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SUMMARY 
In our daily lives, we often navigate situations that require us to manage 
multiple temporal intervals simultaneously. Whether it is timing the cooking 
times of different ingredients when preparing a meal, playing a musical 
instrument, and synchronizing with other musicians while keeping track of your 
own tempo, or driving in busy traffic and paying attention to the timing of traffic 
lights, crossing pedestrians, and the paths of vehicles, our ability to accurately 
perceive and measure time is crucial. These are just some of the many examples 
that illustrate the complexity of real-life tasks in which our perception of time 
enables us to navigate time-sensitive environments effectively. 

The present thesis investigates the cognitive processes involved in time 
perception, focusing especially on how we manage multiple temporal intervals 
simultaneously and how uncertainty influences these processes. By exploring 
these dynamics, our research aims to deepen our understanding of the 
mechanisms that enable us to function effectively in such situations. To this aim, 
we developed three studies that combine theoretical modelling, empirical 
research, and the development of new tools to investigate these mechanisms.  

Throughout the various studies that constitute the thesis, we address the 
challenge of simultaneous multiple timing from different perspectives:  

In the first study, understanding multiple timings as a source of interference, we 
translated a common size illusion to the temporal domain, which allowed us to 
measure how distractors can distort the perceived duration of an attended 
event. We found a clear influence of surrounding stimuli duration on the 
perceived duration an attended event, although not in the same direction as the 
effects of the same type of paradigm in the visuo-spatial modality. 

On the other hand, the second study explored multiple timing as an ability for 
managing complex tasks. We designed a novel experimental task to explore the 
optimality of human observers in simulated real-life scenarios that require a 
certain capacity of tracking, measuring, and working with multiple durations at 
the same time. We found that, although in an only partially optimal manner, 
participants utilized the multiple simultaneous sources of temporal information 
to guide their behaviour. 
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Our findings contribute to refining existing models of time perception by 
extending them to better account for the complexities of simultaneous multiple 
timing, as well as developing new models or methods to fill the gaps in less 
explored paradigms. Additionally, our third study introduces and validates an 
innovative methodology designed to measure temporal uncertainty more 
accurately and without the caveats that more traditional methods entail, 
thereby enhancing our ability to study these cognitive processes in greater 
detail. This method also offers new insights into the cognitive processes 
underlying uncertainty in time perception, providing a valuable tool for future 
research and practical applications. 

Overall, the present thesis advances our understanding of time perception by 
investigating the complex interactions between simultaneous temporal 
intervals encompassed in both sub-second and supra-second ranges, as well as 
the critical role of uncertainty in such situations. By refining existing models and 
introducing new methodologies, the research sheds light on the cognitive 
processes that underpin our ability to manage multiple timing tasks. The 
insights gained from this work not only reinforce the theoretical foundations of 
time perception but also provide practical tools for future studies to further 
explore how we perceive and process time under real-world conditions. These 
contributions lay a foundation for continued research in this area, with potential 
implications for fields ranging from cognitive psychology to applied 
technologies where precise timing is critical. 
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RESUMEN 
En nuestra vida diaria, constantemente nos enfrentamos a situaciones que 
requieren gestionar múltiples intervalos de tiempo simultáneamente. Ya sea 
cronometrando los tiempos de cocción de diferentes ingredientes al preparar 
una comida, tocando un instrumento musical y sincronizándonos con otros 
músicos mientras mantenemos nuestro propio ritmo, o conduciendo en un 
tráfico denso y prestando atención a los cambios de los semáforos, los peatones 
que cruzan y las trayectorias de otros vehículos, nuestra capacidad de percibir y 
medir el tiempo con precisión es crucial. Estos son solo algunos de los muchos 
ejemplos que ilustran la complejidad de las tareas cotidianas en las que nuestra 
percepción del tiempo nos permite resolver eficazmente situaciones donde el 
tiempo es un factor clave. 

La presente tesis investiga los procesos cognitivos involucrados en la percepción 
del tiempo, centrándose especialmente en cómo medimos múltiples intervalos 
de tiempo simultáneamente y cómo la incertidumbre influye en estos procesos. 
Al explorar estas dinámicas, nuestra investigación busca profundizar en la 
comprensión de los mecanismos que nos permiten funcionar eficazmente en 
tales situaciones. Para ello, desarrollamos tres estudios en los que se combina el 
planteamiento de modelos computacionales, la investigación empírica y el 
desarrollo de nuevas herramientas que faciliten la medición de dichos procesos. 

A lo largo de los distintos estudios que componen la tesis, abordamos el desafío 
de entender cómo percibimos múltiples intervalos de tiempo simultáneos 
desde distintas perspectivas:  

En el primer estudio, en el que se entiende la percepción de múltiples 
duraciones simultáneas como una fuente de interferencia, se adapta una 
conocida ilusión de tamaño al dominio temporal. Esto nos permitió medir cómo 
distractores simultáneos pueden distorsionar la duración percibida de un 
evento atendido. Se encontró una influencia clara de los estímulos simultáneos, 
aunque no en la misma dirección que los efectos encontrados en el mismo tipo 
de paradigma en el dominio espaciotemporal. 

Por otro lado, el segundo estudio explora la percepción de múltiples intervalos 
como una habilidad para resolver tareas complejas. Se diseñó una nueva tarea 
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experimental para explorar la capacidad humana de resolver tareas en 
escenarios simulados de la vida real que requieren cierta capacidad de medir, 
seguir y trabajar con múltiples duraciones al mismo tiempo. Los resultados 
muestran que, aunque de una forma solo parcialmente óptima, los 
participantes fueron capaces de utilizar las múltiples fuentes de información 
temporal simultáneas para guiar su comportamiento. 

Nuestros hallazgos contribuyen a refinar los modelos existentes de percepción 
del tiempo, extendiéndolos para comprender mejor las complejidades de la 
percepción de tiempo con múltiples intervalos, así como desarrollar nuevos 
modelos o métodos para llenar los vacíos en paradigmas menos explorados. 

Además, nuestro tercer estudio introduce y valida metodologías innovadoras 
diseñadas para medir la incertidumbre en medidas de tiempo con mayor 
precisión y sin las limitaciones de los métodos tradicionales., lo que mejora 
nuestra capacidad de estudiar estos procesos cognitivos con más detalle. Este 
método también aporta nuevas perspectivas sobre los procesos cognitivos que 
subyacen a la incertidumbre en la percepción del tiempo, proporcionando una 
herramienta valiosa para futuras investigaciones y aplicaciones prácticas. 

En resumen, la presente tesis avanza en nuestra comprensión de la percepción 
del tiempo al investigar las complejas interacciones entre intervalos de tiempo 
simultáneos incluyendo duraciones tanto superiores como inferiores a un 
segundo, así como el papel crucial de la incertidumbre en dichas situaciones. Al 
refinar modelos existentes e introducir nuevas metodologías, la investigación 
arroja luz sobre los procesos cognitivos que sustentan nuestra capacidad para 
gestionar tareas que requieren controlar varios intervalos de tiempo 
simultáneos. Los conocimientos obtenidos de este trabajo no solo refuerzan las 
bases teóricas de la percepción del tiempo, sino que también proporcionan 
herramientas prácticas para futuros estudios que exploren cómo percibimos y 
procesamos el tiempo en condiciones del mundo real. Estas contribuciones 
sientan las bases para investigaciones continuas en esta área, con posibles 
implicaciones en campos que van desde la psicología cognitiva hasta las 
tecnologías aplicadas donde la precisión en la medición de tiempo es 
fundamental. 
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I GENERAL INTRODUCTION 
Time perception is a fundamental aspect of human cognition that plays a critical 
role in a wide range of everyday activities and behaviours. It influences how we 
interact with the world, from making split-second decisions to planning long-
term goals. 

For example, when queuing at a supermarket, we might constantly wonder if 
another line would move faster. Similarly, while using a computer, we assess if a 
loading process has taken too long to decide if the system might have crashed. 
Waiting in various settings like hospitals, airports, or during a commute can feel 
particularly tedious, while engaging in enjoyable activities often makes time 
seem to fly by. These common situations highlight how our perception of the 
passage of time can impact a significant portion of our daily lives. 

Beyond these everyday scenarios, time perception becomes even more critical 
in situations that require precise actions and quick decisions. For instance, 
athletes in many sports often rely on accurate time perception to synchronize 
their movements and reactions. On a more frequent example, judging the time 
we have to cross a street involves complex time estimations based on the 
oncoming traffic, and similarly, when driving, our ability to perceive and react to 
changing conditions on the road becomes vital for our safety. These scenarios 
underscore the importance of accurate time perception for successful and safe 
actions, highlighting its role not only in how we experience the world but also in 
how we interact with it, from predicting movements and intercepting objects 
to understanding speech and engaging in social interactions. By understanding 
time perception, we can better grasp how humans navigate and interpret the 
temporal aspects of their environment, making it a key component in 
understanding human cognition and behaviour. 

However, although its influence is quite evident, defining time perception poses 
a challenge. To begin with, the definition of physical time itself is still unclear. 
Despite its apparent linearity, it is hard to give a definition without circularity. An 
example closer to philosophy that we could settle for is the pragmatic definition 
of “time is what the clock says.” This grounds the definition of time under its own 
measure, and we can do the same to understand time perception just by 
putting ourselves in place of the clock. Therefore, time perception is what we are 
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measuring, the process itself of sensing, estimating, and evaluating time 
intervals from the millisecond range to days or even longer. That said, research 
in time perception focuses on understanding and describing this process.  

However, unlike other perceptual systems, it faces a significant obstacle: this 
system lacks a sensory organ to capture this type of information from an 
external source, unlike how we have eyes and ears to convert light stimulation 
and sound waves into neural signals. This absence makes it considerably more 
challenging to understand how we generate these types of mental 
representations and makes it crucial to ascertain which sources of information 
we utilise for this purpose. Despite this, research in time perception has revealed 
very diverse factors can influence how we measure and judge time, including 
for example temporal frequency and motion, stimulus intensity and salience, 
task relevance and attention, emotional significance and arousal, stimulus 
familiarity and expectation, cognitive load and secondary tasks, contextual 
factors and relative magnitude, and neural mechanisms such as dopamine 
levels and prefrontal cortex activity (Buhusi & Meck, 2005; Kanai et al., 2006; 
Matthews & Meck, 2016; Vatakis et al., 2018; J. Wearden, 2016), 

With this, the urge of many researchers to give an answer to how we measure 
and perceive time led to the development of numerous models and theories 
aimed at explaining the underlying mechanisms that support this ability 
(Addyman et al., 2016). 

MODELS OF TIME PERCEPTION 

Although the study of time perception has its roots in early psychological and 
physiological research, with pioneers like Wilhelm Wundt and William James 
already exploring the subjective experience of time and its relationship to 
sensory and cognitive processes, it was not until the mid-20th century that more 
formalized models began to emerge. 
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I 
Internal Clock Models 

Pacemaker-Accumulator Model 

One of the first formal models of time perception was the pacemaker-
accumulator (PA) model, which remains probably one of the most influential 
models in the field to this day. With their initial formulations by Creelman and 
Treisman (Creelman, 1962; Treisman, 1963), the PA model describes a dedicated 
centralized model for temporal processing that measures time in a linear or 
metric way, similar to a stopwatch. The structure of the model is divided into a 
series of components that are mostly common to the different variations of the 
model and cover the various stages required to measure an interval and 
generate a response according to it. 

The timing process starts with a pacemaker that emits pulses at a constant rate. 
Although, the rhythm of this pacemaker can vary depending on the arousal 
level. In Treisman’s model, higher arousal leads to increased speed of the 
pacemaker, resulting in more pulses being generated over a given physical 
duration, which could end up biasing the estimation of such duration.  

Then, these pulses are collected in an accumulator component that counts the 
quantity of pulses that got through since the onset of the event. This count value 
is what will represent the raw measure of interval duration in the mental space 
and will be sent to a comparator component where it will be compared against 
previously stored values in memory.  

Finally, this comparison allows us to assign verbal labels to deliver an estimate 
of the duration or engage in a behavioural response according to the end of that 
event. This response as a product of perceptual judgment has been widely 
explored empirically using paradigms such as comparison or judgment tasks 
(where responses depend on whether the accumulated pulses reach a certain 
threshold) or estimation tasks (where a response is delivered by behaviourally 
putting an end to the interval when enough pulses have been accumulated or 
by delivering an external representation of the number of pulses accumulated 
during that period). Figure 1.1 illustrates the process by showing how the 
information travels from one component to the other. 
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Figure 1.1. Illustration of the Pacemaker-Accumulator model components along with the 
attentional gate component. 

Scalar expectancy theory 

From its initial formulation, an influential variation of the PA model was 
developed in the 1980s based on investigations into animal behaviour during 
associative learning. The model, clearly based on the traditional conception of 
the PA model, begins with a Clock stage where the pacemaker emits pulses 
behaving like a Poisson timer, which although having some random variability, 
is relatively consistent. The flow of these pulses is controlled by a switch, that 
closes the circuit at the onset of the interval to allow the pulses to get through 
and opens again at the offset to stop the flow. Then, the pulses that got through 
are captured by the accumulator and stored in the working memory to be 
compared to a reference memory at the Memory stage. Finally, the Decision 
stage involves the comparison of the durations that will guide the perceptual 
judgment or behavioural response that ends up as the output of the whole 
process.  

However, the key contribution of the model is not on the formulation of the 
model (which is close to the structure of the original PA model) but based on 
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I 
some key empirical findings from timing tasks. Gibbon et al. (Gibbon, 1971, 1977; 
Gibbon et al., 1984; Gibbon & Church, 1990) observed that animals learn to 
execute responses after a specific delay, indicating the capacity to operate with 
internal measures of elapsed time. Furthermore, they found that although 
responses peaked at the reinforced interval, the spread of these responses 
increased in proportion to the magnitude of the estimated duration. This 
property, known as the “scalar property of timing” became a key feature in 
timing research until this day, and served as the foundational basis of their 
model, the “Scalar Expectancy Theory” (SET) (named due to the scalar spread of 
responses at the expected time of reward). 

The scalar property, crucial for understanding the consistency of time 
perception across different conditions, could be considered as a form of Weber’s 
law for timing. It establishes a relationship between the variability of time 
estimates and the magnitude of the durations they represent. Generally, a linear 
increase in physical duration correlates with a linear increase in perceived 
duration, along with an approximately linear increase in the variability of these 
estimations (Buhusi & Meck, 2005; Gibbon, 1977; Grondin, 2010; Matell & Meck, 
2000). This implies that sensory variance when measuring time intervals should 
be proportional to the magnitude of such intervals. Regarding where this 
variance would be generated, there is a disagreement about what component 
should be responsible for that, as while the original SET model proposes that it 
arises from noise in the comparison process, posterior variations like Killeen and 
Taylor’s model (Killeen & Taylor, 2000) propose that it might be due to a noisy 
accumulator component. 

To test this property across paradigms, modalities and species, a Weber fraction 
or a Coefficient of variation (CV) can be calculated as the ratio between estimate 

variance and physical duration �𝜎𝜎
2

𝑡𝑡
�. According to the scalar property, both the 

mean estimates and the standard deviation of these estimates should increase 
proportionally with the reference duration. Also, the Weber fraction or CV should 
remain constant across the different magnitudes of duration. Moreover, if the 
estimates are standardized by their reference durations, the distributions of 
these estimates should overlap (J. H. Wearden & Lejeune, 2008). 
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Attentional-Gate Model 

In addition to the contribution of the SET, subsequent models also emerged to 
address additional aspects that could impact timing behaviour. The Attentional-
Gate Model (AGM) proposed by Zakay and Block (Zakay & Block, 1997) 
introduced the significant role of attention in the timing process. 

Based on the previous models, the rate of pulse generation in the AGM can be 
influenced by changes in arousal or attention. Similarly to Treisman’s model, 
increased arousal leads to an accelerated pace of pulse generation. However, 
they also introduce an Attentional Gate component that moderates how the 
accumulator gathers the flow of pulses (see Figure 1.1 to illustrate the allocation 
of this component within the process). When more attention is allocated to 
tracking time, the gate opens wider, which allows for more pulses to reach the 
accumulator. Conversely, when attention is diverted from this task, such is the 
case of dual-task situations where the attention is at least partially shared with 
a different task, the gate narrows, and some pulses fail at reaching the 
accumulator. This provides a framework for understanding common 
experiences related to time like the common saying of “the watched pot never 
boils”: when individuals focus heavily on the passage of time, their attention 
widens the gate, leading to more accumulated pulses and therefore longer 
perceived durations. In contrast, when attention is distracted by engaging 
activities like reading, watching a movie or having an interesting conversation, 
the gate narrows resulting in shorter perceived durations. Although these are 
anecdotical examples, the AGM help explain empirical findings about the effect 
of uncertainty, relevance, difficulty, or divided attention on timing tasks (Zakay, 
2015; Zakay & Block, 1997). 

To further elaborate on the role of attention in the timing process, Zakay also 
introduced the Temporal-Relevance Temporal-Uncertainty (TR–TU) model 
(Zakay, 2015). This model posits that the allocation of attentional resources for 
timing is not constant but dynamically influenced by the situational meaning 
extracted by the cognitive system. Temporal Relevance (TR) reflects how 
important temporal judgments are for adapting to a given situation, while 
Temporal Uncertainty (TU) indicates the amount of knowledge one has 
regarding the timing task. High TR automatically evokes a prospective duration 
judgment process and increases the allocation of attentional resources to 
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timing. When TU is high, it indicates less certainty about the temporal aspects, 
thereby requiring more attentional resources to reduce this uncertainty. This 
interaction between TR and TU determines how situational factors dynamically 
influence the opening of the attentional gate and explains how attention and 
uncertainty jointly affect our perception of time. 

Multiple-Oscillator Model 

In parallel to the development of the different variations of internal clock 
models, a different set of models also emerged around the late 1980s from the 
recognition that biological rhythms play a crucial role in time perception and 
with a focus on finding some neurobiological substrate to support these 
processes. The Multiple-Oscillator Model (MOM) suggests that timing can be 
achieved through the interaction of multiple neural oscillators with different 
frequencies (Miall, 1989). These oscillators are reset at the onset of a timed 
interval and create distinct patterns of activity as time elapses due to their 
different asynchronous frequencies. At the end of the interval, the last pattern 
of the oscillators is used to interpret its duration (see Figure 1.2 for a visual 
example).  

 

Figure 1.2. Example of the position of the multiple oscillators after 
a given time interval. The interpretation of the pattern of 
oscillation at the end of the interval determines the perceived 
duration. 

Building upon this idea, Matell and Meck introduced the more neurobiologically 
detailed Striatal Beat Frequency (SBF) model (Matell & Meck, 2000, 2004; 
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Oprisan et al., 2022; Oprisan & Buhusi, 2011). It describes a distinction of roles in 
different areas, as oscillators are proposed to be located at the cortical level 
(particularly in the prefrontal cortex), but are also supposed to send signals to 
neural structures of the striatum of the basal ganglia to act as coincidence 
detectors, reading out the state of the cortical oscillators at the end of the 
interval. The unique activation patterns that are created at this point are what is 
finally used to encode the specific duration. 

Duration-Channels Model 

Another framework that integrates insights from multiple oscillator models and 
also originated apart from the internal clock models is the Duration-Channels 
model, which centres around a system of duration-selective neural structures 
(channels) that respond differently to specific durations (Heron et al., 2012). 
According to this model, the brain contains multiple clusters of neurons tuned 
to narrow ranges of preferred durations. This form of tuning to different ranges 
of stimulation magnitude is also present in other modalities, such as visual 
orientation, spatial frequency, or auditory pitch (Bruno & Cicchini, 2016; Heron 
et al., 2012). In the field of time perception, the preference of neuronal 
populations to specific durations has been already found in fMRI studies in 
animals and humans (Bruno & Cicchini, 2016; Hayashi et al., 2015). 

To describe the perceptual process, when a stimulus is presented, it activates 
these channels to varying degrees depending on its duration and the 
preference of each channel. The pattern of activation across the channels is then 
interpreted by the brain to generate the mental representation of that duration 
(see Figure 1.3 for a visual example of these channels’ activation). 

Evidence for these models initially grounded on adaptation studies, where 
adapting to specific durations altered the perceived duration of subsequent 
stimuli (Heron et al., 2012), suggesting a saturation of said duration-channels. 
Moreover, neural imaging studies have revealed that duration-tuned cells in the 
auditory and visual cortex are engaged during timing tasks, indicating that 
temporal information processing relies on a distributed network of duration-
selective neurons (Merchant & De Lafuente, 2014). This supports the idea that 
our perception of time is an emergent property of the activity within these 
duration-selective neural channels. 
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Figure 1.3. Illustration of the duration channels selectively activated by the active 
duration. The activation spreads through closer channels. 

A Theory of Magnitude Model 

Later, in the early 2000s, an alternative model less centred around a dedicated 
perceptual system of timing but more on a general magnitude system gained 
popularity. The Theory of Magnitude (ATOM) is a cognitive framework that 
proposes a common magnitude system for processing different types of 
stimulation, including time, space, and quantity (Bueti & Walsh, 2009; Choy & 
Cheung, 2017; Fabbri et al., 2012; Walsh, 2003). Instead of having dedicated 
systems for each type of magnitude, ATOM proposes that these mechanisms 
are shared and that this allows for the integration and comparison of different 
magnitudes more optimally in the brain, helping coordination across various 
domains. The theory is based on the idea that the brain represents magnitudes 
in an abstract way, independent of the modality or variable through which they 
are encoded. This abstraction is what allows perceptual mechanisms from other 
modalities to be borrowed for calculating and representing time. It also explains 
why time perception is so closely related to how we process space, and why we 
observe many parallel effects between space perception and time perception 
(Bratzke et al., 2023). 

This was supported by behavioural and neuroimaging studies that provide 
evidence of brain regions involved similarly in the processing of time, space, and 
numerosity (Bueti & Walsh, 2009; Burgess et al., 2011; Cona et al., 2021; Parkinson 
et al., 2014; Skagerlund et al., 2016). However, there are also studies indicating 
some degree of independence, suggesting that although these domains share 
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common mechanisms, they may not always follow the same computational 
properties (Sima & Sanayei, 2024). 

Additionally, in relation to previous models, ATOM suggests that the internal 
clock system described in traditional models could be part of a broader 
magnitude system, that could be used to process other types of magnitudes as 
well. Due to the presence of Weber’s law in many fields, the scalar property could 
also be a manifestation of a generalized magnitude property that affects not 
only time but also space and numerosity estimations similarly. 

Drift-Diffusion Model 

At the same time as Internal clock models were developing their variations, a 
broader group of models also emerged based on evidence accumulation. 
Originally developed to explain decision-making processes, the Drift-diffusion 
models (DDMs), originally developed by Roger Ratcliff (Ratcliff, 1978), proposed 
a way to describe how we reach perceptual decisions, especially when choosing 
between two alternatives. These models describe a process where noisy 
evidence is accumulated over time until this accumulation reaches either 
decision threshold, which terminates the evidence sampling and produces a 
decision that corresponds to that threshold (Balcı & Simen, 2016; Forstmann 
et al., 2016; Ratcliff, 1978; Ratcliff et al., 2016; Ratcliff & McKoon, 2008; Simen et al., 
2011). Although this model was primarily focused on explaining reaction time 
distributions in two-choice tasks (without it being based on any specific 
modality), its principles were soon recognized as applicable to other cognitive 
domains, including time perception.  

However, timing becomes a special case when describing the decisional process 
under DDMs which slightly differentiates it from other modalities. For example, 
if we are deciding the shape of a visual stimulus, this noisy accumulation of 
evidence is based on taking repetitive samples of what we are observing, but 
when it comes to observing a time interval, the same time we are using to 
sample the evidence is part itself of the stimuli. At the start of an interval, the 
evidence level begins at a neutral or zero value, and then gradually accumulates 
time as evidence. This magnitude of evidence can reach certain thresholds that 
determine judgments in duration comparison tasks or can also be translated 
into a quantitative value to respond in estimation tasks, which shows the 
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relevance the establishment of thresholds has for explaining certain biases in 
decisional tasks. 

 

Figure 1.4. Example of the noisy accumulation through time. The grey diagonal dashed 
line represents how a perfect accumulation of estimated time would grow across time. 
The solid black lines show different instances of how the subjective accumulated time 
usually grows instead, with noise deviating the amount of perceived time from the 
actual elapsed time. The dashed horizontal line exemplifies a reference interval to be 
compared, and the solid horizontal lines represent the thresholds that determine the 
magnitudes at which the accumulated estimated time would be judged as longer or 
shorter than the reference time.  

Although coming from different approaches, we can also find certain similarities 
between internal clock models and DDM, as the main components of these 
models could fulfil similar functions. On one hand, an important component of 
DDMs is the “drift”, which refers to the rate of accumulation of evidence. If we 
focus on the estimation of time, this could be parallel to the rate of accumulation 
of pulses in an internal clock model, but in this case, instead of depending 
exclusively on internal factors, it can be determined by the quality of the 
evidence extracted from the stimulus or from memory. The second one, the 
“diffusion” component, represents random fluctuations during the 
accumulation of evidence, which is a form of noise that could be present at 
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different steps of the process in an internal clock model and is critical to explain 
the high variability usually found in timing tasks.  

Further variations of these models evolved to include many new factors, like 
variability in drift rates, starting points, nondecision times across trials, and non-
static thresholds, and have been used to study various aspects of time 
perception, such as the effects of attention, memory and cognitive biases. 

Bayesian Model 

Finally, in a similar line to drift-diffusion models, we find another framework that 
emerged with a broader interest in understanding how the brain processes 
information and makes decisions under uncertainty, which ended up setting 
the ground for relevant models of time perception. We can trace it back to the 
18th century with the formulation of Bayes’ Theorem, which provided a 
mathematical framework for updating the probability of a hypothesis based on 
new evidence.  

