequence

1For reviews and a more complete list of references, see [3, 4].
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Figure 1. The different values of allowed (negative) masses and dimensions in Anti-de Sitter.

Masses on the bold line allow for two physically relevant dimensions.

of the Sn−1 reduction, the gauge group is always SO(n). This is embedded in an SL(n)

subgroup of the full global symmetry group, which is SL(5), E6 and E7, respectively. In

view of the above, it is important to elucidate the mass specta of the scalar fields of these

theories.

In the case of AdS backgrounds, a lower bound on scalar masses is set by the Breiten-

lohner-Freedman (BF) bound at [11]

m2
LL2 = −1

4
(D − 1)2 , (1.1)

where the scale L of AdS is set by the scalar potential via the relation V L2 = −(D −
1)(D − 2), with the scalar potential evaluated in a critical point. In addition to the above,

there are two other interesting values of the masses slightly above the BF bound [12]. The

first is at

m2
CL2 = −1

4
(D − 1)2 +

1

4
, (1.2)

and corresponds to a conformally coupled scalar field. Finally, there is

m2
UL2 = −1

4
(D − 1)2 + 1 . (1.3)

This is the upper bound for scalar masses that still allow for two different boundary con-

ditions. The dimension ∆ of the dual operator is related by m2L2 = ∆(∆ − D + 1). The

unitarity bound implies that the lowest possible dimension is ∆ = 1
2(D−3), corresponding

to the upper bound on the mass. Upon increasing the dimension, the corresponding mass

first goes down to the Breitenlohner-Freedman lower bound, after which it goes up to plus

infinity. Both the masses and dimensions are illustrated in figure 1.

All three theories have an Anti-de Sitter vacuum in the origin, which is maximally

supersymmetric and preserves the SO(n) gauge group. On account of this, the scalars are

organised in SO(n) irreps with particular masses. It turns out that the three theories under

consideration exactly have masses lying at the three special mass values listed above [12].

In particular, the seven-dimensional theory has a 14-dimensional irrep of scalars with

D = 7 : m2L2 = −8 , (1.4)

corresponding to the upper bound. In contrast, the four-dimensional theory has two 35-

dimensional irreps of scalars with

D = 4 : m2L2 = −2 , (1.5)
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corresponding to a conformally coupled scalar field. Finally, the five-dimensional theory has

D = 5 : m2L2 = −4 20 scalars , (1.6)

m2L2 = −3 20 scalars , (1.7)

m2L2 = 0 2 scalars . (1.8)

Thus 20 scalars saturate the BF bound, whereas another set of 20 scalars saturate the

unitarity bound (more details will follow in the next section). Therefore, the two maximal

supergravities coming from M-theory have masses that satisfy the Breitenlohner-Freedman

bound, while the D = 5 theory coming from IIB has a number of scalars that saturate the

bound.

The connection between type IIB string theory on AdS5 × S5 to large-N N = 4 SU(N)

super Yang-Mills theory is the best understood AdS/CFT duality. In view of this, we will

focus on the five-dimensional supergravity case. The relevant five-dimensional description

is given by N = 8 SO(6) gauged supergravity [13, 14] and truncations thereof, which

will be here used as a basic setting to understand superconductivity (or, more precisely,

superfluidity) in N = 4 super Yang-Mills theory. This theory has SO(6) global R-symmetry,

which contains U(1) × U(1) × U(1) as its maximal Abelian subgroup. In this context, one

can thus consider a canonical ensemble with fixed charge densities ρ̂1, ρ̂2, ρ̂3 associated

with each U(1) group. The problem is then to understand what is the phase diagram

of the theory as the temperature is gradually lowered from high values. On the gravity

side, the high temperature thermodynamics is dominated by the STU black hole with

charges proportional to ρ̂1, ρ̂2, ρ̂3. As the temperature gets lower than some critical

value, some scalar operators are expected to condense, possibly breaking U(1) symmetries.

Understanding this condensation process in the full type IIB superstring theory context

is obviously complicated. However, the operators which should condense first are those

with low dimensions, and hence are dual to light modes of D = 5 N = 8 SO(6) gauged

supergravity. We will investigate a number of such modes for various configurations of

black hole charges.

This paper is organised as follows. In the next section we will discuss maximal su-

pergravity in five dimensions, together with a truncation to minimal supergravity and

two non-supersymmetric truncations (sectors I and II). All of these theories have a U(1)3

gauge group and a number of scalar fields. In section 3 we will consider charged black hole

solutions of this theory. In particular, we will first review the black hole solutions corre-

sponding to the uncondensed phase. Subsequently the possibility of black holes with scalar

hair, corresponding to a condensed phase, is investigated in the two non-supersymmetric

sectors I and II. We will show which phase is thermodynamically dominant as a function of

temperature, and relate our results to previous literature. In section 4 we discuss possible

condensation from other sectors not included in the previous truncations. Finally, some

concluding remarks are given in section 5.

Note added. We have been informed that a complementary study of black hole solutions

with hair of D = 4 gauged supergravity will appear in [15], in concert with this paper. A

study of models related to N = 4 SYM with chemical potentials from the field theory side

will appear in [16].
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2 Simple truncations of D = 5 maximal gauged supergravity

2.1 A supersymmetric truncation

Maximal supergravity in D = 5 has a global E6 symmetry [17]. In particular, the scalar

fields span the coset E6/Usp(8). However, the presence of an SO(6) gauging breaks this

symmetry. Instead, it is convenient to arrange the fields in irreps of the SL(2) × SL(6)

maximal subgroup or its compact subgroup.

In terms of the SL(2) × SL(6) maximal subgroup, the isometries of E6 decompose as

scalar isometries: (1,35) ⊕ (2,20) ⊕ (3,1) . (2.1)

The first and last term correspond to SL(6) and SL(2), respectively, while the additional

irrep in the middle combines these into E6. Physical scalars correspond to the non-compact

isometries, of which there are (of course) 42. In terms of SO(2)×SO(6), these are given by

scalars: (1,20S) ⊕ (2,20A)+ ⊕ (2,1) , (2.2)

where the 20S denotes a symmetric rank-2 and the 20A is an anti-symmetric rank-3 tensor.

Moreover, the + corresponds to an imaginary self-dual condition.2 Surprisingly, the super-

multiplet structure in D = 5 is such that not all scalars have identical masses. Instead, the

three irreps listed above have

m2L2 = −4 , −3 , 0 , (2.3)

respectively [18]. The first two of these exactly correspond to the lower and upper bounds

defined in the introduction.

The vector bosons are in the anti-symmetric representation of SL(6):

vectors: (1,15) , (2.4)

which are of course massless. The theory also contains twelve two-forms:

two-forms: (2,6) . (2.5)

In the ungauged theory, the two-forms can be dualised to vectors and combine to form the

27 irrep of E6; however, due to the SO(6) gauging this is no longer possible in the gauged

supergravity. Instead, the two-forms acquire a mass term and have m2L2 = +1 [18].

As for the fermions, these consists of 4 gravitini and 24 dilatini. The former are in the

spinorial representation of SO(6) and have masses m2L2 = +3
2 . The latter are in 4 and 20

representations with masses −3
2 and −1

2 , respectively.

2In more detail, the (2,20) transforms as a doublet of anti-symmetric three-forms of SL(2) × SO(6).

Branching this to SO(2) × SO(6) one obtains two irreps: the (anti-)imaginary self-dual combinations

(2, 20A)±. One of these correspond to the compact generators of E6, and hence is modded out, while

the other combination is retained and corresponds to physical scalars.
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We now consider a consistent truncation of the maximal SO(6) supergravity by mod-

ding out by a Z2 × Z2 symmetry with generators3

(

−I4

+I2

)

,

(

+I2

−I4

)

, (2.6)

acting on the fundamental representation of SL(6). In fact, this corresponds to a supersym-

metric truncation, as can be seen from the following. The SO(6) transformations translate

into the following SU(4) transformation:











+1

−1

+1

−1











,











+1

−1

−1

+1











, (2.7)

where we have related the fundamental of SO(6) to the anti-symmetric representation of

SU(4) via invariant tensors, which are a permutation of the ’t Hooft symbols. From (2.7)

it follows that this truncation preserves one out of the four original supersymmetries (thus

there are eight preserved supercharges).

