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Analytical Physical Model for Electrolyte Gated Organic
Field Effect Transistors in the Helmholtz Approximation

Larissa Huetter, Adrica Kyndiah, and Gabriel Gomila*

The analytical physical modeling of undoped electrolyte gated organic field
effect transistors (EGOFETs) in the Helmholtz approximation is presented. A
compact analytical model for the current–voltage (I–V) characteristics, which
includes the effects of the access series resistance, has been derived and
validated by means of 2D finite element numerical calculations. The model
describes all operating regimes continuously (subthreshold, linear, and
saturation regimes), covers channel lengths down to a few micrometres and
only includes physical device parameters. From the model, analytical
expressions have been proposed for all the phenomenological parameters
(e.g., capacitance, threshold voltage, sub-threshold slope voltage, and
sub-threshold capacitance) appearing in the commonly used ideal FET model.
The derived analytical physical model provides a simple and quantitative way
to analyze the electrical characteristics of EGOFETs and EGOFET biosensors
beyond the use of the oversimplified and phenomenological ideal FET model.

1. Introduction

Electrolyte-gated organic field-effect transistors (EGOFETs)[1,2]

offer great potential in the field of biosensing and bioelectron-
ics. On the one side, the biocompatibility and soft mechanical
properties of organic materials, together with their stability in
an aqueous environment, make them ideal for interfacing with
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biological systems. On the other side,
EGOFETs can be processed with cost-
effective solution processing techniques
without the need for complicated fabri-
cation processes. In EGOFETs the tradi-
tional solid dielectric is replaced by an elec-
trolyte solution that is in contact with both
the gate electrode and the semiconductor
film (Figure 1a), which is impermeable to
the penetration of ions. Applying a po-
tential to the gate electrode VGS leads to
the formation of electrical double layers
(EDLs) at the gate/electrolyte and semicon-
ductor/electrolyte interfaces. This process
induces the injection and accumulation of
charges at the surface of the semiconductor
film, forming a conduction channel, whose
conductivity can be modulated by the gate
voltage (Figure 1b). The application of a
source–drain voltage VDS leads to a source–

drain current IDS flow, whose magnitude can also be modulated
by the gate voltage. The high capacitance of the EDLs provides
a strong capacitive coupling between the gate and the semicon-
ductor, allowing low voltage (<1 V) operation and fast switching
speeds. The response of EGOFETs is strongly sensitive to the
properties of the gate/electrolyte and semiconductor/electrolyte
interfaces, what, together with their inherent biocompatibility,
has fueled its use as biosensor.[3,4]

Label-free bioelectronic biochemical sensors exhibiting limits-
of-detection down to the zeptomolar–attomolar level in real
biofluids have been recently demonstrated.[5] This makes
EGOFETs not only one of the highest performing bioelectronic
sensors, but also a promising label-free single-molecule detect-
ing technology. In these applications, the gate electrode, typically
made of gold, is bio-functionalized with a bioreceptor such as an-
tibodies or aptamers. Upon binding to a specific target molecule
(antigen), the potential drop at the gate electrode induces a shift
in the threshold voltage and/or capacitance of the transistor.[6–9]

Alternatively, biofunctionalization of the channel of the transis-
tor has also been explored, although its implementation is not too
favorable due to the instability of the organic semiconductors.[10]

The semiconductor/electrolyte interface, instead, has been used
as a sensing area to record the bioelectronic signals from ex-
citable cells such as cardiomyocytes and neurons.[11,12] The ac-
tion potentials fired by the cells change the effective gate voltage
of the transistor, which is directly transduced into the transistor
current IDS.
EGOFETs and EGOFET biosensors are usually modeled by

using the ideal current–voltage (I–V) characteristics of FETs,
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Figure 1. a) Schematic representation of an electrolyte gated organic field effect transistor (EGOFET). b) Schematic representation of the channel region
with the accumulation of holes at the semiconductor surface and the electrical double layers (EDLs) represented here by Helmholtz capacitances.

which in its simplest version for a p-type semiconductor
reads[13,3]

IDS =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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(1)

This model includes adjustable phenomenological parame-
ters such as the device double layer capacitance cDL, the thresh-
old voltage VTH, the sub-threshold capacitance c0, and the sub-
threshold slope voltage VSS, related to the sub-threshold slope
S as VSS = S/ln(10). Despite its wide use, the relationship be-
tween the phenomenological parameters and the physical device
parameters is still absent. This fact has introduced some ambi-
guity in the interpretation of biosensing experiments.
Further insight on the physics of EGOFETs has been gained

by numerically solving physical models for EGOFETs. Melzer
et al.[14] modeled EGOFETs by approximating the electrolyte by a
Helmholtz capacitance and numerically solved the drift-diffusion
semiconductor equation. Later, Popescu et al.[15] introduced ionic
diffusive effects by solving the Poisson–Boltzmann model in
the electrolyte and coupling it with the Helmholtz model. Finally,
Delavari et al.[16] modeled EGOFETs numerically in the Nernst-
Planck–Poisson framework, coupling the ionic transport in the
electrolyte with the drift-diffusion hole transport in the semi-
conductor. These approaches have enabled introducing different
physical effects in the modeling of EGOFETs, however, they have
not addressed more fundamental aspects, like the assessment of
the validity of the ideal FETmodel for EGOFETs or the derivation
of relationships linking the phenomenological FET parameters
and the device physical parameters.

The present work addresses precisely these questions by
developing the analytical physical modeling of EGOFETs in the

Helmholtz approximation. The Helmholtz approximation is
expected to be valid either when the capacitance of the interfacial
compact layers is relatively small or when the ionic concentra-
tion of the electrolyte is very high. In both cases, the response is
dominated by the interfacial compact layers and ionic diffusive
effects can be neglected. In the Helmholtz approximation[17] the
electrical double layers (EDLs) are treated as capacitors with a
constant specific capacitance cH, referred to as the Helmholtz’s
capacitance, and no voltage drop is assumed to take place across
the electrolyte. As a result, the electrolyte in an EGOFET can be
represented by two Helmholtz capacitances in series, cH,G and
cH,sem, corresponding, respectively, to the gate/electrolyte and
semiconductor/electrolyte interfaces (Figure 1b), giving an over-
all equivalent Helmholtz capacitance cH = (cH,G

−1+ cH,sem
−1)−1.

The resulting model is formally equivalent to that of an organic
thin film transistor (OTFT), with cH playing the role of the gate
insulator capacitance ci. Despite this formal similarity, a specific
treatment of the problem for EGOFETs beyond the available
results for OTFTs[18] is necessary. First, because the existing ana-
lytical physical models for TFTs have not worked out the relation-
ship between the phenomenological parameters of the ideal FET
model (e.g., cDL, VTH, c0 or VSS), and the physical device param-
eters (e.g., injection potential barrier, semiconductor thickness,
gate-electrolyte and semiconductor-electrolyte interfacial capaci-
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Figure 2. Schematic representation of an electrolyte gated organic field ef-
fect transistor in the Helmholtz approximation, with the physical parame-
ters and theoretical framework used in its modeling.

tances, surface charge, etc.), which is one of the objectives of the
present work, due to its relevance in EGOFET biosensing appli-
cations. And second, because a fully analytical expression for the
access series resistance has not been provided,[19] which is neces-
sary to analyze the properties of EGOFETs, which usually present
a staggered configuration. Besides these facts, we note that there
are important differences between OTFTs and EGOFETs in
the Helmholtz approximation. On the one side, the value of cH
in EGOFETs depends on several phenomena occurring at the
electrolyte interfaces, making its quantitative estimation a priori
problematic, while in TFTs the capacitance ci is well defined by
the properties of the gate dielectric film. Moreover, the value of
cH in EGOFETs are usually much higher than those of ci in TFTs
(μF cm−2 versus tens nF cm−2). Finally, the values of cH, and
other device EGOFET parameters, can vary during biosensing
experiments, something that do not happen with OTFTs. We
solve analytically the model and derive an analytical expression
for the current–voltage characteristics, which includes the con-
tribution of access series resistance effects. The current–voltage
characteristic model reproduces the predictions of 2D finite
element numerical calculations down to few micrometric-long
channels. With the analytical model, we have derived closed
analytical expressions for the phenomenological parameters of
the ideal FETmodel in terms of the device’s physical parameters.