However, the application of this principle did not begin to generalize to 
cognitive science and perception until the late 20th century, when researchers 
applied it to explain that perception could be understood as a form of 
probabilistic inference, where the brain combines the initial belief or 
expectation about a particular state of the world (prior) with the probability of 
observing the sensory information (likelihood) to update their beliefs in a way 
that optimizes their estimates (posterior distribution) and help them interpret 
the world more easily (Gregory, 1980; Knill & Richards, 1996, 1996). Soon Bayesian 
models became a dominant framework in cognitive science and have since 
been used to explain a wide range of perceptual phenomena, from visual 
perception to motor control and decision-making.  

This also arrived in the field of time perception, where they have also been 
particularly influential. Using the same principle, we could imagine an example 
where a person has a prior belief or experience that a familiar event usually lasts 
a specific amount of time, but then receives some noisy sensory information 
that suggests the event duration in this instance might be slightly different. In 
this case, we would predict that these two sources of information will be 
combined to produce a weighted average estimate based on their respective 
uncertainties that theoretically minimizes the probability of error (see Figure 1.5). 
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This approach contributed to understanding various phenomena in time 
perception, such as the central tendency effect, where people’s time estimates 
are often biased towards the general average of the previously presented 
intervals (Acerbi et al., 2012; Jazayeri & Shadlen, 2010; Shi et al., 2013). 

 

Figure 1.5. Bayesian process of time perception, where previous experience or 
expectations (prior) are combined with new sensory information (likelihood) to form an 
updated estimate of duration. The prior distribution reflects the initial belief or 
expectation about the duration of an event. The likelihood distribution is based on the 
new sensory evidence. The resulting posterior distribution is the updated estimate of the 
event's duration after integrating both the prior and the likelihood. It is centred between 
the prior and likelihood distributions, representing the brain's optimal estimate that 
minimizes uncertainty based on both sources of information. 

This, for example, shows Bayesian models as part of the models that especially 
underscore the importance of uncertainty in the time perception process and 
give a reason for the prevalent variability of time estimates. If the brain estimates 
are probabilistic and inherently incorporate uncertainty, this will lead to 
variability in how a given interval is perceived and judged, as is often observed 
in experimental settings.  

Also, an advantage of these models is that they are highly integrative and can 
be combined with elements from other time perception models. For example, 
the output of pacemaker-accumulators with noisy pulses could be considered 
noisy evidence that is later integrated probabilistically (Shi et al., 2013). Similarly, 
drift-diffusion processes could be accommodated too by framing the 
accumulation of temporal evidence as the process of updating probabilistic 
beliefs (Acerbi et al., 2012; Ratcliff, 1978; Simen et al., 2011). 
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MULTIPLE TIMING 

These diverse models provide a robust framework for understanding how we 
perceive intervals of time. However, they often assume that intervals are 
processed in isolation, a scenario that rarely occurs in real-world settings. In 
reality, we frequently encounter multiple, even overlapping intervals that must 
be tracked and processed simultaneously. In such cases, the presence of 
simultaneous intervals in the mental space can interfere with the process. These 
intervals, whether they need to be tracked, maintained in working memory, or 
simply presented without any relevance to the task, can bias the construction of 
other time representations. Thus, these distortions of time perception are not 
caused by the intrinsic properties of the events but by the contextual demands 
of retaining multiple time intervals in the mental space, where they might 
compete and influence each other. 

This is a common problem in real-life situations, where events are not isolated 
in time. When we are attending to a specific event, other events can often occur 
simultaneously in the same environment, and even the durations of events that 
are not currently active can retain relevance or influence our experience. For 
instance, while waiting at a traffic light, listening to music can affect how we 
perceive the waiting duration. The length of the song, its beat, and other 
properties can interfere with our experience of the waiting time. This concurrent 
or concomitant temporal information forms what we call the temporal context, 
and even when not actively attended to, it can leak into our perceptual process 
and interfere with our primary time-tracking activity. It includes any temporal 
information active in a given situation, such as the duration of events, the 
frequency of occurrences, or the synchrony between different elements, and 
even previously experienced temporal information stored in memory and 
integrated into the processing of our current surroundings also contributes to 
this context. 

This introduces a level of complexity to our temporal processing that challenges 
some of the main models of timing and underscores how understanding the 
ways this temporal context can influence our time estimates becomes crucial 
for a comprehensive and generalizable theory of time perception. 
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Sequential events 

To begin with, concurrent or successive events that are not successfully 
detached from the main event we are trying to measure are potential sources 
of perceptual noise that can effectively influence how we experience the 
duration of such events (Bryce & Bratzke, 2016; Jazayeri & Shadlen, 2010; 
Matthews & Meck, 2016). For example, when we are stopped at a traffic light, the 
waiting time may seem longer or shorter depending on the duration of other 
traffic lights changing within our field of view, even if these lights are irrelevant 
to us. 

In this sense, studies focusing on the effects of preceding temporal information 
have shown that estimations can be affected by previously experienced 
durations. Hallez et al. (2019) found that reproductions of time intervals were 
influenced by previously experienced durations. Specifically, they found that 
reproductions tended to be overestimated when presented with an array of 
stimuli with longer durations and underestimated when the array consisted of 
shorter durations. This is suggested to be due to a compensation mechanism to 
face uncertainty, where participants relied more on their previous experience 
with that kind of stimuli, and therefore made their reproductions closer to that 
prior (Burr et al., 2013; Jazayeri & Shadlen, 2010). This mechanism aligns with the 
Bayesian theory of perceptual inference, which suggests that the brain 
integrates noisy sensory information with prior experiences to form a subjective 
perception of duration (Acerbi et al., 2012; Jazayeri & Shadlen, 2010). 

In a similar line, studies on “carryover effects” in duration judgments reveal 
parallel results with the addition that not only previously presented durations 
but prior judgment can affect participant responses (Wehrman et al., 2020; 
Wiener et al., 2014). Interestingly, the direction of the effect differs between the 
two sources, where previous duration judgments typically lead to a central 
tendency effect, while previously presented durations often cause a repulsion 
effect, making current durations seem more distinct (Wehrman et al., 2020; 
Wiener et al., 2014). 

Even irrelevant events can affect duration judgments. Burr et al. (2013) 
demonstrated that distractor intervals presented immediately before a target 
duration could bias judgments towards the distractor durations. Moreover, this 
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effect persisted even when distractors immediately followed the target if both 
stimuli were presented in the same modality (visual, auditory or tactile). These 
findings demonstrate that not only the previous information influence the 
perception of posterior presentations, but also the events that are presented 
after it in the same temporal context can still have an effect (Burr et al., 2013). In 
such cases, the distractors could not affect the encoding of the target duration 
but would either interfere by modifying its representation in the working 
memory or by affecting the decisional stage. These findings support a Bayesian 
model that combines direct estimates of duration with a tendency to regularize 
intervals, suggesting that contextual effects involve both sensory processing 
and higher-level cognitive mechanisms. 

Notably, when distractors are much longer than the target interval, their 
influence diminishes (Burr et al., 2013). This interaction can be explained by the 
channel-based model framework, where distractors activate duration-channels 
that interfere with channels associated with the target duration. This merging 
of activity from different channels would then deviate the outcome of the 
perceptual process by making the durations to be interpreted as more similar 
to the distractor durations. 

This was also observed by Heron et al. (Heron et al., 2012), who used adaptation 
techniques to show how repeated presentations of a stimulus could shift the 
perceived duration of following stimuli. They found that after saturating a 
specific duration through many repetitions, right after presenting a target 
duration of the same or very close duration to the adapted one, the estimates of 
that duration were shifted away from the actual duration in a repulsive fashion. 
Based on the duration-channels framework, an explanation could be that if the 
channels were saturated, the strength of the signal close to those channels 
would be blocked or diminished, leading to a repulsive effect where close 
channels in the opposite direction would appear relatively stronger. Consistent 
with Burr et al. (Burr et al., 2013) findings, they also found that when adapted and 
test durations were different enough, the effect would fade, supporting the idea 
that the temporal proximity of durations plays a crucial role in the strength of 
perceptual distortions. In this case, the repulsive effects found (where perceived 
times are shifted away from the adapted durations) contrary to the assimilative 
effects mentioned earlier, could be explained by the saturation of the duration-
selective channels. The paradigms that found assimilative effects should 
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generate activation of those channels but not to the degree of generating 
saturation. Therefore, both types of effects could be explained according to this 
framework depending on what is happening at the channel level in response to 
the presented durations. 

Altogether, these findings demonstrate that sequential events can deviate our 
timing processes, and from these both assimilative and repulsive effects can be 
expected depending on the paradigm and framework.  

Simultaneous effects 

So far, we have focused on serial timing effects from the presentation of duration 
information of previous or subsequent events. However, as mentioned before, 
the temporal context also includes information about the temporal properties 
of simultaneous or overlapped events. This aspect of temporal context is 
addressed by the “Multiple Timing” framework described by Brown and West 
(1990). According to their initial definition, Multiple Timing involves the capacity 
to attend and extract duration information from multiple sources 
simultaneously. Here, this framework aims to understand how simultaneous 
intervals are processed, and how their overlapping can influence duration 
estimation.  

Now when we talk about simultaneous intervals, we refer to those that occur 
fully or partially at the same time. Whether one is fully embedded within the 
other or their onsets are just shifted from one another, there is at least some 
time during which both intervals are active. Many real-life situations present this 
kind of setting, and sometimes we need to keep track of multiple of these 
intervals at once. For instance, in basketball, players and referees must keep 
track of several overlapping intervals; they must track simultaneously the 24 
seconds interval they have to attempt a shot, cannot stay in the are under the 
basket for more than three seconds and must inbound the ball before five 
seconds run while the ball is out of bounds of the playing area, all at the same 
time. Similarly, healthcare professionals often monitor the administration times 
of medications for multiple patients, which requires precise tracking to ensure 
timely delivery. And in a longer timescale, project managers also have to oversee 
different tasks and sub-projects progressing concurrently, each with its own 



ALL TIMES AT ONCE 

20 
 

timeline. All of these are just a few examples of many situations in which our 
ability to track multiple overlapped intervals is key to our success. 

From a more theoretical perspective, this ability challenges some of the most 
traditional timing models, which typically focus on tracking a single event or 
sequence. Unlike sequential timing, when multiple streams of time need to be 
tracked concurrently, many of these models fall short of explaining fully the 
process of timing. This raises the still unanswered question of whether we are 
actually able to track multiple intervals independently or else we depend on 
some strategies for exploiting the mechanisms we already have from sequential 
timing to solve these tasks. 

Although scarce, some studies addressed the issue of simultaneous multiple 
timing. For example, Kawahara and Yotsumoto (2020) studied the effect of 
simultaneous distractors on duration reproductions. They found that when a 
target interval was presented along with distractors of longer durations, 
reproductions tended to show a positive error (overestimation), and the 
opposite happened when distractors had shorter durations than the target 
interval. This finding aligns with the assimilative effects found in sequential 
presentations, where an averaging effect occurs between the target duration 
and the durations of other elements in the temporal context (Ayhan et al., 2012; 
De Corte & Matell, 2016; de Montalembert & Mamassian, 2012). In a similar line, 
De Corte and Matell (2016) investigated interval timing and temporal averaging 
in rats. They found that when rats were presented with two temporal cues, each 
signalling a different reward interval, they behaved as if they computed a 
weighted average of the durations. This "temporal averaging", that could be 
understood within the context of Bayesian Decision Theory, suggests that the 
brain integrates multiple sources of temporal information based on their 
reliability. However, when comparing the effects of simultaneous presentations 
with sequential or individual presentations, the most common findings are that 
performance in duration discrimination is worse than compared to sequential 
tasks (de Montalembert & Mamassian, 2012), and degrades as the number of 
simultaneous elements increases (Ayhan et al., 2012) or when overlapping 
distractors are presented (Morgan et al., 2008). Altogether, these results support 
the idea that timing simultaneous durations involves higher cognitive demands 
and increases perceptual noise in the process. 
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As previously noted, traditional timing models were primarily designed to 
explain the mechanisms underlying the tracking of single intervals, but they 
might struggle to explain the cognitive processes involved when multiple 
intervals must be monitored simultaneously. However, researchers have 
developed variations and extensions of these classic models to address the 
complexities of simultaneous multiple timing.  

For example, pacemaker-accumulator models are traditionally built with 
individual intervals in mind, as they consist of a single pacemaker and a single 
accumulator that, although working for simple, non-overlapping intervals, 
would have trouble when having to keep the count of pulses from two different 
events. However, alternative versions of these models have been proposed to 
approach this issue. For instance, Matthews (2013) proposed an alternative 
approach, suggesting that we do not track overlapping events separately but 
rather as segments of a sequence. His research showed that sequences with 
equal duration segments were consistently judged as longer than those with 
varying segment durations. Additionally, they found an interaction between the 
decelerating or accelerating structure of the segments and the overall duration 
of the sequence, where short sequences were judged as longer when 
sequences were accelerating whereas longer accelerating sequences were 
judged as shorter. This highlights an effect of recency, that they described as a 
differential weighing of the contribution of each segment to the overall 
duration. According to their theory, the Weighted Sum of Segments, the more 
recent segments (those closer to the offset of the overall sequence) are 
weighted more heavily in the final judgment of the overall duration, similar to a 
fading memory trace. This model suggests that interval sequences are 
perceived as distinct segments timed individually and then summed to 
estimate the total duration, with each segment's contribution weighted by its 
recency. In their study, the long interval was divided into three segments: before 
the short interval, during the overlap, and after the short interval. This approach 
allows a single accumulator to manage overlapping intervals by treating them 
as sequential segments stored in memory and summed accordingly. 

Bridging this theory with simultaneous multiple timing, we could imagine that 
one way of measuring simultaneous intervals could be to keep track of the 
different segments generated by the intersection of both events and then to 
sum the duration of those segments where each of the events was present.  
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Alternatively, the Single Pacemaker Multiple Accumulator (SPMA) model offers 
a different perspective. Proposed by van Rijn and Taatgen (2008), this model 
suggests that a single pacemaker emits pulses for all intervals, which are 
counted by multiple accumulators, each dedicated to timing a different interval. 
This approach also accounts for the scalar property of timing by proposing that 
pulse generation is nonlinear, with pulse intervals increasing over time. With this 
model, tracking the duration of overlapping events would be possible due to the 
dedicated accumulators. However, the SPMA model faces challenges such as 
dual-task costs, where sharing attention between multiple intervals results in 
slower accumulation of pulses and increased variability or inaccuracy in timing. 

To compare these two possibilities, Bryce and Bratzke (2016) tested both models 
to see which one could explain the effects of overlapping intervals better in a 
reproduction task. In their study, participants were asked to reproduce the 
duration of two nested intervals presented as visual stimuli, where one was fully 
embedded in time within the other. The onset of the short interval (1 s) had a 
delay with respect to the onset of the long interval (3 s) by varying amounts (250 
to 1750 milliseconds), creating different degrees of overlap. Their results showed 
that the reproduction of the long interval decreased as the short interval 
appeared later within it, while the short intervals were unaffected by their 
temporal position within the long interval. Although these findings could be 
similarly predicted by an adapted version of the SPMA model where dual-task 
costs impact only the long interval, they were even better aligned with the 
recency effects expected from a “the SPSAweighted” model with one 
pacemaker and one accumulator where only the timing of the embedding 
interval required summing of segments. Additionally, participants' responses for 
reproducing the short interval were delayed when there was more time 
between the end of the short and long intervals, suggesting they replayed the 
entire sequence, which supports the notion that participants treated both 
intervals as part of a single sequence rather than independently and provide a 
plausible explanation of how the estimation of overlapped intervals is produced. 

The aforementioned approaches provide theoretical frameworks to explain how 
simultaneous multiple timing could be accommodated within most classical 
models, although similar adaptations can be made too with more recent models 
from different frameworks. In summary, understanding the mechanisms 
through which overlapping durations influence time perception is a challenging 



   INTRODUCTION 

23 
 

I 
endeavour that is crucial for developing a comprehensive theory that accounts 
for real-world situations where multiple time intervals must be tracked 
concurrently. To that aim, the present thesis will address simultaneous multiple 
timing tasks at different levels of complexity with a focus on developing novel 
models that can contribute to a better understanding of how humans process 
and manage multiple time intervals simultaneously. 

UNCERTAINTY IN TIME PERCEPTION 

As seen through this general introduction, we find that the diverse timing 
models that try to illustrate the intricate process of how we perceive and 
measure time underscore a common theme: the inherent uncertainty in our 
time estimations or temporal judgments, which seems to be even amplified 
when managing multiple overlapping intervals. Because of this complexity, 
using precise methods to measure and understand the variability and reliability 
of our temporal judgments is essential for both theoretical and practical 
applications.  

In this section, we will delve into the various approaches developed to measure 
uncertainty in time perception, highlighting both their advantages and the 
limitations they must face. 

Variability of estimates 

From the different ways of approaching the measurement of uncertainty in 
time perception, probably the most common or simple approach is by 
calculating the variability of estimates in quantitative tasks. For example, 
participants deliver a quantitative response by generating a physical interval in 
production or reproduction tasks or by labelling the duration with a quantity in 
estimation tasks that represents how long they perceive a given interval is. If 
these estimates are more variable, we could infer that there is probably a greater 
degree of uncertainty (see Figure 1.6). However, this variability could be caused 
not only by uncertainty in the mental representation of the interval but also by 
other sources of response noise such as motor components. 
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Figure 1.6. Illustration of the variability of time estimates around a reference duration 
(dashed red line). The spread of the estimates around the reference duration can be 
used as the measure of uncertainty in the participant's perception of the reference 
duration with a broader distribution suggesting higher uncertainty.  

Slope of the psychometric function 

Parallel to the variability measure in quantitative tasks, we could also calculate 
a psychometric function in a duration discrimination or bisection task and 
obtain a slope or sensitivity measure. A steeper slope would suggest a very clear 
mental representation of that interval (therefore less uncertainty). See Figure 1.7 
for an example of how this would be reflected in the results of a temporal 
judgment task. 

The problem with these options is that the uncertainty measure that we obtain 
is not specific to an individual response but refers more to the global 
performance during the task. If we can only obtain a measure of how clear the 
mental representation is for the whole task, it can be hard to investigate how 
uncertainty fluctuates throughout the different trials or manipulations during 
the same block. 



   INTRODUCTION 

25 
 

I 

 

Figure 1.7. Example of the psychometric function obtained in a duration judgment task. 
The left example depicts high sensitivity, where the steep slope indicates a clear 
distinction between different durations and therefore lower uncertainty. In contrast, the 
plot on the right shows low sensitivity, where the flatter slope suggests a more gradual 
transition between judgments, reflecting greater uncertainty in temporal judgments of 
close durations. 

Confidence judgments 

A common alternative to these approaches that delivers a measure on a single-
trial basis is to integrate confidence judgments into timing tasks to address the 
interplay between performance variability and metacognitive assessments of 
uncertainty. For example, Lamotte et al. (2017) combined a temporal 
generalization task followed by a confidence judgment, where participants 
learned the standard duration of an auditory stimuli, and then had to judge 
whether the following stimuli had the same or different durations. After each 
duration judgment, participants were asked to make a confidence rating on a 
scale from 0 to 100 regarding how sure they were of their answer. Their results 
revealed that confidence aligns with the accuracy of duration estimates, 
especially when those durations closely match a standard interval. This suggests 
that confidence judgments can reflect the uncertainty inherent in temporal 
discrimination tasks. Similarly, Akdoğan & Balcı (2017) used a duration 
reproduction task followed by error monitoring judgments, illustrating that 
participants can introspectively assess the accuracy and direction of their timing 
errors, linking error awareness to confidence levels. 
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Second-order judgments 

Following a similar approach but taking a step further, Cropper et al. (2024) and 
Corcoran et al. (2018) employed modified temporal-bisection tasks to measure 
second-order confidence judgments over multiple first-order estimates. In 
these tasks, participants made two interval estimates per trial and then were 
asked to identify which one was more accurate, assessing both time perception 
and confidence of multiple estimations. Lastly, Jovanovic et al. (2023) 
investigated the effects of dopamine depletion on timing and confidence, 
demonstrating that neurochemical changes can influence both the accuracy of 
timing tasks and the confidence in those tasks. 

Overall, these studies found proficiency in making metacognitive evaluations of 
temporal judgment accuracy, and that adding confidence judgments to timing 
tasks offers a valuable method for accessing the uncertainty in perceptual 
decisions through the lens of metacognitive confidence. However, the 
integration of explicit judgments requires participants to be aware that their 
confidence is being measured, potentially influencing their responses. This 
awareness could inadvertently affect the very judgments that are being studied. 
Furthermore, these methods lengthen the task by requesting an additional 
response after each trial, which increases the overall duration of timing 
experiments potentially impacting participants' fatigue and engagement in the 
task. It also requires the implication of higher cognitive functions, as participants 
must engage in the evaluation of their own performance, which can be 
susceptible to biases and external interferences that might not be directly 
related to the uncertainty being measured. 

Peak-interval procedure 

Departing from the metacognitive assessment approach, other methods have 
been developed closer to the original measure based on the variability of 
estimates. In this line, the Peak-Interval (PI) procedure allows the obtention of 
an uncertainty measure on a single-trial basis without requiring additional 
responses. In this protocol, participants (typically non-human animals) are 
trained on a fixed-interval reinforcement schedule, where actions such as 
pressing a lever are rewarded after a predetermined period. After learning the 
reinforcement time, probe trials are presented without reinforcement, where 
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subjects generate multiple responses as if they were expecting the reward at 
the usual time (Catania, 1970; S. Roberts, 1981). These responses become more 
frequent as the elapsed time gets closer to the reinforcement time, where the 
response rate usually peaks (see Figure 1.8 for an example of this behaviour). 
Here, we can obtain the distribution of response rates across time, and the 
spread of these response rates provides a potential measure of uncertainty 
regarding how close participants feel their responses are to the reinforced 
interval. Studies supporting the scalar expectancy theory have demonstrated 
that this variability in response rate is proportional to the length of the interval, 
which suggests a direct relation between response rate dispersion and 
uncertainty (Gibbon & Church, 1990; Rakitin et al., 1998).  

 

Figure 1.8. Example of the response rate variating across time in a Peak Interval 
procedure. The response rate increases as the time approaches the reinforced interval, 
marked by the vertical dashed red line, peaks around this time, and decreases 
gradually. Uncertainty can be measured by the spread of the distribution around the 
reinforced time. 

However, despite the advantage that the response rate is a measure obtained 
at each trial and does not require any additional metacognitive queries, the 
requirement for extensive training and a consistent reward system makes the 
PI procedure a more complicated option for broader applications across 
different species and experimental paradigms. The need for multiple responses 
in each trial and the difficulty of modifying this protocol for different settings 
makes us keep looking for an even better option. 
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Range values 

A different approach that focuses more on obtaining a measure of uncertainty 
than extracting it from estimated values is by asking for a self-determined range 
in the perceived magnitude of a stimulus. This approach, which has been 
explored in different perceptual domains, consists of asking for a range of 
minimum and maximum values within which the perceived magnitude might 
fall.  

For example, Graf et al. (2005) used this method to assess humans’ uncertainty 
when extrapolating motion trajectories. In their study, participants were 
presented with moving objects that followed a random walk, and after a brief 
occlusion, they were asked to define a “capture region” where they predicted 
the object would be. The width of this region was then expected to align with 
their uncertainty about the location of the object, with greater areas associated 
with more uncertainty. Similarly, Honig et al. (2020) used a colour wheel to 
obtain a measure of uncertainty in the memory of a previously presented colour. 
They asked participants to draw an arc around the colour wheel that included 
those colours that they believed represented the one they were presented. Here, 
the width of the arc served as a metric for uncertainty, and its length was 
considered to indicate participants’ confidence in recalling the colour. 

As for the interest of the present thesis, this approach has also been used in time 
perception. Grondin and colleagues (Bisson & Grondin, 2013; Grondin & Plourde, 
2007; Tobin et al., 2010; Tobin & Grondin, 2012) used verbal estimation tasks to 
ask participants for maximum and minimum retrospective estimates about the 
duration of different activities. In addition to giving an estimate of how long they 
believed the duration lasted, they also had to deliver a minimum value that they 
thought could also represent the duration they experienced and a maximum 
value. Here the expectation of noise or error in the estimation becomes explicit, 
and participants are able to delimit the range they expect this noise to reach, 
obtaining a measure of uncertainty with the distance between minimum and 
maximum values. However, this simple yet clever way of obtaining a range that 
captures the inherent variability of human estimations could still be affected by 
similar biases as confidence judgments, since participants have to 
retrospectively ponder what range they want to determine. 
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Start-stop procedure 

Finally, we find an approach that combines quantitative measures such as 
reproduction tasks with the possibility of obtaining an equivalent to the 
sensitivity of difference limen on a single-trial basis. The start-strop procedure, 
introduced by Kladopoulos et al. (1998), consists of instructing participants to 
produce a duration estimate by bracketing the endpoint of the interval with a 
range rather than a discrete value (as we would find, for example, in a 
conventional reproduction task). Participants are asked to mark the end of the 
target interval by starting the response behaviour right before the duration 
would elapse and releasing it once it had already elapsed. This creates a bracket 
around the point equivalent to a traditional reproduction estimate. Also, 
participants are encouraged to encompass the ending time of the target 
duration within these two moments, so they should be performing this 
continuous response when the duration finally elapses, but still trying to leave 
the shortest time possible between the starting and end of the behaviour.  

