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ABSTRACT: The use of bioactive glasses (e.g. silicates, phosphates, borates) has demonstrated 

to be an effective therapy for the restoration of bone fractures, wound healing and vascularization. 

Their partial dissolution towards the surrounding tissue has shown to trigger positive bioactive 

responses, without the necessity of using growth factors or cell therapy, which reduces money-

costs, side effects and increases their translation to the clinics. However, bioactive glasses often 

need from stabilizers (e.g. SiO4

4-
, Ti

4+
, Co

2+
, etc.) that are not highly abundant in the body and which 

metabolization is not fully understood. In this study, we were focused on synthesizing pure calcium 

phosphate glasses without the presences of such stabilizers. We combined a mixture of 

ethyphosphate and calcium 2-methoxyethoxide to synthesize nanoparticles with different 

compositions and degradability. Synthesis was followed by an in-depth nuclear magnetic 

resonance characterization, complemented with other techniques that helped us to correlate the 

chemical structure of the glasses with their physiochemical properties and reaction mechanism. 

After synthesis, the organically modified xerogel (i.e. calcium monoethylphosphate) was treated 

at 200 or 350 ºC and its solubility was maintained and controlled due to the elimination of organics, 

increase of phosphate-calcium interactions and phosphate polycondensation. To the best of our 

knowledge, we are reporting the first sol-gel synthesis of binary (P2O5-CaO) calcium phosphate 

glass nanoparticles in terms of continuous poycondensated phosphate chains structure without the 
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addition of extra ions. The main goal is to straightforward the synthesis, to get a safer 

metabolization and to modulate the bioactive ion release. Additionally, we shed light on the 

chemical structure, reaction mechanism and properties of calcium phosphate glasses with high 

calcium contents, which nowadays are poorly understood. 

Statement of significance 

The use of bioactive inorganic materials (i.e. bioactive ceramics, glass-ceramics and glasses) for 

biomedical applications is attractive due to their good integration with the host tissue without the 

necessity of adding exogenous cells or growth factors. In particular, degradable calcium phosphate 

glasses are completely resorbable, avoiding the retention in the body of the highly stable silica 

network of silicate glasses, and inducing a more controllable degradability than bioactive ceramics. 

However, most calcium phosphate glasses include the presence of stabilizers (e.g. Ti4+, Na+, Co2+), 

which metabolization is not fully understood and complicates their synthesis. The development of 

binary calcium phosphate glasses with controlled degradability reduces these limitations, offering 

a simple and completely metabolizable material with higher transfer to the clinics. 

 

 

 

 

1. INTRODUCTION  

Inorganic bioactive materials in tissue regeneration, such as ceramics, glass-ceramics and glasses, 

are able to trigger the host cells to deliver their own biochemical cues [1] rather than introducing 

exogenous growth factors or cells that may interfere in a healthy metabolic state [2,3]. The release 

of ions such as SiO4

4-
, Ca

2+
, inorganic phosphates (Pi), Cu

2+
, Co

2+
, Ag

+
 and Zn

2+
 has demonstrated 

to benefit several biological processes like osteogenesis, vascularization, cell chemotaxis, wound 

healing or introduce antimicrobial properties [4–7]. Apart from minimizing adverse side effects, 

the success of inorganic bioactive materials also relies in a reduced cost and less strict regulations 
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to reach the market since current regulatory agencies classified the architectures involving these 

type of materials as a medical devices rather than drugs or biological agents [8]. 

Bioactive glasses (BGs) offer several advantages among inorganic bioactive materials. The main 

difference with bioactive ceramics (BCs) is their amorphous structure and degree of 

polycondensation [9,10]. These structural properties are often macroscopically correlated with a 

higher and more homogeneous degradation rates, which are very important for the induction of 

controlled and personalized bioactive resorptions. For example, it has been reported that small 

increases of Ti
4+

 concentration in calcium phosphate glasses (CPGs) have a high impact in the 

stabilization of their degradability [11]. Another characteristic is the facility to modify their 

composition and introduce doping agents to affect their bioactivity (e.g. angiogenic and 

antimicrobial agents) [4,12]. Although BCs also allow changes in their composition, the formation 

of stoichiometric crystalline phases limits this feature and induces heterogeneous degradability. 

Despite this advantages, most BGs use doping agents with reported side effects (e.g. Ti
4+

, Co
2+

, 

Cu
2+

) [13–15] or which metabolization is not fully understood (SiO4

4-
) [16]. For example, Ti

4+
, used 

to stabilize CPGs, has been reported to have mutagenic effects in the wear debris of multiple heap 

prosthesis [13], and in the case of the widely used silicate glasses, some authors maintain that the 

body is not able to eliminate its highly stable silica network (SiO2) [16,17]. It is for this reason that 

in the last decades, more compatible and completely resorbable glasses such as CPGs, are gaining 

relevance in the field of tissue regeneration and regenerative medicine [10]. 