2. 2D Helmholtz Model for EGOFETs and Its
Approximate Analytical Solution

Figure 2 shows a schematic representation of the EGOFETmodel
in the Helmholtz approximation analyzed in the present work.
As mentioned before cH represents the series combination of the
interfacial capacitances of the gate/electrolyte and semiconduc-
tor/electrolyte interfaces.
As mentioned before, in this approximation, the device is for-

mally equivalent to a staggered OTFT. The semiconductor is as-
sumed to be impermeable to the penetration of ions, undoped
and without traps. Moreover, it contains only one type of carriers
(holes), since the source and drain electrodes are assumed to in-
ject only one type of carriers, as it is usual inmost organic devices.
The injected hole carrier density at the source and drain elec-

trodes is fixed to pS (see below). The semiconductor film is char-
acterized by its thickness hsem, dielectric constant 𝜖sem, and hole
mobility μp (assumed isotropic and field independent for sim-
plicity). The equivalent specific capacitance cH, which includes a
fixed surface charge qfix, represents the electrolyte. The free car-
rier transport in the semiconductor is described through the drift-
diffusion model

−𝜀0𝜀sem∇2𝜑 = ep (2)

𝜕p
𝜕t

+ ∇ ⋅ J⃗p = 0 (3)

J⃗p = −𝜇pp∇⃗𝜑 − Dp∇⃗p (4)

where 𝜑 is the electric potential and p the hole density. More-
over, e is the electron charge, J⃗p the hole number flux density
and Dp the hole diffusion coefficient. This latter parameter is
related to the hole mobility μp by Einstein’s relation, which for
non-degenerate semiconductors reads Dp= μpkBT/e, where kB is
Boltzmann’s constant and T the temperature. The Helmholtz ca-
pacitance is modeled by a distributed capacitance boundary con-
dition with zero current flux, that is,

n̂ ⋅ J⃗p
(
z−G
)
= 0 (5)

𝜀0𝜀semn̂ ⋅ ∇⃗𝜑
(
z−G
)
= −cH

[
𝜑
(
z−G
)
− VG + ΔVqfix

]
(6)

where VG is the potential of the gate electrode and

ΔVqfix = qfix∕cH (7)

is the gate voltage shift due to the fixed charges at the sur-
face of the Helmholtz capacitance. Here, z−G indicates that the
functions are evaluated on the semiconductor side of the gate-
semiconductor interface. The source and drain electrodes are
assumed to form ideal metal–semiconductor diffusive injecting
contacts.[20,21] Therefore, the hole density pS takes a fixed value at
their surfaces, which depends on the metal–semiconductor bar-
rier height (see Appendix A):

p
(
z+subs
)
= pS, source and drain (8)

Here, z+subs indicates that the functions are evaluated on the
semiconductor side of the substrate–semiconductor interface.
Non-ideal hole injection effects related to thermionic emission,
interfacial polarization and disorder[22] and to the presence of in-
terfacial states[23] are neglected. In this approximation pS is a con-
stant independent of the applied gate voltage. At the bottom of the
semiconductor film, in the channel region, we assume an insu-
lating boundary condition, i.e.

n̂ ⋅ ∇⃗𝜑
(
z+subs
)
= 0, channel (9)

For simplicity, we do not consider any difference in the metal
work functions of the different electrodes. This fact, together with
the ideality of the injecting electrodesmakes that the source–gate
and source–drain voltages are simply given byVGS =VG −VS and
VDS = VD − VS. If a metal work function difference Δϕm existed
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between the gate and source electrodes (or a variation of thismag-
nitude occurred during the biosensing process), then the value
of VGS (or VDS) should be shifted to VGS − Δϕm. Finally, on the
sides of the semiconductor simulation domain, we assumed zero
charge and zero flux boundary conditions. Equations (2)–(4) sub-
ject to the boundary conditions in Equations (5), (6), (8), and (9)
constitute a complete set of equations to determine the electric
potential and free hole concentration in an undoped EGOFET in
the Helmholtz approximation. This model constitutes a simpli-
fied version of the Helmholtz model for EGOFETs considered in
ref. [14] (here we assumed a field independent mobility and no
presence of interface traps, among other differences). The width
of the device W is assumed to be much larger than its length L
so that the model can be solved in 2D with no variations along
the width direction.
The 2D model, in general, can only be solved numerically.[14]

However, in the long channel limit an analytical solution can be
derived by resorting to the gradual channel and space charge lim-
ited transport approximations.[18,24] In these approximations, the
electric field along the transversal direction of the semiconductor
film is assumed to vary much more rapidly than along the longi-
tudinal direction. Therefore, the longitudinal transport problem
can be treated as a 1D problem, in which diffusive effects can be
neglected (space charge limited transport condition). Hence, the
source–drain current IDS can be calculated as

IDS
(
VDS, VGS

)
= −

Whsem
L

L

∫
0

𝜎 (x)
𝜕V (x)
𝜕x

dx (10)

where 𝜎(x) = 𝜇pqsem(x)∕hsem is the sheet semiconductor conduc-
tivity, with qsem(x) being the sheet accumulated charge in the
semiconductor. This charge is obtained by integration of the
free carrier charge along the transversal semiconductor direc-
tion. Moreover, the dependence on the source–drain voltage VDS
can be obtained by using the conductivity at VDS =0 V 𝜎0(VGS)
and evaluating it at the corresponding local "gate" voltage, VGS −
V(x), that is,

𝜎 (x) = 𝜎0
(
VGS − V (x)

)
(11)

where V(x) is the electric potential drop along the channel. Sub-
stitution of Equation (11) into Equation (10) leads to

IDS0
(
VDS, VGS

)
= −

Whsem
L

VGS−VDS

∫
VGS

𝜎0 (V) dV (12)

Equation (12) shows that within these approximations the I–V
characteristics can be determined by knowing the sheet semicon-
ductor conductivity for VDS =0 V as a function of the gate voltage
𝜎0(VGS).
To determine 𝜎0(VGS), we use that for VDS =0 V the carrier

density and electric potential distributions in the channel region
are uniform in the longitudinal direction and only vary along
the transversal direction. Therefore, the problem reduces to a 1D
problem along the transversal direction. To pose this 1D transver-
sal problem correctly, one needs a boundary condition for the

hole concentration at the bottom of the semiconductor film in
the channel. This boundary condition can be derived from the
fixed hole density boundary condition at the source and drain
electrodes of the 2D model (Equation (8)). Indeed, for VDS =0 V
there is no current flowing in the transistor, and hence the elec-
trochemical potential of the holes is constant. This condition im-
mediately gives (see Appendix A)

p
(
z+subs
)
= pSe

− e[𝜑subs−VS]
kBT , Channel VDS = 0V (13)

where 𝜑subs = 𝜑(z+subs) is the potential at the bottom of the semi-
conductor film on top of the substrate. 𝜑subs is a parameter that
must be determined and depends on the source–gate potential
VGS The resulting transversal 1D model for VDS =0 V then con-
sists of Equations (2)–(4) along the z-direction, subject to the
boundary conditions in Equations (5), (6), (9) and (13). The an-
alytical solution of this model has been obtained in Appendix A.
For the electric potential across the transversal direction of the
semiconductor film 𝜑(z) we obtain

e
(
𝜑 (z) − VS

)
kBT

= − ln

{
e
− e(𝜑subs−VS)

kBT

(
1 + tan2

[(
z − zS

)
2LDs

e
− e(𝜑subs−VS)

2kBT

])}
(14)

with 𝜑sub being given by the implicit expression

e
(
VGS − ΔVqi

)
kBT

=
csem
cH

e−
e(𝜑subs−VS)

2kBT tan
(
−
hsem
2LDs

e−
e(𝜑subs−VS)

