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A single-cell resolved genotype-phenotype
map using genome-wide genetic and
environmental perturbations

Mariona Nadal-Ribelles 1,2 , Carme Solé 1,2, Anna Díez-Villanueva2,
Camille Stephan-Otto Attolini 2, Yaima Matas 1,2, Lars Steinmetz 3,4,
Eulàlia de Nadal 1,2 & Francesc Posas 1,2

Heterogeneity is inherent to living organisms and it determines cell fate and
phenotypic variability. Despite its ubiquity, the underlying molecular
mechanisms and the genetic basis linking genotype to-phenotype hetero-
geneity remain a central challenge. Here we construct a yeast knockout library
with a clone and genotype RNA barcoding structure suitable for genome-scale
analyses to generate a high-resolution single-cell yeast transcriptome atlas of
3500mutants under control and stress conditions.We find that transcriptional
heterogeneity reflects the coordinated expression of specific gene programs,
generating a continuous of cell states that can be responsive to external
insults. Cell state plasticity can be geneticallymodulated withmutants that act
as state attractors and disruption of state homeostasis results in decreased
adaptive fitness. Leveraging on intra-genetic variability, we establish that
regulators of transcriptional heterogeneity are functionally diverse and influ-
enced by the environment. Our multimodal perturbation-based single-cell
Genotype-to-Transcriptome Atlas in yeast provides insights into organism-
level responses.

Variability within a population determines cell fate and phenotypic
diversity over time (e.g. differentiation, aging)1 and facilitates popu-
lation adaptation to different niches and conditions. Remarkably, even
genetically identical cells display variations in growth rate, division,
stress resistance, and other quantifiable phenotypes, which lead to
global health challenges, such as tumor aggressiveness, chemotherapy
resistance, aging, and antibiotic resistance in microorganisms2,3.
Resolving the transcriptome profile of individual cells has been
essential in enabling Cell Atlas initiatives seeking mainly to determine
the expression programs that identify new cell types and define sub-
types and cell states4.Identifying the molecular basis that defines cell
states requires exhaustive cell profiling under both homeostasis and
perturbation, an endeavor that will provide the principles to target or
engineer specific cell states and, therefore, determine cell population

fate. The concept of cell state has evolved beyond the cell cycle to
reflect more dynamic complex cellular behaviors, which are increas-
ingly recognized as being relevant in the transition from health to
disease (quiescence, senescence, resistant phenotypes…)5–7. While our
ability to profile the transcriptomes of individual cells has increased at
unprecedented speed, the molecular basis underlying transcriptional
heterogeneity, which defines and regulates phenotypic diversity and
plasticity, remains a central challenge.

Genetic screens and extracellular condition profiling have been
used to define the relationship between transcriptional heterogeneity
andphenotype,mostly usingCRISPRknockdown screens in cancer cell
lines8–11. Yeast is an ideal model for assessing transcriptional hetero-
geneity at the organismal level. In this regard, Saccharomyces cerevi-
siae has pioneered functional screens due to the vast number of
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molecular tools and genetic resources available for this organism. The
amenable yeast genome allows the generation of isogenic genetic
perturbations, thereby avoiding the variability generated by CRISPR
knockouts or knockdown efficiency using CRISPR inactivation
(CRISPRi)12,13. One of themost revolutionary tools is the yeast knockout
collection (YKOC), in which non-essential genes are deleted from the
genome. The YKOC served to dissect genotype-phenotype relation-
ships in bulk assays and has set the groundwork for our understanding
of genenetwork analyzes14,15.While the phenomeof theYKOChas been
extensively studied (Yeast Phenome16), at the transcriptomic level the
large-scale reference dataset contains only a bulk analysis from 25% of
the non-essential deletions. At the single cell level, and unlike higher
eukaryotic systems which often rely on CRISPR for genetic perturba-
tions, in yeast an array of 12 transcription factor mutants has been
profiled by manually creating and validating expressible barcoded
deletions across multiple conditions17. However, despite the remark-
able ease of genomic engineering in yeast, surveying large-scale
genetic perturbations at the single-cell level has been hindered by the
absence of technologies that can systematically integrate with single-
cell RNA sequencing (scRNA-seq)18.