CPGs are mainly composed by a condensed phosphate network containing calcium ions (Ca
2+

) that 

stabilizes the structure and properties of the network itself [10]. In order to maintain the 

connectivity of the P2O5 network and avoid its disruption into smaller subunits, low amounts of 

Ca
2+

 and other cations have been used in the synthesis of CPGs to date [10,11,18]. However, the 
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significant environmental acidification due to the degradation of high amounts of P2O5, has forced 

the use of stabilizers (e.g. Ti
4+

) or potential basifying cations (e.g. Na
+
) to smooth this effect. This 

has led to the formation of ternary (e.g. P2O5-CaO-Na2O), quaternary (TiO2-P2O5-CaO-NaO) and 

even more complex systems difficult to synthesize, and at the same time a lack of information 

about CPGs with CaO>50% [10]. Apart from Ca
2+ 

cations, the phosphate network allows the 

incorporation of other cations (e.g. Ti
4+

, Na
+
, Co

2+
, etc.) [11,19,20] and even anions (e.g. F

-
) [10] to 

tailor its degradability and other biological properties 

Synthesis methods for BGs include the melt-quenching technique (top-down) and the sol-gel 

process (bottom-up). While melt-quenching uses high temperatures (above the melting point of 

metal oxides, >1000°C) to avoid crystallization and thus achieve amorphous structures by a fast 

quenching, the sol-gel method uses chemical condensation of metal alkoxides in solution at low 

temperatures [21]. The low temperature synthesis in the sol-gel process, apart from reducing 

energy related costs, also allows the nanostructuration of the glasses into for example nanoparticles 

or foams [22,23]. This last feature has increase the popularity of the sol-gel method in tissue 

engineering where the interaction with the host tissue microenvironment at the nanoscale is crucial. 

In this study, we were focused on developing pure CPGs (i.e. binary (P2O5-CaO) CPGs) 

nanoparticles with different P/Ca ratios and controlled degradability. We avoid the addition of 

extra ions to promote a higher biocompatibility, a straightforward synthesis and at the same time 

elucidate the chemical structure, reaction mechanisms, and properties of CPGs with high CaO 

contents. A mixture of ethylphosphate and calcium 2-methoxyethoxide were used as sol-gel 

precursors since these two precursors have shown high affinity and the formation of glasses with 

homogeneous compositions [22,24,25]. Particle synthesis was followed by an exhaustive nuclear 

magnetic resonance (NMR) characterization complemented with other techniques (i.e. X-ray 
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diffraction, FTIR, EDS, elemental analysis, DLS, SEM) that helped to the assessment of the proper 

reaction conditions, and the chemical structure and properties of the particles. Finally, we 

evaluated the degradability of the particles and pH modifications after their immersion in 

physiological-like conditions. 

 

 

2. EXPERIMENTAL SECTION  

If not otherwise specified all reagent were purchased from Sigma-Aldrich.  

2.1. Sol-gel precursors synthesis. P and Ca precursors were synthesized as previously published 

[22,24]. Briefly, phosphorus pentoxide (≥99,99%) and metallic calcium granules PS (98%, 

Panreac) were oxidized in distilled absolute ethanol PRS (99,5%, Panreac) and anhydrous 2-

methoxyethanol (99,8%) respectively by refluxing them at the solvent boiling point under Ar(g) 

atmosphere for 12 and 24 h respectively. We obtained 4 M ethylphosphate in ethanol and 1 M 

calcium 2-methoxyethoxide in 2-methoxyethanol. The solutions were filtered using 0.45 μm PTFE 

hydrophobic Minisart® SRP25 syringe filters (Sartorius AG, Göttingen, Germany) and stored 

under Ar(g) at -20 °C.  

2.2. CPG nanoparticles synthesis. Particles were synthesized by mixing different ratios (10:0, 

8.5:1.5, 6:4, 1.5:8.5 and 0:10 mL) of the P and Ca precursors respectively in 90 mL of absolute 

ethanol (PRS, 99,5%, Panreac) (Tables 1a). Ammonia (PA-ACS, 30%, Panreac) was added 

dropwise under vigorous stirring until a suspension of particles was observed. After 12 h the 

particles were centrifuged, cleaned twice with absolute ethanol and once with hexane (ACS, 
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≥99%), and dried at 70 ºC for 2 h. Dried particles were ground and stored in a desiccator under 

vacuum. For thermal treatment, particles were heated for 12 h at 200 or 350 ºC in a muffle furnace 

L9/11 (Nabertherm, Lilienthal, Germany). Particles were weighted in a Sartorius CP224S 

analytical balance (Sartorius AG, Göttingen, Germany) to know yields and mass loss. 

2.3. 1H and 31P NMR spectroscopy. 
1
H and 

31
P NMR analysis of the two precursors in anhydrous 

ethanol-d6 (≥99,6%) and the dissolved particles (5 mg/mL) in D2O (99.9%) plus 1.5% HCl (37%, 

Panreac) were performed using a Bruker 400 MHz Avance III spectrometer (Bruker, Billerica, 

MA, USA) equipped with a Prodigy TCl 5 mm cryoprobe. 
1
H NMR conditions included; 3.66 μs 

pulse length, 30° tip angle, a recovery delay of 1 s, a total of 32 scans and an acquisition time of 

2.5 s. Spectra were referenced to the 
1
H nuclei of the deuterium solvent. 