The resulting field content is as follows. Firstly, all two-forms are removed by the trun-

cation. Secondly, only three vector bosons survive, associated with the maximal Abelian

subgroup U(1)×U(1)×U(1) in SO(6). Finally, out of the three irreps of scalar isometries,

we retain respectively eleven, sixteen and three isometries. The corresponding numbers of

physical scalars are eight, eight and two. Similarly, on the fermionic side we find a single

gravitino and six spin-1/2 fields. These fields get organized in the following multiplets of

minimal supersymmetry in D = 5:

• Gravity: the graviton, a gravitino and a vector,

• Vector: a vector, a gaugino and a real scalar,

• Hyper: a hyperino and four real scalars.

Therefore the resulting N = 1 theory contains, in addition to the gravity multiplet, two

vector and four hyper multiplets. The scalar manifold is given by

SO(1, 1)2 × SO(4, 4)

SO(4) × SO(4)
, (2.8)

where the first factor is the very special Kahler geometry spanned by the vector multiplet,

and the second factor is the Quaternionic-Kahler manifold of the hyper sector. The same

result was found in [20].

In what follows we will consider two different non-supersymmetric truncations, that

share the two dilatons of the vector multiplets but pick out two completely orthogonal

(SL(2)/SO(2))4 scalar submanifolds of the hyper sector. In both truncations we will pick

out the scalar mode(s) that are relevant to describe hair in various black hole backgrounds.

3This truncation was studied in [19] and more recently in [20].
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2.2 Non-supersymmetric truncation I: keeping scalars in the 20S

We now make the first subsequent truncation, to bring the theory to a more manageable

form. In addition to the Z2 × Z2 generators acting on the fundamental of SL(6), we also

mod out by the SO(2) generator −I2 acting on the fundamental of SL(2). The latter has

the following two implications:

• Supersymmetry is now lost: the corresponding transformation in terms of U(4) leaves

none of the four supersymmetries invariant.

• The (2,20A) irrep is removed by the truncation and one is only left with the SL(2)×
SL(6) scalar manifold.

This corresponds to the five-sphere reduction of IIB supergravity with only the ten-dimen-

sional metric and five-form retained.4 Due to the second point, the scalar potential reduces

to a universal formula, that is also valid for the SL(n)/SO(n) subgroup of the other AdS

maximal supergravities. For the vectors and the SL(n) subgroup of scalars, which we will

parametrise by a symmetric matrix T , the Lagrangian reads5 [22, 23]

L =
√−g

[

R − 1

4
Tr[T−1DµTT−1DµT ] − 1

4
Tr[T−1FµνT−1Fµν ] − V

]

, (2.9)

where the covariant derivatives on the scalars read

DµT = ∂µT + g0(AµT − TAµ) . (2.10)

Finally, the scalar potential is given by

V =
1

2
g2
0 (2Tr[TT ] − Tr[T ]2) . (2.11)

The coupling constant g0 sets the scale for the AdS radius L. In D = 5 this relation reads

g0L = 1. An important feature of this truncation in five dimensions is that it retains

the SL(6)/SO(n) scalar fields in the scalar potential with masses at the Breitenlohner-

Freedman bound, which have a high chance to condense due to the low dimension of their

dual operators. Finally, note that the additional SL(2)/SO(2) scalars do not appear in

these expressions and are massless and neutral.

The combined action of the SO(6) transformations (2.6) with the SO(2) element −I2

leads to a field content containing three vectors and ten scalars. The latter span the

non-compact part of the remaining symmetry group

SO(1, 1)2 × SL(2)4 . (2.12)

The part of the SL(6) scalar manifold that is invariant under the Z2 × Z2 symme-

tries (2.6) can be parametrised by

Tmn =







X1M1

X2M2

X3M3






, (2.13)

4This truncation was previously studied in [21].
5In addition there can be topological Wess-Zumino terms for the vectors fields. We have not included

these as these will not play any role in what follows.
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where

Mi =

(

cosh ηi + sinh ηi cos θi sinh ηi sin θi

sinh ηi sin θi cosh ηi − sinh ηi cos θi

)

, (2.14)

and X1X2X3 = 1. A parametrisation of the latter is

X1 = eϕ1−ϕ2 , X2 = eϕ1+ϕ2 , X3 = e−2ϕ1 . (2.15)

We will use the same form (2.14) for the separate SL(2) scalar, parametrised by M4. The

four scalars are collected in ηa = (ηi, η4), and similar for θa.

The Lagrangian of the remaining bosonic fields is then given by

L =
√−g

(

R−
3
∑

i=1

Xi
−2

[

1

2
(∂Xi)

2+
1

4
F i,µνF i

µν

]

− 1

2

4
∑

a=1

[

(∂ηa)2+sinh2 ηa

(

∂θa+L−1qaiAi

)2]−V

)

,

(2.16)

where we used the notation Ai = (A12, A34, A56). These span the U(1)3 remaining part of

the gauge group. The scalar charges with respect to it are given by

q1i = (2, 0, 0) , q2i = (0, 2, 0) , q3i = (0, 0, 2) , q4i = (0, 0, 0) . (2.17)

Finally, despite the absence of supersymmetry in this truncation, the resulting scalar po-

tential can be written in terms of a superpotential

V =
1

2L2

[ 4
∑

a=1

(

∂W

∂ηa

)2

+
3
∑

i=1

X2
i

(

∂W

∂Xi

)2]

− 1

3L2
W 2 , (2.18)

where

W =

4
∑

a=1

qaiXi cosh(ηa) . (2.19)

Note that the first three angular scalars θi are pure gauge and can be set equal to zero by

a U(1)3 transformation. It can be checked that the origin of moduli space is an extremum.

Similarly, the eigenvalues of the Hessian of the scalar potential are given by

m2
aL

2 = −
3
∑

i=1

qaiqai . (2.20)

These are equal for the first three scalars ηi and given by −4. This indeed corresponds to

all scalar masses saturating the Breitenlohner-Freedman bound. Finally, the last scalar η4

drops out of the scalar potential on account of being neutral.

In what follows, three further truncations of this model will be considered. In particu-

lar, we will consider subsectors where a number of gauge vectors are identified, and focus on

the dynamics of at most two scalar fields. As these truncations will later be used to study

the emergence of hair in charged black holes, the number of gauge fields will determine the

number of black hole charges. These will be used to label the various cases.
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One single charge (I). First of all, we consider a truncation of the three-block model

to a sector with just a single BH charge. In this case we augment the Z2 × Z2 of (2.6)

to a full SO(4) that is orthogonal to the diagonal SO(2). In other words, we will now

consider a truncation of maximal supergravity, based on the decomposition of SO(6) into

SO(4) × SO(2). In terms of special unitary groups this reads SU(4) into SU(2) × SU(2) ×
U(1), where the two SU(2) factors are block-diagonal generalisations of (2.7). The different

irreps of SO(6) ≃ SU(4) then split up as

4 → 2+1/2 ⊕ 2−1/2 ,

6 → 40 ⊕ 1+1 ⊕ 1−1 ,

15 → 60 ⊕ 4+1 ⊕ 4−1 ⊕ 10 ,

20S → 90 ⊕ 4+1 ⊕ 4−1 ⊕ 1+2 ⊕ 10 ⊕ 1−2 , (2.21)

in terms of SO(4) irreps with an SO(2) weight. Subsequently we only retain the singlets of

SO(4). This amounts to one vector, corresponding to the remaining SO(2) ∼ U(1) gauge

group, and three scalar fields. The latter split up in one real scalar, and one complex scalar

field with U(1) charge q = +2. Furthermore, from the decomposition of the 4 one can see

that this truncation does not preserve any supersymmetry.

Instead of the diagonal SO(2), we will use a different but equivalent embedding, where

the SO(2) acts on the last two indices. Consequenly, the SO(4) acts on the first four indices.