Kladopoulos et al. (1998) proposed that these two latencies, defined as start and 
stop times, and the interval between them would allow for the estimation of a 
parallel measure of the point of subjective equality (PSE) and the difference 
limen (DL) obtained in a psychophysical task but on a single-trial basis. In this 
case, the PSE and the DL would depend on the allocation and length of the 
bracket respectively. Most importantly, the DL serves a role similar to the 
standard deviation of temporal estimates in a traditional reproduction task, or 
the slope of a psychometric function, which makes it a potential candidate for 
indicating the level of uncertainty. 

This procedure has the advantage that, in contrast to some of the methods 
mentioned above, we can obtain a duration estimate and a potential measure 
of the uncertainty associated with it both on each individual trial, rather than 
inferring them from response distributions. Also, as these measures are all part 
of the behavioural response that represents the estimate and do not depend on 
a retrospective metacognitive evaluation, it leaves fewer opportunities for 
decisional biases to interfere. 

As a more recent example of this approach, Balcı et al. (Balcı et al., 2013) studied 
the influence of dopamine on the connection between reward processing and 
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time perception by measuring the time at which mice entered a platform in 
anticipation of a reward and left after the expected reward delivery time. 
Similarly to the start-stop procedure, they also obtained start and stop times, 
with the entry and departure times from the platform. Their findings indicated 
that larger reward sizes led to earlier response initiations, thereby increasing 
both the width of the start-stop interval and the variability of estimates, 
highlighting not only a relation between these timing measures with reward 
magnitude, but more importantly for our subject, a relation between the width 
of start-stop times, the supposed measure of uncertainty, and the coefficient of 
variation of the time estimates, pointing out the spread of start-stop intervals as 
a good candidate for a measure of uncertainty. 

However, despite the highlighted advantages and the potential of this method, 
it appears that this approach has not been explored to its full potential. Also, no 
direct comparison has yet been made to assess its capabilities for measuring 
uncertainty against other approaches.  

Disadvantages 

In general, although the relevance of measuring uncertainty is clear, there is no 
method free of disadvantages. As mentioned, solutions like measuring the 
variability of estimates in a quantitative task (production, reproduction, or verbal 
estimation), obtaining the psychometric function, or using second-order 
judgments all have in common that the approximation to a measure of 
uncertainty is a global value for all the task or block, but does not describe the 
uncertainty associated to each individual response. For this reason, although 
informative, it can be hard to assess the effects of fine manipulations in the task 
in a non-blocked design.  

Other solutions, like asking for confidence judgments, calculating the spread of 
response rates in a peak-interval task, obtaining maximum and minimum 
verbal estimates, or measuring the spread in a start-stop procedure do not imply 
this issue, as they provide measures on each trial. This makes them more reliable 
for studying how uncertainty may vary from changes in the properties of the 
stimuli on a trial-by-trial basis, or even to see how uncertainty may fluctuate 
throughout a task. For instance, in adaptive learning environments where the 
feedback given on each trial is used to adjust subsequent responses, having a 
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trial-specific measure of uncertainty can help identify how well a participant is 
integrating new information and adjusting their time estimates. Additionally, in 
clinical settings, where patients might exhibit variability in cognitive 
performance due to fluctuating attention levels or neurological conditions, trial-
by-trial measures can provide more granular insights into their perceptual 
stability and the effectiveness of interventions over time. 

Another point to keep in mind is that some of these measures rely on 
metacognitive capacity, which can obscure what we are truly trying to assess. 
Confidence judgments or second-order judgments, for example, may not be 
ideal for measuring a more basic and not necessarily conscious form of 
uncertainty. The concern is that these metacognitive measures can be 
influenced by factors that arise after the initial uncertainty of the estimation 
itself, such as a participant's self-awareness, confidence levels, or decision-
making strategies. These post-estimation factors can mask the true level of 
uncertainty associated with the initial time perception, thereby complicating 
the interpretation of the results. 

Finally, another common and problematic issue in time perception tasks, often 
overlooked by the general public but well-known to timing researchers, is that 
these tasks can easily become quite boring and unengaging for participants. 
While this may seem like a minor issue in other fields, the monotonous and 
lengthy nature of timing tasks can lead to a lack of motivation and attention in 
participants, which in turn can interfere with their time estimates. Attention 
plays a crucial role in these processes, making it critically important to keep 
participants engaged to ensure reliable measures. 

However, many of the solutions proposed above risk making already lengthy 
tasks even longer. Asking for confidence judgments or second-order judgments 
adds additional questions, disrupting the task flow and nearly doubling the task 
time. Similarly, measuring the spread of reproduction times or obtaining a 
psychometric function requires many repetitions to achieve a reliable measure 
of variability. Therefore, when considering an ideal measure of uncertainty in 
time perception, we should aim for approaches that provide good reliability with 
shorter application times. 

For this reason, one of the objectives of the present thesis will be to propose a 
potential solution to this problem, contributing to the evolving methodology of 
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time perception research. By developing a more engaging and efficient 
approach, this work aims to enhance the informative value of participants' 
responses, ultimately advancing our understanding of temporal cognition. 
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RESEARCH OBJECTIVES 
In the general introduction, we discussed the fundamental nature of time 
perception, highlighting its critical role in various cognitive processes and 
everyday activities. We examined several key models that have been proposed 
to explain how humans perceive and measure time, from the early internal clock 
models to some of the most recent and varied models. Each of these models 
offers unique insights into the mechanisms of time perception, yet they often 
assume that time intervals are processed in isolation, which is rarely the case in 
real-world scenarios. 

We then introduced the concept of multiple timing, emphasizing its relevance 
as a less explored but significant aspect of time perception, that is crucial in real-
world situations where temporal information from different sources must be 
integrated and maintained, such as monitoring traffic lights while driving or 
managing various tasks in a fast-paced work environment. We reviewed how 
simultaneous timing tasks often result in significant performance impairments, 
with high variability in participants' estimates due to the interference from the 
perceptual noise increase by having to manage multiple temporal inputs. 
However, the results in this area are inconclusive, especially regarding 
sequential events, where opposite effects can be found, and simultaneous 
effects where there is still limited research. One of the major challenges in 
studying the human capacity for measuring simultaneous durations is the high 
level of variability in participants' performance and the difficulty in accurately 
identifying and quantifying the sources of noise associated with it. 

To address these gaps, we propose two studies on multiple timing situations 
with increasing levels of complexity. The first study involves a simple perceptual 
judgment task assessing the effect of simultaneous overlapping durations. The 
second study involves a more complex task evaluating the capacity to adapt 
behaviours to find an optimal pattern under uncertainty, guided only by the 
knowledge of event durations and the ability to track and frequently update the 
elapsed time. 

Additionally, we emphasized the critical role of uncertainty in understanding the 
timing process in noisy environments. Uncertainty refers to the variability or 
unreliability in participants' time estimates, influenced by internal cognitive 
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processes and external contextual factors. Accurately measuring and 
quantifying this uncertainty is essential for a deeper understanding of how 
individuals perceive time and how their mental representations of duration are 
formed and influenced by various factors. Most traditional approaches to 
measure this uncertainty have notable limitations. Addressing this matter in our 
third study, we test an alternative method designed to overcome some of these 
disadvantages, involving a slight modification of the traditional reproduction 
task that allows for a more direct measurement of the uncertainty associated 
with each estimate on a single-trial basis.  

With this, the overarching aim of the present thesis is to deepen our 
understanding of time perception by exploring the mechanisms underlying 
multiple timing and developing innovative methods to measure uncertainty. 
This research seeks to fill critical gaps in the literature and provide practical tools 
for future studies in cognitive psychology. 

This general goal can be broken down within each study into the following 
specific objectives: 

The first three objectives will be covered by a study where we investigate how 
presenting simultaneous distractors with varying durations affects the 
perceived duration of an attended event. We adapted a common size-illusion to 
the temporal modality to assess how participants' duration judgments were 
affected by the durations of irrelevant stimuli present in the environment. 
Through this experimental design, we aimed to explore how multiple timing can 
act as an interference to targeted timing processes in a simple setting. 
Moreover, we developed a computation model to explain and predict the 
interference between attended and unattended events. 

Objective 1: Investigate the Influence of Simultaneous Distractors on 
Perceived Duration 

The starting focus of the thesis is to directly explore how the temporal properties 
of simultaneous events, in this case, their duration, can influence the perceived 
duration of a target event. We will evaluate any systematic shifts in the duration 
judgments of target stimuli that might vary in relation to the duration of the 
concurrent distractors. By using methods from psychophysics, we expect to 
capture any interaction between distractor and perceived target durations. 
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Objective 2: Compare whether the type of effects found in the size illusion 
remains the same when translating it to the time domain. 

According to generalized magnitude system models, time mechanisms often 
follow the same principles as size or numerosity domains. We intend to test this 
relation by directly translating a consolidated size illusion to the temporal 
domain to check whether the interferences manifest in the same way between 
domains. This will help us understand the interplay between different 
perceptual systems, and how generalizable interference effects can be. 

Objective 3: Provide a computational model that helps explain and predict 
the perceived duration of an attended event based on its difference from 
distractors’ durations. 

To provide a quantifiable way of predicting interference effects from 
simultaneous multiple timing, we will define a computation model that 
describes how the duration of simultaneous distractors can be integrated into 
the processing of the target stimulus’ perceived duration. This will contribute to 
timing research by facilitating the prediction of multiple timing effects as well 
as providing a theoretically grounded model that also explains why this 
interaction takes place. 

The next three objectives will be addressed by a second study that will focus on 
a more active use of multiple timing processes and explore how participants 
adapt their monitoring patterns to unpredictable events based on the 
information extracted from the temporal structure of the environment. We 
designed a task that simulates a driving environment where participants had to 
adjust their behaviours based on time variables that were taking place 
simultaneously. In order to succeed in the task, participants would have to 
successfully extract, maintain and work with several timing properties of the 
simulation, and then apply them optimally to guide their behaviour. We also 
developed a computational model of an optimal observer to assess participants’ 
performance and optimal selection of monitoring strategies.  

Objective 4: Develop a task to measure observers’ monitoring patterns in 
response to unpredictable temporal events. 

To provide a more comprehensive view of multiple timing, we will develop a task 
where participants' success depends on their capacity to measure and work 
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with multiple time estimates at once. Additionally, in contrast to previous tasks, 
we will also focus on presenting this task as a simulation of a real-life situation 
to promote participants’ immersion and generalizability to real-world 
phenomena. 

Objective 5: Assess participants' optimal selection and adaptation of 
monitoring patterns according to the temporal structure of the 
environment. 

Based on this task, we will test out participants’ flexibility to adapt to changes in 
the temporal dynamics of the environment. We will assess the optimality of their 
behaviours to explore which temporal aspects of the task they are able to 
capture and adapt to. This will allow us to compare the integration of changes 
in temporal structure that are caused by internal factors, such as motor 
limitations, or by external factors, such as the duration of external events. It will 
finally help us ascertain to what extent humans can exploit the use of multiple 
timing to succeed in complex tasks. 

Objective 6: Develop a model predicting participants' capacity to detect 
unpredictable temporal events based on their integration of temporal 
features. 

Along with the previous objective, we will also develop a computational model 
to describe how the different elements of the temporal structure of this complex 
task are integrated into an optimal behaviour selection. This will allow us to 
predict participants’ performance based on their behaviour, as well as assess the 
optimality of their behaviour. 

Finally, the last three objectives will turn the focus from multiple timing to the 
relevance of uncertainty in time perception. To address this, our third study tests 
a modified reproduction task as a potential way of measuring uncertainty in 
time estimations. Participants' estimates were obtained and compared using 
both the traditional reproduction task and the modified version to ensure that 
reproduction methods are equivalent. Then, the proposed measure of 
uncertainty will be compared with conventional approaches. Additionally, we 
will assess the potential advantages of this new method to investigate the 
nature of noise contributions to time estimation. 
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Objective 7: Compare the traditional reproduction method of time 
estimation with an alternative version, the Bracket method of reproduction. 

To make sure that this modified task does not interfere with participants’ 
performance or bias their estimates in relation to the traditional method, we will 
test the equivalence of the time estimates obtained with each approach. This 
validation is key to assessing the method as a valid alternative to the traditional 
method and thus allows the evaluation of the following objectives. 

Objective 8: Assess the Bracket method’s capacity for measuring 
uncertainty. 

The main objective of this last segment is to provide a novel measure of 
uncertainty in quantitative time estimates. To this aim, we will assess the 
additional metrics obtained from this method as a viable measure of 
uncertainty. These measures should be representative of the uncertainty 
obtained from other traditional approaches. 

Objective 9: Investigate the nature of noise contribution to uncertainty in 
time estimates through the Bracket method. 

We will also explore the potential of this method as an alternative way to 
investigate the nature of noise in this type of task. The new metrics provided by 
the task, in addition to allowing for an uncertainty measure, could also explain 
how the noise associated with this uncertainty evolves across different levels of 
stimulation. This is a very critical topic in time perception research since it 
contributes to the discussion regarding the scalar property of timing. 
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HYPOTHESES 
Based on the preexisting results about simultaneous multiple timing and the 
specific objectives we defined, the following hypotheses are formulated: 

Simultaneous Multiple Timing effects: Although inconclusive in general 
multiple timing, in simultaneous multiple timing tasks where overlapping 
intervals are presented as distractors or are not the target of our estimations, the 
presence of these interfering stimuli produces in some cases effects of 
averaging or central tendency. Because of this, we expect to find this type of 
effect on judged durations when presenting overlapped intervals of different 
durations.  

However, if the mechanisms of size and time perception are shared, as proposed 
by models such as the ATOM model, by adapting a size illusion that produces a 
contrastive effect we would expect to find also a repulsive effect when adapting 
the paradigm to the temporal domain. 

The finding of either a positive or a negative effect would highlight which theory 
describes more accurately distortions in multiple timing. 

Active use of Multiple Timing: Due to the temporal complexity of many real-
life situations, we believe that leveraging the capacity of measuring, holding and 
working with multiple time representations to solve a complex task can be 
possible. We expect that humans are able to optimally measure and integrate 
into their behaviour multiple properties of the temporal structure of a dynamic 
environment. 

Measurement of Uncertainty: Based on pre-existing methodological ideas, we 
expect that the method we propose for measuring uncertainty will overcome 
the main caveats from traditional methods. First, we anticipate the estimates 
obtained from the modified and the traditional methods to be equivalent. Then, 
we expect the measures obtained with this method to correlate with traditional 
methods, validating it as an alternative for measuring uncertainty in 
quantitative timing tasks. Specifically, we expect the bracket measure obtained 
on a single-trial basis to be equivalent to the variability of multiple time 
estimates, as well as to variate accordingly to timing principles that are key for 
understanding uncertainty, such as the scalar property of timing. 
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ABSTRACT 

When assessing the duration of an event, our perception is often influenced by 
concurrent external stimuli. In everyday life, events rarely occur in isolation; they 
overlap, creating a complex temporal context. Research on multiple timing 
suggests that this overlap can lead to a central tendency effect, where perceived 
durations are biased towards the average duration of simultaneous stimuli. 
However, in some cases, these concurrent events can cause a repulsion effect, 
shifting perceived durations away from the overlapping stimuli. 

Our study investigates this phenomenon by examining how the duration of 
simultaneous distractors affects the perceived duration of a target event. Using 
a novel perceptual decision task, we found that most participants experienced 
a central tendency effect, while a few exhibited a repulsion effect.  

To explain these results, we developed a computational model based on the 
duration-channels theory, incorporating a leaking factor to account for the 
interference the distractors' durations produce in relation to how similar they 
are to the target.  

Our findings highlight individual differences in susceptibility to distractor 
influence, which are linked to task uncertainty and perceptual noise tolerance. 
This research provides insights into how temporal context affects duration 
perception, offering a foundation for understanding the cognitive processes 
underlying multiple timing. 
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INTRODUCTION 

Perceiving the duration of events is a fundamental aspect of how we experience 
and interact with the world. As mentioned in the general introduction, our 
judgments about the duration of events can be influenced by various factors 
(Kanai et al., 2006; Matthews & Meck, 2016; Vatakis et al., 2018; J. Wearden, 2016), 
including the presence of external, previous or concurrent events. This 
phenomenon is particularly relevant in real-life situations where events rarely 
occur in isolation. Instead, they often overlap with other events, creating a 
complex temporal context that can affect our perception of time (Bryce & 
Bratzke, 2016; Jazayeri & Shadlen, 2010; Matthews & Meck, 2016). 

One significant aspect of this complex temporal context is multiple timing, 
which refers to the interference caused by the combination of multiple 
temporal events that can bias our perception of time. This interference occurs 
even when the alternative events are not directly relevant to our task, or we are 
not actively paying attention to them. As described before, multiple timing can 
be categorized into two types: sequential multiple timing, where events occur 
one after the other, and simultaneous multiple timing, where events overlap in 
time.  

To illustrate, imagine you are waiting in a queue. Observing how long other 
queues take to advance might affect how long you perceive your own queue to 
be stopped before advancing. Here the duration that is relevant for you, which 
is the time you expect will take for your queue to advance, will be determined 
by the duration it has previously taken to advance each time, which is the direct 
evidence, but it will also be shifted depending on the temporal context, the 
intervals other queues take to advance. Although independent, you might 
observe how long other queues also take to advance, and this might be 
integrated into your experience of time too and end up affecting your 
predictions. This is just an example that highlights how multiple timing can 
introduce perceptual noise and distort our time estimates, which will be even 
more influential when we are under conditions of more uncertainty. 

Despite its relevance to real life, research on multiple timing has been relatively 
scarce and presents inconsistent findings. If we consider both simultaneous and 
sequential effects, we find studies reporting both repulsive and averaging 
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effects from additional durations. This means that depending on the case, we 
could find that either the duration we are estimating or judging is shifted away 
from the other durations we are exposed to (Heron et al., 2012), or in other cases 
attracted, making us perceive this duration as more similar from one another 
(Burr et al., 2013; Kawahara & Yotsumoto, 2020). However, when events overlap 
in time, findings often lean towards the latter case, an averaging or assimilative 
tendency (Burr et al., 2013; Kawahara & Yotsumoto, 2020). 

Given this context, we can hypothesize what effects multiple timing might 
produce from the perspective of some predominant models in time perception 
(as discussed in the general introduction). To give an example, imagine a 
situation where we are required to track the duration of a target event, but it 
overlaps in time with simultaneous events that have durations different than 
the target. Now we will discuss what each model would predict from this 
situation. 

First, we could predict different outcomes from the basis of pacemaker-
accumulator models depending on the variation we focus on. The attentional-
gate model predicts that the presence of distractors could divert attentional 
resources from the main time-tracking task (Zakay, 2015; Zakay & Block, 1997). As 
a result, the attentional gate would shrink and let fewer pulses get through, 
leading to an overall underestimation of the target duration. Notice that this 
happens regardless of the distractors' durations, and it is only the presence of 
these additional stimuli that produces the effect. On the other hand, under the 
weighted sum of segments theory (Matthews, 2013) we could expect that 
distractors affect the perceived duration of the target only when the distractor 
duration is comprised fully within the target event, as it would divide it into 
different subsegments, but should not affect the perceived duration of the 
target when it is fully embedded within the distractors. 

Alternatively, the ATOM (A Theory Of Magnitude) suggests that we use a similar 
perceptual mechanism across different modalities (Walsh, 2003). Therefore, if 
we know of effects from other modalities where perceived magnitudes are 
affected by the magnitude of surrounding stimuli, we should expect the same 
effects to take place with duration (Bratzke et al., 2023). For example, the well-
known Ebbinghaus-Titchener (Ebbinghaus, Hermann, 1902; Titchener, 1901) size 
illusion shows how the size of irrelevant stimuli surrounding a target generates 



 STUDY 1 

51 
 

S1 

a repulsive effect where the target is perceived as smaller when surrounded by 
larger stimuli and vice versa (see Figure 3.1 for a visual example). According to 
ATOM, if we use the same mechanisms for duration and size processing and 
therefore, they should suffer from the same flaws. If we translate the paradigm 
of this illusion from size to duration, we should also find a repulsive effect, with 
the duration of central stimuli being underestimated when surrounded by 
stimuli of longer durations and overestimated when surrounded by stimuli of 
shorter durations. 

 

Figure 3.1. Example of the Ebbinghaus-Titchener illusion. The central (black) disks are of 
equal size, but due to the presence of bigger or smaller (grey) surrounding disks, they 
are perceived differently. 

In contrast, the Duration-Channels model predicts something different. 
According to this model, specific neural channels are tuned to different 
durations, and the activation of these channels can influence the perceived 
duration of events (Bruno & Cicchini, 2016; Heron et al., 2012). When multiple 
durations are presented simultaneously, the channels corresponding to each 
duration are activated. Here, the residual activation from channels activated by 
the distractors could merge with those activated by the target event, causing 
intermediate channels to peak in activity and shift the perceived duration away 
from its accurate value (see Figure 3.2 for an example of these cases). Therefore, 
this results in an assimilative effect, with the target duration being shifted 
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towards the duration of the simultaneous distractors. However, this model could 
also account for the repulsion effects due to adaptation (Heron et al., 2012), as 
these could be due to channel saturation, where repeated activation of a specific 
channel prevents subsequent stimuli of that same duration to signalled by the 
same channels.  

Building on this foundation, we aimed to explore the effects that the durations 
of simultaneous but irrelevant events can have on the duration judgments of an 
attended event. To this end, we designed a novel task that translates the 
Ebbinghaus-Titchener illusion, traditionally a size perception illusion, to the 
temporal domain. In our task, participants compared the duration of two central 
targets of equal duration, accompanied by simultaneous distractors with either 
longer or shorter durations. Following the same rationale as the size illusion, by 
using the same duration for both targets of the comparison we could assume 
that any shifts in duration judgments should be attributed to the influence of 
the distractor durations. 

Due to the fact that the Duration-Channels model seems to better fit the 
findings in the literature on multiple timing, as it can accommodate both 
averaging and repulsion effects, we delved deeper into this model and 
developed a computational approach to analyze our findings. 

Based on the evidence of simultaneous multiple timing, we hypothesized that 
the duration judgments of the targets would be biased towards the durations 
of the distractors, consistent with a central tendency effect. Additionally, since 
there is evidence that effects from simultaneous stimuli tend to decay as the 
durations become more different(Burr et al., 2013; Heron et al., 2012), we aimed 
to test the duration-channels model by estimating a leaking factor that 
modulates the influence of distractors based on their similarity to the target 
duration. 

This simple yet innovative approach not only aimed to elucidate how 
simultaneous distractors influence duration perception but also to provide 
valuable insights into the mechanisms of time perception and how they may 
parallel those underlying size perception. 
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Figure 3.2. Representation of the duration-channels activation by different stimuli. (A) 
Activation of the channels with preference for the target duration. (B) Different 
durations activate differential channels. (C) The residual activity from the different 
durations can merge and peak at an intermediate duration. 

Duration-Channel Leaking model 

To further explore how distractors' durations affect the perceived duration of 
overlapping targets, we developed a novel computational model grounded in 
the duration-channels theory. To summarize, this theory posits the existence of 
neural pathways (channels) that are selectively responsive to specific time 
intervals (Heron et al., 2012).  
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The model hypothesizes that not only actively tracked but also unattended 
events can activate these channels. This combined activity is what could explain 
the effect of distractor durations on the perceived duration of a target. If the 
distractors activate close channels to the target duration, the integration of this 
activity in the time estimates might result in an averaging or central tendency 
effect, which goes in line with the findings of simultaneous multiple timing 
studies.  

The model also suggests that the magnitude of this effect depends on the 
similarity between stimuli. The closer the duration channels are, the stronger 
the interaction will be between them (As seen in Figure 3.2 B and C). We assume 
that this happens because the distractors activate the channels associated with 
their durations, and this activation leaks into the processing of the target 
duration. The strength of this leakage diminishes as the difference between 
target and distractor durations increases. 

We modelled an integration function that works as a weighted average where 
both target (𝑡𝑡) and distractor (𝑑𝑑) durations are combined. The weight (𝑤𝑤) of the 
distractors determines to what extent the distractor duration will determine the 
perceived estimate of the target duration (�̂�𝑡).  

 
�̂�𝑡 =

(𝑡𝑡 + 𝑑𝑑 · 𝑤𝑤)
(1 + 𝑤𝑤)  (3.1) 

The weight (𝑤𝑤) of the distractors ranges from 0 to 1, being 1 a maximum 
interference where the distractor has as much relevance as the target duration 
and 0 meaning a null effect from the distractors, with the estimation being 
based only on the target duration. The weight is determined by how close the 
target and distractors are, with more similarity leading to a higher weight. This 
relation is modulated by a leaking factor (𝑘𝑘) according to the weight function: 

 𝑤𝑤 = 𝑘𝑘|𝑑𝑑−𝑡𝑡|;  0 ≤ 𝑘𝑘 ≤ 1 (3.2) 

The leaking factor (𝑘𝑘) can also have values ranging from 0 to 1 and determines 
the rate at which the distractor's weight decays as its duration becomes more 
different from the target duration. This component allows for a variability of 
cases. For example, distractors could keep their weight regardless of its 
difference with the target duration when k approaches its maximum of 1. 
Alternatively, when k is closer to 0, the distractor weight decays very rapidly as 
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the difference increases, and only those distractors with durations very similar 
to the target are able to induce any effect. 

See Figure 3.3 for an example of how different leaking factors produce varied 
shapes of weight function, which in turn modulates how the perceived duration 
of a target is affected by distractors of different durations. 

 

Figure 3.3. (A) Perceived duration of a 1s target as a function of the duration of 
simultaneous distractors. (B) Weight of the distractors as a function of the difference 
between target and distractor durations. With smaller leaking factors the weight 
decays more rapidly and the perceived target duration goes back to its original value. 