31
P NMR conditions 

included; 3.76 μs pulse length, 30° tip angle, recovery delay of 1 s, a total of 256 scans and an 

acquisition time of 1.6 s. Spectrum were externally referenced to H3PO4 (85%) and 
1
H nuclei was 

decoupled during 
31
P NMR spectrum acquisition. All spectrum were analyzed using the 

ACD/Spectrus Processor software (www.acdlabs.com).  

2.4. Electrospray ionization mass spectrometry (ESI-MS). The Ca precursor was dissolved ~10
4
 

times in absolute ethanol (PRS, 99.5%, Panreac) and analyzed on a ThermoFinnigan LTQ ion trap 

mass spectrometer (Thermo Fischer Scientific, Waltham, MA, USA). Instrument parameters 

included; sample infusion: 3 μL/min, spray voltage:  3.5 kV, capillary temperature: 200 °C, 

capillary voltage: 75 V, and tube lens voltage: 100 V. Mass spectra were acquired by the University 

of Kentucky Mass Spectrometry Facility.  

2.5. Dynamic Light Scattering (DLS). The P and Ca precursors were dissolved separately and 

together in 1 mL of absolute ethanol (PRS, 99.5%, Panreac). The solutions were measured in a 

Zetasizer Nano ZS (Malvern, Worcestershire, UK) using a 10x2 mm precision Quartz Suprasil® 

http://www.acdlabs.com/


  

 8 

cell 115F-QS (Hellma®Analytics, Müllheim, Germany). Results were analyzed using the 

Zetasizer software version 7.12 (07/12/2016) (Malvern, Worcestershire, UK). Size population was 

expressed in volume percentage.  

2.6. Particle composition and morphological images (EDS/FE-SEM). A Quanta Q200 scanning 

electron microscope (SEM) (FEI Company, Hillsboro, OR, USA) coupled with an energy 

dispersive X-ray spectroscopy detector (EDS) was used at 20.0 KV and 10 mm of working distance 

to quantify the approximate P and Ca atomic ratio of the particles. Values express the average of 

at least three different measurements. For morphological images, we used the NOVA NanoSEM-

230 ultrahigh-resolution field emission scanning electron microscope (FE-SEM) (FEI Company, 

Hillsboro, OR, USA) at 5.00 KV and 5.0 mm working distance. In both cases, samples were coated 

with a thin carbon layer to improve conductivity. For morphological images, approximately 1 mg 

of the particles was dispersed in 1 mL of absolute ethanol PRS (99,5%, Panreac) and sonicated for 

several seconds. 2 μL of the dispersion were added on silicon substrates and left to dry at room 

temperature.  

2.7 Elemental analysis (EA). The samples were analyzed by combustion at 1060 ºC in an 

elemental analyzer EA CE 1108 (Thermo Fischer Scientific, Waltham, MA, USA) to determine 

the C and N mass percentages. A mixture of vanadium pentoxide and lead powder was added to 

facilitate combustion, and atropine was used as a standard.  

2.8. 31P MAS NMR spectroscopy. 
31
P MAS NMR spectra were acquired in a Bruker 400 MHz-

WB Avance-II spectrometer (Bruker, Billerica, MA, USA), externally referenced to H3PO4 (85%). 

Approximately, 50 mg of the particles were placed in a ZrO2 4mm rotor and spun at 12 kHz. 

Conditions include; 5 μs pulse length, a 90° tip angle and 5 s of recovery delay. 
1
H nuclei was 

decoupled using a Spinal-64 scheme at 73 watts power level.  
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2.9. X-ray diffraction (XRD). The particles were manually pressed in a cylindrical standard 

holder of 16x2.5 mm with the help of a glass plate. Samples were analyzed using a PANalytical 

X’Pert PRO MPD Alpha1 Powder Diffractometer (PANalytical, Almelo, Netherlands) in a Bragg-

Brentano /2 geometry of 240 mm radius. The spectra were processed using the software 

©PANalytical X’Pert HighScore (PANalytical, Almelo, the Netherlands) and the database PDF2 

(2001) from the international center of diffraction data (ICDD).  

2.10. Attenuated total reflectance infrared spectroscopy (ATR-FTIR). Approximately, 5 mg 

of the particles were analyzed in a Spectrum Two FT-IR Spectrometer (PerkinElmer, Waltham, 

MA, USA) coupled with an UATR Diamond/ZnSe accessory 1 reflection. Spectra were recorded 

between 4000 and 450 cm
-1
 with a resolution of 1 cm

-1
. Spectra were processed using the software 

©PerkinElmer Spectrum (PerkinElmer, Waltham, MA, USA) and the database ©2005-2008, 

Fiveash Data Management, Inc.  