In terms of scalars, this truncation amounts to the Ansatz

ηa = (0, 0, η, 0) , θa = (0, 0, θ, 0) , ϕ2 = 0 . (2.22)

Similarly, for the vector fields this requires Ai = (0, 0, A). The complete Lagrangian takes

the form

L =
√−g

[

R − 3(∂ϕ1)
2 − 1

2
(∂η)2 − 1

4
e4ϕ1FµνFµν− 1

2
sinh2 η(∂θ + 2L−1A)2 −V

]

, (2.23)

with

V =
1

L2
e4ϕ1

(

− 4 − 2e−12ϕ1 + 2e−12ϕ1 cosh2 η − 8e−6ϕ1 cosh η
)

. (2.24)

Two equal charges (I). Similarly, one can consider a truncation to a subsector that

can carry two of the three BH charges. In order to truncate to a smaller number of scalars,

one can mod out by the SO(6) element











+I2

−I2

+1

−1











. (2.25)

This has the following effect on the remaining scalars:

ηa = (η, η, 0, 0)/
√

2 , θa = (θ, θ, 0, 0) , ϕ2 = 0 . (2.26)
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Furthermore, consistent with the above truncation, we take the gauge vectors equal to

Ai = (A,A, 0)/
√

2 . (2.27)

This implies that the Lagrangian reduces to

L =
√−g

[

R − 3(∂ϕ1)
2 − 1

2
(∂η)2 − 1

4
e−2ϕ1FµνFµν− sinh2(η/

√
2)(∂θ +

√
2L−1A)2 −V

]

,

(2.28)

with the scalar potential given by

V = − 4

L2
e−ϕ1(2 cosh(η/

√
2) + e3ϕ1) . (2.29)

Three equal charges (I). Finally, a very simple sector is obtained by further restricting

to the ‘isotropic’ truncation, where the three SL(2) copies are identified with each other.

Group-theoretically this can obtained by modding out by SO(6) elements







+I2

−I2

I2






,







+I2

+I2

−I2






. (2.30)

This requires the further restrictions on the scalar fields

ηa = (η, η, η, 0)/
√

3 , θa = (θ, θ, θ, 0) , ϕ1 = ϕ2 = 0 . (2.31)

Similarly we set

Ai = (A,A,A)/
√

3 . (2.32)

The resulting Lagrangian is

L =
√−g

[

R − 1

4
FµνFµν − 1

2
∂µη∂µη − 3

2
sinh2(η/

√
3)(∂θ + 2L−1 A/

√
3)2 −V

]

, (2.33)

with

V = − 6

L2

(

1 + cosh2
(

η/
√

3
)

)

. (2.34)

2.3 Non-supersymmetric truncation II: keeping scalars in the 20A

Next we consider a different truncation from the supersymmetric theory of section 2.1,

where we retain SL(2) scalars from the (2,20A)+ rather than the (1,20S) of SO(2)×SO(6).

This truncation was considered in [19, 20]. It can be defined by keeping the invariant sector

under a Z4 symmetry consisting of (2.6) augmented by the SO(2) × SO(6) element

(

1

−1

)

⊗



















1

−1

1

−1

1

−1



















. (2.35)

– 9 –



J
H
E
P
0
6
(
2
0
1
1
)
0
4
0

Surprisingly, this truncation also leads to the scalar manifold (2.12). The origin of the

SO(1, 1)2 scalars coincides with that of the previous section: these are still given by the

scalars ϕ1,2 and have masses m2L2 = −4. In contrast, in this case the SL(2)4 scalars come

from the (2,20A)+ and therefore have masses equal to −3. Therefore this truncation can

be seen as being orthogonal to the one previously considered, at least in the scalar sector.

As for the vectors, the above element retains the same three U(1)’s as in the previous two

truncations.

The bosonic part of the resulting Lagrangian [20] formally looks like the bosonic La-

grangian (2.16) of sector I modulo the following points:

• As pointed out before, the two SO(1, 1) dilatons ϕ1,2 are common in both truncations,

while the (SL(2)/SO(2))4 scalars are completely orthogonal. For that reason we will

refer to the charged scalars of sector II as η̃a.

• The charges of the four charged scalars w.r.t. the U(1)3 gauge group in this case are

given by

q1i = (1, 1,−1) , q2i = (1,−1, 1) , q3i = (−1, 1, 1) , q4i = (1, 1, 1) . (2.36)

Note that the Hessian of the scalar potential (2.20) in this case indeed gives rise to

masses at −3, corresponding to the upper bound on scalar masses that allow for two

different boundary conditions.

Similar to the previous case, we will now consider the simplest Ansätze within this

sector which are consistent with configurations of one single charge, two equal charges and

three equal charges.

One single charge (II).

(i) We consider configurations with a single charge, corresponding to Ai = (0, 0, A). In

this case it is consistent to set

η̃a = (η, 0, 0, η)/
√

2 , θ̃a = (−θ, 0, 0, θ) , ϕ2 = 0 . (2.37)

The Lagrangian takes the form

L =
√−g

[

R− 3(∂ϕ1)
2 − 1

2
(∂η)2 − sinh2

(

η/
√

2
)(

∂θ̃ + L−1A
)2 − 1

4
e4ϕ1FµνFµν−V

]

,

(2.38)

where

V =
e−4ϕ1

L2

(

cosh2
(

η/
√

2
)

− 1 − 4e6ϕ1 − 8e3ϕ1 cosh
(

η/
√

2
)

)

. (2.39)

(ii) We consider the same configuration of gauge vectors, but now we set

η̃a = (η, η, η, η)/2 , θ̃a = (−θ, θ, θ, θ) , ϕ2 = 0 . (2.40)
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The Lagrangian takes the form

L =
√−g

[

R − 3(∂ϕ1)
2− 1

2
(∂η)2 − 2 sinh2

(

1

2
η

)

(

∂θ + L−1A
)2− 1

4
e4ϕ1FµνFµν−V

]

,

(2.41)

where

V = −2e−4ϕ1

L2

(

(4e3ϕ1 − 1) cosh2

(

1

2
η

)

+ 1 + 2e6ϕ1

)

. (2.42)

Two equal charges (II). We now consider configurations with gauge vectors

Ai = (A,A, 0)/
√

2 . (2.43)

Similar to the previous case, it is consistent to set the scalars to the values (2.37) except

for θ̃a = (θ, 0, 0, θ). The Lagrangian takes the form

L =
√−g

[

R − 3(∂ϕ1)
2− 1

2
(∂η)2 − sinh2

(

η/
√

2
)(

∂θ +
√

2L−1A
)2− 1

4
e−2ϕ1FµνFµν−V

]

,

(2.44)

with V given by (2.39).

Three equal charges (II). Finally we consider the truncation with three equal charges.

In this case it is consistent to set

η̃a = (0, 0, 0, η) , θ̃a = (0, 0, 0, θ) , ϕ1 = ϕ2 = 0 . (2.45)

The remaining scalar η4 has the highest charge under this diagonal U(1). The resulting

Lagrangian is given by

L =
√−g

[

R − 1

2
(∂η)2 − 1

2
sinh2(η)

(

∂θ + L−1
√

3A
)2 − 1

4
FµνFµν−V

]

, (2.46)

with

V =
3

L2
cosh2

(

1

2
η

)

(

cosh(η) − 5
)

. (2.47)

We recognize the Lagrangian obtained in [6] by a consistent truncation from IIB theory

based on D3-branes at the tip of a Calabi-Yau cone. We can see explicitly how that model

(in the case of S5) also arises from a consistent truncation of N = 8 supergravity. In short,

it corresponds to modding out by a Z4 symmetry and moreover retaining a diagonal U(1)

gauge field and a single complex scalar. The emergence of the model of [6] in the present

context is expected. The reason is that the complex scalar field in [6] lives within an N = 1

supergravity model and is the scalar which is charged under the U(1) of R-symmetry; in

the present context, the complex scalar field η4 is the only one that is charged under the

U(1) of R-symmetry — the diagonal subgroup of the three U(1)’s that we are retaining in

the truncation — and at the same time neutral under the rest of this gauge group.

This concludes our discussion of the different truncations of both non-supersymmetric

sectors. In table 1 we summarize masses and charges for the two different truncations. We

have always normalised the phase θ in such a way the first term in the expansion at small
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Sector I Sector II

# Equal charges qL m2L2 qL m2L2

One 2 −4 1 −3

Two
√

2 −4
√

2 −3

Three 2/
√

3 −4
√

3 −3

Table 1. The charges and masses of the charged scalars of sectors I and II for different configurations

of black hole charges.

η has coefficient 1/2, i.e. 1
2η2(∂θ)2 + . . .. This leads to a universal normalisation for the

term 1
2q2η2A2 coming from (∂θ+qA)2. Note that the charge of the scalar field η of sector I

decreases as one includes more BH charges, while in sector II this is exactly opposite: the

charge of η̃ increases with the BH charges. The masses are common in both sectors. In

the next section we will discuss the interplay between sectors I and II in the context of

condensed matter applications.