2kBT

)
− ln

[(
e−

e(𝜑subs−VS)
2kBT

)2(
1 + tan2

(
hsem
2LDs

e−
e(𝜑subs−VS)

2kBT

))] (15)

Here, csem and LDs are the semiconductor diffusive capacitance
and Debye screening length, respectively,

csem =
𝜀0𝜀sem
LDs

, LDs =

√
kBT𝜀0𝜀sem
2e2ps

(16)

The volumetric charge density in the semiconductor film
𝜌sem(z) = ep(z) is given by (see Appendix A)

𝜌sem (z) = eps exp

[
−
e
(
𝜑sem (z) − VS

)
kBT

]
, (17)

which from Equation (14), together with 1+tan2(x)=1/cos2(x),
leads to

𝜌sem (z) =
epse

− e(𝜑subs−VS)
kBT

cos2
[
(z−zS)
2LDs

e−
e[𝜑subs−VS]

2kBT

] (18)
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Integration of Equation (18) across the semiconductor film
gives the sheet charge accumulated in the semiconductor

qsem = cseme
− e(𝜑subs−VS)

2kBT
kBT
e

tan
(
hsem
2LDs

e−
e(𝜑subs−VS)

2kBT

)
(19)

Finally, the semiconductor sheet conductivity at zero source–
drain voltage reads

𝜎0
(
VGS

)
= 𝜇p

csem
hsem

kBT
e

e−
e[𝜑subs(VGS)−VS]

2kBT tan
(
hsem
2LDs

e−
e[𝜑subs(VGS)−VS]

2kBT

)
(20)

Equation (20), together with Equation (15), constitutes an ex-
act analytical parametric expression for the sheet semiconductor
conductivity for VDS =0 V as a function of the source–gate volt-
age VGS. By substituting it into Equation (12) and performing the
integral, one obtains the I–V characteristics (see Appendix A)

IDS,0
(
VDS, VGS

)
= iDS
(
VGS − VDS

)
− iDS
(
VGS

)
(21)

where iDS (V) is an auxiliary current parametric function given
by the indefinite integral of the conductivity function,

iDS
(
VGS

)
= 1

2
𝜇p

W
L

(
kBT
e

)2
csem

[
csem
cH

e
− e(𝜑subs−VS)

kBT tan2
(
hsem
2LDs

e
− e(𝜑subs−VS)

2kBT

)
−
hsem
LDs

e
− e(𝜑subs−VS)

kBT + 4e
− e(𝜑subs−VS)

2kBT tan
(
hsem
2LDs

e
− e(𝜑subs−VS)

2kBT

)]
(22)

The dependence of the current on VGS takes place through
𝜑sub, which is determined by Equation (15). Equation (21), to-

gether with Equations (22) and (15), then constitute an exact ana-
lytical parametric expression for the I–V characteristics of an un-
doped EGOFET in the Helmholtz and gradual channel approx-
imations. The most relevant aspect of this solution, besides its
relative simplicity, is that it only involves physical device param-
eters.
One can write down also explicit analytical (approximate) ex-

pressions bymaking use of Lambert’s function,W(x), often used
in the analytical modeling of FET devices.[25] Lambert’s func-
tionW(x) is the function that inverts the equationW(x)eW(x) = x.
Explicit very accurate expressions for it are available (see Ap-
pendix B). For the zero source–drain voltage sheet semiconductor

conductivity 𝜎0(VGS) we obtain (see Appendix B)

𝜎0
(
VGS

)
=

⎧⎪⎪⎨⎪⎪⎩
2
kBT
e

𝜇p

hsem
cHW

[
1
2
csem
cH

e
−

e(VGS−ΔVqfix )
2kBT

]
VGS − ΔVqfix

< Vc,𝜎

e𝜇ppSe
− e(VGS−ΔVqfix)

kBT VGS − ΔVqfix
> Vc,𝜎

(23)

Here, Vc ,𝜎 is the crossover voltage between the linear and the
exponential conductivity regimes given by

Vc,𝜎 = −2
kBT
e

ln
(
2
cH
csem

xc,𝜎

)
(24)

where xc ,𝜎 is the solution of the dimensionless equation

W
(
xc,𝜎
)
=

cH
cgeom

x2c,𝜎 , (25)

with cgeom being the geometrical specific capacitance of the semi-
conductor film

cgeom =
𝜀0𝜀sem
hsem

(26)

On the other hand, for the current auxiliary function iDS(VGS)
one obtains

iDS
(
VGS

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2𝜇p
W
L

(
kBT
e

)2
cH

{
W2

[
1
2
csem
cH

e−
e(VGS−ΔVqfix)

2kBT

]
+

+2W

[
1
2
csem
cH

e−
e(VGS−ΔVqfix )

2kBT

]}
, VGS − ΔVqfix

< Vc

𝜇p
W
L
hsemepS

(
kBT
e

)
e−

e(VGS−ΔVqfix)qfix
kBT , VGS − ΔVqfix

> Vc

, (27)

where Vc is the crossover voltage between the quadratic and the
exponential current regimes, given by

Vc − ΔVqfix = −2
kBT
e

ln
(
2
cH
csem

xc

)
(28)

where xc is the solution of the dimensionless equation

W2
(
xc
)
+ 2W

(
xc
)
=

cH
cgeom

x2c (29)
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The solution of this equation can be approximated phe-
nomenologically by a piecewise function of the form

xc =

⎧⎪⎪⎨⎪⎪⎩
a
( cgeom

cH

)b

, cH
cgeom

≥ 0.24

a′
( cgeom

cH

)b′

, cH
cgeom

< 0.24

(30)

where a = 1.822, b = 0.624, a″ = 1.476 and b″ = 0.941. Equa-
tion (27) inserted into Equation (21) provides an explicit analytical
physical model for the current–voltage characteristics IDS (VDS,
VGS) of an EGOFET in the Helmholtz and gradual channel ap-
proximations.
The ideal FET model (Equation (1)) can be derived as an

asymptotic approximation to the analytical solution just derived.
To this end, we introduce the normalized voltage v as

v = −
e
(
VGS − ΔVqfix

)
2kBT

− ln
(
2
cH
csem

)
,

ev = 1
2
csem
cH

e−
e(VGS−ΔVqfix )

2kBT

(31)

Lambert’s function in terms of the normalized voltageW(ev),
can be approximated by a linear function of the form (see Ap-
pendix C)

Wlin (e
v) = 𝛼Wv − 𝛽W; v1 < v < v2 (32)

where 𝛼W = 0.903 and 𝛽W = 1.079 are dimensionless numerical
factors valid in the range of normalized voltages between v1= 7
and v2= 20, which covers most of the usual operation range of
EGOFETs (if a different range is considered the numerical pa-
rameters vary slightly). Then, by substituting Equation (32) into
Equation (23) one obtains for the zero voltage sheet semiconduc-
tor conductivity

𝜎0
(
VGS

)
≈
⎧⎪⎨⎪⎩

𝜇p

hsem
cDL,𝜎
(
−VGS + VTH,𝜎

)
, VTH,𝜎 < VGS

e𝜇ppSe
−

e(VGS−ΔVqfix)
kBT , VGS − ΔVqfix

> Vc,𝜎

(33)

which shows the characteristic linear and exponential voltage
dependences implicit in the ideal FET model. Here, the phe-
nomenological capacitance cDL ,𝜎 and threshold voltage VTH,𝜎 as-
sociated to the conductivity function are given in terms of the
physical device parameters by

cphen,𝜎 = 𝛼WcH,

VTH,𝜎 = ΔVqfix
− 2 kBT

e

[
ln
(
2 cH
csem

)
+ 𝛽W

𝛼W

] (34)

Similarly, for the auxiliary current function iDS(VGS), after sub-
stitution of Equation (32) into Equation (27), one obtains

iDS
(
VGS

)
≈

⎧⎪⎪⎨⎪⎪⎩
iDS0 +

1
2
𝜇p

W
L
cDL
(
VGS − V

TH

)2
, VGS < VTH

W
L
𝜇pc0V

2
SS exp

(
−
VGS − VTH

VSS

)
, VGS > VTH

,

(35)

which shows the quadratic and exponential voltage dependencies
of the current present in the ideal FET models. Substitution of
Equation (35) in Equation (21) gives the ideal FET I–V character-
istics in Equation (1). Here, the phenomenological parameters
cDL, VTH, c0, and VSS are also expressed in terms of the physical
device parameters as

cDL = 𝛼2WcH,

VTH = −2
kBT
e

(
ln
[
2
cH
csem

]
+

𝛽W − 1
𝛼W

)
+ ΔVqfix

VSS =
kBT
e

,

c0 =
hsemepS(

kBT

e

) e− e(VTH−ΔVqfix )
kBT = 2

c2H
cgeom

e2
𝛽W+1
𝛼W ,

iDS0 = −2𝜇p
W
L

(
kBT
e

)2
cH

(36)

Equation (36) constitutes one of the more relevant results
of the present work. Note that there are slight differences be-
tween the phenomenological parameters for the zero-voltage
sheet semiconductor conductivity and for the current-voltage
characteristics.