2.11. Degradability study of the CPG nanoparticles. Approximately, 3 mg of the particles (n = 

3) were immersed in 1.3 mL of 0.05 M 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid 

(HEPES) (99,5%) in miliQ water at pH=7.4. The resultant suspensions were incubated at 37 °C in 

a Memmert incubator (Memmert Gmbh + Co KG, Schwabach, Germany). After 1 h and 1, 3, 6, 9, 

14 days, particles were centrifuged and 1.1 mL of the media were extracted. Tubes were refiled 

with HEPES solution and incubated again at 37 °C. The extracted media were kept at -20 °C for 

further ion release and pH measurements.  

2.12. Ion release measurements. The Ca
2+

 and inorganic phosphate (Pi) of the extracted solutions 

were measured by the O-Cresolphthalein complexone [26,27] and the Malachite green method 

[28], respectively. For the O-Cresolphthalein complexone, 4 μL of the extracted media were added 

onto 80 μL of 1.5 M 2-amino-2-methyl-1-propanol (AMP) (≥90%) aqueous solution, maintaining 
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the pH at 10.4 by the addition of HCl (37%, Panreac). Then, 80 μL of 0.16 mM O-Cresolphthalein, 

6.8 mM 8-Hydroxyquinoline (99%) and 1.19 M HCl (37%, Panreac) aqueous solution were added. 

The reaction between the Ca
2+

 and the O-Cresolphthalein produce a purple complex that was 

measured by absorbance at 570 nm. A calibration curve (7.5, 5, 2, 1, 0.5, 0.1, 0 mM) of CaCl2 ion 

solution for ion-selective electrodes (0.1 M) was prepared to convert absorbance to Ca
2+

 

concentrations. The Pi content of the extracts was measured using the Phosphate Colorimetric Kit 

based on the Malachite green method [28]. A calibration curve of H3PO4 (25, 20, 15, 10, 5, 0 μM) 

was prepared to convert absorbance to Pi concentrations. The absorbance was measured at 650 nm 

wavelength. All absorbance values were measured in an Infinite M200 Pro Microplate Reader 

(Tecan Group Ltd., Männedorf, Zürich, Switzerland). 

2.13. pH measurements. The pH of each extraction was measured using a Crison 50 28 pH 

electrode and a Crison pH-Meter GLP 22+ (Hach Company, Loveland, CO, USA) previously 

calibrated with 4.01, 7.00 and 9.21 pH standard solutions. 

2.14. Statistics. We used the GaphPad Prism 5 software to detect statistical significant differences 

in the ion release and pH measurements. We performed a two-way ANOVA grouped comparison 

analysis followed by a Bonferroni post-test to detect statistical significant differences between 

particles at each time point. 

 

3. RESULTS AND DISCUSSION.  

3.1. Sol-gel precursors characterization 
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We characterized the P and Ca precursors by NMR spectroscopy (Figure 1). Consistent with Ali 

et al. [29], we identified for the P precursor the formation of monoethylphosphate (MEP) and 

diethylphosphate (DEP) with traces of H3PO4 and triethylphosphate (TEP) (Figure 1a,b).  

Integrated intensities (Figure S1) justify the suggested peak assignment.  

On the other hand, the fast exchangeable rate between the calcium 2-methoxyethoxide (CMEO) 

and the solvent 2-methoxyethanol (MEOH) of the Ca precursor led to an averaged signal for these 

two compounds (Figure 1c) [30], thus, hindering its characterization by NMR spectroscopy. 

However, the significant broad peaks in the spectrum indicate that a coordination of  the MEO
-
 to 

a metallic center (i.e. Ca
2+

) was occurring [31], which is consistent with the dark orange color 

observed for the Ca precursor (Figure S3), characteristic of electronic orbital transitions between 

metal ions and alkoxyalkoxide ligands [32–34]. In order to better elucidate the Ca precursor 

structure, we complemented the NMR characterization with mass spectrometry. Fortunately, ESI-

MS analysis (Figure 1d) confirmed the formation of highly stable [Ca(MEOH)3]
2+

 and 

[Ca(MEOH)4]
2+

 metallic-coordinated complexes, which is consistent with the previous 

identification of hexa- and heptavalent calcium domains for the single crystal characterization of 

CMEO [35]. Note that Goel et al. [35] previously defined the formation of a larger cluster 

[Ca9(MEO)18(MEOH)2] than those observed in the ESI-MAS spectrum. However, we contemplate 

the possibility of the disruption of a bigger complex into smaller subunits during the ESI-MS 

analysis, since DLS measurements (Figure S2a) showed a significant large average cluster size of 

~5 nm. 