METHODS 

Participants 

The sample of the first study consisted of twenty-two participants, 15 of them 
self-identified as female and 7 as male (mean age = 25.23, SD = 2.89). All of them 
had normal or corrected-to-normal vision and were naïve to the purpose of the 
experiment. The study is part of a research program that has been approved by 
the ethical committee of the University of Barcelona (IRB00003099) according 
to the principles stated in the Declaration of Helsinki. All participants gave 
written informed consent to participate in the experiment. 

Apparatus and stimuli 

The task was designed and conducted using Psychopy software (Peirce, 2007) 
on a Mac Pro. Stimuli were presented on a 24.5-inch ASUS ROG Swift PG258Q 
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monitor using a resolution of 1920 × 1080 pixels and at a 240 Hz refresh rate. 
Participants performed the task on a chinrest at 57 cm of the screen. 

The visual stimuli used for the task were white blobs (maximum luminance of 
226.2 cd/m2 with a raised cosine mask of a full diameter of 4.5 deg and a central 
plateau of 4 deg) presented against a grey background (mean luminance of 
55.38 cd/m2). 

The presentation consisted of a combination of one blob presented at the centre 
(target stimuli) along with an array of four blobs at each cardinal point (top, right, 
bottom and left of the centre) with 9 deg of eccentricity.  

 

Figure 3.4. Example of a trial with 700 ms distractors (Sequence 1) paired with 1500 ms 
distractors (Sequence 2). The target in both sequences lasted 1000 ms, and they were 
centred with the distractors at each sequence.  
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Procedure 

Duration Judgment Task 

Participants were instructed to observe two sequences presented one after the 
other and compare the duration of specific target stimuli from each sequence 
(see Figure 3.4).  

After viewing the sequences, they responded by pressing the left arrow key if 
they perceived the target stimuli in the first sequence as lasting longer, or the 
right arrow key if they perceived the target stimuli in the second sequence as 
lasting longer. A 400 ms blank interval was interleaved before and after each 
sequence. 

Three different conditions were employed, that differed in which elements were 
considered as target stimuli: 

• Distractors Condition: Each sequence comprised a central target and 
four surrounding distractors (all of them blobs of the same size, colour 
and luminance). Participants were asked to focus solely on comparing 
the duration of the central targets, ignoring the surrounding distractors. 
The central target duration was always set at 1000 ms for both 
sequences. The distractors within each sequence had uniform durations 
of either 300 ms, 700 ms, 1500 ms, or 3000 ms, which were the same for 
all the distractors of the same sequence but different between the two 
sequences. To ensure that target and distractor durations overlap, their 
onsets and offsets were adjusted so that they were centred in time (see 
Figure 3.4 for an example). 

• Ensemble Condition: The stimuli and sequences were identical to those 
in the Distractors condition, but participants were instructed to compare 
the duration of the entire array of blobs from each sequence. This meant 
considering the target to span from the appearance of the first blob to 
the disappearance of the last blob, regardless of whether they were the 
central or surrounding blobs. Thus, all stimuli were considered part of the 
target in this condition. 

• Control Condition: Each sequence contained only one central target 
blob. The target durations in each sequence were 300 ms, 700 ms, or 
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1500 ms in varying combinations, always differing between the two 
sequences in a pair. 

Each participant was presented with 30 repetitions of each combination of 
sequences at each condition in a randomized order. Each condition was divided 
into five short blocks. Participants could take short, self-timed breaks between 
blocks. Each participant completed all three conditions in a counterbalanced 
order. 

Predictions  

The Control and Ensemble conditions were used to verify whether participants 
could accurately discriminate the durations selected for this task. The 
psychometric functions of each participant were analysed. Comparisons 
between these conditions were used to identify differences in duration 
discrimination when time intervals consisted of either single or multiple 
elements. 

The effect of distractors on judged durations was then examined in the 
Distractors condition. It was expected that the distractors would induce a 
central tendency effect. By fitting a psychometric curve to the responses in this 
condition, based on the difference in distractor durations, the slope's sign was 
derived to indicate either repulsion (negative) or central tendency (positive). 

If a central tendency effect was found, the Channel Leaking model was applied 
to obtain each participant’s leaking factor, assessing how well the model 
described their response patterns. 

Additionally, the relationship between the leaking factor and preservation of 
discrimination capacity when time intervals included multiple elements was 
explored. The leaking factor, which is an indicator of the extent to which 
participants were affected by distractor durations (considered a source of noise), 
was predicted to be inversely correlated with performance on discrimination 
thresholds. A smaller leaking factor, suggesting better inhibition of perceptual 
noise introduced by distractors, was expected to correlate with better 
performance. 
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RESULTS 

Control and ensemble conditions 

First, we checked that all participants were able to discriminate between the 
different durations that we will be using for the distractors condition. If 
participants were unable to distinguish the different durations, we would not 
even expect that presenting different distractor durations would have any 
differential effect. Also, we compared participants’ discriminability when 
comparing events presented through a simple visual element or when these 
events were composed of multiple elements with different onsets and offsets.  

To assess participants’ discriminability, we fitted psychometric curves to each 
individual participant's data from the Control and Ensemble conditions using 
the logistic function. The models were fitted with the proportion of “Second 
interval lasted longer” responses as a function of the difference between the 
second and first interval durations. 

We used maximum likelihood estimation (MLE) with the Quickpsy package 
(Linares & López-Moliner, 2016) for R software (R Core Team, 2020) to estimate 
the point of subjective equality (PSE) and the slope of the curve as free 
parameters as well as the 95% confidence interval by using bootstrap (Efron & 
Tibshirani, 1993). Since these could be affected by the lapse rates, which refer to 
the probability of participants making random errors (Prins & Kingdom, 2018; 
Wichmann & Hill, 2001), we included it too as an additional free parameter and 
kept it for modelling those participants in which the fit improved according to 
the Akaike information criterion (AIC).  

While the PSE can be used as a measure of accuracy to measure precision we 
derived the standard deviation of the psychometric function from its slope. This 
measure of duration discrimination will then represent participants’ ability to 
differentiate between different durations, with smaller values representing 
better sensibility and vice versa.  

In terms of accuracy, we found that participants were able to discriminate 
between the different intervals in up to 95% of trials in the Control condition and 
86% in the Ensemble condition (see Figure 3.5). This shows that although being 
able to discriminate well in most cases, it was slightly harder to measure and 
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compare the durations when they were composed of multiple stimuli than 
when it was only delimited by one element. Also, the PSE of the psychometric 
curves fitted to each participant informs us of any general bias in the duration 
judgements (for example, being more prone to judge the first or the second 
interval as longer). Globally, there is no clear pattern of bias between participants 
nor difference in the general direction of biases between conditions, but there 
is an increased variability of these biases in the Ensemble condition (see Figure 
3.6C). We suggest this increase in the magnitude of bias could come from the 
increase in perceptual noise due to the composition of the intervals from 
multiple elements, which might cause participants to rely more on their own 
biases rather than the evidence. 

 

Figure 3.5. Participants’ percentage of correct discriminations in the Control and 
Ensemble conditions. 

On the other hand, the precision of these judgments was assessed through the 
standard deviation (SD) of the psychometric curves. We found greater SD (t(21) 
= − 8.657, p < 0.001) in the Ensemble condition (mean = 1.13, SD = 0.477) than the 
Control (mean = 0.35, SD = 0.126) condition (see Figure 3.6D). This increase 
reflects that participants needed a greater difference in duration between the 
two intervals in order to discriminate them in the Ensemble condition. Again, 
the perceptual noise caused by having to measure the interval across the 
presentation of multiple elements could also be impairing participants’ capacity 
to discriminate well in this range of durations.  
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Figure 3.6. Psychometric functions from the control (A) and ensemble (B) conditions. 
Dashed lines represent the functions of each participant, solid lines show the fit of the 
aggregated data from all participants. Comparison of the estimated Point of Subjective 
Equality (PSE) (C) and Standard Deviation (SD) (D) of the curves from each participant 
at the Control and Ensemble conditions. 

 

 

 

 



ALL TIMES AT ONCE 

62 
 

Distractors condition 

Following the same process, we fitted the psychometric function of each 
participant in the Distractors condition. In this case, we aimed to determine if 
the duration judgments of the targets could be influenced by the distractor’s 
duration. Here we want to highlight that what we are interested in is not only 
the effect of the presence of a distractor element but whether the time 
properties of this element could be integrated into the temporal processing of 
the target. To this aim, we fitted the probability of responding “The target within 
the second sequence lasted longer” as a function of the difference between 
distractors (distractor duration of the second sequence – distractor duration of 
the first sequence).  

We then used the slope of the fitted curves to determine the direction of the 
effect (if any) caused by the distractors. In this case, a positively signed slope 
would indicate that targets surrounded by distractors of longer duration are 
perceived as longer, which could be interpreted as a central tendency effect. On 
the other hand, a negative slope would indicate that targets surrounded by 
longer-duration distractors are perceived as lasting longer, suggesting a 
repulsion effect. If none of these effects would prevail, the slope of the 
psychometric function should appear non-different from 0. 

We found that none of the participants’ 95% confidence interval (CI) of the slope 
included 0, suggesting that their judgments of the central target were 
systematically influenced by the distractors’ durations. Positive slope values 
were found in 19 out of 22 participants, indicating a central tendency where 
target durations were perceived as more similar to the distractors' durations. In 
contrast, three participants showed negative slope values, indicating a repulsion 
effect where the judged durations of targets diverged from the durations of the 
distractors. See Figure 3.7 for a detail of the slopes obtained from each 
participant and Figure 3.8 for examples of strong and weak patterns of central 
tendency and repulsion found within our sample. 

Since most participants showed a central tendency, which aligns with the 
assumptions of the Channel Leaking model, those with repulsion tendencies 
were excluded from the estimation of the leaking factor that followed.  
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Figure 3.7. Distribution of slope estimates (points) and 95% confidence intervals 
(brackets) obtained for each participant in the distractors condition. Most participants 
presented a positive slope value (in blue) while a small group presented a negative slope 
(in red). 
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Figure 3.8. Examples of 4 psychometric functions of representative participants with 
high (left column) and low (right column) slopes and positive (upper row) and negative 
(lower row) slope signs. 

Duration-channel Leaking model 

Using the data from participants who exhibited a central tendency, we 
estimated the leaking factor (𝑘𝑘) by applying Maximum Likelihood Estimation 
(MLE). This approach predicts the probability of response judgment for each 
combination of distractor durations. The optimization process maximized the 
log-likelihood across each different combination of distractor duration (𝑆𝑆) for 
every value of 𝑘𝑘: 
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 𝐿𝐿𝐿𝐿(𝑘𝑘) =  ��
𝑛𝑛𝑖𝑖
𝑚𝑚𝑖𝑖
� + 

𝑆𝑆

𝑖𝑖=1

𝑚𝑚𝑖𝑖 · log(𝜑𝜑𝑘𝑘) + (𝑛𝑛𝑖𝑖 −  𝑚𝑚𝑖𝑖) · log (1 − 𝜑𝜑𝑘𝑘) (3.3) 

Where 𝑛𝑛𝑖𝑖 is the number of presentations of each combination of distractors and 
𝑚𝑚𝑖𝑖 is the number of times a participant judged the second target as longer. 𝜑𝜑𝑘𝑘 
represents the standard Gaussian distribution (mean of 0 and SD of 1), which 
takes as an argument the difference in perceived durations between the two 
targets and computes its probability of that difference. 

 𝜑𝜑𝑘𝑘 = 𝒩𝒩(�̂�𝑡2 − �̂�𝑡1) 
(3.4) 

Here, the leaking factor 𝑘𝑘 is already embedded in Equation (3.4 as each 
perceived target duration is integrating the distractor duration according to its 
weight, which is at the same time determined by the leaking factor. 

 
�̂�𝑡 =

(𝑡𝑡 + 𝑑𝑑 · 𝑤𝑤)
(1 + 𝑤𝑤)  (3.5) 

 𝑤𝑤 = 𝑘𝑘|𝑑𝑑−𝑡𝑡| ; 0 ≤ 𝑘𝑘 ≤ 1 (3.6) 

We used this model to estimate the k parameter for each participant that better 
fitted their data. We found a wide range of k values (mean = 0.46, SD = 0.312, from 
participants with a leaking factor of 0.006 that were very good at ignoring 
distractors to participants with a leaking factor of 0.999 that were fully 
misguided by distractor durations (see Figure 3.9).  

 

Figure 3.9. Estimated leaking factors from all participants. (A) The proportion of leaking 
factors is quite uniform, covering all the range of possible leaking. (B) Weight functions 
calculated from the estimated leaking factor of every participant show a very varied 
casuistry.  
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We then compared the predicted response probabilities with the observed data 
to evaluate the goodness of fit. Figure 3.10A shows the predicted distractor 
weights (𝑤𝑤) for three participants with high, medium, and low 𝑘𝑘 values. These 
curves illustrate how the weight of the distractor decreases as the difference 
between target and distractor durations increases, with the rate of decrease 
varying according to the leaking factor. Figure 3.10B displays the observed 
duration judgments (dots) alongside the predicted probabilities (solid line) of 
judging the second sequence's target as longer, based on the difference in 
durations between distractors of each sequence. The grey dashed line indicates 
that if distractor durations are ignored or not present, the predicted probability 
of judging the second target as longer is 0.5. Figure 3.10C shows how the 
predicted probability of judging the second target as longer (represented in a 
colour scale) varies for different combinations of distractor durations. The heat 
maps show the predicted response probabilities, while the circles indicate the 
observed probabilities. The more similar the circle colours and the background 
are, the better the fit between predicted and observed probabilities. 
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Figure 3.10. Sample of three representative participants with high medium and low 
values of leaking factor. (A) The weight function shows how distractor weight decays 
differently depending on the leaking factor. (B) Predicted and observed responses get 
more biased with a greater leaking factor. (C) For any combination of distractors, the 
model’s predicted probabilities of response (background colour) fit the observed data 
(coloured circles). 



ALL TIMES AT ONCE 

68 
 

We performed a chi-square test within participants to determine if the 
predicted response proportions from the model differed significantly from the 
observed ones for each combination of distractor durations. For most 
participants (14 out of 19), there was no significant difference between predicted 
and observed data. Table 3.1 lists the fit parameters for each participant. The 
predominantly good fit of the model indicates that the estimation of the leaking 
factor proved useful to predict the effects of the distractor durations on our 
participants despite the varied casuistry amongst them. 

 

ID  χ2(df, N)  p  

1  31.49 (11,30)  <0.05  

2  13.01 (11,30)  0.293  

3  7.54 (11,30)  0.754  

4  21.74 (11,30)  <0.05  

5  8.55 (11,30)  0.664  

6  11.52 (11,30)  0.401  

7  39.5 (11,30)  <0.05  

8  18.4 (11,30)  0.073  

9  9.62 (11,30)  0.564  

10  7.4 (11,30)  0.766  

 

ID  χ2(df, N)  p  

12  14.85 (11,30)  0.190  

13  30.72 (11,30)  <0.05  

15  23.27 (11,30)  <0.05  

16  7.32 (11,30)  0.773  

17  7.33 (11,30)  0.772  

18  5.5 (11,30)  0.905  

19  3.33 (11,30)  0.986  

20  17.91 (11,30)  0.084  

21  14.57 (11,30)  0.203  

 

Table 3.1. Chi-square test parameters by participant. 
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Repulsion effects 

Based on our data, a limitation of how we formulated the duration-channel 
leaking model (as in (3.1)) is that it strictly predicts a central tendency. However, 
we found that this was not the only result of our participants, some of which 
showed the opposite effect. To still be able to explain these findings, the model 
should allow for some process of inhibition between duration-channels. If this 
was the case, the activation of the channels from the distractors would inhibit 
the activity of neighbouring channels. To explore this idea, we formulated and 
tested an alternative version of the duration-channel leaking model that, 
instead of using an averaging function to compute the weight of distractors, 
uses a Ricker wavelet function: 

 
𝑤𝑤 = �1 − �

𝑑𝑑 − 𝑡𝑡
𝑘𝑘

�
2

� · 2− (𝑑𝑑−𝑡𝑡)2
𝑘𝑘2 ;  𝑘𝑘 > 0 (3.7) 

Here, the weight (𝑤𝑤) can also include negative values, which mathematically 
produce the repulsion effect. Also, in this case, the leaking factor can take any 
value greater than 0. The explanation is that with this model, duration 
differences that are closer generate a central tendency, up to a point where this 
effect shifts and becomes a repulsion effect and that finally decays to no effect. 
Now, the value of the leaking factor (𝑘𝑘) does not represent the strength of the 
decay of distractor weight, but the duration difference at which the effect shifts 
from averaging to repulsion. For example, with a leaking factor of 𝑘𝑘 = 0.3, we 
would find that distractors would induce an averaging effect that gets weaker 
until it reaches the duration difference of 0.3 s, moment at which the effect gets 
stronger again but in the opposite direction, with a repulsion tendency, 
following by a general decay with the effect approaching 0 with longer duration 
differences (see Figure 3.11 for an example). 
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Figure 3.11. Example of the adapted model for repulsion with k of 0.3. Red and blue areas 
represent ranges where repulsion and central tendency effects are expected. (A) 
Perceived duration of a 1s target as a function of the duration of distractors. (B) Weight 
of the distractors as a function of their difference with the target duration. Negative 
weights operate the same as positive weights but with repulsion.  

Following the same procedure as we used to test the original model, we fitted 
this alternative model to those participants that originally showed a repulsion 
effect. Notice that this model has the same number of parameters as the 
previous version, and only differs in the function and interpretation of the 
leaking factor.  

Two out of three participants showed a non-significant difference between 
predicted and observed responses after obtaining the best fitting k estimate 
(using MLE), indicating a good fit of the model. This modification suggests that 
the effects of multiple timing found in almost all participants could still be 
explained under the basis of the duration-channel leaking model. 
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ID  χ2(df, N)  p  

11 31.85 (11,30) <0.05  

14 17.99 (11,30) 0.082 

22 19.48 (11,30) 0.053 

 

Table 3.2. Chi-square test parameters by participant using the modified weight function. 

Sensitivity to noise 

We also aimed to determine whether the leaking factor could be associated 
with the ability to filter out perceptual noise, which in our task is manifested as 
the capacity to maintain duration discriminability when time intervals consist of 
multiple elements rather than a single one.  

Understanding how the leaking of the channels relates to the voluntary 
integration of information could be very informative and help us understand 
how helpful or harmful this leaking can be to our temporal processing of 
complex events. Here we might ask whether being more susceptible to being 
influenced by a wider range of distractors (manifested through a greater leaking 
factor), correlates with the impairment in discriminability of a specific duration 
due to the event being presented as the composition of multiple events 
(difference in discriminability of durations composed by single vs multiple 
events). 

To assess this, we used the ratio of variances from the Control and Ensemble 
conditions (σ2

Control/σ2
Ensemble) to represent the tolerance to perceptual noise. 

These variances are derived from the slopes of the psychometric curves of each 
condition. A ratio closer to 1 indicates that duration judgments with multiple 
stimuli are practically as accurate as those with a single stimulus of the same 
duration. On the other hand, as the ratio goes closer to 0 it suggests a greater 
impairment in discriminability due to the increased number of stimuli to be 
tracked because the variance in the ensemble condition would be much greater 
than that of the control condition. 

Although we found a correlation between the variance ratio and the leaking 
factor (𝑟𝑟(17) = 0.33, p = 0.165), it was not statistically significant. However, after 
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excluding one participant with extremely high sensitivity in the Control 
condition (resulting in a final sample size of N=18), the correlation actually 
became significant (𝑟𝑟(16) = 0.49, p = 0.039). These correlations are illustrated in 
Figure 3.12. 

Interestingly, this positive correlation initially contradicted the expected 
relationship between these variables. The positive trend indicates that higher 
leaking factors are found when although increasing the number of stimuli that 
compose an event discriminability is preserved (also higher variance ratios). 

With this, the ability to discriminate durations that are not defined by one single 
stimulus but rather by the succession of overlapped events would be linked to 
greater permeability of duration channels sensitive to more different durations. 
Observers who are more prone to involuntarily integrate the durations of 
surrounding distractors are also better at attending and measuring the duration 
of an interval composed of multiple and different events. Conversely, 
participants who struggle with processing durations that require tracking 
multiple sources of stimulation (indicated by a lower variance ratio) are on the 
other hand less affected by irrelevant distractors overlapped with a target event 
(lower leaking factor). 

 

Figure 3.12. Correlation between leaking factor and ratio of variances. (A) Data from all 
participants with central tendency with an outlier participant highlighted in red, (B) 
Updated correlation excluding the outlier participant. 
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DISCUSSION 

This study aimed to provide significant insights into the phenomenon of 
multiple timing, specifically about how overlapping intervals can introduce 
perceptual noise and bias our time judgments of task-relevant events. Our 
findings demonstrate that simultaneous distractors systematically influence the 
perceived duration of target events, supporting the concept of a central 
tendency effect. This aligns with previous studies suggesting that our 
perceptual system tends to average temporal information in the presence of 
simultaneous stimuli (Burr et al., 2013). 

We also proposed a computational model based on the duration-channels 
theory to explain how the information from distractors is integrated into the 
perceptual decision process. 

Previous literature about multiple timing has shown how recent or concurrent 
information can affect reproductions and duration judgments. In this regard, 
different types of effects have been found according to different frameworks 
and paradigms. For example, Bayesian studies propose that time estimations 
under conditions of uncertainty are often biased towards a general average of 
the contextual evidence (Hallez et al., 2019; Jazayeri & Shadlen, 2010; Wehrman 
et al., 2020; Wiener et al., 2014). Moreover, studies focused on simultaneous 
multiple timing also revealed interferences that generate averaging tendencies 
(Ayhan et al., 2012; De Corte & Matell, 2016; de Montalembert & Mamassian, 2012; 
Kawahara & Yotsumoto, 2020). However, adaptation studies, which provoke a 
saturation of a specific duration, often report a repulsive or contrastive effect, in 
which the perceived duration is shifted away from the physical duration after 
saturation (Heron et al., 2012; Maarseveen et al., 2017, 2019). 

To explore this and bring further evidence in a simultaneous duration paradigm, 
we designed a perceptual decision task where participants had to compare the 
duration of two stimuli that were overlapped in time with concurrent distractors 
of longer or shorter duration. This task, which induced a high degree of 
uncertainty in the comparison between the target durations due to both having 
exactly the same duration, focused on understanding the distractor's role in the 
perceptual process. Therefore, any systematic bias in the judgment of the 
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targets could be related to the difference in duration between the simultaneous 
but in principle irrelevant distractors that accompanied each target. 

First, we compared performance in the Ensemble and Control conditions. We 
found that participants discriminated better durations that were delimited by 
the presentation of only one element, whereas the same durations composed 
by multiple elements were harder to discriminate. This shows that having to 
track multiple sources of information imposes an increase in perceptual noise, 
which hinders timing performance.  

We then wanted to assess whether the presence of multiple elements could still 
have an impact when these were irrelevant to the task. In the Ensemble 
condition, all elements were part of the target and should therefore be attended. 
On the other hand, in the Distractor condition they represent something 
different, here participants should only attend and compare the central element 
while ignoring the rest, which changes the role of the surrounding stimuli from 
being part of the target to being part of the temporal context. What was relevant 
for the task in the Ensemble condition should be ignored in the Distractor 
condition.  

We found that despite instructions to ignore the distractors, participants’ 
responses systematically varied with the duration of the surrounding stimuli. 
More specifically, the majority of participants showed a tendency to judge the 
target duration as more similar to the distractor duration than it actually was. 
Consistent with the studies that reported averaging or central tendency effects 
with simultaneous information (Ayhan et al., 2012; De Corte & Matell, 2016; de 
Montalembert & Mamassian, 2012; Kawahara & Yotsumoto, 2020), we also found 
that under uncertainty, estimations shifted towards a central value from the 
immediate temporal context. 

Interestingly, a small number of participants exhibited the opposite effect, a 
repulsion tendency where participants judged the target as lasting shorter 
when distractors lasted longer and vice versa. These contrasting results go in 
line with those found in adaptation studies, where participants’ duration 
estimates shifted away from the duration that was repeatedly presented earlier 
(Heron et al., 2012; Maarseveen et al., 2017, 2019). However, it is questionable 
whether the repulsion effect we found in our paradigm and the one observed in 
adaptation paradigms rise from the same mechanisms. Adaptation studies 
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typically rely on the saturation of a specific magnitude of stimulation, whereas 
our stimulus presentation does not depend on such saturation but can appear 
with just one presentation. Therefore, we suspect different mechanisms 
underlying the repulsion effect we found than those found in adaptation 
studies. 

Our findings highlight the fact that different tendencies can emerge within the 
same paradigm and point out yet unknown factors that influence duration 
processing and judgments. One potential explanation for the coexistence of 
both types of outcomes could be related to what is proposed by carryover effect 
studies; that the cognitive nature of the interfering information can determine 
the direction of the effect, relating central tendency effects to decisional factors 
and repulsion or contrastive effects to perceptual factors (Wehrman et al., 2020; 
Wiener et al., 2014). Still, studies have shown that both sensory and decisional 
components can contribute to biases measured by psychometric functions 
(Linares et al., 2019), suggesting that a combination of these factors in our task 
could be possible. Unfortunately, our data does not conclusively indicate which 
type of bias (perceptual or decisional) might be predominant in our paradigm. 

This unforeseen combination of results highlights a limitation of our initial 
formulation of the duration-channels model. Initially, it assumed central 
tendency effects, calculated through a weighted average and the leaking 
function. To address this issue, we proposed an alternative weight function 
formulation that allows both repulsion and central tendency effects due to 
lateral inhibition (Blakemore et al., 1970; O’Toole & Wenderoth, 1977) while still 
keeping the assumption of a decay of interference strength as durations 
separate enough. This modification enabled us to predict the response patterns 
of those participants exhibiting repulsion effects. However, we believe that 
further research is needed to develop a unique model that fully accounts for 
both central tendency and repulsive effects, each considering the contribution 
of perceptual and decisional components. 