3 Thermodynamics and condensed matter applications

The truncations obtained in the previous section can be described in terms of the following

general Lagrangian

L =
√−g

(

R − 3(∂ϕ)2 − 1

4
G(ϕ)FµνFµν − 1

2
∂µη∂µη − 1

2
J(η)AµAµ− V (η, ϕ)

)

, (3.1)

where the coupling functions G(ϕ), J(η) and the potential V (η, ϕ) determine the specific

truncation. In the one-charge and two-equal charge cases, the dilaton ϕ cannot be decou-

pled and therefore one needs to investigate dilatonic black hole solutions. In the three-equal

charge case, the Lagrangian (2.33) and (2.46) are obtained upon setting ϕ = 0 in (3.1) and

choosing the appropriate J(η) and V (η). The above Lagrangian provides a useful setup to

package the dynamics of the various models. The field η in (3.1) will denote the normal-

ized charged field in either sectors I or II. We will return to the original notation η̃ for the

sector II charged scalar whenever this distinction is relevant.

3.1 Equations of motion and asymptotic behavior

Given the comprehensive setup (3.1), our ansatz for the metric and the gauge field is

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2 + dz2) , A = Φ(r)dt , (3.2)

with the scalars fields being functions only of the radial coordinate. The equations of

motion derived from the Lagrangian (3.1) are then given by

3

2
χ′ + 3rϕ′2 +

r

2
η′2 +

r

2g2
eχJ(η)Φ2 = 0 , (3.3)

3

(

g′

gr
+

2

r2

)

+
1

2

(

η′2 + J(η)eχ Φ2

g2

)

+ 3ϕ′2 +
eχ

2g
G(ϕ)Φ′2 +

V (η, ϕ)

g
= 0 , (3.4)
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Φ′′ + Φ′
(

3

r
+

χ′

2
+

∂ϕG

G
ϕ′
)

− J(η)

gG(ϕ)
Φ = 0 , (3.5)

ϕ′′ + ϕ′
(

3

r
− χ′

2
+

g′

g

)

+
eχ

12g
∂ϕGΦ′2 − ∂ϕV (η, ϕ)

6g
= 0 , (3.6)

η′′ + η′
(

3

r
− χ′

2
+

g′

g

)

+
eχ

2g2
∂ηJ Φ2 − ∂ηV (η, ϕ)

g
= 0 . (3.7)

We are interested in black hole configurations that have a regular event horizon and

appropriate boundary conditions at infinity. It is easy to check that all truncations given

above possess an AdS vacuum for which η = 0, ϕ = 0, Φ = 0. Therefore, in order to apply

the AdS/CFT dictionary we will look for asymptotically AdS black holes and require that

g ≈ r2/L2 as r goes to infinity. Linearizing the equations around this AdS vacuum we find

that a generic solution has the following asymptotic behavior

ϕ =
Oϕ

r2
+

Cϕ

r2
log r + . . . (3.8)

Φ = µ − ρ

r2
+ . . . (3.9)

χ = χ∞ + . . . (3.10)

e−χ g(r) = e−χ∞

(

r2

L2
− ǫ

r2
+ . . .

)

, (3.11)

where the dots stand for terms of higher order in the expansion in powers of 1/r. The

asymptotic of the dilaton is universal in all models; indeed in all cases ϕ is a scalar field

in AdS with m2L2 = −4. On the other hand, the charged scalars have different masses in

sector I and in sector II. In sector I these charged scalars have m2L2 = −4 and they have

the same asymptotic behavior as the dilaton,

η =
Oη

r2
+

Cη

r2
log r + . . . (3.12)

while in the sector II these correspond to scalars with m2L2 = −3, therefore

η̃ =
Cη

r
+

Oη̃

r3
+ . . . (3.13)

The location of the horizon r = rh is defined by the simple zero of g lying at the

largest r. The Hawking temperature of the black hole can then be calculated as usual by

the formula,

THawk =
1

4π
g′(r)e−χ(r)/2

∣

∣

∣

r=rh

. (3.14)

The value of g′(rh) is determined from the first order equation (3.4), in particular by the

combination

g′(rh) = −rh

[

V (ηh, ϕh) +
1

2
eχhG(ϕh)E2

h

]

, (3.15)

where we have defined the parameters

η(rh) = ηh , ϕ(ρh) = ϕh , Φ′(rh) = Eh , and χ(rh) = χh . (3.16)
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Finding an analytic solution of the complete system (3.3)–(3.7) is, in general, a very difficult

task. The particular case η ≡ 0 is much simpler because the Maxwell equations can then

be integrated and the solution can be substituted into the other equations. In particular,

for the non-supersymmetric truncations that we are considering, analytic solutions do exist

and are described by the “STU” black hole [24]. Explicit formulas are given in the next

section. At any rate, the complete system (3.3)–(3.7), including the back-reaction of the

geometry, can be generically solved using numerical methods, including the case η ≡ 0.

The strategy is as follows. We specify the initial data at the horizon in such a way

that the Cauchy problem (3.3)–(3.7) is well posed and then numerically integrate up to

infinity. A priori, we have nine parameters to deal with: the location of the horizon rh and

eight initial conditions for the equations of motions. The requirement g(rh) = 0 constrains

some of them. In particular, the consistency of equations (3.6) and (3.7) fixes the values

of η′(rh) and ϕ′(rh) to satisfy the relations

g′(rh)η′(rh) = ∂ηV (ηh, ϕh) , (3.17)

g′(rh)ϕ′(rh) =
1

6
∂ϕV (ηh, ϕh) − 1

12
eχh∂ϕG(ϕh)E2

h ,

whereas the condition Φ(rh) = 0 is needed to ensure that the gauge field is well defined at

the horizon. Therefore, out of the nine parameters we started with, only the ones in the

set {rh, ηh, ϕh, Eh, χh} are independent. This set can be further reduced. In order to do

so, we note the following two scaling symmetries,

r → ar , (t, ~x) → a−1(t, ~x) , g → a2g , Φ → aΦ , (3.18)

and

eχ → a2eχ , t → at , Φ → a−1Φ , (3.19)

which leave invariant the metric, the gauge field and the equations of motion. These two

symmetries can be used to set rh = 1 and χ∞ = 0. Thus, each black hole solution obtained

by integrating the equations of motion from the horizon is characterized in terms of the

three horizon parameters ηh, ϕh, Eh.

Finally, the relevant configurations will be the ones with the asymptotic constraints

Cϕ = 0 and Cη = 0 (or Cη̃ = 0). These two additional conditions leave a one-parameter

family of hairy black hole solutions, where the parameter characterizing the solution can

be taken to be the temperature. These configurations represent the physical systems that

we are going to describe.

It should be noted that in all truncations it is consistent to look for solutions with

vanishing η (which, in particular, implies Cη = 0 or Cη̃ = 0). Therefore there will be two

kinds of interesting configurations: hairy black holes, with a non-trivial η turned on, and

“bald” black holes with η ≡ 0.

The field theory interpretation of these two types of solutions follows from the standard

AdS/CFT dictionary, that we now briefly review. This asserts that each field in the

gravitational action is dual to a certain operator in the conformal field theory. In five

dimensions the correspondence between a scalar field in the bulk with some operator in
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the CFT of conformal dimension ∆ is given by the relation m2L2 = ∆(∆ − 4). Consider,

for concreteness, the scalar η̃ of sector II. Its mass is given by m2L2 = −3, therefore there

are two solutions: ∆− = 1 and ∆+ = 3. This fact shows up in the powers of r arising from

the behavior of the field at infinity,

η̃ =
Cη

r
+

Oη̃

r3
+ . . .

Among the two terms, only the mode associated with ∆+ = 3 is normalizable; thus, one

interprets Oη̃ as the condensate associated with an operator of dimension 3 in the presence

of the external source Cη. Demanding that the solution has Cη̃ = 0 implies that the field

theory is not sourced by this operator; a non-zero value of Oη̃ then implies a vacuum

expectation value for the CFT operator of dimension 3. In other words the AdS/CFT

correspondence implies that a hairy black hole with appropriate boundary conditions is dual

to a condensed phase of the system, while a “bald” black hole represents an uncondensed

phase. Moreover, because η̃ is charged under a U(1) symmetry, its dual operator will carry

the same charge under this symmetry and a vacuum expectation value of this operator

then implies U(1) spontaneous symmetry breaking.