 

3.2. Interaction between the P and Ca precursors and precipitation of particles 

file:///C:/Users/ocastaño/OneDrive%20-%20Universitat%20de%20Barcelona/Documentos/Publications/Biomaterials%20Joan/Joan%20Martí_ACS_Supporting%20Information.docx
file:///C:/Users/ocastaño/OneDrive%20-%20Universitat%20de%20Barcelona/Documentos/Publications/Biomaterials%20Joan/Joan%20Martí_ACS_Supporting%20Information.docx


  

 12 

There is a transition between the CMEO complex and the formation of a complex comprising Ca
2+

 

and the hydroxyl groups (-OH) from the ethylphosphates as it was inferred after studying the 

interaction between the two precursors by NMR spectroscopy. We observed a peak broadening 

and shielding of the MEP and DEP signals when the two precursors were mixed together (P+Ca, 

Figures 2a,b). On the other hand, the peaks from the TEP remained unaltered and those from the 

CMEO shielded and became sharper (Figure 2c). All together indicates the disruption of the 

CMEO complex and the formation of a new one, comprising the Ca
2+

 and the hydroxyl groups of 

the ethylphosphates. DLS measurements (Figure S2b) supported this assumption, showing the 

disruption of the CMEO complex at ~5 nm and presenting a new one at ~1.8 nm. Interestingly, we 

observed a size increase of this new complex over time indicating that the sole interaction between 

the two precursors led to the spontaneous formation of particles or aggregates of ~1 µm after 30 h 

(Figure S2c). However, the addition of ammonia (NH3(aq)) catalyzed the formation and precipitation 

of particles by the induction of alkaline conditions. Since we decided to use NH3(aq) to catalyze the 

reaction, we include the NMR characterization of the supernatant after the precipitation of 

particles. We observed the sole presence of DEP and TEP (P+Ca+NH3, Figures 2a,b) in the 

supernatant, indicating that only the MEP and the small amount of H3PO4 precipitated with the 

Ca
2+

 (Figure S4). Notice that the absence of increase in the ethanol signal (Figure 2a) indicates the 

incorporation of the ethoxide groups into the particles. 

 

3.3. Nanoparticle synthesis parameters 

We studied different reaction parameters to obtain particles with different P/Ca ratios by 

combining different proportions of the two precursors in absolute ethanol under ammonia 

catalysis. The increase of P in the particle content followed an almost linear correlation with the 

file:///C:/Users/ocastaño/OneDrive%20-%20Universitat%20de%20Barcelona/Documentos/Publications/Biomaterials%20Joan/Joan%20Martí_ACS_Supporting%20Information.docx
file:///C:/Users/ocastaño/OneDrive%20-%20Universitat%20de%20Barcelona/Documentos/Publications/Biomaterials%20Joan/Joan%20Martí_ACS_Supporting%20Information.docx
file:///C:/Users/ocastaño/OneDrive%20-%20Universitat%20de%20Barcelona/Documentos/Publications/Biomaterials%20Joan/Joan%20Martí_ACS_Supporting%20Information.docx
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amount of P precursor used until the value reached a 55% (Tables 1a,b). Then, we needed 

significant high volumes of the P precursor to obtain compositions with P>55%. This is consistent 

with the previous detection of calcium MEP precipitation (P+Ca+NH3, Figure 2a,b), which limited 

the P/Ca ratio of the particles to 1/1. The use of apolar solvents (e.g. 1,4-dioxane, toluene, hexane) 

could induce the precipitation of the highly ethanol-soluble calcium DEP and thus achieve particles 

with higher P contents. Focusing on the added NH3(aq) catalyst, we needed significant small amounts 

to synthesize P100, P65 and P55 particles, indicating different alkaline catalytic mechanisms of 

precipitation, i.e. while particles with high Ca contents needed high alkaline conditions, particles 

with higher P contents precipitated at more acidic conditions. In addition, we also included a 

preliminary morphological characterization of the particles (Figure S5). FE-SEM images showed 

the formation of aggregates ranging from several hundreds of nm to few µm, suggesting a high 

electrostatic interaction between smaller nanoparticles. Notice that after thermal treatment, we did 

not observe significant changes in particle morphology.  

 

3.4. Characterization of the nanoparticles 

At low temperatures, nanoparticles were mainly organically modified amorphous CPs. We 

characterized the chemical structure of the particles by 
31
P MAS NMR and other complementary 

techniques. 
31
P MAS NMR spectrum of the particles showed the presence of orthophosphate units 

(Q
0
) (Figure 3a) [10] that together with the sole detection of P and Ca by EDS (Table 1a) and the 

absence of calcium phosphate (CP) crystalline structures (Figure 3c) [36–39], indicates the 

formation of amorphous CPs. We identified the formation of portlandite (Ca(OH)2) and NH4H2PO4 

(Figure 3c,e) for the particles with a Ca excess (P30/P0) or its absence (P100) respectively, the Ca 

excess precipitated in form of Ca(OH)2, and in its absence, the added NH3(aq) was incorporated as a 

file:///C:/Users/ocastaño/OneDrive%20-%20Universitat%20de%20Barcelona/Documentos/Publications/Biomaterials%20Joan/Joan%20Martí_ACS_Supporting%20Information.docx
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counter ion, this last is consistent with the significant N amount detected by EA for P100 particles 