3. Verification of the Analytical Solution

To verify the analytical expressions derived in the previous sec-
tion, we have solved numerically the 2D Helmholtz model for
an EGOFET (i.e., Equations (2)–(4) with the boundary condi-
tions in Equations (5), (6), (8), and (9)). To this end we used
the built-in modules of Transport of Diluted Species and Elec-
trostatics from COMSOL Multiphysics 5.5, with a rectangular
mesh, with a higher density of elements at the top and bottom
surfaces of the semiconductor. On the other side, the analytical
expressions have been evaluated with Mathcad 15. The physical
device parameters used in the analysis, if not otherwise stated,
are: pS = 6 × 1015 cm−3, 𝜖sem= 4, hsem= 30 nm, cH= 1 μF cm−2,
μp= 0.034 cm2 V−1 s−1, T = 293.15 K, qfix= 0 C m−2, L = 60 μm
(channel length), W/L = 500, LS = 1 μm (source and drain
electrodes lengths), LG= L + 2LS (gate length), Lbox = 0.1 μm
+Lchannel+2·Lelectrodes (simulation box).
Figure 3a,b (symbols) shows, respectively, the electric potential

and hole density along the transversal z-direction of the channel
at its middle position (x = L/2) numerically calculated with the
2D model for VDS = 0 V and source–gate potentials VGS rang-
ing from 0.2 to −1 V. The solid continuous lines correspond
to the analytical solution derived here (Equations (14) and (18),
with 𝜑subs obtained numerically from Equation (15)). The inset
in Figure 3a shows the values of 𝜑subs as a function of the source
gate-voltageVGS. The analytical solution nicely follows the results
of the 2D model, thus validating the assumptions made in its
derivation.
The potential and hole density profiles show the usual

behavior of accumulation mode undoped FETs. When
VGS − ΔVqfix

< −2(kBT∕e) ln(𝜋LDs∕hsem) one has 𝜑subs − VS →
−2(kBT∕e) ln(𝜋LDs∕hsem), and a space charge forms across the
semiconductor film with a strong accumulation of holes at
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Figure 3. a,b) Electric potential and hole concentration profiles across the
transversal direction of the semiconductor film at the center of the channel
(x= L/2) for zero source–drain voltage, VDS =0 V, and various source–gate
potentials, VGS. The symbols correspond to the 2Dmodel numerical solu-
tion and the solid lines to the analytical solution (Equations (14) and (18),
respectively, with 𝜑subs obtained numerically from Equation (15)). Inset
in (a): (black line) Potential at the bottom surface of the semiconductor
film,𝜑subs, as a function of VGS. The red dashed lines represent the asymp-
totic values of 𝜑subs. c) Sheet semiconductor conductivity 𝜎0 for VDS = 0 V
in the middle of the channel (x = L/2) for zero source–drain voltage VDS

its upper surface, forming the surface conduction channel.
Instead, when VGS − ΔVqfix

> −2(kBT∕e) ln(𝜋LDs∕hsem) one has
𝜑subs − VS → VGS − ΔVqi, and the hole distribution is almost
uniform across the semiconductor film, with a value decreasing
exponentially by increasing the source–gate voltage VGS.
Figure 3c (symbols) shows the dependence of the zero source–

drain voltage sheet semiconductor conductivity 𝜎0 in the middle
of the channel (x = L/2) as a function of the source–gate voltage
VGS in linear-linear (left axis) and log-linear (right axis) represen-
tations, obtained by numerically solving the 2D model. The con-
tinuous black lines correspond to the analytical solution (Equa-
tion (20) with Equation (15)). The agreement between them is
again excellent. The red dashed lines in Figure 3c correspond
to the explicit analytical solution based on Lambert’s function
(Equation (23)), which is almost indistinguishable from the exact
analytical solution, except at around the crossover voltage Vc ,𝜎 .
The conductivity 𝜎0(VGS) shows the characteristic behavior of
FET devices with asymptotic linear and exponential dependen-
cies on the source–gate voltage VGS. The ideal FET conductivity
model in Equation (33), with the phenomenological parameters
given in Equation (34), correctly predicts these asymptotic behav-
iors (blue dashed lines in Figure 3c). Instead, the ideal FETmodel
fails to describe the transition between the different regimes.
Figure 4a,b (symbols) shows the output and transfer (for

VDS = −0.4 V) I–V characteristics calculated by solving numer-
ically the 2D Helmholtz model for L = 60 μm. The I-V curves
show the characteristic features of FET devices, with the differ-
ent transport regimes (i.e., sub-threshold, linear and saturation
regimes). The continuous black lines correspond to the analyti-
calmodel derived in the present work, i.e., Equation (21), together
with Equations (22) and (15). The analyticalmodel reproduces the
results of the 2D numerical model, describing continuously the
transition between the different regimes without including any
phenomenological adjustable parameter.
We observe only slight deviations for the more negative

source–gate voltagesVGS, which are due to the presence of access
series resistance effects, as will be discussed below. The compact
explicit I–V model based on Lambert’s function (Equation (21)
with Equation (27)) reproduces accurately the exact analytical
model (red dashed lines in Figure 4), where only slight deviations
at around the crossover voltage Vc are observed. Therefore, this
explicit model constitutes a physical compact model to describe
the I–V characteristics of EGOFETs in theHelmholtz approxima-
tion, with no adjustable phenomenological parameters. Finally,
the ideal FET model in Equation (1), with the phenomenologi-
cal parameters calculated according to Equation (36), constitutes
a reasonable asymptotic approximation to the numerical results

= 0 V as a function of the source–gate voltage VGS. As before, the symbols
correspond to the 2D model and the solid black lines to the analytical so-
lution (Equations (20) and (15)). The data are plotted in linear-linear (left
axis) and log-linear (right axis) representations. The red and blue dashed
lines represent, respectively, the analytical solution based on Lambert’s
function (Equation (23)) and the ideal FET model (Equation (33)) with the
phenomenological parameters determined through Equation (34). Param-
eters used in the calculations: pS =6 × 1015 cm−3, 𝜖sem = 4, hsem = 30 nm,
cH = 1 μF cm−2, T = 298 K, and qfix = 0 C m−2, L = 60 μm, LS = LD= 1 μm,
Lsimulation,box = 0.1 μm + L+ LS+ LD, T = 293.15 K.
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Figure 4. a,b) Output and transfer I–V characteristics of an EGOFET in
the Helmholtz approximation. The symbols correspond to the 2D model
solved numerically, the continuous lines to the analytical parametric so-
lution (Equations (15), (21), and (22)), the red dashed lines to the ex-
plicit analytical solution based on Lambert’s function (Equations (21) and
(27)) and the blue dashed lines to the ideal FET model (Equation (1)) with
the phenomenological parameters calculated according to Equation (36).
Parameters: (same as in Figure 3) hsem = 30 nm, pS = 6 × 1015cm−3,
μp = 0.034 cm2 V−1 s−1, qfix = 0 V, cH = 10 μF cm−2, 𝜖sem = 4, Lchannel = 60
μm, Lelectrodes = 1 μm, Lsimulation,box = 0.1+Lchannel+2Lelectrodes, T = 293.15
K,W/L = 500.

of the 2D Helmholtz model (blue dashed lines in Figure 4), al-
though it shows significant deviations in the crossover between
the sub-threshold and linear regimes, more evident in the trans-
fer I–V curves (Figure 4b). The discontinuity in the ideal model
comes from the fact that it assumes implicitly the validity of the
linear dependence of the conductivity on voltage everywhere in
the on state. However, there is a significant region in which the
transistor is on, but the dependence is not lineal, which is the
reason why one needs a more complex function to describe the
dependence in this transition regime (e.g., Lambert’s function).
These results, on the one side, validate the use of the ideal FET
model for long channel EGOFETs in the Helmholtz approxima-
tion as an asymptotic approximation. On the other side, they val-
idate the relationships between the phenomonelogical parame-
ters of the ideal FET model and the device’s physical parameters
(Equation (36)).