For the charged scalar η of sector I there is a unique solution to the mass/dimension

relation. This scalar is dual to a charged operator of dimension ∆ = 2. The dilaton is

dual to an operator of the same dimension, but neutral under the U(1) symmetry. In these

cases, when m2 = m2
BF , a logarithimic branch appears in the asymptotic. Such a branch

will necessary introduce an instability unless it is treated as a source [25]. This means that

one must set Cη = 0 and the interpretation then follows as for the η̃ field.

3.2 The uncondensed phase

In the maximal SO(6) gauged supergravity, black hole solutions carrying arbitrary charges

with respect to three different U(1) symmetries are described by the “STU” black hole. The

present truncations contain these black holes since they maintain the U(1) × U(1) × U(1)

gauge symmetry and thus the three relevant vector fields. Indeed, keeping only the real

scalar fields in sector I and sector II, we recover the Lagrangian of [24],

L =
√−g

(

R −
3
∑

i=1

Xi
−2

[

1

2
(∂Xi)

2 +
1

4
F i,µνF i

µν

])

, X1X2X3 = 1 , (3.20)

for which the following analytic solution was found:

ds2 = −f H−2/3 dt2 + H1/3 f−1 dr2 + H1/3 r2

L2
d~x2 ,

Ai =

(

Qi
√

m

r2
h + Q2

i

− Qi
√

m

r2 + Q2
i

)

dt , Xi = H−1
i H1/3 , (3.21)

f =
r2

L2
H − m

r2
, H = H1 H2 H3 , Hi = 1 +

Q2
i

r2
.

The charged scalar fields are vanishing, therefore these solutions describe the uncondensed

phase for our models. The solution (3.21) can be written in the form (3.2) by a coordinate
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transformation on the metric: r2H1/3 ↔ r2. It is easy to check that the solution (3.21)

satisfies the equations of motion (3.3)–(3.7). For the case of three equal charges, the

coordinate transformation simply becomes r2 + Q2 ↔ r2 and one recovers the standard

form of the AdS Reissner-Nördstrom black hole.

It is useful to review the relevant quantities for the field theory thermodynamics in the

uncondensed phase (see [10, 26] for recent discussions). The energy, entropy and charge

densities are

ǫ̂ =
3m

8π2L6
, ŝ =

rh
√

m

2πL5
, ρ̂i =

Qi
√

m

4π2L5
, (3.22)

where the quantities m an Q, in general, can be read from the asymptotics of the solution.

The position of the horizon is found by solving the equation f = 0. In general there will

be three roots. We use the notation r2
h, r2

1 and −r2
0 for these roots indicating with r2

h the

greatest (real) one. The event horizon is then located at rh and the temperature is given by

TH =
(r2

h + r2
0)(r

2
h − r2

1)

2πL2
√

(r2
h + Q2

1)(r
2
h + Q2

2)(r
2
h + Q2

3)
. (3.23)

While the STU black hole represents an exact solution for arbitrary choice of the

(Q1, Q2, Q3), we will be interested in three particular cases: one charge, two-equal charges

and three-equal charges. In what follows we show how the uncondensed black holes solu-

tions of sector I and sector II are obtained from the STU black hole solution in each case.

Finally we observe that having the analytic solution for the uncondensed phases allows us

to check the thermodynamical quantities provided by the numerics.

Black hole with one single charge. The first case of interest is when Qi = (0, 0, Q).

The solution (3.21) is characterized by the two functions

H =

(

1 +
Q2

r2

)

and A3 =

(

Qi
√

m

r2
h + Q2

i

− Qi
√

m

r2 + Q2
i

)

dt . (3.24)

This black hole represents the uncondensed solution for the Lagrangians (2.23) and (2.38),

in which we set A3 = A. The charge density associated to the U(1) gauge group is

ρ̂ = Q
√

m/(4π2L5).

Black hole with two equal charges. In this case two gauge fields are identified and

we set Qi = (Q,Q, 0) in (3.21). The black hole is then specified by the functions

H =

(

1 +
Q2

r2

)2

and A1 = A2 . (3.25)

This is a solution to the equations of motion of the Lagrangians (2.28) and (2.44) with the

identifications

A1 = A2 = A/
√

2 , X1 = X2 = eϕ1 . (3.26)

The charge density associated to the diagonal U(1) is therefore ρ̂ = Q
√

2m/(4π2L5).
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Black hole with three equal charges. This is the case when Qi = (Q,Q,Q) and the

three gauge fields are identified. Now we have

H =

(

1 +
Q2

r2

)3

and A1 = A2 = A3 . (3.27)

This represents a solution for the uncondensed phase for the models (2.33) and (2.46) with

the identifications

A1 = A2 = A3 = A/
√

3 , X1 = X2 = X3 = 1 . (3.28)

The charge density then is given by ρ̂ = Q
√

3m/(4π2L5).

Let us now discuss some basic aspects of the thermodynamics at fixed ρ̂. The Hawking

temperature is given by the formula

T =
1

4π
H(rh)−1/2f ′(rh) . (3.29)

The horizon equation, f = 0, gives

m =
r4
h

L2
H(rh) where H =

(

1 +
Q2

r2
h

)α

α = 1, 2, 3 , (3.30)

with α counting the number of equal charges. It is convenient way to rescale r → rhr̃, so

the horizon is at r̃ = 1. We also introduce new parameters m̃ and Q̃ by the rescaling

m = r4
hm̃ , Q = rhQ̃ . (3.31)

Then the relation (3.30) simplifies, reducing to the formula m̃ = H̃/L2 = (1 + Q̃2)/L2.

Using these relations, the temperature (3.29) becomes

T =
rh

2πL2
(1 + Q̃2)1−α/2

(

2 + (2 − α)Q̃2
)

. (3.32)

We are interested in the thermodynamics in the fixed ρ̂ thermal ensemble. In terms of the

rescaled variables, the charge density ρ̂ takes the form

ρ̂ =
Q̃
√

α m̃

4π2L5
r3
h =

√
α

Q̃ (1 + Q̃2)α/2

4π2L6
r3
h (3.33)

Thus, solving for rh, the temperature becomes

T =
Q̃−1/3

(2π
√

α)
1

3

(

2 + (2 − α)Q̃2
)(

1 + Q̃2
)α

3
−1

ρ̂
1

3 . (3.34)

Since ρ̂ is fixed, the temperature T is only a function of the auxiliary variable Q̃. From this

expression one can get a qualitative understanding of the properties enjoyed by the different

ensembles. In the one charge case α = 1 and T is a strictly positive function that goes

to infinity as Q̃ approaches the two limits, Q̃ ≪ 1 and Q̃ ≫ 1, therefore the uncondensed

phase has a minimum temperature whose significance was extensively discussed in [10].

We shall see that the system can be driven to lower temperatures by condensation; in
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other words, there are black hole solutions with hair that reach lower temperatures. In

the two-equal charge ensemble one has α = 2 and T varies between 0 and infinity. Some

aspects of the thermodynamics of these solutions are discussed in [26]. For the purpose

of this work, we point out that this black hole reproduces some features of a Fermi-liquid

phase and therefore the search for the condensed phase is well motivated. Some of these

features are, in particular, the linear specific heat and zero entropy as T → 0. In the AdS

Reissner-Nördstrom black hole, α = 3 and Q̃ is restricted to be in the interval Q̃ ∈ [0,
√

2].

The temperature vanishes as Q̃ →
√

2, but the horizon has a finite size resulting in a large

value for the entropy at zero temperature.

3.3 The condensed phase

In what follows we will look for a condensed phase in the different sectors. These truncated

models could be regarded as holographic setups for AdS/CMT applications on their own

right. Nevertheless, the most interesting aspect of top-down constructions, like the present

one, is represented by the explicit knowledge of the dual field theory.6 We hope that this

explicit connection will open the way to the study of novel features of the thermodynamics

of large N SYM in the strong coupling regime. On the field theory side, some aspects of

its phase diagram have been discussed on S3 (see e.g. [28, 29]) but so far there have not

been many discussions on the spontaneous symmetry breaking of U(1) symmetries.