(Table 1b). Notice that the absence of N in the rest of compositions excludes the formation of 

ammonium salts for the other particles. In order to identify the presence of organics, we 

characterized by 
1
H NMR the dissolution of the particles in acidic D2O (Figure 4a). The spectrum 

analysis confirmed the presence of one majoritarian ethylphosphate, assigned to the precipitation 

of calcium MEP (CMEP) based on the previous NMR characterization (Figures 2a) that showed 

the only incorporation of MEP into the particles. The increased amount of C with the P content, 

detected by EA (Table 1b), is consistent with the precipitation of CMEP. These results 

complements previous studies, in which we developed similar particles doped with small amounts 

of Ti
4+

 and Na
+
 for angiogenic and osteogenic purposes [22,24,40]. In such studies, we described 

the presence of organics in the particles but not much information was given about its chemical 

structure. The results clarify that after synthesis the particles are amorphous calcium 

orthophosphates containing ethoxide groups (i.e. CMEP) rather than inorganic CPGs. We also 

complemented the characterization of the particles by ATR-FTIR spectroscopy (Figure 3e), the 

spectrum exhibited extra vibrational bands, apart from those assigned to inorganic CPs (i.e. 

ν4(OPO), ν1(PO) and ν3(PO) [36,37,41]), assigned to the vibration of the ethoxide groups (e.g. 

νs(CCO) and νas(CCO)  [38,42,43]). A curious observation is the sharp ATR-FTIR and 
31
P MAS 

NMR peaks (Figure 3a,e) typically observed in well-ordered crystalline structures due to intrinsic 

high atomic mobility. However, the absence of crystalline CPs in the XRD spectrum (Figure 3c), 

suggests that the presence of ethoxide groups disrupted the crystalline lattice but still allow a high 

atomic mobility. Indeed, the leftmost peak in the XRD spectra (marked with a star) might be 

assigned to some diffraction plane of the CMEP. On the contrary, P55 particles exhibited wider 

peaks (Figure 3a,e), indicating a higher connectivity.  
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3.5. Thermally treated particles 

For thermally treated nanoparticles, the higher the P content the higher the glassy structure. In 

order to stabilize the chemical structure of the particles and eliminate organics with a possible 

undesired cytotoxicity, we hold nanoparticles to a thermal treatment at 200 or 350 ºC. Particles 

were characterized using the same previous techniques. After thermal treatment, we observed an 

increase in the phosphate condensation (Q
2
 and Q

1
 units) (Figure 3b) [38,43]. The lack of phosphate 

condensation in alkaline and acidic conditions during synthesis (Figure 3a, Figure 4a) indicates 

that phosphate condensation is only catalyzed at temperatures around 200 ºC, as it has been 

reported in previous studies [20,43,44]. On the other hand, the P100 particles decomposed 

probably to NH3(g) and H3PO4(l) after thermal treatment. At the same time, we observed the almost 

total elimination of the C content (Table 1c), indicating the decomposition of the ethoxide groups. 

Notice that the C content for P30-350ºC and P0-350ºC particles (Table 1c) is attributed to the 

carbonatation of the portlandite to calcite at a minimum temperature of 350°C (Figure 3d,f), in 

fact, this is consistent with the significant mass increase of P0-350ºC particles while the other 

compositions significantly reduced its weight due to the elimination of ethoxides (Table 1a). The 

1
H NMR characterization of the dissolved particles in acidic D2O (Figure S7) confirmed the 

elimination of ethoxides, except for a tiny amount in P65-200ºC. Paying attention to the XRD 

characterization (Figure 3d), we observed an amorphous-like structure for the CPs after thermal 

treatment, which is confirmed by the broad peaks observed in the 
31
P MAS NMR and ATR-FTIR 

spectra (Figure 3d,f) [38,43,45]. Considering that phosphate condensation and amorphicity 

occurred, we can confirm that after a thermal treatment at 200 ºC the particles made a transition to 

a more glassy structure as higher was their P content. In fact, the ATR-FTIR spectrum showed the 

typical bands of CPGs [38,43] and amorphous-like CPs (ACPs) [41] (e.g. δ(POP), νs/as(POP), 

νs/as(PO3

2-
) and νas(PO2

-
)), and additionally the ethoxide bands were not observed any more, 
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confirming their decomposition [42]. In parallel, we identified by 
31
P NMR the different Q

n
 units 

when the particles were dissolved in acidic D2O (Figure 4b), which indicates the release of 

ortho/pyro and methaphosphate units after the degradation of the particles. Since the resolution of 

the 
31
P NMR spectrum (Figure 4b) was higher than in the 

31
P MAS NMR, we used the relative 

abundance of the Q
n
 units from the 

31
P NMR spectra (Table S4) to quantify the different phosphate 

units. We assigned the Q
2
 units to cyclic or open chained amorphous calcium trimetaphosphate 

(ACTMP), the Q
1
 units to open chained ACTMP or amorphous calcium pyrophosphate (ACPP) 

and the Q
0
 units to amorphous calcium orthophosphate (ACP) [18,45,46]. We did not consider the 

formation of longer metaphosphates due to the high amount of Q
1
 units. On the other hand, the 

ratio Q
2
:Q

1
>1:2 for P65-200ºC indicates the formation of cyclic ACTMP or longer 

metaphosphates.  