Another important consideration for the validity of the model lies in how the 
proposed model aligns with the scalar property of timing or Weber’s Law, which 
remains a key criterion for any timing model. It states that the Just Noticeable 
Difference (JND) between two stimuli is proportional to the magnitude of the 
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stimuli, which implies that for larger time intervals, the thresholds for detecting 
differences should increase proportionally.  

Our initial formulation of the model (Equation (3.1) suggests a linear relationship 
between physical duration and perceived duration in the absence of distractors 
(i.e., when d=0 and w=0). At first glance, this linear relationship seems to 
contradict Weber’s Law which usually, but not always, suggests a logarithmic 
perceptual scale. Nevertheless, Weber’s Law could still hold under our model if 
we consider the type of noise affecting duration perception (Hass & Herrmann, 
2012). If the noise is additive (constant regardless of stimulus magnitude), then 
a logarithmic scale would be necessary. However, if we assume that the noise is 
multiplicative (increasing with the duration magnitude), a linear perceptual 
scale can still be consistent with Weber’s Law (Kingdom & Prins, 2016). In this 
scenario, the JND would increase proportionally with the physical duration, 
maintaining the proportionality required by Weber’s Law. Furthermore, 
empirical evidence from Stevens’ Power Law (Stevens, 1957) for duration 
estimation judgments reports an exponent close to 1 (approximately 0.91), 
indicating a nearly linear relationship between perceived and physical durations 
(Kane & Lown, 1986). This supports the idea that a linear perceptual scale can be 
a valid approximation, even within the framework of Weber’s Law. 

Regarding how the duration of distractors interfered with the perceived 
durations of the target, we assumed that each different stimuli activate 
respective channels selective to their specific durations, hence by presenting 
multiple stimuli, these channels should be activated by both relevant and 
irrelevant stimuli. The question arises about whether these parallel activations 
might interact, and if so, what determines this interaction. Our findings suggest 
that the duration of distractors was integrated into the perceived target 
duration, as they varied systematically. Furthermore, our model was able to 
predict not only the combination of these two pieces of information as a source 
of bias, but also to consider that this interaction was modulated by the 
difference between both durations. Moreover, we were able to calculate the rate 
of this modulation as a decay parameter or leaking factor, which determined 
the weight of distractor durations in the final target estimation. 

In this sense, we found a considerable variability in leaking factor levels among 
participants. While some of them were very good at ignoring distractors and did 
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not bias their estimations unless the durations were very similar, others allowed 
distractor durations to influence their judgments significantly. We should 
consider that this variability in leaking factors might appear not only between 
observers but also within the same observer under different conditions. One 
possible reason for this sensitivity to external information could be task 
uncertainty. Participants were asked to detect differences that were actually 
non-existent but instead induced by unattended external stimulation. This 
possibly led to different levels of reliance on surrounding stimuli and therefore 
varying degrees of uncertainty that manifested through greater and more 
persistent biases. 

Being able to estimate the leaking factor parameter not only helps us better 
understand the perceptual process of duration of complex events but also could 
be useful for timing research itself, as it allows us to determine the range of 
durations used when studying temporal context effects. Additionally, applying 
it to different paradigms such as reproduction tasks could help in the discussion 
of the underlying nature of these effects, whether perceptual or decisional, and 
help clarify the sources of bias in multiple timing. 

Finally, we explored whether individuals’ capacity to discriminate between 
durations could influence the magnitude of the temporal context effect. We 
anticipated that participants with better discriminability should suffer less 
influence from distractors (measured by the leaking factor). Contrary to our 
expectations, we found a trend that, although not significant, suggests that 
better discriminability preservation when events were composed of multiple 
stimuli was in turn associated with greater leaking factor values. To our 
understanding, this links the capacity to extract information from a greater 
range of simultaneous sources with an increased sensitivity to noise from 
concurrent and irrelevant sources. Also, it could explain that the leaking of 
information between channels does not only describe how distractors interfere 
with our perceptual process but also points out an underlying feature of how 
humans integrate time information from multiple and more varied sources, 
even unattended ones.  
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CONCLUSION 

Multiple timing is a critical aspect of how we experience time in the real world, 
where events rarely occur in isolation. Our study demonstrates that duration 
judgments of a single event can be biased by the temporal context consisting 
of simultaneous but irrelevant distractors. Most participants exhibited a central 
tendency effect, where the judgment of target durations shifted towards a 
general average of all overlapped stimuli, regardless of their task relevance. In 
fewer cases, this effect was reversed, with judgments shifting away from the 
distractor durations. 

To further understand our findings, we proposed a relatively simple model using 
a single parameter that allows us to predict the influence of distractors and their 
decay if they are too different to the target, highlighting the importance of 
temporal context and uncertainty in time estimation. This research provides an 
entry point for further investigation into the complexity of multiple timing, 
aiming to enhance our understanding of the cognitive processes that underly 
time perception in our daily lives. 
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4. STUDY 2: OPTIMAL 
SAMPLING OF THE 

TEMPORAL STRUCTURE IN A 
DYNAMIC ENVIRONMENT 
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ABSTRACT 

In everyday situations, we often need to track multiple durations 
simultaneously, such as when cooking various dishes or monitoring traffic while 
driving. These scenarios demand a high level of temporal awareness and 
strategic time monitoring to optimize performance and safety. While previous 
research has highlighted the cognitive demands of time tracking, the 
mechanisms behind managing multiple concurrent durations remain less 
understood. 

This study examines how individuals manage and integrate multiple time 
estimates to guide behaviour in dynamic environments. We designed a task 
simulating a driving situation where participants had to detect vehicles 
approaching unpredictably from either side while adapting to changes in the 
temporal structure of the task. Our results revealed that detection performance 
decreased when the temporal structure became more demanding, 
highlighting the cognitive challenges in such tasks. Participants showed a 
correct prioritization strategy in their monitoring based on the durations of the 
events, yet they did not optimally adjust in response to changes in the task's 
temporal structure. 

Using an optimal observer model, we compared participants' behaviour to 
theoretically predicted patterns. The model accurately predicted detection 
rates, suggesting that while participants could learn and use temporal 
regularities, their adaptations were suboptimal. 

Our findings underscore the significant role of uncertainty and cognitive costs 
in complex time-based monitoring tasks. This research advances our 
understanding of strategic time monitoring and provides a basis for improving 
models of time perception and decision-making under dynamic conditions. 
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INTRODUCTION 

Considering the findings of the previous study, where multiple timing effects 
are manifested in simple laboratory tasks, we decided to step forward towards 
more complex scenarios, closer to our daily life, where multiple timing plays a 
crucial role.  

Sometimes, the effects of multiple timing not only influence how we perceive 
or judge the duration of events but also play a key role in how we actively track 
them and guide our behaviour based on these estimates. In other words, while 
we might often track the duration of events as a natural response to our 
environment, there are specific situations where this tracking is a fundamental 
component of the task itself. In such cases, actively tracking multiple event 
durations, keeping them active in our mental space, and being able to work with 
them becomes not just a consequence of the situation but a requirement of the 
task. 

Consider a situation where we need to keep track of multiple timers, such as 
when cooking a meal with several ingredients that require different cooking 
times. In many cases, we can easily manage this by checking the state of each 
event and acting accordingly. If one of the elaborations is ready, we remove it 
from the heat without worrying about whether the elapsed time has reached 
the expected cooking time already. In the end, monitoring the duration of each 
cooking elaboration is informative, but not necessary, since we can check at any 
point and rely on other sources of information beyond just the elapsed time to 
make a decision. However, some other situations might not allow us to get this 
glimpse of information altogether, and if we cannot access the state of all events 
at the same time but only one at a time, we might need to rely much more on 
the tracking of the different elapsed times. In such cases, the element of 
uncertainty is key, as it requires us to plan an efficient behaviour that can 
compensate for our lack of predictability.  

This brings up a crucial decision: How long should I sample information from 
one event, and how long can I stay without sampling information from the other 
event? Furthermore, if I need to switch between sampling one event to the 
other, how should I distribute my monitoring time on each of them?  
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Imagine now that you are in a vehicle on the highway. For your own safety, you 
might want to be aware of any other vehicles trying to pass you from either side. 
To do so, you would have to check each side mirror to see whether anyone is 
coming from behind, but sampling this information from one location occludes 
the other, as we cannot look at both sides simultaneously. If we only focus on 
one side, we will likely miss vehicles from the other. Therefore, to maximize the 
probability of detecting any vehicle approaching from either side, we should 
find the best proportion of time to spend looking at each location or, better, the 
frequency at which we should switch from looking at one lane to the other. 

With this, we find how time monitoring becomes an example of the critical 
importance of timing capacities to solve daily tasks. Specifically, it involves not 
only keeping track of time but also associating actions to perform at precise 
points. Laera et al. (2024) highlight the importance of time monitoring and how 
it can be both costly and cognitively demanding, as it requires continuous 
attentional resources. Similarly to what we proposed above, they define 
strategic time monitoring as a behaviour where individuals check the time more 
frequently as the target time approaches. This strategic approach allows 
individuals to optimize their monitoring efforts, focusing their attention on the 
events at which the need to act becomes imminent. 

In this regard, Beck et al. (2014) highlight the importance of temporal and spatial 
predictability in improving response times and attention allocation. They argue 
that predictability can be incidentally learned through inter-trial relationships, 
leading to more efficient task performance without explicit cues. This suggests 
that even in unpredictable environments, individuals can optimize their 
behaviour by learning and utilizing temporal regularities (Beck et al., 2014). 
Similarly, Echeverria-Altuna et al. (2024) demonstrate that individuals can use 
temporal regularities to orient attention and make decisions even under high 
spatial and action uncertainty. They showed that goal-dependent strategies are 
crucial for optimizing performance, and highlight the flexibility in using 
temporal information to guide behaviour in uncertain environments, which 
further supports the idea that effective monitoring and decision-making relies 
heavily on the ability to adapt to temporal regularities of the task (Echeverria-
Altuna et al., 2024). Hyafil et al. (2023) further highlight that temporal integration 
is a fundamental aspect of perceptual decision-making and that decisions rely 
on integrating sensory evidence over time, even in noisy environments. 
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In this sense, and going back to our example, if we cannot predict when other 
vehicles will appear and from which lane, finding this timing at which we must 
switch from looking from one side to the other might not be simple. The critical 
information that we will have to use to define this pattern will be the duration of 
how long each vehicle will be detectable, from the first moment it is visible to 
the moment it would reach us. If we know how long each vehicle takes to close 
this gap, we also know how much time we can neglect that location and still be 
able to switch back and detect the potential vehicle. 

For example, if vehicles coming from our right take four seconds to reach us 
(from the first moment they are visible), we could spend almost four seconds 
looking at the opposite side and still have time to detect them by switching 
sides just before it’s too late. In contrast, if vehicles from the other lane take twice 
as much time to reach us, we can probably look away double that time without 
missing it. With this reasoning, by knowing how long vehicles from each side 
would take to reach us (depending on the average speed of that lane), we could 
decide for how long to sample at each location. This generates a monitoring 
pattern that optimizes our probabilities of detecting any event with absolute 
uncertainty about the location and moment they will appear, but just knowing 
the duration of each of them. 

As demonstrated by Hoppe and Rothkopf (2016), humans are able to adjust the 
timing of eye movements based on environmental regularities in this type of 
tasks. In their study, participants optimized their gaze strategies to two separate 
locations by learning the temporal regularities of the events from each location, 
even when these were unpredictable in terms of when or where they would 
appear. This sets evidence for the ability of the human visual system to integrate 
temporal information to control monitoring behaviour in a way that maximizes 
detection efficiency, even in noisy environments (Hoppe & Rothkopf, 2016; Hyafil 
et al., 2023). 

However, depending on whether the tracking of the multiple durations could 
be performed as a unified task or as a combination of simultaneous efforts, this 
could affect how successful we are at solving it. Clarke and Hunt (2016) reported 
that humans often fail to adapt their strategies optimally when required to split 
resources between multiple tasks. Their research showed that even when the 
optimal strategy is clear and stable, participants failed to modify their behaviour 



ALL TIMES AT ONCE 

88 
 

to achieve the best outcomes. This suggests a broader issue in human decision-
making where there is a tendency to adhere to suboptimal strategies despite 
changing task demands (Clarke & Hunt, 2016). 

Another aspect to consider that becomes clear when we think of real-life 
examples of this issue is that switching from sampling one location to the other 
might not be negligible. For example, in the driving situation we presented, 
when switching sides, one might need a fraction of time to turn the head and 
direct the eyes to the other side mirror. If this fraction of time is not integrated 
into the total time that we can stay looking away, we would risk missing the 
event at the very moment we are switching. In this sense, Hoppe et al. (2016) also 
emphasize the importance of considering the intrinsic costs of gaze behaviour, 
such as the time and effort required to switch between locations. Their 
computational model demonstrates that accounting for these costs is 
necessary for approaching optimal performance by trading off event detection 
rates with the costs of the associated eye movements (Hoppe & Rothkopf, 2016). 
In this line, Laera et al. (2024) also emphasize the importance of understanding 
the costs associated with time monitoring. They described that these costs, 
which can include cognitive load, attentional resources, and even social or 
monetary penalties, can influence how and when individuals choose to check 
the time. For example, they found that when monitoring incurs a cost, such as 
monetary deductions, individuals tend to adopt more strategic but less frequent 
checking behaviours which again highlights the trade-off between the 
frequency of checks and the strategic timing of those checks is crucial for 
optimizing performance in time-based tasks (Laera et al., 2024). 

With that, we see that in these kinds of monitoring situations where we have 
maximum uncertainty about when and where an event will occur, we can guide 
our behaviour based only on the temporal structure of these events. Therefore, 
it becomes critical to work with multiple duration estimates at the same time, 
such as the duration we have for detecting each event and the time lost related 
to our manoeuvrability. 

In our study, we build upon these insights to investigate how participants 
manage multiple time estimates in a dynamic environment. By examining their 
strategic monitoring behaviours, we aim to understand the extent to which they 
can adapt their strategies to optimize performance. 
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To this aim, we designed a novel task that tries to simulate the driving situation 
discussed earlier, where participants must detect vehicles that could appear at 
any moment from either their left or right side. 

Here it is especially important that these events, in our case the presence of an 
approaching vehicle, are totally unpredictable, as it compels participants to 
guide their behaviour only by learning and tracking simultaneously different 
durations.  

In contrast to our previous study, where multiple timing was something that 
produced an interference, here it is a requirement to solve this task. 

Additionally, we aimed to test whether participants can adapt their behaviour 
to changes in the temporal structure of the situation. Specifically, we 
investigated if participants, apart from finding an optimal prioritization of where 
to look based on the duration of the events, could also adjust the looking times 
when these durations or the time they need to switch between observing lanes 
changes. 

Finally, to better understand the underlying mechanisms that drive successful 
time-based task performance and the factors that may lead to optimal or 
suboptimal adaptations, we built a model of an optimal observer that predicts 
how much time should be dedicated to monitoring each area before switching 
according only to the knowledge of the temporal variables involved.  

Monitoring pattern 

We defined the combination of looking times at each location as the monitoring 
pattern. Which is composed of the duration at which an observer stays sampling 
at the same location before switching to the other one. 

This monitoring pattern can be broken down into different time segments that 
compose a stable cycle that repeats until the event occurrence. For simplicity, 
we will develop all our explanations and analysis considering two different and 
exclusive event locations, although it could be adapted to more. This cycle starts 
with an interval where the observer is looking at one location, the end of which 
depends on their decision to stop sampling there. Then, it is followed by the 
switch to the other location, which comprises an additional interval during 
which they do not get information from either lane. This switch also comprises 
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an interval that depends on the observers’ limitations to realizing this change 
from sampling one location to the other. Then, the interval looking at the 
alternate location takes place. This is also followed by another switch to the 
original location, which finalizes the cycle by setting it again at the initial point. 
The full monitoring cycle is illustrated in Figure 4.1.  

 

Figure 4.1. Example of a monitoring pattern cycle. The observer begins by sampling 
information from the fast lane for a duration denoted as TF. The observer then decides 
to switch to the slow lane, during which time neither lane is visible, referred to as the 
switch time. Upon reaching the slow lane, the observer samples information for a 
duration denoted as TS. Subsequently, the observer switches back to the fast lane. In this 
instance, an event occurs in the fast lane during the switch back, allowing the observer 
to detect it upon returning. 

To mathematically formulate the cycle, we first define the total cycle time (𝑇𝑇) as 
the sum of both looking times at each location (𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑏𝑏) and the switch cost in 
time (𝑆𝑆𝑆𝑆) of going back and forth between them. Remember that looking times 
𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑏𝑏 are defined by the observer, whilst the switch cost is something 
imposed and thereby predefined.  

 𝑇𝑇 = 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏 + 2 · 𝑆𝑆𝑆𝑆 (4.1) 

Then, we can calculate the probability of missing an event on each side (𝑝𝑝𝑠𝑠) 
based on the total cycle time (𝑇𝑇), the looking time at the opposite location (𝐿𝐿�̅�𝑠), 
the switch cost (𝑆𝑆𝑆𝑆), and the duration of that event (𝑑𝑑𝑠𝑠). Simply put, it would be 
the proportion of the cycle time (𝑇𝑇) where the duration of the event would be 
fully covered by the time looking at the opposite location and/or the time 
switching locations. Notice that, since the duration of the event could be long 
enough to exceed the combined looking time at the opposite location and both 
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switching times, we capped the lower bound of the calculation at 0. This 
prevents negative probability results, which could occur mathematically if the 
event duration were larger than twice the switch cost plus the looking time to 
the opposite side. 

 
𝑝𝑝𝑠𝑠 = max �

(2 · 𝑆𝑆𝑆𝑆 + 𝐿𝐿�̅�𝑠 − 𝑑𝑑𝑠𝑠)
𝑇𝑇

, 0� (4.2) 

Finally, once we calculate both probabilities of missing each event for a given 
monitoring pattern, we can calculate the general probability of missing any 
event considering the event at each location equally probable. 

 𝑝𝑝𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 = 𝑝𝑝𝑎𝑎 · 0.5 + 𝑝𝑝𝑏𝑏 · 0.5 
(4.3) 

METHODS 

Participants 

The sample of the first consisted of twelve participants, 7 of them self-identified 
as female and 5 as male (mean age = 29, SD = 3.22). All of them had normal or 
corrected-to-normal vision and were naïve to the purpose of the experiment. 
The study is part of a research program that has been approved by the ethical 
committee of the University of Barcelona (IRB00003099) according to the 
principles stated in the Declaration of Helsinki. All participants gave written 
informed consent to participate in the experiment. 

Apparatus and stimuli 

The task was designed and conducted using Unity 2020.3.27f1 (Unity 2020.3.27f1, 
2020). Stimuli were presented on a 24.5-inch ASUS ROG Swift PG258Q monitor 
with a resolution of 1920 × 1080 pixels at 240 Hz refresh rate. Participants were 
seated at approximately 57 cm from the screen. 

Participants were presented with an overhead view of a red car that was 3 
degrees wide and 6 degrees high, moving along a road across the vertical axis. 
The red car was always in a fixed position on the screen, centred horizontally and 
shifted vertically 3 deg towards the top of the screen. Grey cars (overtaking cars) 
of the same size could appear from the bottom of the screen, at 3.5 deg of 
eccentricity, and move towards the top at different speeds, depending on the 
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speed condition and the lane at which they appeared. Three different pairs of 
speeds were used, where each lane had a different speed of 3 times greater than 
the other lane and was constant throughout the block. The location of the fast 
and slow lanes was determined randomly at each block, with values of 500 and 
1500 ms, 750 and 2250 ms, or 1000 and 3000 ms at each lane respectively. For 
example, we could have one fast block where the left side was randomly 
selected to be the fast lane with a duration of 500 ms and the right side was 
therefore selected as the slow lane, where the duration would be 1500 ms. The 
onset of the overtaking cars was determined randomly on each trial following a 
uniform distribution between 3000 and 8000 ms. This was done to avoid 
predictability of the onset of the events and allow for enough time to record a 
monitoring pattern. 

Half of the screen was always occluded, by darkening with a black layer of 0.75 
alpha (opacity). See Figure 4.2 for a visual example of the task. At the beginning 
of each block, the top half of the screen was visible, and the bottom half was 
occluded, but as participants pressed the right or left keys the revealed area 
rotated to be oriented at the last pressed key’s direction. Any area of the grey 
cars that overlapped with the occluded area became invisible. The speed at 
which this area completed a 180º rotation (which was always done passing from 
the top side) varied depending on the switch condition and could take 500, 750 
or 1000 ms.  

 

Figure 4.2. Screenshot of the task. The participant is revealing the right lane, where an 
overtaking car is approaching while the opposite lane is occluded. 
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Feedback 

A green or red disk of 3 deg radius was presented at 10 deg above the vertical 
centre of the screen for 500 ms to provide feedback about the participant’s 
response on each trial.  

Procedure 

Instructions 

Participants were asked to imagine they were in the central red car, that other 
cars would try to pass them from either side and that their task was to press the 
spacebar key as soon as they could see them. They were informed that half of 
the screen would be occluded, and that overtaking cars in that area would not 
be visible, but that they could rotate this area to reveal either the left or the right 
side of the screen by pressing the left or right arrow keys respectively. In that 
regard, they were warned that this rotation could take some time and that they 
would not be able to switch again until the current rotation was completed.  

Additionally, participants were informed that only one overtaking car could 
appear at a time, that it could appear with equal probability on either side and 
that the moment it would appear was determined randomly. 

Configuration 

All participants began the experimental session with a baseline block of 50 trials 
with a homogeneous event duration of 1500 ms at both lanes and a switch cost 
of 500 ms. They were also allowed for a short test of up to 5 trials to familiarize 
themselves with the task and controls prior to the baseline block. 

We used 3 levels of duration/speed and 3 levels of switch time, combined in 9 
experimental blocks. Every participant performed 50 blocks of each of these 
combinations of event durations and switch times. The order of the 
combinations was counterbalanced across participants, who were initially 
unaware of the temporal structure determined for each given block. 

Measures 

At each trial, we recorded the time at which participants produced every switch 
from looking one side to the other as well as the response time at which they 
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pressed the detection key. This last response was then categorized under 3 
possible scenarios.  

• Hit: Participants pressed the space key while the car was being 
presented at the same lane they were looking at and before it reached 
them.  

• False alarm: Participants pressed the space key but either the overtaking 
car had not yet appeared, or it was running through the occluded lane 
and participants were not directly seeing it. 

• Miss: The overtaking car completed the full movement, reaching them 
without participants pressing the space key (expectedly due to running 
through the occluded lane). 

We excluded the first 4 trials of each block, during which participants could 
identify the fast and slow lanes and calculate an approximation of each event 
duration and switch time.  

We measured the number and type of responses for each participant during 
each block, as well as the looking time to each lane and the frequency of 
switching. These two later measures were used to define participants’ 
monitoring patterns by calculating the average looking time to each lane on 
every block. 

Feedback 

Feedback was provided at the end of each trial. If participants detected the car 
on time (hit), a green disk was presented signalling a successful trial. In contrast, 
if a participant generated a false alarm or missed a car either from not pressing 
on time while looking at the appropriate lane or by looking for too long at the 
opposite lane, a red disk appeared that signalled a failed trial.  

Optimality 

We used the optimal observer model to predict the probability of detecting an 
event according to the participant’s monitoring pattern at each block. This 
allowed us to assess how well the model predicts the observed proportion of 
detections from each participant and also to compare the monitoring pattern 
that they chose with the optimal pattern. 



STUDY 2 

95 
 

S2 

RESULTS 

Performance 

To check that participants were able to solve the task and detect the overtaking 
cars we calculated participants’ proportion of detected cars at each lane for each 
combination of speed and switch cost.  

We found that the percentage of detections of each participant varied across 
the different experimental conditions (see Figure 4.3). Overall, the number of 
detections decreased as the speed of the overtaking cars increased (𝑟𝑟(34) = -0.23, 
p = 0.019 and 𝑟𝑟(34) = -0.36, p < 0.001 at fast and slow lanes respectively). The same 
happened with the switch cost, where longer switch times also correlated 
negatively with the percentage of detections (𝑟𝑟(34) = -0.63, p < 0.001 and 𝑟𝑟(34) = 
-0.85, p < 0.001 at fast and slow lanes respectively).  

 

Figure 4.3. Correlation between the percentage of detections and (A) Switch Cost or (B) 
Overtaking cars speed at slow and fast lanes. 

We also found a significant difference in the proportion of detected fast and 
slow cars in most conditions (see Figure 4.4). Specifically, with 500 ms switch 
cost, the detection of slow cars was significantly greater than the detection of 
fast cars at slow overtaking speed was slow (t(22) = 5.87, p < 0.001) and medium 
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(t(22) = 3.69, p = 0.002). When switch cost was 750 ms, the detection of slow cars 
was significantly greater than the detection of fast cars at slow overtaking speed 
was slow (t(22) = 9.09, p < 0.001) and medium (t(22) = 3.5, p = 0.018). And 2hen 
switch cost was 1000 ms, the detection of slow cars was significantly greater 
than the detection of fast cars at slow overtaking speed was slow (t(22) = 7.92, p 
< 0.001) and medium (t(22) = 5.02, p < 0.001).  

Overall, fast cars were harder to detect, but in general, participants were able to 
detect cars at both lanes in all conditions, and proportionally to the increased 
difficulty of conditions with increasing switch time or overtaking cars' speed.  

 

Figure 4.4. Comparison between the percentage of detections at the slow and fast lanes 
at each combination of Switch Cost and Overtaking cars speed. 
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Monitoring pattern 

After confirming that participants were proficient in performing the task, we 
analysed their monitoring patterns to evaluate how they planned their 
behaviour to maximize car detection. 