In principle, in order to understand the thermodynamics of the system at fixed charge

densities, one should search for the dominant thermodynamic configuration not only in a

given sector but in the full ten-dimensional theory. This would of course be a complicated

task already in the context of D = 5 maximal SO(6) supergravity, because one should look

for the hairy black hole configuration with least free energy among configurations where

any of the 42 scalars can be turned on (or, more generally, even one-form or two-form hair

as in [10]). Despite this huge number of possibilities, an important glimmer of information

is provided by the observation that not all sectors are relevant in order to identify the

highest critical temperature at which the first phase transition can occur. Indeed, one can

show (see e.g. figure 2 in [6]) that the critical temperature increases with the charge and

decreases with the mass of a given mode. This reflects the fact that, for given charge,

the dual operators with the minimal dimension are those which should condense first;

whereas, for given conformal dimension, operators with highest R-charge should condense

first. The competition between charge and dimension will appear in several examples

below. Furthermore, in section 4 we will also discuss the possibility of condensation arising

from some of the 42 scalars not included in our truncated Lagrangians.

The different sectors studied in this paper also include modes7 with lowest possible

mass (saturating the BF bound) which are therefore dual to (protected) operators of lowest

dimensions. Nonetheless, we shall see that their dual operators do not always condense

before other operators of the theory: in some cases there are modes which, while having

6Another approach where the dual field theory is known is based on using D-brane probes in string-theory

black brane backgrounds (see e.g. [27] and references therein).
7Some special features in the conductivity arise for scalars saturating the BF bound, see [25].
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Figure 2. (a) Condensate as a function of the temperature for the one charge model in sector I

(q = 2). (b) Similar plot, for a scalar with the same Lagrangian but charge q = 16 instead of q = 2.

higher mass, they have a sufficiently larger charge to trigger condensation at a higher

critical temperature.

In what follows we shall numerically exhibit the competition between sectors I and II.

All the plots shown in this section are obtained in the canonical ensemble at fixed charge

density ρ̂ = 1. For the uncondensed black holes solutions we refer to the formulas already

given case by case in section 3.2. We recall that ρ̂ = ρ/(4π2L5), where ρ is the asymptotic

value that we read from the expansion (3.9) as usual. Similarly for the energy ǫ̂. In the

gauge (3.2) the entropy and then the free energy density are given by

ŝ =
r3
h

2πL6
, f̂ = ǫ̂ − T ŝ . (3.35)

Condensation in single-charge thermal ensemble.

• Condensation in Sector I

Consider the Lagrangian (2.23), (2.24). It describes a complex scalar of charge qL = 2

and m2L2 = −4 and a real scalar ϕ of mass m2L2 = −4. We have numerically

computed the critical curve representing the order parameter as a function of the

temperature, including backreaction (see figure 2a). We find that there is a critical

temperature Tc
∼= 1.04 below which a hairy black hole appears. This curve presents

some unusual features.

At some lower temperature T1
∼= 1.02 the second derivative of the condensate with

respect to the temperature changes sign. This could be an indication of a new phase

transition as it implies that the fourth order term of the free energy in terms of the

condensate must have a strong temperature dependence near T1. In Landau-Ginzburg

theory, it is normally assumed that the fourth order coefficient is not strongly tem-

perature dependent around the critical point Tc, but it is in principle possible that

there is some new temperature scale below Tc where this coefficient also starts to

change. In particular, if it goes to zero or becomes negative then this term no longer

stabilizes the condensate, and higher order coefficients (if present) become important.
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Figure 3. (a) Energy as a function of the temperature for the one-charge model in sector I. (b)

Similar plot, for a scalar with the same Lagrangian but charge q = 16 instead of q = 2.

Because of this, the behavior of the condensate can change and indeed can blow up

at this new temperature scale, as indeed occurs in the present model.

This behavior can be seen with more clarity by considering a scalar field with the

same Lagrangian but larger charge q. In figure 2b we have plotted the condensate

as a function of the temperature for q = 16. One can see that, near Tc, the behavior

is very much like in second order phase transitions of ordinary mean field theories.

Then, at some lower temperature T
(q=16)
1

∼= 0.75 the second derivative of the order

parameter changes sign and the order parameter then increases very rapidly. For

q → ∞ , one reaches the probe limit where the dilaton and metric are decoupled,

and one can study the system in terms of a charged scalar in the AdS Schwarzchild

black hole background. In this limit, T
(q)
1 → 0, i.e. there is no change of sign in the

second derivative of the condensate curve, which has the usual mean field shape all

the way down to T = 0.

Returning to the q = 2 case, on the gravity side, as the temperature is slightly lowered

below T1, the black hole gets drastically reduced to a very small size, i.e. rh becomes

very small, and the internal energy ǫ̂ of the system goes down abruptly to almost

zero value. This is shown in figure 3a. As a result, the specific heat has a very large

peak near T1. In the q = 16 case, the internal energy also goes to almost zero value,

but at a slower rate (see figure 3b). One common feature which is present in both

cases is that the condensate is catapulted to large values at temperatures just below

the inflexion point in the critical curves of figure 2a,b. Another common feature is

the emergence of a hairy black hole with very small entropy and energy at finite T .

Because these quantities are obtained from the asymptotic behavior of the solution,

when they get small, it becomes difficult to determine them with sufficient accuracy.

The numerical results seem to indicate that energy and entropy remain small and

smoothly decrease as the temperature is lowered from T1 to small values.

We have computed the free energy of both the q = 2 and the q = 16 hairy black holes

and found that these are indeed lower than the free energy of the dilatonic bald black

hole describing the uncondensed phase. Therefore it dominates the thermodynamics
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Figure 4. Free energy for the system described by the Lagrangian (2.23), (2.24) with q = 16 (one

charge ensemble, sector I). The solid lines represent the two branches of the bald dilatonic black

hole solution. The dotted line represents the free energy for the hairy black hole solution.

at T < Tc. Figure 4 shows the free energy for the q = 16 model, which is easier to

visualize. One can see that there is an accumulation of points approaching zero free

energy, at temperatures just below T
(q=16)
1

∼= 0.75. The deep physical reason for this

is mysterious to us, but it is a consequence of the fact that the internal energy ǫ̂ and

entropy ŝ get very small near that point.

It is worth noting that the hairy black hole solutions reach temperatures which are

lower than the minimum temperature of the dilatonic black hole describing the un-

condensed phase. For the case q = 2, the numerical results show that the hairy

black hole solution exist up to a new minimum temperature around 0.22, where it

joins an unstable branch coming from higher temperatures. Nevertheless, already at

temperatures lower than T1
∼= 1.02 it is far from clear that the solution is describing

reliable physics. It could also be that there is another condensate at the temperature

T1, i.e. there is some other state with lower free energy that arises exactly at this new

temperature.

• Condensation in Sector II

Model (i): the relevant Lagrangian is (2.38), (2.39). It contains a complex scalar field

of charge qL = 1 and m2L2 = −3, plus a real scalar ϕ. Note that it has a lower

charge and larger mass than the previous sector I scalar. Thus one can expect that,

if it condenses, it will be at a lower critical temperature.

By solving the equations numerically we find that for that particular value of the

charge there is no condensation, i.e. there is no value for the temperature at which

solutions exist with the required boundary conditions. The origin of this lack of

condensation is not only the fact that the scalar has lower charge and larger mass,

but it can also be traced back to the coupling between η and the dilaton ϕ through the

potential V (η, ϕ). In the vicinity of the critical temperature, η is small everywhere

and one can study the emergence of the hairy black hole by the linearized equation
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for η in the bald (dilatonic) black hole background. It has the schematic form:

η′′ + F (r)η′ + q2η Φ2
uncond. − m2η Ṽ (ϕuncond.) = 0 . (3.36)

At infinity the dilaton goes to zero and we have fixed the normalization of Ṽ to be

Ṽ (0) = 1. In non-dilatonic models, the critical temperature depends only on qL and

m2L2. However, in dilatonic models we find that the critical temperature depends

also on the specific form of Ṽ (ϕuncond.). In particular, one can find examples of

Ṽ (ϕuncond.) which give rise to condensation for a scalar η with the same m2 and q as

in this model.

Model (ii): now the relevant Lagrangian is (2.41), (2.42). As in the previous case, we

have a complex scalar field of charge qL = 1 and m2L2 = −3, plus a real scalar ϕ.

We again find that there is no condensation in this system for similar reasons as in

the model (i).

Condensation in two equal-charge thermal ensemble.