To the best of our knowledge, this is the first time that binary CPGs [20,38,43] or ACPs [39,41,45] 

nanoparticles are synthesized by the sol-gel method using metal alkoxides. We only found a study 

of binary micrometric CPGs synthesized by melt-quenching [18]. In that study, Fletcher et al. [18] 

synthesized CPGs with lower Ca contents and they observed the formation of crystalline 

pyrophosphates when CaO:P2O5≥1.21. As mentioned, the synthesis of binary CPGs is of interest 

for a straightforward synthesis and higher biocompatibility. If we compare our glasses with 

conventional CPGs, we observe a lower degree of phosphate condensation [18,21,43], which is 

assigned to the higher content of Ca
2+

, and inevitably disrupted the P2O5 network. Since the current 

characterization of CPGs with high Ca
2+

 contents remains poorly understood [10], we consider that 

the information presented in this study is relevant for the materials science community. 

 

3.6. Ion release and pH modifications of the CPGs nanoparticles in physiological conditions 
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Middle compositions are more likely to be applied in terms of degradation. The last part of this 

study consisted on the evaluation of the ion release and pH modification after the immersion of 

the particles in 0.05 M HEPES buffered medium at physiological-like conditions (i.e. pH 7.4 and 

37 ºC). Before thermal treatments, the particles were very soluble (Figure 5a), releasing high 

amounts of Ca
2+

 in short periods. We assigned the high solubility of the particles to the presence 

of ethoxides, which likely disrupts the CP chemical lattice making it less stable. The low inorganic 

phosphate (Pi) release (Figure 5c), except for P100 that was mainly inorganic NH4H2PO4, is 

attributed to the release of MEP instead. The Malachite green method used is selective of free 

inorganic phosphate and may be unsuitable for the detection of organophosphate compounds [28]. 

Moreover, we know of the release of MEP in strong acidic conditions by the previous 
1
H NMR 

characterization (Figure 4a). If we compare our organically modified particles at low temperature 

with conventional inorganic CPGs [11,47,48] or ACPs [49,50], the Ca
2+

 release was significant 

faster, indicating a potential applicability where high initial Ca
2+

 concentrations are needed (e.g. 

chemotaxis, angiogenesis, osteogenesis, wound healing, etc.) [5,22,40,51]. However, the strong 

basification induced by the dissolution of high amounts of portlandite by the P0 particles (Figure 

5e) may limit their use for biological applications. In regards of cytotoxicity, we consider 

important to study the metabolization of the released MEP due to their high stability (Figure 4a), 

although similar particles did not show cytotoxicity in previous studies [22,40]. Finally, P100 

particles may be interesting to increase the Pi concentration without pH modifications (Figure 5e) 

but considering the effects of simultaneously releasing high amounts of NH4

+
.  

After thermal treatment, the degradability of the particles was more sustained (Figure 5b,d), 

releasing Ca
2+

 and Pi up to two weeks without significant pH modifications (Figure 5f). Notice that 

after thermal treatment the Pi release was higher due to the conversion of the MEP to Pi. We 

attribute the higher stability of the particles to a higher degree of calcium-phosphate interactions, 



  

 18 

phosphate condensation and elimination of ethoxides. We would like to highlight that even though 

the release of pyrophosphates is thought to contribute in bone mineralization [52], the stability of 

higher condensed phosphate units (i.e. trimetaphosphates) under strong acidic conditions (Figure 

4b) justifies further studies of how these molecules are metabolized in the body. Correlating these 

results with the previous particle characterization, we identified that the particles containing 

ACTMP, are more suitable to release sustained higher amounts of Pi, while the ones containing 

ACP would be ideal for modulating higher bioactive Ca
2+

 concentration releases. Although P0-

350ºC showed the highest Ca
2+

 release, Denoux et al. [53] previously reported the insolubility of 

CaCO3 in cell culture conditions, probably due to the CO2(g)/HCO3-(liq.) buffer equilibrium of 

conventional incubators. Nevertheless, many reports have shown the resorption of CaCO3 in vivo 

[54,55], which suggests that the P0-350ºC particles would be suitable as a biological Ca
2+

 source. 

In comparison to reported multicomponent CPG systems [11,47,48] or conventional co-

precipitated ACPs [49,50], the ion release rate of the thermally treated particles in this study was 

similar or even higher, suggesting their applicability in similar biomedical purposes (i.e. bone 

regeneration, angiogenesis, wound healing, etc.). Notice that the still high amount of particles after 

the degradability assay (Figure S8) suggests that further ion release could continue at longer times. 

We would like to remark the importance of initial increases in the extracellular Ca
2+

 concentrations. 