4. Access Series Resistance

For the highest negative source–gate voltages VGS the analytical
model tends to slightly overestimate the current values as com-
pared to the predictions of the 2D model. This fact is due to the
presence of access series resistance effects,[19] which are not in-
cluded in the analytical solution derived so far. The access series
resistance RS accounts for the voltage drop between the injecting
electrodes and the conducting channel. In the usual staggered
configuration of EGOFETs, the injecting electrodes are located
at the bottom of the semiconductor film, while the conducting
channel is at its top surface. We derive here a fully analytical ex-
pression for RS. To derive it, we start from the expression pro-
posed for staggered OTFTs[19]

RS =
Rz

WL0 tanh
(
Lov
/
L0
) , (37)

where Lov is the gate–source (or drain) overlap length. Here, Rz
is the apparent resistance per unit area of the electrode region in
the transversal direction, that is

Rz =
1
e𝜇p

zS+hsem

∫
zS

dz
pS (z)

(38)

where pS(z) is the hole density distribution along the transversal
direction of the semiconductor film on top of the source (or drain)
electrodes. Finally, L0 is the access length given by

[19]

L0 =

√
Rz

Rsh
(39)

Here, Rsh is the sheet resistance per unit length of the channel
in the linear regime, which, according to Equation (12), is given
by

Rsh

(
VGS

)
= W

L
𝜕IDS0
𝜕VDS

||||VDS=0 = 1
𝜎0
(
VGS

)
hsem

(40)

where 𝜎0(VGS) is given through Equation (20). To calculate the
apparent electrode resistance Rz (Equation (38)) one must use
the hole density distribution on top of the source or drain elec-
trodes for VDS =0 V pS(z). This density differs from the hole
density distribution on the channel region p(z) given in Equa-
tion (18). An exact analytical expression for pS(z) has been re-
cently derived in the context of the analytical modeling of organic
metal/insulator/semiconductor capacitors.[26] Here, we use the
expression we derived in ref. [27]. From these solutions an an-
alytical expression for Rz can be derived (see Appendix D). The
derived expression for Rz can be approximated, for the calcula-
tion of the access series resistance RS, by its value in the on-state,
that is, (see Appendix D)

Rz,on =
1
2

hsem
𝜇peps𝛽max

[
1 −

LDs
hsem
√
𝛽max

sin
(
hsem
LDs

√
𝛽max

)]
(41)

where 𝛽max is the solution of the equation
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⎧⎪⎪⎨⎪⎪⎩

hsem
2LDs

√
𝛽max − tan−1

(√
1

𝛽max
− 1
)
= 𝜋

2
, p∗s ≤ ps

hsem
2LDs

√
𝛽max + tan−1

(√
1

𝛽max
− 1
)
= 𝜋

2
, p∗s ≤ ps ≤ 4

𝜋2
p∗s

hsem
LDsem

√|𝛽max| + ln
[(√

1|𝛽max| + 1 − 1
)]/[(

1 +
√

1|𝛽max| + 1
)]

= 0, ps ≤ 4
𝜋2
p∗s

(42)

with

p∗S =
𝜋2

2
kBT𝜀0𝜀sem
e2h2sem

(43)

Figure 5 (continuous line) shows the access series resistance
RS as a function of the source–gate voltage VGS calculated by us-
ing Equation (37), with the help of Equations (39), (40), (20), and
the exact expression for Rz given in Appendix D (Equation (D4)).
The dashed line represents the calculation of RS by approximat-
ing Rz by Rz,on in Equation (41). Clearly, in the on-state, which
is the regime of interest for series resistance considerations, the
exact and the approximate expressions give identical results, so
one can safely calculate RS by using Rz ,on in Equation (41), which
is much simpler to evaluate.
The series resistance RS shows a slight dependence on VGS

in the on-state due to the voltage dependence of the channel
resistance Rsh, since Rz,on is independent from VGS (see Equa-
tion (41)). With the analytical expression for RS we analyze the ef-
fects of the different device parameters on it. Figure 5b–e shows
the total access series resistance per unit of length 2RSW as a
function of, respectively, the injected hole density pS, the semi-
conductor thickness hsem, the electrode overlap length Lov, and
theHelmholtz capacitance cH. The total series resistance 2RSW is
the parameter extracted experimentally by using, for instance, the
transfer length (TLM) method.[19] The parameters in Figure 5, if
not otherwise stated, are those corresponding to Figure 4. The se-
ries resistanceRS is found to increase significantly when pS < pS

*,
where pS

* is given in Equation (43). Additionally, it roughly in-
creases quadratically with the semiconductor thickness hsem and
becomes independent from the overlap length Lov above a cer-
tain critical value (here Lov >1 μm), as pointed out earlier in the
study of OTFTs.[19] Finally, and more significantly, the series re-
sistance decreases when the interfacial capacitance cH increases.
Since in EGOFETs the Helmholtz capacitance cH can take rela-
tively large values (>1 μF cm−2), access series resistance effects
can be less relevant in EGOFETs than in staggered OTFTs. On
the other side, since cH can vary during biosensing experiments,
RS can also vary, makingmore complicate a correct interpretation
of the results (see discussion).
The series resistance can be included into the analytical model

for the I–V characteristics in a first approximation by considering
the potential drop occurring at it, that is

IDS
(
VDS, VGS

)
= IDS0

(
VDS − 2IDSRS, VGS − IDSRS

)
(44)

where IDS0(VDS, VGS) is the I–V characteristics in the absence of
series resistance effects.

Figure 5. a) Series access resistance of the source (and drain) electrode
RS as a function of the source–gate voltage VGS calculated by using Equa-
tion (37), with Rz obtained from the exact expression in Equation (D4) and
from the on-state asymptotic value Rz ,on in Equation (41) (continuous and
dashed lines, respectively). b–e) Total source–drain series resistance per
unit of electrode width (2WRS) at VGS = −0.6 V as a function of the in-
jection hole density pS (b), thickness of the semiconductor film hsem (c),
overlapping electrode length Lov (d), and Helmholtz capacitance cH (e).
Parameters: same as in Figure 4 if not otherwise stated.
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If the potential drops are assumed to be small, one can perform
a Taylor expansion of Equation (43) to obtain

IDS
(
VDS, VGS

)
=

IDS0
(
VDS, VGS

)
1 + 2RSg0

(
VDS, VGS

)
+ RSgm0

(
VDS, VGS

)
(45)

where g0 and gm0 are the EGOFET conductance and transcon-
ductance in the absence of series resistance effects, respectively.
These two magnitudes are directly related to the conductivity
function 𝜎0(VGS) by (see Equation (12))

g0
(
VDS, VGS

)
=

𝜕IDS0
𝜕VDS

=
Whsem

L
𝜎0
(
VGS − VDS

)
(46)

gm0

(
VDS, VGS

)
=

𝜕IDS0
𝜕VGS

= −
Whsem

L

[
𝜎0
(
VGS − VDS

)
− 𝜎0
(
VGS

)]
(47)

By substituting Equations (46) and (47) into Equation (45), one
finally obtains the analytical physical model for the I–V charac-
teristics of an EGOFET including access series resistance effects