• Condensation in Sector I

The relevant Lagrangian is given in (2.28), (2.29). It contains a complex scalar of

charge qL =
√

2 and m2L2 = −4 and a real scalar ϕ. Here we find that there exists

a family of hairy black holes parametrized by the temperature for any8 T > Tc. On

the face of it, this appears to be surprising, since one expects that the condensed

phase appears at low temperatures, not at high temperatures. But for condensation

to actually take place, it is necessary that the free energy of this hairy black hole

configuration be less than the free energy of the two-equal charge STU black hole

describing the uncondensed phase. We find that the free energy of such hairy black

holes is at all temperatures T > Tc greater than the free energy of this STU black hole.

Therefore these hairy black holes represent unstable branches that do not contribute

to the thermodynamics. We will refer to this phenomenon of a thermodynamically

subdominant condensate at T > Tc as retrograde condensation.9

The results are shown in figure 5a,b. One may also wonder if the critical curve could

turn back at even higher temperatures not displayed in figure 5a. We do not expect

that this will happen, because figure 5a includes temperatures that are high enough to

be above any dimensionful scale of the problem and the curve seems to have already

reached a well defined asymptotic behavior.

• Condensation in Sector II

We now consider the Lagrangian (2.44), with the potential given in (2.39). The

complex scalar now has qL =
√

2 and m2L2 = −3. Note that it has lower charge and

higher mass than the sector I scalar. We find that there is no condensation in this

model.
8A similar phenomenon was found in four-dimensional models for certain black holes with AdS4 asymp-

totic in [30, 31].
9The term “retrograde condensation” was first used by Kuenen in 1892 [32] to describe the behavior of a

binary mixture during isothermal compression above the critical temperature of the mixture (a discussion

can be found in [33]). Such a system also displays the phenomenon of a subdominant condensate in some

temperature range.
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Figure 5. (a) Condensate as a function of the temperature in the two-equal charge thermal

ensemble, sector I model. (b) Free energy for the same model. The upper (blue) branch is the free

energy of the hairy black hole solution, while the lower red branch is the one for the dilatonic STU

black hole with Q1 = Q2, Q3 = 0.

Condensation in three equal-charge thermal ensemble. In this case the uncon-

densed phase is described by the Reissner-Nordström black hole. The real scalars ϕ1, ϕ2

are set to zero, which greatly simplifies the analysis. The Lagrangians (2.33), (2.46) are

examples of the general models introduced in [34, 35],

L =
√−g

[

R − 1

4
G(η)FµνFµν − 1

2
∂µη∂µη − 1

2
J(η)AµAµ +

12

L2
U(η)

]

, (3.37)

with the identification

G(η) = 1 , U(η) =
1

2

(

1 + cosh2
(

η/
√

3
)

)

, J(η) =
4

L2
sinh2

(

η/
√

3
)

, (3.38)

for sector I, and

G(η) = 1 , U(η) =
1

4
cosh2

(

1

2
η

)

(

5 − cosh(η)
)

, J(η) =
3

L2
sinh2(η) , (3.39)

for sector II.

Some relevant features of the condensation can be learned from the properties of the

functions U(η) and J(η). We borrow part of the discussion in [36, 37], originally given

for 3+1 dimensional holographic models in the no-backreaction approximation. Near the

critical temperature, η is small and one has the expansions

J = q2η2 + j0η
4 + . . . , (3.40)

V = − 12

L2
U = − 12

L2

(

1 − m2L2

24
η2 − v0η

4 + . . .

)

. (3.41)

The quartic terms in J and V play an important role. This can be understood by using

the following formula, deduced in [36] (see eq. (3.14)), giving the temperature dependence

of the order parameter in the vicinity of a second-order transition:

1 − T

T
(N)
c (m2, q2)

= 〈O1〉2
(

AN (m2, q2) + v0CN + j0L
2DN

)

+ . . . . (3.42)
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Here dots represent terms with higher powers of the order parameter and AN , CN ,DN > 0

are numerical coefficients. This formula was derived using a series expansion near the hori-

zon, and here N represents the truncation order. When v0 = j0 = 0, there are no quartic

corrections in U and J functions and the formula reproduces the mean field properties of

the condensate as a function of the temperature of the HHH model10 [2]. The curve will be

qualitatively the same near Tc as long as the coefficient of 〈O1〉2 is positive. In particular,

this is the case if v0, j0 > 0. A drastic change occurs when v0CN + j0L
2DN < −AN . As we

shall see, this condition can be met in models where v0 is sufficiently negative. Then the

condensed phase appears at T > Tc, instead of T < Tc, at least near Tc. What happens

next depends on higher order terms in V and J . In particular, in some cases, the critical

curve comes back to the lower temperature region T < Tc (examples of this behavior, rep-

resenting first order phase transitions, are in [34, 35]). This depends on higher order terms

in the potential so it requires solving the full system of equations including backreaction, as

we do in this paper. In other examples — like in the two-equal charge ensemble discussed

above or in the three-equal charge, sector I, discussed below — the hairy black hole branch

extends all the way to the region T > Tc, and thus displays the phenomenon of retrograde

condensation.

• Condensation in Sector I

The relevant Lagrangian is given in (2.33).11 It should be noted that, despite the fact

that the potential (V = −12U/L2 with U given in (3.38)) is unbounded, the theory

around the trivial stationary point is stable due to the fact that in the original N = 8

supergravity theory this point is supersymmetric (which in particular ensures that

all scalar fluctuations have masses at or above the BF bound).

We have numerically integrated the equations and found a family of black hole so-

lutions with charged scalar hair with the correct asymptotic. Figure 6a shows 〈O1〉
vs. T . Like in the two equal-charge case for sector I, we again find retrograde con-

densation: the hairy black hole solution exists for T > Tc, instead of T < Tc (with

Tc
∼= 0.56). This is consistent with the fact that the quartic coefficient v0 in the

potential is negative.

This hairy black hole solution again has free energy which is larger than the free

energy of the Reissner-Nordström black hole. This is shown in figure 7. Therefore this

condensed phase is unstable and not physically relevant. As in the two-charge case,

one can also see that the critical curve already reaches some well-defined asymptotic

behavior so it is not expected to turn around.

In the context of Landau-Ginzburg theory, as discussed above, this departure from

mean field theory is a sign of an unusual temperature dependence of the coefficients

10Note that the simplest phenomenological model [2] with V = m2η2/2 with m2 < 0 has an unbounded

potential. Nevertheless, due to the AdS boundary conditions, the model exhibits a second-order phase

transition with standard (mean field type) critical curve and in particular does not present any runaway

behavior.
11A study of hairy black hole solutions which are asymptotic to global AdS5 in this sector was carried

out in [38].
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Figure 6. (a) Condensate as a function of the temperature in the three-equal charge thermal

ensemble, sector I model. (b) Condensate as a function of the temperature in sector II (representing

the same model of [6], now considered in the thermal ensemble at fixed charge density rather than

at fixed chemical potential).
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Figure 7. Free energies for the different black hole solutions. The dot-dashed black curve (lying

on the T > Tc side, Tc
∼= 0.56) describes the free energy of the hairy black hole of sector I. The

red solid curve (i.e. the one shown in the interval 0 < T < 0.93, but extending to all T ) represents

the free energy of the Reissner-Nordström black hole with Q1 = Q2 = Q3. Finally, the dashed blue

curve lying at T < 0.70 describes the free energy of the sector II black hole.

of higher order terms. For example, this behavior might arise if for T > Tc the

Landau-Ginzburg potential has a relative maximum at some positive value, which

joins the absolute minimum at zero for T = Tc. This can be described by a potential

with a fourth order coefficient that becomes negative for T > Tc (assuming that there

are higher order terms that stabilize the potential).

In conclusion, there is no phase transition in this sector I.

• Condensation in Sector II

The Lagrangian is given by (2.46). It describes a complex scalar with m2L2 = −3 and

qL =
√

3. Comparing with the previous model, this scalar field has a greater mass and

also greater charge. As discussed, increasing the mass lowers the critical temperature,
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but increasing the charge raises it, so in this case it is not a priori obvious whether

the critical temperature for this model will be lower or higher than the previous case.

We have carried out the explicit calculation, including backreaction. We find that

in this sector the critical temperature is Tc
∼= 0.70, i.e. greater than Tc

∼= 0.56 of

sector I.

The results are shown in figure 6b, which reproduces the results of [6]. Figure 7

shows, in the same plot, the free energy for the three different solutions: the Reissner-

Nordström AdS solution, the sector I hairy black hole representing retrograde con-

densation, and the sector II hairy black hole providing the dominant thermodynamics

below Tc
∼= 0.70.