Our group has previously described and evidenced a proposed angiogenic mechanism involving 

cell membrane Ca
2+

-sensing receptors, in which it seems that Ca
2+

 ions, apart from participate in 

osteogenesis, cell chemotaxis and other favorable metabolic responses, play a pivotal role in the 

stimulation of initial vasculature formation [56]. This can lead to the restoration of impaired wound 

healing in other tissues apart from bone as our group has recently shown for skin wound healing 

applications [51,57]. We have focused the current study in the in-depth structural characterization 

of binary CPGs with high Ca
2+

 contents but further structural and biological studies should be 
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perform with these new designed nanoparticles in combination with supporting biodegradable 

biomaterials in order to build 3D architectures for tissue regeneration.  

 

4. CONCLUSIONS 

In summary, the study of novel binary (P2O5-CaO) CPGs with high CaO contents synthesized by 

the sol-gel method is of interest due to a straightforward synthesis, lack of unknown metabolizable 

ions and increase of bioactive Ca
2+

 release. Since the synthesis of CPGs with high CaO contents 

remains uncertain, this study is relevant for the material science community. At the same time, we 

also shed light on the chemical structure and reactivity of novel sol-gel precursors (i.e. 

ethylphosphate and calcium 2-methoxyethoxide) that are becoming increasingly relevant for the 

polycondensation of metal oxides to gradually substitute current developed CPGs participating in 

really sophisticated architecture but with unsuitable or poor controlled bioactive ion releases.  
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Scheme captions: 

Scheme 1. Mono/di/triethylphosphate (MEP/DEP/TEP) and calcium 2-methoxyethoxide (CMEO) 

proposed chemical structures. 

 

 

 

 

Table captions 

Table 1. Particle synthesis conditions, yields and mass loss a). Particle composition before b) and 

after thermal treatment c). P/Ca atomic % were measured by EDS and C and N mass % by EA. 
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Figures captions: 

Figure 1. 
1
H NMR a) and 

31
P NMR b) spectra of the P precursor in ethanol-d6. Integrated 

intensities and relative abundance in Figure S1 and Table S1. Notice that the EtOH of the P 

precursor was removed by evaporation. 
1
H NMR c) and ESI-MS spectra d) of the Ca precursor. 

Figure 2. 
1
H NMR a) and 

31
P NMR b) spectra of the P precursor (P), the P precursor after the 

addition of Ca precursor (P+Ca) and the supernatant after the precipitation of particles by the 

addition of ammonia (P+Ca+ NH3). For full spectra and integrated intensities please refer to Figure 

S4. 
1
H NMR spectra of the Ca precursor before and after the addition of the P precursor c). Notice 

that in c) the P precursor was not purified and contained EtOH. Ca precursor was added in excess 

until we did not observe further changes in the spectrum. NH3(aq) was added until a precipitation of 

particles was observed. 

Figure 3. 
31

P MAS NMR, XRD and ATR-FTIR spectra of the particles before a,c,e) and after 

thermal treatment b,d,f). 
31
P MAS NMR chemical shifts and relative abundances in Table S2. 

ATR-FTIR band assignment in Table S3. 

Figure 4. 
1
H NMR spectra of the dissolved particles before thermal treatment in acidic D2O a). 

Notice that the acetone in P0-RT is assigned to impurities from NMR tube cleaning. 
31
P NMR 

spectra of the dissolved particles after thermal treatment b). Chemical shift and relative abundance 

in Table S4. 

Figure 5. Ca
2+

, Pi and pH modifications after the immersion of the particles in 0.05 M HEPES 

solution at pH 7.4 and 37 ºC before a,c,e) and after thermal treatment b,d,f). Media were replaced 

every time point. Values represent means and error bars standard deviation. Statistical analysis in 

Table S5. 
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a) 
P:Ca 

precursors 

(mL) 

EtOH:NH3:H2O 

(mL) 

Yield 

(mg) 

Mass loss after 

thermal 

treatment (%) 

P100 10:0 90:1.7:10 127 
Decomposed 

(200 °C) 

P65 8.5:1.5 90:1.9:6 359 -26.9 (200 °C) 

P55 4:6 90:0:0 718 -25.96 (200 °C) 

P30 1.5:8.5 90:30:0 948 -23.24 (350 °C) 

P0 0:10 90:30:0 781 +19.59 (350 °C) 

 

b) 
P/Ca  

(atomic %) 

C      

(mass %) 

N     

(mass %) 

P100-RT 100 0.80 12.63 

P65-RT 63.9/36.1 17.13 ≤0.2 

P55-RT 54.2/45.8 15.81 ≤0.2 

P30-RT 28.7/71.3 9.77 ≤0.2 

P0-RT 0 3.15 ≤0.2 

 

c) 
P/Ca 

(atomic %) 

C         

(mass %) 

N         

(mass %) 

P100-200°C Decomposed Decomposed Decomposed 

P65-200°C 62.9/37.1 0.34 ≤0.2 

P55-200°C 56.5/43.5 0.37 ≤0.2 

P30-350°C 29.8/70.2 5.66 ≤0.2 

P0-350°C 0 7.74 ≤0.2 
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