IDS
(
VDS, VGS

)
=

IDS0
(
VDS, VGS

)
1 + 2WRS

hsem
2L

[
𝜎0
(
VGS − VDS

)
+ 𝜎0
(
VGS

)]
(48)

In Equation (48), all terms, including RS, can be evaluated us-
ing the analytical expressions derived in the present work, which
only involve physical device parameters, and hence it does not
include any adjustable phenomenological parameter.
Figure 6a,b (symbols) shows output (for VGS = −0.6 V) and

transfer (for VDS = −0.8 V) I–V curves for an EGOFET in the
Helmholtz approximation calculated numerically by solving the
2D model for different channel lengths L and fixed W/L ratio.
In the absence of series resistance effects, if the ratioW/L is kept
fixed the current values are independent from the channel length,
L. Here, we observe a clear dependence of the current values on
L, indicating the presence of access series resistance effects. For
long channel lengths (here L > 60 μm), the effects of the series
resistance become negligible and the analyticalmodel without se-
ries resistance effects constitutes a good description of the device,
as we have seen before. The analyticalmodel including resistance
effects, Equation (48), predicts reasonably well the numerical re-
sults for L > 3 μm, what is remarkable in view of the absence of
any phenomenological adjustable parameter and the number of
approximations made. We note that in the linear regime the pre-
diction of the analytical model including series resistance effects
is nearly exact, since the hypothesis made in its derivation are
valid in this regime. Outside this regime the predictions turn out
to be still quite accurate.
The series resistance effects can also be included in the ideal

FET model by combining Equations (1), (33), and (48), giving

IDS =
W
L
𝜇pcDL

[
−
(
VGS − VTH

)
VD + 1

2
V2
D

]
1 + 2WRS

1
L
𝜇pcDL,𝜎

[(
−VGS +

1
2
VDS + VTH,𝜎

)] , VGS < VTH

VGS − VDS < VTH

(49)

Figure 6. a) Output (VGS = −0.6 V) and b) transfer (VDS = −0.8 V) I–
V characteristics for an EGOFET in the Helmholtz approximation calcu-
lated numerically with the 2D model for different channel lengths, L, and
sameW/L ratio(symbols). The continuous lines correspond to the analyti-
cal model with series resistance effects included. Note that this model has
no adjustable parameter. Device parameters: same as in Figure 4.

In this expression, the phenomenological parameters, includ-
ing the series resistance, are related to the physical device param-
eters, that is, Equations (34), (36) and (37).

5. Discussion

We have derived an analytical physical model for the I–V charac-
teristics of undoped EGOFETs in the Helmholtz approximation
(or for undoped OTFTs). This model is expected to be valid for
EGOFETs with interfacial compact capacitances relatively small
(<1 μF cm−2) and/or electrolytes with relatively high ionic con-
centrations (above 100 mm), as we have shown from the anal-
ysis of organic metal-electrolyte semiconductor capacitors.[27]

These conditions cover a broad range of conditions, specially for
EGOFETs used as biosensors.
The model derived here, in the absence of access series re-

sistance effects, consists of Equation (21), together with Equa-

Adv. Theory Simul. 2023, 6, 2200696 2200696 (10 of 15) © 2023 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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tions (22) and (15) (an explicit expression based on Lambert’s
function has been also derived, given by Equations (21) and (27)).
The analytical physical model involves only physical device pa-
rameters, with no phenomenological adjustable parameters. It
accurately reproduces the I–V characteristics numerically calcu-
lated for 2D EGOFET models in the long channel limit. The
model continuously covers all operating regimes: subthreshold,
linear and saturation regimes, and it provides an accurate de-
scription of the different crossover transitions. We have shown
that the ideal FETmodel (Equation (1)) constitutes a good asymp-
totic approximation to the analytical model, although it fails at
the crossover regions. Expressions for the phenomenological pa-
rameters appearing in the ideal FET model in terms of the phys-
ical device parameters (Equation (36)) have been derived from
the analytical physical model. These expressions are especially
relevant for the threshold voltage VTH, for which such expres-
sion did not exist, to our knowledge. We have found that the
phenomenological device capacitance cDL is proportional to the
Helmholtz capacitance cH as expected, but with a proportionality
factor that slightly deviates from unity (𝛼2W≈ 0.8). The threshold
voltage VTH on its side, has been found to have two main contri-
butions (Equation (36)), namely, one related to the fixed charges
at the EDLs, through the term ΔVqfix

(Equation (7)), and one de-
pending on the logarithm of the ratio of capacitances cH/csem,
with csem being the characteristic semiconductor diffusive capaci-
tance (Equation (16)), which depends on the injected hole density
pS. This latter contribution can introduce significant variations
in the threshold voltage VTH. We show it in Figure 7a, where we
plotVTH as a function of the equivalentHelmholtz capacitance cH
for three representative injected hole densities pS. The threshold
voltage shows variations up to ±0.3 V due to this contribution,
which can be relevant in the interpretation of EGOFET biosens-
ing experiments, where cH is one of the parameters that can vary
(see below). If a work function difference existed between the dif-
ferent electrodes, it should also be added to the threshold voltage
value, as it is well-known.
Concerning the sub-threshold regime, we have found that the

sub-threshold capacitance c0 (Equation (36)) is independent from
the injected hole density pS. Instead, c0 is proportional to the ratio
cH

2/cgeom, which depends on the semiconductor film thickness.
Moreover, the sub-threshold voltage VSS takes the ideal thermal
voltage value since the injection of carriers is assumed to be ideal.
Finally, the crossover voltage between the linear and the exponen-
tial regime Vc (Equation (28)) depends logarithmically on both,
the capacitance ratios cH/csem and cH/cgeom, (see Equation (30)).
In Figure 7b, we show the dependence of the crossover voltageVc
as a function of the injected hole density for different Helmholtz
and stray capacitances. Relatively large variations of this parame-
ter (up to ±0.2 V) are observed depending on the physical device
parameters, which can be relevant for device optimization con-
siderations. The difference between Vc and VTH, which roughly
gives the crossover voltage range, is given by

VTH − Vc = −2
kBT
e

(
ln
[
xc
]
+

𝛽W + 1
𝛼W

)
(50)

This range only depends on the ratio cH/cgeom through the pa-
rameter xc, defined in Equation (29) (see also a phenomenological
expression for it in Equation (30)).

Figure 7. a) Threshold voltage VTH (Equation (34)) as a function of the
Helmholtz equivalent capacitance cH for three different injected hole den-
sities ps. b) Crossover voltage Vc as a function of the injected hole den-
sity ps for different values of the Helmholtz equivalent capacitance cH and
stray capacitances cgeom (or thicknesses of the semiconductor film). The
parameters are the same as in Figure 4, if not otherwise stated.

The previous results are relevant for the physical interpretation
of EGOFET biosensor experiments.[3,4] EGOFET biosensor re-
sponse is usually analyzed using the ideal phenomenological FET
model (Equation (1)), and parameterized through the variations
of its phenomenological parameters, mainly VTH and cDL. With
the relationships between these parameters and the physical de-
vice parameters (Equation (36)) derived here, one can further cor-
relate the biosensor response to more fundamental physical de-
vice properties. For instance, the variation of the fixed charge of
the biosensing layer qfix is expected to induce a shift in the thresh-
old voltage VTH given by ΔVqfix

in Equation (7). This shift results
in the corresponding shift of the transfer I–V curves, in a simi-
lar way to the shift induced by an eventual variation of the metal
work functions related to the biosensing process. On the other
hand, when the biosensing process induces a modification of the
thickness of the biofuntionalization layer (e.g., by the absorption
of some bioanalytes), the value of the Helmholtz capacitance cH
diminishes. In this case, both the phenomenological capacitance
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cDL and the threshold voltage VTH will vary according to Equa-
tion (36).
The variation of cDL with cH could be anticipated, but that of

VTH appear less obvious. As we demonstrated in Figure 7a, the
variations in cH can induce variations in VTH of up to ±0.3 V,
which are not related to any variation of the fixed charge or of
the work functions. Finally, when modifications of both the fixed
charge qfix and the thickness of the biosensing layer occur, both
effects add together, resulting in an overall variation of the phe-
nomenological parameters equal to