In conclusion, among the two best candidates to condense in the three equal charge

ensemble, the scalar mode of sector II is the one that condenses. Thus the consistent

truncation carried out in [6] (particularized to the case when the Sasaki-Einstein

manifold is S5) seems to indeed pinpoint the relevant mode to study condensation in

this ensemble. This is despite the fact that the scalar mode of sector II is not the one

which is dual to the lowest dimension operator. The scalar mode of sector I is dual

to a operator of lower dimension, but it gives rise to hairy black holes at T > Tc with

a free energy that is higher than the free energy of the RN black hole representing

the uncondensed phase.

One important issue regards the stability of the T = 0 limit of the hairy black hole

of sector II. In [20] it was pointed out that the the zero-temperature solutions are

domain walls interpolating between non-supersymmetric AdS solutions at the horizon

and AdS at infinity, which for compactifications based on spheres are unstable. This

fact may be interpreted in different ways. On one hand, it might indicate that, in

reaching T = 0, there must be a quantum phase transition to a stable fixed point

of the N = 8 potential. On the other hand, it could be that this sector just does

not capture the dominant thermodynamic configuration even at finite temperature

T < Tc, and that there is another sector within N = 8 supergravity containing black

hole solutions that at sufficiently low temperatures dominate the thermodynamics and

smoothly flow to a supersymmetric fixed point (which would thus ensure stability).

In an attempt to search for such a sector with a stable T = 0 limit, we have examined

sectors that include the SU(2) × U(1) supersymmetric fixed point of N = 8 SO(6)

gauged supergravity to see if it is possible to have a flow towards this point. The

simplest consistent truncation of this type is achieved in sector II with A1 = A2 and a

different A3 6= 0, and setting η̃2,3,4 = 0 and ϕ2 = 0 in the sector II Lagrangian (2.16),

with the charges given by (2.36). The truncated Lagrangian is as follows

L =
√−g

[

R − 1

2
(∂ϕ1)

2 − 1

2
(∂η)2 − 1

2
sinh2(η)

(

∂θ + L−1(2A1 − A3)
)2

−1

2
e
− 2ϕ1√

6 F 1
µνF 1, µν − 1

4
e

4ϕ1√
6 F 3

µνF 3, µν − V

]

, (3.43)
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with

V =
e
− 4ϕ1√

6

L2
cosh2

(

1

2
η

)(

(

1 + 2e
√

6ϕ1
)

cosh(η) − 8e

√
6ϕ1

2 − 1 − 6e
√

6ϕ1

)

. (3.44)

The resulting model indeed contains the SU(2)×U(1) supersymmetric fixed point as

a classical solution of the equations and, moreover, one can write a consistent ansatz

for black holes with three equal charges (despite the fact that A3 6= A1 = A2). The

numerical resolution of this system presents new complications. To the extent we

were able to carry out the numerical analysis reliably, we found no condensed phase

in this sector, i.e. no black hole with three equal charges and η̃1 hair with the required

asymptotic behavior.

4 Condensation from other sectors

Since there are 42 physical scalars in the five-dimensional N = 8 supergravity description,

a natural question is whether there could be a scalar not considered in our analysis that

could condense earlier. Clearly, an accurate answer to this point would require a long

analysis. Nevertheless, one can guess which scalars could be relevant thermodynamically

from the following analysis:

• From the (1,20S), there are 2 neutral scalars (namely ϕ1 and ϕ2) and the three

complex scalars that we have considered in sector I with U(1)×U(1)×U(1) charges

(±2, 0, 0) and cyclic permutations. The remaining scalars are 6 complex scalars with

charges (±1,±1, 0) (signs unrelated) and cyclic permutations. These last scalars

have the same m2L2 = −4, but lower charges under each U(1). However, they could

compete with ηi in the two-equal charge thermal ensemble, since they would have

the same charge under a diagonal U(1)D ⊂ U(1) × U(1). In view of this possibility,

we have explicitly investigated truncations including these charged scalar fields.

Starting from the symmetric scalar matrix Tmn, parametrising the (1,20S), one can

perform truncations based on the following discrete SO(6) transformations:

(

−I4

+I2

)

,



















1

−1

−1

1

1

−1



















,















1

−1

−1

1

I2















. (4.1)

This leads to a parametrisation of Tmn that includes a dilaton ϕ1 and a charged scalar
field η (in the gauge where the corresponding angular variable θ is set to zero) of the
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following form:



















eϕ1 cosh
(

η/
√

2
)

eϕ1 sinh
(

η/
√

2
)

eϕ1 cosh
(

η/
√

2
)

−eϕ1 sinh
(

η/
√

2
)

eϕ1 sinh
(

η/
√

2
)

eϕ1 cosh
(

η/
√

2
)

−eϕ1 sinh
(

η/
√

2
)

eϕ1 cosh
(

η/
√

2
)

e−2ϕ1

e−2ϕ1



















.

(4.2)

However, this leads to a Lagrangian that is identical to (2.24) and (2.23), i.e. these

scalars not only have the same mass and charge, but also higher-order coefficients

are the same. Therefore their thermodynamic properties will not differ from the

truncation already considered in section 2.2.

• From the (2,20A)+, i.e. an anti-symmetric three-form, one finds the four complex

scalars of sector II with charges (±1,±1,±1) (signs unrelated) and in addition two

copies of three additional complex scalars with charges (0, 0,±1) and cyclic permu-

tations. All these scalars have m2L2 = −3. Clearly, these six extra complex scalars

have lower charges in the three ensembles we have considered, so they are not ex-

pected to be relevant thermodynamically (they are likely to condense at lower Tc and

probably with higher free energy, since this typically starts from 0 and becomes more

negative as the temperature is lowered).

Therefore we expect to have captured the relevant scalar degrees of freedom for the various

black hole ensembles. In particular, for the two-charge ensemble we do not find any other

charged scalars that could condense.

5 Concluding remarks

In this paper we have examined the emergence of condensed phases in N = 8 supergravity

originating from four different complex scalars in sector I and in sector II. We have found

a new hairy black hole in the one-charge case (with the special property that at some

T1 < Tc another phase transition seems to occur) and reproduced the known result of [6]

in the three-charge case. In addition, in both the two- and three-charge cases, hairy black

holes were found in the unusual temperature range T > Tc. Interestingly, these hairy

black holes are always subdominant in the free energy (which we referred to as retrograde

condensation), while the opposite is the case for hairy black holes with T < Tc, in line with

superconductivity below rather than above a certain critical temperature.

The dual field theory of the present system is finite temperature N = 4 SU(N) super

Yang-Mills theory with three independent charge densities or chemical potentials. The

solutions we found for both sectors I and II are also solutions in the extended framework

of the supersymmetric truncation of section 2.1, and in the full N = 8 supergravity, since

the truncations are consistent. Turning on scalars corresponds to adding deformations or

having vacuum expectation values (depending on the asymptotic boundary conditions) of

their dual operators. The operators which are dual to a complex scalar mode of sector I,
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Zi = ηie
iθi , i = 1, 2, 3, with mass m2L2 = −4, have conformal dimension defined by the

standard AdS/CFT relation ∆(∆ − 4) = m2L2 = −4, i.e. ∆ = 2. In addition, they must

carry charge = 2 under the relevant U(1). The natural candidate for the CFT operators

which are dual to Zi are

Oi = Tr
[

Φ2
i

]

, (5.1)

where Φi are the three chiral superfields of N = 4 super Yang-Mills theory. These are

BPS operators. The scalars of sector II, Z̃a = η̃ae
iθ̃a , are also dual to BPS operators whose

relevant component is made with fermion bilinears [20]

Õa = Tr
[

λaλa

]

+ h.c. . (5.2)

Our analysis suggests that in the three-charge ensemble, the first operator to condense is

Õ4, just as in the type IIB truncations of [6] (for the case of S5). For the two charge

ensemble, we have found no phase transition in the sectors we studied. Finally, in the

one-charge case we have found an intriguing condensation (corresponding to a vacuum

expectation value for O3) where the hairy black hole rapidly looses its energy and reduces

to a small size. We argued that this describes a new superconducting phase with an order

parameter that becomes very large at some T1 < Tc. The specific heat has first a jump

at Tc — which is characteristic of second-order phase transitions — and then a very high

peak near T1, where entropy and internal energy get suddenly very small. It would be

interesting to identify condensed matter systems with similar properties.
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