To reiterate, we define the monitoring pattern as the sequence of time 
segments that describe the average looking cycle, during which participants 
observe one lane, then shift to the opposite lane, and finally return to the initial 
lane. As previously described by (4.1, this pattern is characterized by the average 
looking time at each lane and the switch time between lanes. 

First, participants should prioritize looking for longer times at the fast lane than 
the slow lane to increase their probability of detecting any overtaking car. To 
determine whether they followed this prioritization, we performed a paired t-
test on the average looking times per lane from each participant. The results of 
the paired t-test indicated a significant difference in looking times between the 
fast and slow lanes, t(11) = -6.47, p < 0.001. The mean difference in looking times 
was 0.97 seconds, with a 95% confidence interval ranging from 0.64 to 1.29 
seconds (see Figure 4.5A).  

These results indicate that participants spent significantly more time looking at 
the fast lane rather than the slow lane, which shows a correct prioritization 
towards the area where events are harder to detect. 

Changes from the temporal structure 

To further investigate whether and how switch cost and general overtaking cars' 
speed would individually affect looking times at the fast and slow lanes, we 
conducted separate repeated measures ANOVAs for each lane. 

Fast lane 

The repeated measures ANOVA revealed a significant main effect of switch cost 
on looking time in the fast lane, F(1, 11) = 6.34, p = 0.029. However, there was no 
significant main effect of speed, F(1, 11) = 0.55, p = 0.476, and no significant 
interaction between switch cost and speed, F(1, 11) = 0.12, p = 0.734. This indicates 
that only the time required to switch lanes significantly affected how long 
participants looked at the fast lane. Specifically, the mean looking times to the 
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fast lane were 0.959 s (SD = 0.857) for the 0.5 s switch cost, 1.27 s (SD = 1.26) for 
the 0.75 s switch cost, and 1.40 s (SD = 1.29) for the 1.0 s switch cost (see Figure 
4.5B). This indicates that participants allocated more time to monitoring the fast 
lane when the cost of switching was higher, suggesting a conservative strategy 
to maximize detections at the fast lane under more constrained switching 
conditions. 

Slow lane 

The repeated measures ANOVA for the slow lane did not reveal any significant 
main effects of switch cost, F(1, 11) = 1.85, p = 0.201, or speed, F(1, 11) = 3.22, p = 0.100. 
The interaction between switch cost and speed was also not significant, F(1, 11) = 
0.31, p = 0.590. 

These findings are visually depicted in Figure 4.5B, illustrating the average 
looking times for every combination of switch cost and speed in the fast and 
slow lanes, respectively. 

 

 

Figure 4.5. Looking times (A) Distribution of average looking times from each participant 
at each lane. Participants prioritized looking for longer periods at the fast lane. (B) 
Variations of the grand average of looking times to changes in the temporal structure. 
Switch cost and overtaking cars speed increased looking times only at the fast lane. 
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Optimality 

The optimal observer model provides a theoretical framework for predicting the 
most efficient allocation of looking times under different conditions. By 
comparing the observed looking times with the optimal predictions, we can 
assess the extent to which participants' behaviour aligns with the model’s 
predicted optimal pattern and identify any significant deviations. 

To have a reference of how participants should adapt their looking times, we 
calculated the coefficients for the optimal looking times at the slow and fast 
lanes using the optimal observer model. These coefficients include the 
intercept, switch cost, overall speed, and their interaction. We then estimated 
the same coefficients for the observed looking times at each lane using a linear 
mixed-effects model (lmer), accounting for participants as a random effect. The 
observed coefficients were compared to the optimal coefficients by using their 
confidence intervals to obtain z-scores that determined whether they could be 
considered equal. 

The analysis of the looking times to the slow lane revealed that the intercept was 
significantly higher than the optimal time (z = 7.092, p < 0.001). This indicates 
that participants stayed for a longer time (around 400ms) at the slow lane. 
Remember that in this case the optimal observer model expects the minimum 
looking time possible to the slow lane, but it is possible that participants needed 
this time to decide and process the action to switch back. In terms of the 
temporal context variables, neither the switch cost (z = -1.576, p = 0.115) nor the 
interaction between switch cost and overall speed (z = 0.894, p = 0.371) showed 
any differential effect between optimal and observed variations. The optimal 
model expects a near-zero effect of switch cost and overall speed since the least 
amount of looking time should be dedicated to the slow lane, regardless of 
these variables. However, participants showed a significantly different slope of 
speed (z = -1.962, p = 0.049), where they decreased their looking time as the 
overall durations also decreased. 

Regarding the fast lane, we found suboptimal adjustments of looking times 
from every variable. Participants showed different effects from switch cost (z = 
9.463, p < 0.001), overall speed (z = 9.463, p < 0.001), the interaction of both (z = 
6.008, p < 0.001) and even the intercept (z = 7.135, p < 0.001) than those expected 
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from an optimal observer. According to the model, the looking time to the fast 
lane should start at an initially lower value, then it should decrease as the switch 
cost increases and as the overall speed also increases. Basically, the more 
difficult the task gets due to the temporal constraints (by the switch cost) or the 
reduction in the duration of events (increased speed), the more frequently 
participants should switch to maximize the probabilities of detecting an event 
at any lane. We found that participants follow a more conservative strategy, 
where they dedicate longer looking times to the fast lane as the task gets more 
difficult, although in this way they substantially reduce their predicted 
probabilities of detecting a car in the slow lane. These differences between the 
optimal and observed monitoring patterns can be observed in Figure 4.6. 

 

Figure 4.6. Linear functions of looking times obtained from the mixed-effects model at 
each combination of variables. Variations expected from an optimal observer are 
presented in dashed lines while observed data is presented with solid lines. 

In summary, the analysis indicates that participants' monitoring patterns do not 
align well with the expected from an optimal observer according to our model. 
However, the significant discrepancies between observed and optimal 
coefficients suggest that participants might not be selecting an adequate 
monitoring pattern due to factors not accounted for in the model, such as risk 
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perception, fatigue, or just a limitation in properly keeping track of the many 
different temporal properties of the environment and work with them to find an 
optimal solution. 

Predictability 

Although participants did not seem to follow the optimal model variations 
across switch cost and overall speed levels, this does not necessarily mean that 
the model does not hold. Participants could just be suboptimal in adapting their 
monitoring pattern, and the model could still be valid as a predictor of their 
performance. To test this, we assessed the model’s predictive capacity under 
different conditions. 

To assess the relationship between the observed and predicted detection 
proportions, we conducted a correlation analysis with the data from each 
participant at each condition. We found a strong positive correlation (r = 0.785, 
t(106) = 13, p < 0.001) between the observed proportion of misses and predicted 
probabilities obtained from the model. To further explore this relationship, we 
performed a linear regression analysis that revealed a significant intercept value 
of 0.217 (SE = 0.019, p < 0.001) that signals a systematic bias where the observed 
proportions are constantly higher than the predicted ones and a significant 
slope coefficient of 0.829 (SE = 0.064, p < 0.001) that underscores a robust 
relationship between observed and predicted proportions of misses. The high 
significance of the slope confirms that the model captures the general trend 
and can reliably predict variations in the probability of miss based on the 
monitoring pattern. Overall, the results indicate that while there is a tendency 
to underestimate the proportion of misses, the model’s predictions are 
proportionally accurate. Figure 4.7 illustrates this relationship between 
observed and predicted detection proportions.  



ALL TIMES AT ONCE 

102 
 

 

Figure 4.7. Correlation between observed and predicted detection proportions from the 
optimal observer model. The identity line (dashed) represents perfect prediction from 
the model. 

DISCUSSION 

The present study aimed to explore the capacity of observers to maintain, keep 
track of, and integrate multiple duration estimates simultaneously to guide 
their behaviour optimally in a dynamic environment. We designed a novel task 
simulating a driving situation where participants had to detect vehicles 
appearing unpredictably from either side. Our results provide valuable insights 
into the strategic monitoring behaviours of participants and how optimally they 
adapt these strategies based on the temporal structure of the task. 

Our findings reveal that participants' detection performance varied significantly 
across different experimental conditions, influenced by the speed of the 
overtaking cars and the switch cost. Specifically, detection rates decreased as 
the speed of the cars increased and as the switch cost became longer. These 
results align with previous research by Laera et al. (2024), who highlighted the 
cognitive demands and costs associated with time monitoring. Our study 
extends these findings by demonstrating how these costs impact the ability to 
track multiple intervals and make timely decisions in a dynamic environment, 
especially in the most difficult conditions. 
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Participants showed a tendency to prioritize the fast lane over the slow lane by 
spending significantly more time looking at the former. This behaviour indicates 
a correct prioritization strategy, as detecting faster-moving cars is inherently 
more challenging, and an optimal monitoring pattern is determined by 
dedicating as little time as possible to the slow lane and adjusting the looking 
time to the fast lane in relation to the slow cars’ duration. However, our analysis 
also revealed that participants did not optimally adjust their looking times in 
response to changes in the temporal structure, defined by the switch cost and 
the overall speed of the cars. While the optimal observer model predicted that 
participants should decrease their looking time as the task difficulty increased, 
participants instead adopted a more conservative strategy, dedicating longer 
looking times to the fast lane. This conservative approach reduced the 
probability of detecting cars in the slow lane in exchange for ensuring 
detections in the fast lane, suggesting a suboptimal adaptation to the task 
demands. 

Our results support the broader notion that human decision-making often 
struggles with achieving optimal outcomes under conditions of divided 
attention and varying task demands (Clarke & Hunt, 2016). In their study, Clarke 
and Hunt (2016) argued that the suboptimal selection of behaviour may not 
stem from poor prioritization of task accuracy, but rather from a decisional bias 
that steers behaviour away from strategies perceived as overly influenced by 
chance. In their study, participant preferred to focus on a strategy that, although 
did not maximize their probability of success, was associated with a greater level 
of agency, in contrast to other strategies where the outcome was perceived as 
being more dependent on chance. 

This could be analogous to our results. As the task became more difficult with 
increased switch time, participants prioritized looking at the faster lane (where 
the events are harder to detect). This could have been to avoid missing the 
target while switching. They stayed for a longer time at the fast lane and 
switched less, leaving less weight to the uncertainty about where the event 
would start, and giving more weight to the possibility that the event would 
appear at that lane. 

These results highlight the struggle to reduce the impact that uncertainty has 
on our behaviour selection. In a task where events were unpredictable and the 
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optimal solution would be found by calculations on its temporal structure, 
participants demonstrated that they could gather and maintain the mental 
representations of both event durations, but when the task demands changed, 
they sought to reduce the temporal uncertainty about the onset of these events, 
even in a suboptimal way. 

The observed discrepancies between participants' behaviour and the optimal 
observer could be attributed to several factors. One possibility is that 
participants' risk perception influenced their monitoring patterns, leading them 
to adopt safer but less efficient strategies. Also, as we mentioned above, the 
cognitive load associated with keeping track of multiple temporal properties 
may have hindered their ability to find an optimal solution. This aligns with the 
findings from Beck et al. (2014), who emphasized the importance of 
predictability in improving task performance. Even in unpredictable 
environments such as our task, individuals can technically optimize their 
behaviour by learning and utilizing temporal regularities. However, our results 
suggest that participants may struggle to fully capture these regularities when 
faced with high cognitive demands. 

Along the same line, our findings support the notion that perceptual decision-
making relies on integrating sensory evidence over time, even in noisy 
environments (Hyafil et al., 2023), as participants had to integrate information 
about the durations of potential events and the costs associated with switching 
their attention. However, the suboptimal adaptations observed in our study 
suggest that while participants can integrate temporal information, they may 
not always do so in a manner that maximizes performance. Moreover, the 
inherent uncertainty in when and where the events would occur likely 
exacerbated the difficulty in maintaining optimal performance, underscoring 
the significant role of uncertainty in timing tasks. 

The increase in difficulty is especially relevant in relation to the costs associated 
with time monitoring, which play a significant role in shaping participants' 
behaviour (Laera et al., 2024). When monitoring incurs a cost, individuals tend to 
adopt more strategic but less frequent checking behaviours. Our study 
corroborates this by showing that participants adjusted their monitoring 
patterns based on the switch cost, though not always in an optimal way. The 
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trade-off between the frequency of checks and the strategic timing of those 
checks is crucial for optimizing performance in time-based tasks. 

On another note, despite the observed suboptimal behaviour, our optimal 
observer model showed a strong correlation with the actual detection rates, 
indicating that the model can reliably predict the probabilities of missing an 
unpredictable event based only on the monitoring pattern. This suggests that 
while participants may not perfectly adapt their behaviour to changing 
conditions, the general trend of their performance aligns with the model's 
predictions. However, the systematic bias observed where observed misses 
were higher than predicted highlights that there is still room for improving the 
model. It is possible that exploring additional components related to 
participants' states, such as the fatigue associated with continuous changes, or 
the biases associated with risk aversion could help us better understand how 
these monitoring patterns are finally determined. Additionally, the element of 
uncertainty in both the timing and location of events plays a critical role here, as 
it directly impacts the participants' ability to align their behaviour with the 
optimal model. This emphasizes the need to further explore how the degree of 
uncertainty about each time estimate influences how much weight these 
timing properties are given in the establishment of monitoring strategies. 

With this, we find that even when participants have the necessary information 
available to solve a task and find stable strategies, uncertainty often leads to 
suboptimal decisions. This is particularly relevant in the context of time 
perception and the monitoring of multiple intervals, where uncertainty can 
severely impact decision-making and strategy selection. When individuals are 
unsure about their ability to accurately perceive and estimate time intervals, or 
when the task demands are ambiguous, they are less likely to allocate their 
attention and cognitive resources efficiently. This misallocation can result in 
increased errors and variability in time estimation, highlighting the importance 
of addressing uncertainty when interpreting timing behaviour. By 
understanding the role of uncertainty, researchers can better design 
experiments and interpret data, ultimately leading to more accurate models of 
how humans perceive and manage time. 
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CONCLUSION 

In conclusion, our study provides important insights into how individuals 
manage multiple time intervals to define strategic monitoring behaviours when 
tasked with detecting unpredictable events. While participants demonstrated 
an ability to integrate temporal information and prioritize more challenging 
tasks, their adaptations were not always optimal. The findings underscore the 
cognitive demands and costs associated with time monitoring and the 
challenges in achieving optimal performance under dynamic conditions. 
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ABSTRACT 

Estimating durations is often challenged by inherent uncertainty. Traditional 
approaches have focused on measuring perceived time directly but have 
struggled to quantify the associated uncertainty effectively. Our study explored 
the potential of the bracket method as a direct measure of this uncertainty. In 
the task, participants were asked to indicate a range within which they believe 
an interval ends, providing a more nuanced measure of temporal uncertainty. 

We compared the bracket method to the traditional discrete reproduction 
method across intervals of 0.6 to 4 seconds. Results showed high consistency 
between the methods in accuracy and precision, validating the bracket method 
as an effective alternative.  

Furthermore, the bracket method provided significant insights into the nature 
of uncertainty in time perception. We found that the length of the bracket 
increased with the duration of the interval, aligning with the scalar property of 
timing. This suggests that the bracket method not only matches the discrete 
method in terms of basic performance metrics but also offers a direct measure 
of perceptual uncertainty. 

Analysis of the variances in start and stop times of the bracket indicated 
contributions of both additive and multiplicative noise components in the 
timing process. These findings provide a deeper understanding of the cognitive 
mechanisms involved in time perception, particularly how noise influences the 
accumulation of perceived time. 
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INTRODUCTION 

The previous studies highlighted that time perception is a complex and 
cognitive process that is constantly faced with many challenges. As detailed in 
the general introduction, our ability to measure time is influenced by various 
internal and external factors (Kanai et al., 2006; Matthews & Meck, 2016; Vatakis 
et al., 2018; J. Wearden, 2016), leading to a significant role of uncertainty in our 
time estimates. This uncertainty can impact our duration judgment and 
decision-making processes, as well as deviate our time estimates, which makes 
it a critical area of study in time perception research. 

Several methods that were described in the general introduction have been 
employed to measure this uncertainty, each with its own advantages and 
limitations. Traditional approaches, such as calculating the variability of 
estimates in quantitative tasks or obtaining psychometric functions, provide 
useful insights but also present significant caveats. These methods often deliver 
a global measure of uncertainty for the entire task, failing to capture the 
uncertainty associated with individual responses. Moreover, methods that rely 
on metacognitive judgments (Akdoğan & Balcı, 2017; Corcoran et al., 2018; 
Cropper et al., 2024; Jovanovic et al., 2023; Lamotte et al., 2017) can be influenced 
by higher cognitive functions and external biases, potentially obscuring the very 
uncertainty they aim to measure.  

In an effort to overcome these limitations, we propose using a modified 
reproduction task called the "Bracket method," which builds on the promising 
yet underused start-stop procedure (Kladopoulos et al., 1998). The Bracket 
method involves participants bracketing their duration estimates with a range, 
providing a direct measure of uncertainty on a single-trial basis. Instead of 
asking them to reproduce by delivering a discrete response at the exact 
moment the interval would finish, they are asked to first start a continuous 
response as soon as they believe it possible that the interval to be reproduced 
has ended (start time), hold it, and stop the response as soon as they are sure 
that the interval to be reproduced has already ended (stop time) (see Figure 5.1 
for a visual representation of this type of response). This approach addresses 
several key issues associated with traditional methods: it does not require 
metacognitive evaluations, provides a more objective measure of uncertainty 
that is integrated with the time estimate itself, and does not require any 
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additional response from participants, minimizing task duration and participant 
fatigue. Moreover, it allows for the estimation of both the point of subjective 
equality (PSE) and the difference limen (DL) on a single-trial basis (Kladopoulos 
et al., 1998), which can serve as measures of accuracy and uncertainty, 
respectively. 

 

Figure 5.1. Example of a reproduction response under the start-stop procedure. The first 
response after interval onset determines the start time and the ending of this response 
determines the stop time. 

Building on this foundation, the primary objective of this study is to compare 
the Bracket method with the traditional reproduction method in terms of their 
ability to measure time perception. These two methods have not yet been 
tested against each other; however, we hypothesize that the Bracket method 
will provide duration estimates equivalent to those obtained with the traditional 
method. Additionally, we aim to assess whether the additional measures 
obtained from the Bracket method can be used to reliably quantify uncertainty 
and be useful in addressing the nature of noise under uncertainty in time 
estimates through this new method. 

Bracket as a threshold proxy 

In contrast to the traditional reproduction method, the bracket method delivers 
us two time points that should be interpreted differently from the traditional 
reproduction time. To understand what each of these measures represents at a 
cognitive level, we must first delve into the perceptual decision process that 
involves the timing of an interval. 
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In timing tasks such as those presented in the present thesis, participants 
generate prospective estimates by engaging in a continuous process of 
comparing the subjective elapsed time (how long it feels since the event 
started) with a mental representation of the duration they are comparing it to 
(a duration criterion). As time goes by, the discrepancy between these two 
values decreases as the subjective elapsed time grows closer to the reference 
time. When this discrepancy diminishes enough, it reaches a perceptual 
threshold, after which both durations are perceived as equal. However, if time 
continues beyond this point, the discrepancy increases again and eventually 
reaches another threshold, making them distinguishable once more (Gibbon & 
Church, 1990; Kladopoulos et al., 1998). This process underscores that, to 
accurately compare two durations, we not only have to do a proper tracking of 
the elapsed time and keep a stable representation of the target interval but also 
need to have precise thresholds that delimit enough the range within which 
these two intervals are matched. 

This raises the question about how these thresholds are established. They are 
directly related to the sensibility that can be different for each participant and 
are also influenced by uncertainty, as it can make durations inherently harder to 
discriminate, but aside from individual differences or situational factors, we can 
discuss how other more predictable aspects can also affect the distance 
between these thresholds, such as the magnitude of the stimuli. 

According to Gibbon and Church (1990), the discrepancy between subjective 
and remembered time needed to discriminate them is proportional to the 
remembered time. This means that thresholds diverge further as the target 
duration increases. This aligns well with the traditional claim of the scalar 
property of timing and is associated with a multiplicative type of noise. However, 
if we conceive the scalar property of timing as a form of Weber’s Law, there could 
still be multiple combinations of noise and transducer (the representation of the 
relationship between real and perceived duration), that could still hold with this 
law (Zhou et al., 2024). For example, a transducer that follows a power function 
with an exponent smaller than 1 would still comply with Weber’s Law if additive 
noise is present (Zhou et al., 2024) (see Figure 5.2 for different examples of 
adherence to Weber’s law with each type of noise). Therefore, to discuss the 
compliance with the scalar property, we should consider both the transducer 
and the shape of the noise, which should in turn determine these thresholds.  
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Figure 5.2. Increase in threshold range (dashed lines) in relation to the transducer (solid 
lines). The start and stop boundaries of the bracket (blue and red lines respectively) 
represent a proxy for this range. (A) Example of multiplicative noise. The same increase 
in physical magnitude (ΔT) at T1 and T2 is harder to discriminate at longer durations 
(T2) due to the increase in noise. (B) Example of additive noise (independent of 
magnitude). The power function transducer makes the same increase in magnitude (Δ
T) harder to discriminate at longer durations but this time due to the compression of the 
transducer. 

In our study, we conceptualize the bracket length as a direct measure of the 
temporal window within the two thresholds, with the start and stop times 
indicating when each of them is reached. We believe that by analysing how the 
start and stop times and the length of the bracket vary across the different 
target durations, we could not only reinforce the correspondence of these 
behavioural measures as proxies for the perceptual decision thresholds but also 
this could help us assess the nature of the process noise that determines them. 
In this regard, we are initially open to the possibility of the relation between noise 
and stimulus magnitude being either additive, multiplicative, or a combination 
of both, and expect the bracket method to be a useful tool to elucidate between 
these possibilities.  

To assess this, we propose a definition of the bracket that will allow us to later 
address the nature of the noise that determines the threshold range:  
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 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 = 𝑩𝑩𝑩𝑩 + 𝑩𝑩𝒎𝒎 ∙ 𝑩𝑩� (5.1) 

Here, the bracket depends on the contribution of two types of components. 

• And additive component (𝑐𝑐a) that remains constant across target 
durations. It represents the minimum difference that participants need 
to distinguish between them and is independent of stimulus magnitude. 

• A multiplicative component (𝑐𝑐m) that increases proportionally to the 
perceived duration (�̂�𝑡). 

If the bracket length indeed relates to the distance between thresholds, we have 
different ways to assess the nature of the underlying noise by analysing different 
aspects of the bracket. 

Looking at bracket length 

If brackets are solely determined by an additive component, they should remain 
constant across durations, with start and stop times always being placed at a 
constant distance between them. 

 

Figure 5.3. Solid lines represent a linear transducer of how the perceived duration 
represents real duration. Dashed and solid lines represent the spread of perceived times 
due to different sources of noise. (A) Multiplicative noise correlates with the magnitude 
of the stimuli. Increasing variability at longer durations. (B) Additive noise is independent 
of stimulus magnitude and is stable across the range of durations. 

Conversely, the presence of a multiplicative component would result in a 
systematic relationship between perceived duration and bracket length, where 
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the distance between start and stop times would increase along with the 
magnitude of duration. See Figure 5.3 for an example of different contribution 
levels of these components to the start and stop range. 

Looking at start and stop times variability 

Another approach to assess the nature of noise in the establishment of the 
perceptual thresholds that benefits from the bracket method is to explore how 
the variances of start and stop times evolve through time. According to pulse-
accumulation and ramping activity models, each pulse of the internal clock, 
each accumulation of evidence, is subject to some degree of noise which in time 
estimation is translated to some variability in the accumulation of perceived 
time per unit of physical time (Gibbon & Church, 1990; Simen et al., 2016). 
Because of this inherent variability, since more noise can be accumulated as 
time advances, we hypothesize that stop times should exhibit greater variability 
start times due to the accumulation of more pulses and potentially more 
instances of noise. Even more interestingly, the relative difference in variability 
between the two moments could also help us disentangle the nature of noise.  

For example, if the distance between start and stop times remains invariant 
across different target durations (indicating a purely additive nature), the 
relative variability between these two points would decrease as durations 
increase. This occurs because a larger proportion of the total variability would be 
shared by both points, given that there is more time to accumulate noise before 
reaching either point than during the interval between them. When the 
distance between start and stop times is constant (additive nature), the absolute 
difference in variability stays roughly the same, but the accumulated noise 
makes the relative difference much smaller as the variabilities of the start and 
stop times become more similar. Therefore, by obtaining the ratio of the 
variance of stop times to the variance of start times, we could identify a purely 
additive nature of noise. This would be indicated by the ratios tending towards 
an asymptote of 1 (equality of variances) as target durations increase. The 
strength of this additive component would determine how long the difference 
between variances persists before dramatically falling to this asymptote and 
becoming negligible. 

On the other hand, multiplicative noise could also be detected with this 
approach. According to Weber’s law (a form of the scalar property), if we assume 



STUDY 3 

119 
 

S3 

a linear increase between perceived and physical time, we should also find an 
increase in estimated variability as the magnitude increases. This could be 
observed by the spreading of the bracket, as longer durations are more difficult 
to discriminate, the start times will be reached sooner, and the stop time will be 
postponed to a later time. This would also influence the ratio of variances of stop 
by start times. Specifically, we would find that as durations increase, the variance 
of stop times would increase more than the variance of start times. This in turn 
would produce a higher value of the ratio of variances, which although also 
decreasing in the long term, would tend to an asymptote greater than 1.  

In the case of a combination of additive and multiplicative components, we just 
need to combine these properties that we mentioned. We would expect to find 
ratios of variances tending to an asymptote determined by the multiplicative 
component (greater values of the asymptote related to greater contribution of 
this component) and with a decaying rate that would depend on the 
contribution of the additive component (reaching faster the asymptote with 
smaller levels of the additive component). Figure 5.4 illustrates different 
examples of the ratio of variances as durations increase with different 
contributions of each component. 