ΔcDL = 𝛼2WΔcH,

ΔVTH =
qfix
cH

−
qfix0
cH0

− 2
kBT
e

(
ln

[
2
cH
cH0

])
(51)

This result provides a simple framework for the interpretation
of EGOFET biosensing experiments in a first approximation.
When access series resistance effects play a relevant role, the

situation becomes more complex. In this case, the I–V charac-
teristics should be corrected to include the series resistance ef-
fects (Equation (48)), which in the linear regime can be approxi-
mated by Equation (49). The series resistance appearing in these
equations is not a free adjustable parameter, but it is determined
by the physical device parameters through the analytical expres-
sion in Equation (37), together with Equations (39), (40), (41) and
(20). Therefore, RS is determined by the same device physical pa-
rameters that determine the rest of phenomenological parame-
ters in Equation (36). The analysis of the biosensing response
becomes then more elaborated. For instance, when the biosens-
ing process involves a variation of the interfacial capacitance cH,
then not only the phenomenological capacitance cDL and thresh-
old voltage VTH will vary, but also the series resistance RS itself
will do (see Figure 5e). To prevent this fact, it would be desir-
able to design EGOFET biosensors with negligible access series
resistance effects. To achieve it, one can consider different strate-
gies by analyzing the results shown Figure 5. Alternatively, one
could consider designing EGOFET biosensors enabling to track
any eventual variation of the access series resistance during the
biosensing process. This could be achieved, for instance, by con-
sidering multiple devices in the biosensor with different channel
lengths, so that one could apply the TLM method to extract the
RS values whenever necessary. Only then the biosensing experi-
ments could be unambiguously interpreted.
The analytical model derived here is based on a physical model

that contains some approximations. These approximations ren-
der the model simple enough for a full analytical treatment. In a
sense, themodel offers the zeroth order approximation to a quan-
titative physical analysis of EGOFETs and EGOFET biosensors.
Higher order approximations can be developed by relaxing some
of the assumptions made and including additional effects, such
as field-dependent mobilities, the presence of traps and of unin-
tentional dopants, non-ideal hole electrode injection, disorder ef-
fects, etc. Additionally, the diffusion of the ions in the electrolyte
could be explicitly included into themodel[15,16] to account for the
formation of the ionic diffusive space charge layers and of their
voltage dependence, which are neglected in the Helmholtz ap-
proximation. Finally, the physics of the Helmholtz layers could
also be modified by including ion penetration and ionic conduc-

tion effects, which could be relevant in EGOFET biosensor in-
volving thick sensing layers that extend beyond the EDLs.[28] The
analysis of these more complex physical models will inevitably
lead to its resolution by means of numerical methods, since an-
alytical solutions will be hard to be obtained. Nevertheless, the
conclusions obtained with the simple model considered in the
present work regarding the dependence of the phenomenologi-
cal parameters on the physical device parameters are expected to
remain at least qualitatively valid, and hence of broad applicabil-
ity in the design and characterization of EGOFETs and EGOFET
biosensors.

6. Conclusions

We have derived an analytical physical model for the I–V char-
acteristics of an EGOFET in the Helmholtz approximation.
The model applies continuously to all operating regimes (sub-
threshold, linear and saturation) and it only includes device phys-
ical parameters. The model provides an accurate description of
the device in the long and short channel limits, the latter by in-
cluding an analytical physical model for the access series resis-
tance. The analytical model derived nicely reproduces the results
of 2D models solved numerically. From the analytical model, we
derived analytical expressions for the phenomenological param-
eters appearing in the ideal FET model in terms of the physi-
cal device parameters. The implications of these relationships in
the design and characterization of EGOFET biosensors have been
discussed and analyzed, paving the way for a more rational and
quantitative interpretation and design of EGOFET biosensors.

Appendix A: Derivation of the Analytical Solution

This appendix provides the details of the derivation of the analytical
solution corresponding to the 1D transversal model for VDS =0 V and of
the I–V characteristics expressions. Since the fixed charge, qfix, just adds
an offset to the source–gate voltage,ΔVqfix, (see Equations (6) and (7)), its
effect will be added explicitly only in the final expressions after solving the
problem for qfix = 0. Under stationary conditions for VDS = 0 V and given
the zero-flux boundary condition (Equations (5)), the hole current must
be null in the semiconductor, that is, J⃗p = 0. This null current condition
imply that the hole electrochemical potential is constant in space. Indeed,
if we introduce the chemical potentials of the holes for non-degenerate
semiconductors through the relationship

�̃�p = �̃�pS + kBT ln
(

p
pS

)
(A1)

where �̃�pS is the chemical potential of reference associated to the concen-
tration pS, and then define the hole electrochemical potential as

𝜙p = �̃�p + e𝜑 (A2)

it is immediate to show from Equation (4) that the electrochemical po-
tential 𝜙p is constant in space. In the semiconductor field, the chemical
potentials are referred to as the Fermi levels and the electrochemical po-
tentials as the quasi-Fermi levels. For organic semiconductors the chemi-
cal potential of holes can be defined in terms of the density of states in the
semiconductor and the energy of the highest occupied molecular orbital
(HOMO). In that case, instead of Equation (A1) one would write

�̃�p = �̃�HOMO + kBT ln
(

p
NHOMO

)
(A3)
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from where

�̃�pS = �̃�HOMO + kBT ln
(

pS
NHOMO

)
(A4)

From Equation (A1) the hole carrier density can be written in a
Boltzmann-like distribution form

p = pS exp
(
𝜙p − �̃�pS

kBT

)
e
− e𝜑

kBT (A5)

which by using the boundary condition in Equation (13) implies that 𝜙p =
�̃�pS − eVS from where we obtain the relation

p = pSe
− e(𝜑−VS)

kBT , (A6)

which is valid everywhere, and in particular, at the bottom of the semicon-
ductor film, as assumed in the boundary condition for the 1D transversal
model (Equation (13)). By substituting Equation (A6) into Poisson’s equa-
tion for the transverse direction (Equation (2)) one has,

d2𝜑
dz2

= −
epS

𝜀0𝜀sem
exp
[
−
e (𝜑 − VS)

kBT

]
, zsubs ≤ z ≤ zG (A7)

As usual, a first integration of Equation (A7) can bemade bymultiplying
these equations by the derivative of the electric potential and integrating
afterwards. One obtains

d𝜑
dz

= −

√√√√2kBTpS
𝜀0𝜀sem

[
e
− e(𝜑−VS)

kBT − e
−

e(𝜑subs−VS)
kBT

]
, zsubs ≤ z ≤ zG (A8)

where we used the boundary condition in Equation (9). Equation (A8)
can be integrated again giving Equation (14), with LDs defined in Equa-
tion (16).

To complete the resolution of the problem one needs to determine
𝜑subs. To this end we use the boundary condition in Equation (6), with
the values of the potential and its derivative at zG obtained from Equa-
tion (14), that is

e (𝜑 (zG) − VS)

kBT
= − ln

{
e
−

e(𝜑subs−VS)
kBT

(
1 + tan2

[
hsem
2LDs

e
−

e(𝜑subs−VS)
2kBT

])}
(A9)

d
dz

(
e𝜑 (zG)

kBT

)
= 1

LDs
e
−

e(𝜑subs−VS)
2kBT tan

[
hsem
2LDs

e
−

e(𝜑subs−VS)
2kBT

]
(A10)

One then obtains Equation (15), thus completing the derivation.
On the other hand, the diffusive boundary condition implies that the

electrochemical potentials of the source electrode and of the holes are
equal, that is, 𝜙p = 𝜙S, where 𝜙S is the source electrode electrochemical
potential. This fact together with the non-polarizable nature of the inter-
face implies that the injection hole chemical potential is equal to the Fermi
level of the source electrode �̃�pS = EFS. By considering these facts, the den-
sity of injected holes is given by

pS = NHOMO exp
(
−
e𝜙bp

kBT

)
(A11)

where e𝜙bp = �̃�HOMO − EFS is the barrier height for hole injection. In a
simple Mott–Schottky approximation, it is given by the difference between
the hole ionization energy and the source metal work function, that is,
e𝜙bp = eIEp − e𝜙mS = Eg − e(𝜙mS − 𝜒).