 

Figure 5.4. Simulations of the ratio of variances with different levels of additive and 
multiplicative noise components. The rightward asymptote is mostly determined by the 
multiplicative component and the approximation to this asymptote is modulated by the 
additive component. 
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Finally, a model such as the one we propose in Equation (5.1 could also account 
for both noise types. By combining the properties that we described, depending 
on the contribution of each type of noise we could find that the additive 
component could be calculated by how fast the variances ratio decays to the 
asymptote while the multiplicative component would determine the height of 
this asymptote. 

METHODS 

Participants 

The sample of this study consisted of fourteen participants, 6 of them self-
identified as female and 8 as male (mean age = 28.36, SD = 4.38). All of them had 
normal or corrected-to-normal vision and were naïve to the purpose of the 
experiment. The study is part of a research program that has been approved by 
the ethical committee of the University of Barcelona (IRB00003099) according 
to the principles stated in the Declaration of Helsinki. All participants gave 
written informed consent to participate in the experiment. 

Apparatus and stimuli 

The task was designed and conducted using Unity (Unity 2020.3.27f1, 2020). 
Stimuli were presented on a 24.5-inch ASUS ROG Swift PG258Q monitor with a 
resolution of 1920 × 1080 pixels at 240 Hz refresh rate. Participants were seated 
at 57 cm from the screen. 

The visual stimuli consisted of white or red disks with a diameter of 3 deg and a 
white cross of 2 deg presented against a grey background. 

Procedure 

During the experiment, regardless of the condition block, each trial consisted of 
two distinct phases: a learning phase and a reproduction phase. In the learning 
phase, participants measured an interval presented through visual stimuli. In 
the reproduction phase, they delivered an estimate of that same duration. 
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The task was self-paced, meaning that the learning phase would not start until 
participants’ input. In this way, participants could take short rests if needed 
during the block, although were warned to not abuse of these rests. 

Learning Phase: Initially, a white cross (2 deg) was displayed at the centre of the 
screen and remained until participants pressed the CTRL key, prompting its 
disappearance. Following a 1500 ms delay, a white disk (3 deg in diameter) was 
presented for 200 ms at a random position within a 12x12 deg area centred on 
the screen. After a variable interval matching each trial’s target duration, a red 
disk (3 deg in diameter) appeared at the same location for 200 ms. Participants 
were instructed to focus on the interval between the two stimuli. 

Reproduction Phase: After a 1500 ms delay following the red disk's 
disappearance, the white disk reappeared at a new random location within the 
same area for 200 ms, indicating the start of the reproduction phase. 
Participants were required to estimate the time at which the red disk should 
appear again according to the same interval they were just presented within the 
learning phase. The end of this phase was marked by the participant's response, 
which varied depending on the reproduction method used in that block (either 
discrete or bracket reproduction, as presented in Figure 5.5). 

• Discrete Reproduction Blocks: Participants pressed the SPACE key at 
the exact moment they estimated the red disk should reappear, 
mirroring the interval from the learning phase. Therefore, their response 
should be timed with the expected appearance of the red disk. 

• Bracket Reproduction Blocks: Participants were instructed to press and 
hold the SPACE key as soon as they anticipated the red disk’s 
appearance and release it when they were certain it would have already 
appeared, following the interval from the learning phase. They were also 
encouraged to keep the press duration as short as possible while 
ensuring it encompassed the target duration’s end. Here, instead of 
synchronizing their response to the offset of the interval, they should 
behaviourally generate a sort of confidence interval that surrounds that 
same offset. 

In both cases, they were warned that the red disk would not appear again during 
the reproduction phase and that they should time their responses according to 
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the prediction they made about when it was going to appear, basing this 
prediction on the interval presented at the learning phase. 

 

Figure 5.5. Visual example of the reproduction task sequence. The target interval was 
presented once through the learning phase and then reproduced during the 
reproduction phase. The reproduction ended at key press onset during the discrete 
reproduction blocks and at the key press offset during the bracket reproduction blocks. 

To mitigate potential spatial adaptation effects, the location of stimuli in both 
phases was randomized so that the onset stimuli (white disks) were always 
located at different positions on the screen between trials and phases. Offset 
stimuli (red disks) were always presented at the same location as the onset 
stimuli of their respective phase. Additionally, participants were explicitly 
instructed not to use counting strategies to avoid influencing their temporal 
judgments (Rattat & Droit-Volet, 2012). 

Target Durations: We selected a range of durations that included both sub-
second and supra-second intervals of 600, 900, 1300, 1900, 2700, and 4000 ms. 

Experimental Blocks: Each participant completed 3 blocks using the discrete 
reproduction method and 3 blocks using the bracket reproduction method. The 
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order of the blocks was counterbalanced across participants. Each block 
comprised 60 trials, each including 10 repetitions of each target duration in 
random order. This added up to 60 repetitions per target duration per 
participant, split evenly between the two reproduction methods. 

Measures 

Reproduction times were measured differently depending on the reproduction 
method employed. In all instances, reproduction time began after the 
presentation of the white disk in the reproduction phase. 

Discrete Method Blocks: Reproduction time was determined as the elapsed 
time until the first moment of pressing the SPACE key during the reproduction 
phase. 

Bracket Method Blocks: Two points were recorded: the start of the bracket 
(elapsed time until the first SPACE key press during the reproduction phase) and 
the end of the bracket or stop time (elapsed time until the key release). From 
these, we calculated the bracket length (time between start and stop) and the 
reproduction time (midpoint between start and stop), which was considered 
analogous to the discrete method’s measure. 

The use of the midpoint of the bracket as the reproduction time is based on 
Kladopoulos et al. (1998), who proposed it as analogous to the PSE, representing 
the perceived target duration. Further tests that are described in the results 
section were performed to validate this selection. 

Predictions 

Our first aim was to validate the bracket reproduction method against the 
discrete method by comparing their accuracy and precision across target 
durations. We also evaluated whether both methods consistently demonstrated 
robust features of time perception, such as scalar invariance. We hypothesized 
that reproduction times from the discrete method would closely match the 
midpoints of the brackets from the bracket method. 

Secondly, to further explore the bracket method’s potential as a measure of 
uncertainty, we analysed the relationships between start and stop times, and 
how bracket length correlated with variability in reproduction estimates and 
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target duration changes. We anticipated a positive correlation between bracket 
length and variability, with both increasing in line with duration magnitude, due 
to the scalar property of time. 

RESULTS 

Data Filtering 

Trials were excluded if the reproduction times or bracket lengths (in bracket 
method blocks) deviated by more than 2 standard deviations from the average 
for each participant, method, and duration. This aimed to exclude invalid trials 
where the reproduction value was not related to the perceived duration. These 
included cases where participants might have mistakenly delayed their 
response by confusing the learning and reproduction phases, or instances 
where impulsive reactions or involuntary key releases resulted in unusually short 
bracket measures or reproduction times. 

This resulted in the exclusion of 7.8% of trials from the bracket method blocks 
and 4.6% from the discrete method blocks. 

Task validation 

Performance 

First, we directly compared time reproduction estimates from the discrete and 
bracket reproduction methods (using the midpoint of the bracket as the 
estimate for the latter). This comparison revealed a remarkable similarity 
between the two methods in terms of error direction, magnitude, and variability. 
The average estimates from both methods clearly overlapped, suggesting that 
the bracket reproduction method is a viable alternative to the traditional 
approach (see Figure 5.6A). 
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Figure 5.6. Performance comparison between methods. (A) Reproduction times as a 
function of target duration. Bold lines represent the aggregate average between 
participants. Dashed lines represent individual participants’ data. Correlation of 
reproduction means (B) and standard deviations (C) between methods. Each data point 
is calculated as the average or standard deviation of reproduction for each participant 
and target duration. 

A regression analysis using a power function (𝑦𝑦 = 𝑎𝑎 · 𝑥𝑥𝑏𝑏) demonstrated a strong 
and significant relationship between target durations and reproduced times for 
both the discrete (R² = 0.74, F(1,2401) = 6706, p < 0.001, coefficients a = 0.31, 95% 
CI = [0.3, 0.32], p < 0.001, and b = 0.6, 95% CI = [0.59, 0.62], p < 0.001) and bracket 
(R² = 0.65, F(1,2310) = 4306, p < 0.001, coefficients a = 0.33, 95% CI = [0.31, 0.34], p < 
0.001, and b = 0.55, 95% CI = [0.54, 0.57], p < 0.001) methods. 

The high degree of consistency between reproduction estimates from both 
methods was further analysed by correlating the parameters of reproduction 
times across methods. There was a very high correlation between the mean 
reproduction times of each participant and target duration (r(84) = 0.96, p < 
0.001), indicating similar accuracy across both methods (see Figure 5.6B). 
Additionally, a substantial correlation was found for the variability of these 
reproductions, measured by the standard deviation (r(84) = 0.69, p < 0.001), 
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indicating consistent precision in time estimation across methods (see Figure 
5.6C). 

To further validate the midpoint of the bracket as the optimal representation of 
discrete reproduction time, a linear regression analysis was conducted using the 
average reproduction time from the discrete method to predict the bracket 
method's average midpoint. This analysis yielded an intercept of 0.05326 (p = 
0.406), showing no significant difference between the discrete reproduction 
time and the midpoint of the bracket, and a slope of 0.97138 (p < 0.001), 
indicating a nearly one-to-one relationship between the two measures. These 
findings strongly support the midpoint of the bracket as a direct analogue to 
the discrete method's reproduction time.  

Comparison with Time Perception Phenomena 

We also examined how well both methods conformed to known phenomena in 
time perception research, such as Vierordt’s law and the scalar property of 
timing (Weber’s law). If both methods are interchangeable, these phenomena 
should be observable to the same degree in each case. 

Vierordt’s law is a robust finding in time estimation where short durations tend 
to be overestimated and long durations tend to be underestimated (J. H. 
Wearden, 2023). In line with this effect, our data evidenced a strong negative 
correlation between target duration and average error (r(84) = -0.83, p < 0.001 for 
the discrete method; r(84) = -0.77, p < 0.001 for the bracket method), which 
confirmed the presence of Vierordt’s law in both methods.  

The scalar property of timing was also evident in both methods, with an increase 
in the standard deviation of reproductions as a function of target duration (r(84) 
= 0.58, p < 0.001 for the discrete method and r(84) = 0.47 p < 0.001 for the bracket 
method). This aligns with scalar timing theory, which posits that the precision of 
time perception scales with the timed interval itself (Gibbon, 1977; Malapani & 
Fairhurst, 2002). 

Both comparisons are illustrated in Figure 5.7. These results reinforce the 
behavioural equivalence of the two methods, indicating that both are equally 
capable of capturing inherent phenomena in temporal estimates. 
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Figure 5.7. Comparison of Weber’s law (A) and Vierordt’s law (B) at each method. Solid 
lines represent the aggregate data among participants while dashed lines represent 
individual participants’ data. 

Bracket measure of Uncertainty 

Once we checked that the bracket method can be equivalent to the traditional 
reproduction method, we wanted to address the second aim of this study; to 
assess the potential of this method for measuring uncertainty over the 
traditional one. 

To do so, we examined how the bracket length varied under conditions of 
expected uncertainty, as well as how it could relate to other measures of 
uncertainty. 

Following the scalar property of timing, we hypothesized that if uncertainty 
increases with target duration, bracket length should also follow this increase. 
To test this, we first standardized the bracket lengths by normalizing them 
within each participant. This was done to remove individual differences or biases 
towards more conservative or liberal bracket strategies and gave us a measure 
of how long each participant is producing a given bracket in relation to how long 
they usually do. Then, we performed a regression analysis where we fitted a 
power function that revealed a robust and positive relationship between the 
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averaged standardized bracket length and target duration (R2
adj = 0.86, F(1,82) = 

518.9, p < 0.001, with coefficients a = 0.74, 95% CI = [0.7,0.78], p < 0.001, and b = 
0.52, 95% CI = [0.47,0.56], p < 0.001). 

Participants tended to extend their brackets at longer target durations 
(expectedly those that generated more uncertainty), suggesting that the 
bracket length effectively captures a key aspect of uncertainty consistent with 
the scalar nature of time estimation (see Figure 5.8A). 

To further validate bracket length as an indicator of uncertainty, we examined 
its relationship with another common uncertainty index, the variability of time 
reproductions. Here, we also normalized the bracket length not only for each 
participant but also for each target duration. This was done to remove the 
explained variability due to the scalar property already mentioned. We used a 
Deming regression to account for measurement errors from both variables. The 
analysis showed a significant relationship with a slope of 6.57 (95% CI: 3.77, 9.36), 
an intercept of -2.34 (95% CI: -3.32, -1.47) and an error variance ratio of 0.13 (see 
Figure 5.8B). This indicates a positive relation between bracket length and the 
standard deviation of time estimates, which suggests that those cases in which 
participants are more variable (supposedly due to uncertainty) are also those 
conditions in which they produce longer brackets, probably to compensate for 
this uncertainty.  

Altogether, these results reinforce the bracket length’s role as a reliable indicator 
of uncertainty that can be introduced in reproduction tasks without any harm 
to participants’ performance. 
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Figure 5.8. (A) Relationship between standardized bracket length and target duration. 
The solid line represents the general trend among participants, while the dashed lines 
represent individual participants’ data. (B) Deming regression of standardized bracket 
length as a predictor of reproduction variability measured as standard deviation.  

Variance of Start and Stop Times 

To analyse how the start and stop times of the bracket varied between them 
and across the different durations, we fitted a generalized linear mixed model 
with a Gamma distribution to the ratio of variances of stop by start times (σ2

stop/ 
σ2

start), including target duration as a fixed effect and participant as random 
effect. To make the results more interpretable, we included an offset of 1 to test 
the hypothesis that the variance ratio would differ from 1, which would mean 
that start and stop times are differentially variable. 

Results showed that the intercept was significantly greater than 1 (β� ₀ = 1.86, SE = 
0.27, z = 3.22, p = 0.001), indicating that stop time variance was, on average, and 
apart from the duration effects, 0.86 times greater than start time variance. The 

significant negative slope coefficient (β� ₁ = -0.07, SE = 0.03, z = -2.62, p = 0.009) 
indicates a convergence of variance ratios towards 1 with increasing target 
durations, which suggests the presence of some additive noise (see Figure 5.9B). 

As explained earlier, if the distance between both thresholds increases (which 
we interpret as the bracket length), the difference in variability between the 
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start and stop times also increases. This occurs due to the differential 
accumulation of noise at each threshold. When the first threshold (measured as 
the start time) is reached sooner, there is less time for random noise to 
accumulate. Conversely, a delayed stop time allows for more noise 
accumulation. However, if the increase in the distance between thresholds does 
not keep pace with the increase in duration, the difference in variability that was 
significant at shorter durations diminishes at longer durations. This is because 
the variability due to noise between thresholds becomes negligible compared 
to the total noise accumulated before reaching the first threshold. 

 

Figure 5.9. (A) Variance of start and stop times calculated from each participant and 
target duration. (B) Ratio of variances at each target duration. Dashed line represents 
equal variance, solid line represents the predicted variance fit from the model. 

Finally, we used the bracket length measure to further assess the contribution 
of additive and multiplicative noise components. Using the same structure as 
Equation (5.1, we fitted a linear model of the reproduced duration as a predictor 
of the semi-threshold range (half of the bracket length). Following the rationale 
we just mentioned, the intercept reflects the additive component, the amount 
that is invariable across target durations, while the slope indicates the 
multiplicative component, which proportionally increases according to the 
increase of target duration.  
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Figure 5.10. Parameters of the bracket components estimated for each participant. 
Intercepts represent the additive component and slopes represent the multiplicative 
component. Numbers above the bars represent the t value. Significant coefficients are 
marked with “*”. 

For almost all participants, both intercept and slope were significantly different 
from zero (p < 0.001), indicating contributions of both additive and multiplicative 
components (see Figure 5.10). Some participants had a high baseline bracket 
with minimal increases for longer durations, while others showed a stronger 
duration effect on bracket length. See Figure 5.11 for representative examples of 
participants with predominantly additive, multiplicative, or combined 
components. With this, the bracket measure proved to be a useful tool for 
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assessing the nature of perceptual decision thresholds in quantitative timing 
tasks. 

 

Figure 5.11. Representative examples of participants with low multiplicative but 
considerable additive bracket components (P4), high multiplicative but null additive 
bracket components (P9), and a combination of both types of bracket components (P3). 

DISCUSSION 

Given the relevance of uncertainty in time perception research, our study aimed 
to provide a methodological tool that overcomes some of the caveats that are 
usually faced when trying to obtain a measure of uncertainty in duration 
estimation tasks. 

We evaluated the potential of the bracket reproduction method in measuring 
time perception and compared it with the traditional discrete reproduction 
method. Our primary goal was to determine whether both methods are 
equivalent in precision and accuracy and their ability to adhere to common 
timing phenomena.  

Our results confirmed that the discrete and bracket reproduction methods yield 
equivalent results. Although one might expect that asking for a range instead of 
a discrete response could alter the participants' reproduction process, our 
findings indicate remarkably consistent performance across both methods. This 
consistency was evidenced by the high correlation between reproduction times 
from discrete responses and the midpoints of the brackets. Additionally, the 
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variability of these estimates remained consistent across methods, highlighting 
that the apparently added complexity of the response did not reduce precision. 

Furthermore, both methods adhered to the traditional conception of the scalar 
property of timing, where the variability of discrete reproductions and bracket 
midpoints scaled linearly with the target duration (Gibbon & Church, 1990; 
Rakitin et al., 1998). The presence of Vierordt’s law was also consistent across 
methods, with shorter durations typically overestimated and longer durations 
underestimated, indicating a central tendency effect. These parallel outcomes 
support the interchangeability of both methods and affirm that asking 
participants to bracket target time does not compromise the assessment of 
time perception and its associated phenomena. 

Our second objective was to explore the bracket interval as a direct measure of 
uncertainty in time perception. Traditional methods often struggle to capture 
the subtle nuances of how uncertainty manifests in time estimation, typically 
inferring it from the variability across multiple reproductions. By adopting the 
bracket method, we aimed to bypass some of these limitations and provide a 
more efficient measure.  

Our findings suggest that the bracket length obtained in a single trial can 
represent the variability of multiple discrete reproductions of the same target 
duration. This approach offers a more efficient alternative to methods like the PI 
procedure (Rakitin et al., 1998), which require multiple responses within a single 
trial and often the application of reward dynamics, making them less suitable 
for certain studies. 

Another way to relate bracket length to uncertainty is through the scalar 
property of timing, which posits that uncertainty increases proportionally with 
the magnitude of the timed stimuli (Gibbon & Church, 1990; Rakitin et al., 1998). 
Our results align with this principle, demonstrating that both discrete 
reproductions and bracket midpoints become more variable as durations 
increase. Additionally, we found that bracket length increases with target 
duration, indicating that participants produce longer brackets in conditions 
with greater expected uncertainty. This highlights that, based on the scalar 
property of timing, bracket length could serve as a measure of uncertainty in 
reproduction tasks. 
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To better understand how the bracket is defined, we explored how 
computational models of timing would predict these types of responses. 
Ramping activity or pulse-accumulating models suggest that perceptual 
decisions are based on the accumulation of subjective time to certain thresholds 
(Gibbon & Church, 1990; Simen et al., 2016). We proposed the bracket as a proxy 
for these decision thresholds, with the start of the bracket indicating when the 
first threshold is reached and the stop indicating when differences are sufficient 
to be discriminated again. The observed variability between start and stop times 
showed that stop times were significantly more variable than start times, likely 
due to the accumulation of noise in the process of reaching the thresholds 
(Simen et al., 2016). Given that stop times require more accumulation, it is logical 
to assume more noise in the second threshold. This supports the idea of the start 
and stop points of the bracket as a proxy of the perceptual decision thresholds. 

However, the relative difference between these variabilities decreased as target 
durations increased (see Figure 5.9), suggesting the presence of some additive 
noise. If the noise in the accumulating process is somewhat constant, the 
absolute difference in variability would increase linearly at both start and stop 
times, but the relative difference would decrease proportional to the duration's 
magnitude. Our findings of a decrease in the relative difference between 
variabilities of start and stop times as durations increase indicate the presence 
of additive noise. This was further reinforced by the bracket model results, 
showing significant contributions of both additive and multiplicative 
components in nearly all participants. 

Such findings support the hypothesis that both additive and multiplicative 
noises could be integral to the timing process and indicate possible interactions 
between these types of noise. This highlights the potential of the bracket 
method to dissect the contributions of additive and multiplicative noise in 
timing estimation and help characterize the transducer function for duration in 
a unique way. 

We demonstrated how the bracket method could be linked to other ways of 
assessing uncertainty with quantitative tasks, but further comparisons could 
enrich the value of this method and provide more support for methodological 
advancements. In decisional tasks, which often require comparison or 
discrimination of time intervals, a psychometric function typically provides a 
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measure of sensitivity from its slope (Wichmann & Hill, 2001). Since sensitivity is 
directly related to uncertainty, linking it with the bracket length could offer an 
advantageous alternative in scenarios that require sensitivity measures but 
would benefit from a quantitative approach.  

Other approaches to measuring uncertainty in time perception involve 
confidence judgments, which are often used in psychophysics tasks to assess 
the metacognitive level of task performance, providing a direct view into 
participants' perceived reliability of their estimations. For instance, Lamotte et 
al. (2017) found that confidence judgments correlate with the accuracy of 
duration estimates in a temporal generalization task. Akdoğan & Balcı (2017) also 
showed that individuals could introspectively assess their timing errors, linking 
this awareness to confidence levels. Cropper et al. (2024) and Corcoran et al. 
(2018) even explored second-order confidence judgments in modified temporal-
bisection tasks, asking participants to retrospectively compare pairs of time 
estimations that they produced themselves during the task. Also, Jovanovic et 
al. (2023) provided further evidence of the relation between timing accuracy and 
confidence by revealing that dopamine depletion affects both factors similarly, 
highlighting the shared neurochemical underpinnings of these processes. 
While our study does not directly discuss the relationship between confidence 
and uncertainty, the emerging interest in metacognitive assessments 
suggested by these studies provides a valuable direction for future research. 
Specifically, exploring how the bracket method's measure of uncertainty 
correlates with participants' confidence judgments could offer deeper insights 
into uncertainty in time perception at different cognitive stages and reveal how 
much uncertainty we are actually aware of.  

Considering the bracket method alongside confidence judgments and 
discriminability from psychometric functions presents an interesting avenue to 
further develop the methodological toolkit in time perception. This multifaceted 
methodology could shed light on the complex dynamics between objective 
uncertainty, decisional processes, and metacognitive judgments, enriching our 
understanding of how individuals perceive, estimate, and reflect on their own 
experience of time. 
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CONCLUSION 

This study has shown that the bracket reproduction method is a highly effective 
alternative to the traditional discrete reproduction method for measuring time 
perception. Both methods produced comparable results in terms of accuracy 
and precision for intervals ranging from 0.6 to 4 seconds. Additionally, our 
research indicates that the length of the bracket can be a strong indicator of 
uncertainty. By examining the components of the bracket, we can uniquely 
address the debate on the roles of additive and multiplicative noise in 
perceptual estimations. Consequently, the bracket method represents a 
significant enhancement to the tools available for time perception research, 
enabling a deeper understanding of the inherent variability in human time 
perception and shedding light on the cognitive mechanisms involved in timing 
behaviour. 
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  GENERAL DISCUSSION 
Throughout the present thesis, we introduced the field of time perception 
research, examining the evolution of key models that shaped our 
understanding of human timing. Then, our primary focus has been on two 
fundamental aspects: multiple timing, specifically multiple timing, and 
uncertainty in time perception. The overarching aim was to address the existing 
gaps in research related to simultaneous multiple timing and to contribute 
novel approaches to the measurement of uncertainty in time perception. 

To achieve these objectives, we conducted three studies. The first two studies 
centred on exploring multiple timing, while the third study introduced a new 
method for measuring uncertainty in time perception. In this general 
discussion, we will summarize how each study addressed the specific objectives 
of the thesis, discuss the limitations encountered, and propose potential 
contributions and future directions inspired by our findings. 

SIMULTANEOUS MULTIPLE TIMING 

Given the limited literature on the effects of simultaneous multiple timing and 
the inherent complexity of these paradigms, we began our investigation with a 
relatively simple comparison task. This approach allowed us to observe the 
potential interference of simultaneous events in our timing processes, even 
when these events were irrelevant to the task at hand. To further explore the 
intersection between size and time perception, as suggested by the ATOM 
theory (Bueti & Walsh, 2009; Choy & Cheung, 2017; Fabbri et al., 2012; Walsh, 
2003), we adapted a well-known size illusion paradigm, manipulating duration 
instead of size. 

In line with Objective 1, we examined whether and how the duration of 
simultaneous distractors affected participants' judgments of the attended 
target durations. Importantly, in our paradigm, the distractors were irrelevant, 
as participants were instructed to base their judgments solely on the 
comparison of the target durations and ignore the surrounding stimuli. Since 
the target durations being compared were always identical, any observed 
effects could be attributed to involuntary interference, where irrelevant 
overlapping events were inadvertently filtered into the perceptual process. 
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Our findings revealed that interference indeed occurs, with participants' 
judgments of target durations significantly skewed by the duration of 
surrounding distractors. Specifically, we observed a central tendency or 
averaging effect, where the perceived duration of the targets shifted towards a 
value more similar to that of the distractors. These results are consistent with 
previous studies that have examined the impact of irrelevant simultaneous 
events on time estimation. For instance, Kawahara and Yotsumoto (2020) 
reported a similar pattern, where target intervals were overestimated when 
accompanied by longer distractors and underestimated when accompanied by 
shorter distractors. Our comparison paradigm, which aligns with their 
reproduction task, suggests that the observed effects likely reflect a perceptual 
bias that generalizes across different timing paradigms rather than being 
limited to decisional processes. 

Moreover, our results also align with those of De Corte and Matell (2016), who 
also found evidence of an automatic averaging effect in situations involving 
irrelevant stimuli. This supports the notion that central tendency effects may 
arise without intentional integration of distractor durations, yet still interfere 
with the perceptual process.  

However, the co-occurrence of opposing effects (central tendency in most 
participants and repulsion in a few) raises questions about the underlying 
mechanisms. While adaptation studies based on the duration-channel theory 
attribute repulsion effects to channel saturation (Heron et al., 2012), this 
explanation seems unlikely in our case, where the effect was observed after a 
single presentation rather than through repeated exposure. This suggests that 
an unknown mechanism may be promoting these effects in our paradigm, 
suggesting a path for further research to explore the factors that determine the 
direction of effects in simultaneous multiple timing. 

To enhance our understanding of these interferences, and address Objective 3, 
we developed a computational model grounded in the duration-channel 
theory. This model is particularly valuable as it predicts the extent to which 
duration estimates deviate based on the temporal properties of distractors. 
Unlike more rigid models, our adapted version can account for both the 
common averaging effect and the rarer repulsion effect, providing a more 
nuanced understanding of the interference. We also highlight the estimation of 
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the leaking factor, a key component that describes how the effect of 
simultaneous stimuli is modulated by their similarity to the target. This shows 
that interference in simultaneous multiple timing is not indiscriminate but 
rather depends on the degree of similarity between stimuli. 

Finally, our attempt to translate a size illusion paradigm to the temporal domain 
yielded intriguing results. The ATOM theory posits shared mechanisms across 
modalities, suggesting that the mental representations of size, numerosity, or 
time are processed in a modality-agnostic manner (Bueti & Walsh, 2009; Choy & 
Cheung, 2017; Fabbri et al., 2012; Walsh, 2003). In the size illusion we adapted, the 
effect is robustly contrastive, with perceived size shifting away from distractor 
sizes (B. Roberts et al., 2005). We then expected to find the same type of effect 
in the temporal domain. Although to our knowledge there is no previous direct 
translation of this size illusion to the temporal domain, previous research using 
this same size illusion effect has shown that altering the perceived size of visual 
stimuli can directly affect the perceived duration (Bratzke et al., 2023; Ono & 
Kawahara, 2007). However, we must relate these studies carefully, as while this 
interaction suggests a link in terms of magnitude between size and duration, it 
does not necessarily indicate that the entire perceptual process uses the same 
mechanisms. It could simply show that the strength of the size illusion or the 
effect of size on perceived duration is sufficient to prevail when adding this extra 
step.  

Answering Objective 2, our results do not support the idea that the perceptual 
mechanisms are fully shared between the two modalities. Although we made a 
direct translation of the paradigm of the illusion from size to time, the effects we 
found were the opposite. If the mechanisms were the same, we would have 
observed that perceived target durations always shifted away from distractor 
durations. Instead, we found that in most cases, target durations were averaged 
towards distractor durations. 

Additionally, in the case of duration, the effects seem to fade as distractors and 
targets become more different, whereas the size-contrast effect actually 
benefits from an evident difference between stimuli (B. Roberts et al., 2005). 
With this, we conclude that time estimation, although affected in many cases 
by other modalities such as size, is determined by its own biases and 
mechanisms. 
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OPTIMAL SAMPLING OF MULTIPLE EVENTS 

Building upon the insights gained from the first study, the second study aimed 
to explore the concept of simultaneous multiple timing from a different 
perspective, one that considers it not merely as an interference but as a crucial 
ability in complex, real-world tasks (Brown & West, 1990; Buhusi & Meck, 2005). 
In the first study, we observed that the leaking factor, representing the 
permeability of external durations into the time estimation process, was 
associated with better discrimination when intervals were composed of 
multiple elements. This finding hinted that integrating durations from 
simultaneous events might not necessarily constitute interference but could be 
beneficial or even necessary in certain contexts.  

Thus, to further explore this idea and in contrast to the more classic design of 
the previous experiment, the task presented in the second study was designed 
to mirror more complex real-life situations where success depends on the ability 
to calculate, maintain, and work with multiple intervals at once. This progression 
aimed to explore the multifaceted nature of simultaneous multiple timing, 
providing a more comprehensive understanding of the implications and 
limitations of tracking multiple simultaneous durations. 

To achieve this, following Objective 4, we designed a novel and more naturalistic 
task that required participants to monitor unpredictable events in a simulated 
driving environment. In the task, participants were required to distribute the 
sampling time to different locations according to the corresponding duration of 
each of them and the limitations of their own monitoring movements. In order 
to succeed in the task and maximize the number of detections, they should 
track the current sampling time, keep in their working memory the duration of 
each event and compute the time lost due to movement restrictions to guide 
their behaviour.  

One of the key contributions of this study was the development and 
implementation of an optimal observer model, which provided a framework for 
predicting participants' detection performance based on their monitoring 
patterns. This model proved effective in estimating the likelihood of event 
detection, achieving Objective 6 and offering a useful tool for assessing 
behaviour in complex temporal tasks. However, while the model accurately 
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predicted detection rates, it also revealed that participants, although selecting 
an appropriate monitoring strategy, did not always optimally adjust their 
monitoring patterns in response to changes in the temporal structure of the 
environment. 

In relation to Objective 5, the suboptimal adjustment observed suggests that 
additional factors may influence participants' monitoring strategies, which were 
not fully captured by the current model. This raises important questions about 
the underlying mechanisms guiding these strategies. For instance, while the 
model predicts detection based on a rational allocation of monitoring resources, 
real-world decision-making often involves heuristics, cognitive biases, and other 
factors that may lead to deviations from the optimal strategy (Balcı & Simen, 
2016; Ratcliff, 1978). Future research could explore these additional components, 
potentially integrating them into the model to enhance its predictive power and 
provide a more comprehensive understanding of the factors influencing 
temporal monitoring in dynamic environments. 

In summary, the second study extends our understanding of simultaneous 
multiple timing by framing it as an essential skill in complex, real-world tasks. 
The development of the optimal observer model offers a promising tool for 
predicting behaviour in such tasks, though further research is needed to refine 
it and explore additional factors that influence temporal monitoring strategies. 
The study also strengthens the connection between the concepts explored in 
the first study, highlighting the dual role of simultaneous multiple timing as 
both an interference and a critical ability, depending on the context (de 
Montalembert & Mamassian, 2012; Morgan et al., 2008). 

NEW METHOD FOR MEASURING UNCERTAINTY 

In addition to exploring the complexities of simultaneous multiple timing, the 
third study in this thesis focused on advancing our understanding of uncertainty 
in time perception. As seen through the different studies and even in the 
presentation of time perception models, uncertainty plays a critical role in 
temporal judgments, influencing the variability and reliability of time estimates. 
Despite its importance, the measurement of uncertainty in time perception has 
traditionally relied on methods that are either indirect or limited in scope, such 
as variability in estimates or the slope of the psychometric function. Our aim in 
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this study was to introduce a more direct and informative method for measuring 
uncertainty in quantitative timing tasks. 

The key innovation of this study was the use of the bracket method, a modified 
reproduction task (Kladopoulos et al., 1998), as a tool to capture uncertainty on a 
trial-by-trial basis. Unlike traditional methods, which either provide a global 
measure of uncertainty across an entire task or depend on explicit 
metacognitive judgments, the bracket method allows for the measurement of 
uncertainty associated with each individual response. In summary, participants 
were asked not only to reproduce a time interval but also to indicate a range of 
possible values within which they believed the true interval might fall. This 
approach offers a richer dataset, providing insight into both the shifts in time 
estimates and the confidence participants have in those estimates. 

One of the central findings of this study, defined by Objective 7, was that the 
bracket method produced results closely aligned with those obtained using the 
traditional reproduction method, ensuring that the new approach did not 
compromise the accuracy or validity of time estimates. This compatibility is 
crucial because it demonstrates that the bracket method can be adopted 
without losing the benefits of pre-established approaches while offering the 
additional advantage of measuring uncertainty directly.  

Beyond demonstrating the validity of the bracket method, the study also 
explored its potential to uncover the nature of noise in timing tasks. The results 
indicated that the length of the bracket, defined as the range of values that 
participants bracketed their estimate into, correlated positively with the 
variability of the reproduced intervals. This relationship suggests that as 
participants' uncertainty in their timing estimates increased (reflected by a 
wider bracket), the variability in these estimates also increased. Moreover, the 
bracket length was observed to increase with the magnitude of the duration 
being estimated, which aligns with the scalar property of timing, where 
uncertainty tends to increase proportionally with the duration of the interval. 
These findings provide strong evidence that bracket length serves as a valid 
measure of uncertainty in time reproduction, which fulfils Objective 8 and 
highlights the bracket method as a powerful tool for future research in time 
perception. With this, being able to directly measure uncertainty on a trial-by-
trial basis opens up new possibilities for studying how uncertainty interacts with 
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various cognitive processes, how it is modulated by different task conditions, 
and how individual differences in temporal processing might be better 
understood. 

Beyond providing a direct measure of uncertainty, the bracket method also 
offers unique insights into the nature of noise in timing tasks. Motivated by 
Objective 9, the additional metrics derived from the bracket responses allowed 
us to investigate how uncertainty and noise, vary across different duration 
magnitudes. This is particularly relevant for examining the manifestation of the 
scalar property of timing, considered a form of Weber’s law in time perception 
(Gibbon, 1971, 1977; Gibbon et al., 1984; Gibbon & Church, 1990). Although it posits 
that noise in the perceptual process should be proportional to the magnitude of 
the stimulation (Buhusi & Meck, 2005; Gibbon, 1977; Grondin, 2010; Matell & Meck, 
2000), in some cases, this property does not behave uniformly, raising questions 
about the underlying nature of noise. For example, in our first study, we 
discussed whether the nature of noise in timing tasks could be additive instead 
of multiplicative, as is commonly assumed.  

Distinguishing between these types of noise is crucial because fitting such 
findings with Weber's law can be challenging and often requires specific 
combinations of transducer mechanisms and noise types to maintain 
compliance with the rule (Zhou et al., 2024). The bracket method, by providing 
additional metrics on a trial-by-trial basis, facilitates this discussion by enabling 
us to observe how uncertainty evolves through the magnitude range more 
precisely at the same time as we derive a transducer, and even allows us to fit 
models that can separately assess the contributions of additive and 
multiplicative noise components within each individual participant. 

Using this method, we found mixed contributions of additive and multiplicative 
noise across participants. Some exhibited high levels of additive noise but low 
levels of multiplicative noise, while others showed the opposite pattern or even 
a more balanced combination of both. This variability is particularly interesting 
as it highlights individual differences in how noise manifests in timing tasks. By 
opening new avenues to discriminate which type of noise is predominant in a 
participant, the bracket method provides valuable tools for studies focused on 
factors that might selectively influence additive or multiplicative noise 
differently. 
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In summary, the third study makes a substantial contribution to the field of time 
perception by introducing and validating the bracket method as a powerful tool 
for measuring uncertainty. The method not only aligns with traditional 
approaches but also offers new possibilities for investigating the nature of noise 
and how it varies across the duration magnitude range. By providing a trial-by-
trial measure of uncertainty, the bracket method opens up new possibilities for 
research, particularly in contexts where understanding the variability of 
temporal judgments is essential. Additionally, by distinguishing differential 
contributions of additive and multiplicative noise, the bracket method 
enhances our understanding of individual differences in timing processes and 
provides a valuable resource for future research exploring the underlying 
mechanisms of temporal perception. 

LIMITATIONS 

While the studies presented in this thesis significantly advance our 
understanding of time perception, particularly in the context of simultaneous 
multiple timing and uncertainty, several limitations must be acknowledged. 
First, the relationship between size and time perception, often described as 
interrelated, remains unclear in our findings from Study 1. Although we 
anticipated similar effects as in the size illusion, our results diverged, suggesting 
that these perceptual domains may operate differently in certain contexts. Also, 
the duration-channels model, while robust in detecting and measuring both 
central tendency and repulsion effects, does not fully explain why each of these 
opposing effects occurs within the same paradigm. The model effectively fits 
the observed data, but we lack a clear understanding of the underlying 
mechanisms that determine when and why these different effects arise. 
Moreover, this model may oversimplify the interaction between distractor and 
target durations, particularly in real-world scenarios with more complex and 
diverse temporal structures. As such, the generalizability of these findings in 
more naturalistic settings remains uncertain. 

This approximation was addressed in Study 2, but although our model 
successfully predicts participants' probability of detecting temporal events, it 
does not fully account for the suboptimal adjustment observed in their 
monitoring strategies. This suggests that additional factors, possibly including 
cognitive biases, heuristics, or other real-world decision-making influences, may 
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not have been captured by the current model. Incorporating these factors 
might be necessary to improve how the model explains the cognitive process 
involved in timing in complex and dynamic environments. 

Finally, regarding the new approach to measuring uncertainty that we 
proposed, while the new task introduced proved to be a valid proxy for 
traditional measures of uncertainty, its effectiveness was only tested within the 
specific context of a very simple quantitative timing task. Therefore, we cannot 
guarantee that this measure would hold up in more complex or varied timing 
tasks. Moreover, the selection of a specific reference point within the bracket as 
the reproduction estimate presented a challenge. Although we opted for the 
central point, as suggested by previous literature, the justification for this choice 
remains somewhat arbitrary. Nonetheless, our results indicate that this selection 
closely aligns with traditional reproduction times, suggesting it may be the most 
accurate representation. 

FUTURE DIRECTIONS 

The findings of this thesis open several avenues for future research. The 
development of practical applications based on these findings could have 
significant implications, particularly in fields where precise timing is critical, such 
as sports, education, and clinical interventions. Future research should explore 
how the methodologies and models developed in this thesis could be adapted 
for use in these applied settings, potentially leading to new tools and strategies 
for enhancing temporal cognition. 

Each of the computational models proposed in this thesis has contributed to 
explaining the phenomena observed within our specific paradigms. However, 
these models should also be tested beyond these controlled environments to 
assess their generalizability. Enhancing these models to incorporate additional 
factors, such as cognitive biases or environmental variability, could provide a 
more comprehensive understanding of time perception across different 
contexts. Expanding the predictive power of these models will be crucial for 
their application in more complex, real-world scenarios. 

Additionally, given the complexity of time perception, it is essential to recognize 
that real-life situations requiring the tracking of durations may differ 
significantly from the tasks used in laboratory settings. To address this, future 
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research should aim to simulate more ecologically valid environments, 
potentially through the use of virtual reality or augmented reality technologies. 
These tools could create dynamic and complex scenarios that better mimic the 
temporal demands individuals face in everyday life, allowing researchers to test 
the robustness of their models and findings under more realistic conditions. 
Approaches that try to approximate the real-life demands of timing are vital for 
strengthening the generalizability of our conclusions. 

Considering the critical role of uncertainty in time estimation, the new method 
proposed in this thesis should be extensively tested across different 
magnitudes, manipulations, and levels of complexity. Further validation will be 
crucial to establish its reliability and applicability in various contexts. This 
method also holds potential for integration into future studies where 
uncertainty is a significant factor, offering a more precise approach to 
understanding and quantifying temporal uncertainty. By broadening its 
application, researchers could gain deeper insights into how uncertainty shapes 
cognitive processes in time perception and related domains. 
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CONCLUSIONS 
The present thesis proposed significant contributions to the field of time 
perception, particularly in the underrepresented area of simultaneous multiple 
timing. While time perception has been extensively studied, the specific 
challenges and complexities associated with simultaneously processing 
multiple temporal events have been scarcely explored. This gap in the literature 
makes the findings presented here particularly valuable, as they offer new 
insights into how our cognitive systems handle the intricate demands of 
multiple timing in various contexts. 

A key aspect that illustrates how the thesis approaches this field is the 
conception of the dual role of simultaneous multiple timing, both as a potential 
source of interference and as a critical ability required for success in complex, 
real-world tasks. The first two studies highlighted this duality by demonstrating 
that while simultaneous timing can introduce interference, it can also be 
harnessed as an essential skill in more naturalistic and dynamic environments. 

This exploration of multiple timing is complemented by the integration of 
computational modelling, which has been used throughout the thesis to 
deepen our understanding of the processes underlying time perception. These 
models, such as the duration-channel leaking model and the optimal observer 
model, not only help explain the behavioural data but also allow us to predict 
how various factors, like the leaking factor or monitoring strategies, influence 
temporal judgments. By coupling behavioural findings with modelling 
approximations, this thesis contributes to both the theoretical framework and 
practical understanding of time perception. 

In addition to these behavioural and theoretical contributions, the thesis 
introduces methodological advancements that provide new tools for future 
research. The bracket method, developed in the third study, offers a novel 
approach to measuring uncertainty in time perception, providing a direct, trial-
by-trial measure that has not been possible with traditional methods. This 
method not only aligns with existing approaches but also enhances our ability 
to study the nature of noise in timing tasks, offering detailed insights into how 
uncertainty evolves across different duration magnitudes. This also opens up 
new possibilities for exploring individual differences in time perception. By 
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distinguishing between additive and multiplicative noise components, the 
method allows for a more nuanced understanding of how different types of 
noise contribute to timing variability, potentially informing future research on 
factors that might selectively influence these components. 

As we look to the future, the potential for further investigation into simultaneous 
multiple timing is vast. We hope that the methodological tools proposed here 
as well as the ideas presented through the diverse computational models will 
lay the ground for future research that will continue to explore and expand the 
theoretical and practical boundaries of how we perceive and process time. 
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duration. The activation spreads through closer channels. 11 
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noise deviating the amount of perceived time from the actual elapsed 
time. The dashed horizontal line exemplifies a reference interval to be 
compared, and the solid horizontal lines represent the thresholds that 
determine the magnitudes at which the accumulated estimated time 
would be judged as longer or shorter than the reference time. 13 

Figure 1.5. Bayesian process of time perception, where previous experience or 
expectations (prior) are combined with new sensory information 
(likelihood) to form an updated estimate of duration. The prior 
distribution reflects the initial belief or expectation about the duration 
of an event. The likelihood distribution is based on the new sensory 
evidence. The resulting posterior distribution is the updated estimate 
of the event's duration after integrating both the prior and the 
likelihood. It is centred between the prior and likelihood distributions, 
representing the brain's optimal estimate that minimizes uncertainty 
based on both sources of information. 15 

Figure 1.6. Illustration of the variability of time estimates around a reference 
duration (dashed red line). The spread of the estimates around the 
reference duration can be used as the measure of uncertainty in the 
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participant's perception of the reference duration with a broader 
distribution suggesting higher uncertainty. 24 

Figure 1.7. Example of the psychometric function obtained in a duration 
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steep slope indicates a clear distinction between different durations 
and therefore lower uncertainty. In contrast, the plot on the right shows 
low sensitivity, where the flatter slope suggests a more gradual 
transition between judgments, reflecting greater uncertainty in 
temporal judgments of close durations. 25 

Figure 1.8. Example of the response rate variating across time in a Peak Interval 
procedure. The response rate increases as the time approaches the 
reinforced interval, marked by the vertical dashed red line, peaks 
around this time, and decreases gradually. Uncertainty can be 
measured by the spread of the distribution around the reinforced time.
 27 

Figure 3.1. Example of the Ebbinghaus-Titchener illusion. The central (black) 
disks are of equal size, but due to the presence of bigger or smaller 
(grey) surrounding disks, they are perceived differently. 51 

Figure 3.2. Representation of the duration-channels activation by different 
stimuli. (A) Activation of the channels with preference for the target 
duration. (B) Different durations activate differential channels. (C) The 
residual activity from the different durations can merge and peak at an 
intermediate duration. 53 

Figure 3.3. (A) Perceived duration of a 1s target as a function of the duration of 
simultaneous distractors. (B) Weight of the distractors as a function of 
the difference between target and distractor durations. With smaller 
leaking factors the weight decays more rapidly and the perceived 
target duration goes back to its original value. 55 

Figure 3.4. Example of a trial with 700 ms distractors (Sequence 1) paired with 
1500 ms distractors (Sequence 2). The target in both sequences lasted 
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1000 ms, and they were centred with the distractors at each sequence.
 56 

Figure 3.5. Participants’ percentage of correct discriminations in the Control and 
Ensemble conditions. 60 

Figure 3.6. Psychometric functions from the control (A) and ensemble (B) 
conditions. Dashed lines represent the functions of each participant, 
solid lines show the fit of the aggregated data from all participants. 
Comparison of the estimated Point of Subjective Equality (PSE) (C) and 
Standard Deviation (SD) (D) of the curves from each participant at the 
Control and Ensemble conditions. 61 

Figure 3.7. Distribution of slope estimates (points) and 95% confidence intervals 
(brackets) obtained for each participant in the distractors condition. 
Most participants presented a positive slope value (in blue) while a small 
group presented a negative slope (in red). 63 

Figure 3.8. Examples of 4 psychometric functions of representative participants 
with high (left column) and low (right column) slopes and positive 
(upper row) and negative (lower row) slope signs. 64 

Figure 3.9. Estimated leaking factors from all participants. (A) The proportion of 
leaking factors is quite uniform, covering all the range of possible 
leaking. (B) Weight functions calculated from the estimated leaking 
factor of every participant show a very varied casuistry. 65 

Figure 3.10. Sample of three representative participants with high medium and 
low values of leaking factor. (A) The weight function shows how 
distractor weight decays differently depending on the leaking factor. 
(B) Predicted and observed responses get more biased with a greater 
leaking factor. (C) For any combination of distractors, the model’s 
predicted probabilities of response (background colour) fit the 
observed data (coloured circles). 67 

Figure 3.11. Example of the adapted model for repulsion with k of 0.3. Red and 
blue areas represent ranges where repulsion and central tendency 
effects are expected. (A) Perceived duration of a 1s target as a function 
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of the duration of distractors. (B) Weight of the distractors as a function 
of their difference with the target duration. Negative weights operate 
the same as positive weights but with repulsion. 70 

Figure 3.12. Correlation between leaking factor and ratio of variances. (A) Data 
from all participants with central tendency with an outlier participant 
highlighted in red, (B) Updated correlation excluding the outlier 
participant. 72 

Figure 4.1. Example of a monitoring pattern cycle. The observer begins by 
sampling information from the fast lane for a duration denoted as TF. 
The observer then decides to switch to the slow lane, during which time 
neither lane is visible, referred to as the switch time. Upon reaching the 
slow lane, the observer samples information for a duration denoted as 
TS. Subsequently, the observer switches back to the fast lane. In this 
instance, an event occurs in the fast lane during the switch back, 
allowing the observer to detect it upon returning. 90 

Figure 4.2. Screenshot of the task. The participant is revealing the right lane, 
where an overtaking car is approaching while the opposite lane is 
occluded. 92 

Figure 4.3. Correlation between the percentage of detections and (A) Switch 
Cost or (B) Overtaking cars speed at slow and fast lanes. 95 

Figure 4.5. Comparison between the percentage of detections at the slow and 
fast lanes at each combination of Switch Cost and Overtaking cars 
speed. 96 

Figure 4.6. Looking times (A) Distribution of average looking times from each 
participant at each lane. Participants prioritized looking for longer 
periods at the fast lane. (B) Variations of the grand average of looking 
times to changes in the temporal structure. Switch cost and overtaking 
cars speed increased looking times only at the fast lane. 98 

Figure 4.7. Linear functions of looking times obtained from the mixed-effects 
model at each combination of variables. Variations expected from an 
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optimal observer are presented in dashed lines while observed data is 
presented with solid lines. 100 

Figure 4.8. Correlation between observed and predicted detection proportions 
from the optimal observer model. The identity line (dashed) represents 
perfect prediction from the model. 102 

Figure 5.1. Example of a reproduction response under the start-stop procedure. 
The first response after interval onset determines the start time and the 
ending of this response determines the stop time. 114 

Figure 5.2. Increase in threshold range (dashed lines) in relation to the 
transducer (solid lines). The start and stop boundaries of the bracket 
(blue and red lines respectively) represent a proxy for this range. (A) 
Example of multiplicative noise. The same increase in physical 
magnitude (ΔT) at T1 and T2 is harder to discriminate at longer 
durations (T2) due to the increase in noise. (B) Example of additive noise 
(independent of magnitude). The power function transducer makes the 
same increase in magnitude (ΔT) harder to discriminate at longer 
durations but this time due to the compression of the transducer. 116 

Figure 5.3. Solid lines represent a linear transducer of how the perceived 
duration represents real duration. Dashed and solid lines represent the 
spread of perceived times due to different sources of noise. (A) 
Multiplicative noise correlates with the magnitude of the stimuli. 
Increasing variability at longer durations. (B) Additive noise is 
independent of stimulus magnitude and is stable across the range of 
durations. 117 

Figure 5.4. Simulations of the ratio of variances with different levels of additive 
and multiplicative noise components. The rightward asymptote is 
mostly determined by the multiplicative component and the 
approximation to this asymptote is modulated by the additive 
component. 119 

Figure 5.5. Visual example of the reproduction task sequence. The target interval 
was presented once through the learning phase and then reproduced 
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Figure 5.7. Comparison of Weber’s law (A) and Vierordt’s law (B) at each method. 
Solid lines represent the aggregate data among participants while 
dashed lines represent individual participants’ data. 127 

Figure 5.8. (A) Relationship between standardized bracket length and target 
duration. The solid line represents the general trend among 
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 129 
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Figure 5.10. Parameters of the bracket components estimated for each 
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represent the t value. Significant coefficients are marked with “*”. 131 
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