To derive the analytical I–V characteristics it is convenient to introduce
the variable

f ≡ e
−

e(𝜑subs−VS)
2kBT (A12)

With this variable the parametric expression of the conductivity, 𝜎0(
VGS), (Equation (20)) simply reads

𝜎0 (VGS) = csem
kBT
e

f tan
[
hsem
2LDs

f
]

(A13)

e
(
VGS − ΔVqi

)
kBT

= −
csem
cH

f tan
[
hsem
2LDs

f
]
− ln
[
f 2
(
1 + tan2

[
hsem
2LDs

f
])]
(A14)

where the parameter f is defined in the range

𝜋
LDs
hsem

< f < exp

⎡⎢⎢⎢⎣−
q
(
VGS − ΔVqi

)
2kBT

⎤⎥⎥⎥⎦ (A15)

The I–V characteristics can be obtained by substituting Equation (A13)
into Equation (12) and evaluating the integral analytically. To this end, we
perform the change of variable V → f for which

dV = −
hsem
𝜇p

1
cH

d𝜎 −
kBT
e

2
f
df −

hsem
LDs

kBT
e

tan
[
hsem
2LDs

f
]
df (A16)

After this substitution the integral can be analytically evaluated leading
to Equations (21) and (22).

Appendix B: Explicit Analytical Solution in Terms of
Lambert’s Function

To facilitate the evaluation and analysis of the analytical I–V expression
derived in the previous section, we have derived an approximate, but accu-
rate, non-parametric analytical expression based on the use of Lambert’s
function.[25] To derive this expression, we note that for f → 𝜋LDs∕hsem one
has tan[hsem∕(2LDs)f ] → +∞. As a result, one can neglect the unity in from
of the tangent square term in Equation (A14) and approximate it by

e
(
VGS − ΔVqfix

)
kBT

≈ −
csem
cH

f tan
(
hsem
2LDs

f
)
− ln
[
f 2tan2

(
hsem
2LDs

f
)]

(B1)

This expression, with the help of the conductivity expression in Equa-
tion (A13), can be rewritten as

ev = WeW (B2)

where we have introduced

W = 𝜎

𝜎0
; 𝜎0 = 2

kBT
e

𝜇p

hsem
cH (B3)

and the normalized voltage v through Equation (31). Here,W(ev) is Lam-
bert’s function, which, by definition, inverts Equation (B2).[29] An explicit
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and very accurate approximate expression for Lambert’s function is, for
instance,[30]

W (x) = W0 (x)

⎡⎢⎢⎢⎣1 −
W0 (x) + ln (W0 (x)) − ln (x)

1 +W0 (x) +
W0(x)+ln(W0(x))−ln(x)

2(1+W0(x))

⎤⎥⎥⎥⎦ (B4)

W0 (x) = ln (1 + x)
⎡⎢⎢⎣1 −

ln (1 + x) + ln (ln (1 + x)) − ln (x)

1 + ln (1 + x) + ln(1+x)+ln(ln(1+x))−ln(x)
2(1+ln(1+x))

⎤⎥⎥⎦ (B5)

which has an absolute accuracy better than 10−8 (see Appendix C).
Therefore, an explicit analytical expression for the conductivity valid in

this voltage range is

𝜎 (VGS) = 2
kBT
e

𝜇p

hsem
cHW
⎡⎢⎢⎣12

csem
cH

e
−

e
(
VGS−ΔVqfix

)
2kBT

⎤⎥⎥⎦ (B6)

Equation (B6) is valid as long as one can neglect the unity in front of the
tangent square term in Equation (A14). This condition is not satisfied in
the opposite voltage limit when f → exp[−q(VGS − ΔVqfix )∕(2kBT)] << 1.
In this limit a different approximation must be used, which is based on
performing a Taylor expansion of Equation (A13) to the first significant
order. One obtains

𝜎0 (VGS) ≈ csem
kBT
e

hsem
2LDs

f 2 = e𝜇ppSe
−

e
(
VGS−ΔVqfix

)
kBT (B7)

Based on Equations (B6) and (B7), the explicit (non-parametric) ana-
lytical (approximate) expression for the zero source–drain voltage semi-
conductor sheet conductivity in Equation (23) is obtained. Proceeding in
a similar way one arrives at the corresponding expression of the current in
terms of Lambert’s function in Equation (27).

Appendix C: Linear Approximation of Lambert’s
Function

Figure 8 (black continuos lines) shows the dependence of Lambert’s
function W(ev) as a function of the normalized voltage v in linear-linear
and long-linear representations. The red dashed line corresponds to the

Figure 8. (Black line) Plot of Lambert’s function, W(ev) as a function of
the normalized potential v, represented in linear–linear (left axis) and log–
linear (right axis) representations. (Red line) Explicit (approximate) ex-
pression for Lambert’s function proposed in ref. [29] (Equations (B4) and
(B5)). (Gray line) Linear approximation to Lambert’s function in the range
7 < v < 20,Wlin(e

v) = 𝛼W + 𝛽W, giving 𝛼W = 0.903 and 𝛽W = −1.079.

approximate analytical expression in Equations (B4) and (B5). The gray
line represents the linear approximation.

Appendix D: Analytical Expression for the
Apparent Resistance, Rz

The hole distribution on top of the source (or drain) electrodes for VDS
=0 V is given by (see refs. [26] or [27])

pS (z) =
pS𝛽

cos2
[
∓ (z−zS)

2LDs

√
𝛽 + tan−1

(√
1
𝛽
− 1
)] , (D1)

where 𝛽 is the solution of the equation

e
(
VGS − ΔVqfix

)
kBT

= − ln [𝛽𝛼 (𝛽)] ∓
csem
cint,eq

√
𝛽 [𝛼 (𝛽) − 1] (D2)

with

𝛼 (𝛽) = 1 + tan2
[
∓
hsem
2LDs

√
𝛽 + tan−1

(√
1
𝛽
− 1
)]

(D3)

For the sign convention we refer to ref. [27]. By substituting Equa-
tion (D1) into Equation (38), and performing the integral, one obtains

Rz =
1
2

hsem
𝜇peps𝛽

{
1 +

LDs

hsem
√
𝛽
×

[
sin
(
hsem
LDs

√
𝛽 ∓ 2tan−1

(√
1
𝛽
− 1
))

− sin
(
∓2tan−1

(√
1
𝛽
− 1
))]}
(D4)

Figure 9. (Black continuous line) Apparent electrode resistance per unit
of area, Rz as a function of the source gate voltage, VGS, as calculated from
Equation (D4). (Red dashed lines) Asymptotic values of Rz, namely, Rz ,on
and Rz ,off as given in Equations (D5) and (D6), respectively. Parameters:
Same as in Figure 4.
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This expression gives the apparent resistance Rz in terms of VGS for
VDS =0 V. By analyzing this expression one can show that there exist two
limiting behaviors corresponding to the on and off states, that is

Rz,on = 1
2

hsem
𝜇peps𝛽max

[
1 −

LDs
hsem
√
𝛽max

sin
(
hsem
LDs

√
𝛽max

)]
(D5)

Rz,of f =
1

𝜇peps

kBT
eVGS

(
1 +

cgeom
cH

)
hsem
⎡⎢⎢⎣exp
⎛⎜⎜⎝
eVGS
kBT

1

1 +
cgeom
cH

⎞⎟⎟⎠ − 1
⎤⎥⎥⎦
(D6)

Figure 9 (continuous black line) shows Rz as a function of the source–
gate voltage VGS, as given in Equation (D4), with the values of 𝛽 obtained
by solving Equation (D2), for the device parameters corresponding to Fig-
ure 4. The red dashed lines in the figure correspond to the asymptotic
expressions Rz,on and Rz,off in Equations (D5) and (D6), respectively.
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