To bypass these limitations, we developed a yeast single cell
resolved genotype-to-transcriptome atlas. To this end, we created a
RNA-barcoded genotype and clone deletion collection by reconfigur-
ing the classical YKOC, to generate a stable clone and genotype bar-
coded collection suitable for both targeted and large-scale single cell
perturbation studies. The design enabled us to generate two
transcriptome-wide single-cell atlases with genome-scale perturba-
tions under control and stress conditions. The dataset provides high
resolution transcriptional profiles of over 3500 mutants covering 75%
of the non-essential genes in the organism. The comprehensive nature
of our study provides a referencemap of the yeast cell state space and
genetic configuration, but also elucidates the influence of genetic
perturbations on transcriptional heterogeneity, thereby revealing the
underlying genetic basis of transcriptional heterogeneity.

Results
Redesign of the YKO collection with RNA-traceable deletions to
enable genome-scale genetic and environmental perturbation
screens
To characterize the relationship between genotype and transcriptome
at single cell resolution, we generated a genome-scale library of RNA-
traceable deletion mutants by reengineering the yeast knockout col-
lection (YKOC). The YKOC includes deletions of most non-essential
genes in the S. cerevisiae genome. The structure of the gene deletion
cassette to knockout (KO) each gene by homologous recombination
consists of a constitutive promoter (pTEF1) that drives the expression
of (i) the KANMx4 resistance gene and (ii) two unique genotype bar-
codes (20 bp) per deletion; both flanked by common sequences
upstream (Uptag) and downstream (Downtag) of the promoter and
terminator respectively14 (Fig. 1a;Methods). This approach renders the
genotype identity invisible to transcriptomic readouts and incompa-
tible with single-cell genetic perturbation screens (Perturb-seq).
Inspired by the original YKOCgenedeletion cassette, we redesigned its
structure to generate an RNA-traceable clone and genotype for each
mutant (Fig. 1a). Briefly, we generated a PCR cassette to replace the
KAN resistance marker with URA3. This cassette serves two purposes.
First, it shortens the heterologous terminator linking the original
Downtag barcode to the 3’UTR of URA3 to a minimum (43 nt) and,
second, it adds a clone barcode (5 randomnucleotides) downstreamof
the URA3 STOP codon (see Methods). By doing so, the 3’UTR of URA3
provides a mean to label and transcriptionally trace genotypes and
clones (Fig. 1a, Supplementary Fig. 1a). In contrast to pooled CRISPR
perturbations, to generate the YKOC each mutant was grown and
transformed individually, which prevents competition between
mutants, and positive clones were selected by successive rounds in

selective media (see Methods). The final collection consisted of 4162
mutant strains (82% of the original YKOC) carrying RNA-traceable
barcodes suitable for genome-scale genetic screens combined with
single-cell transcriptomics (Perturb-seq). This unique library repre-
sents a resource from which the same perturbations can be tested
elsewhere, but it is also flexible to allow the user to assess specific
mutants of choice. Of note, having fully independent clones helps test
how a given mutation performs across individual yeast cells allowing
for the normalization across epigenetic yeast individual variability, but
also permits to interrogate how perturbations affect such individual
epigenetic variability.

We designed two genome-scale Perturb-seq in which the whole
collection of mutants was grown independently (96-well plates) and
pooled before being subjected to stress (osmostress; 0.4M NaCl,
15min) or control conditions (Fig. 1b). Due to the rapid and transient
response of cells to osmostress, we collected andmethanol-fixed cells
at the peak of the transcriptional response to preserve the tran-
scriptome (see Methods)19,20. To generate the scRNA-seq libraries, we
used a microwell-based platform for single-cell isolation and oligo dT
priming to capture polyadenylated RNA for cDNA synthesis (Yeast
GENEXSCOPE HD, Singleron Biotechnologies). We profiled a total of
1.061.865 cells, fromwhich we removed low-quality ones (± 2 standard
deviation of mean genes, >10% mitochondrial reads, see Methods). In
parallel, for each library, we performed aone-step PCR amplification of
the clone and genotype barcode from theURA3 3’UTR (Supplementary
Fig. 1b; see Methods). We combined the transcriptome and targeted
amplification to assign genotype identity for more than 71% of cells,
removing cells with both conflictive and unassigned genotypes from
the analysis (Supplementary Fig. 1c). The resulting dataset contained
more than 3500mutant genotypes (Fig. 1c) equally represented across
conditions (Fig. 1d) with an average of 93 and 108 cells/genotype
(median of 77 and 87 respectively) in control and stress conditions,
respectively, and had a median coverage of 550 genes/cell and 1200
molecules/cell. Mapping the 3’UTR reads downstreamof the genotype
barcode allowed us to validate the genomic location of the deleted
genes. Overall, 90% of genotype barcodes aligned closely with the
endogenous terminator of the deleted gene, thereby confirming
genomic loci and thus the robustness of the data (Supplementary
Data 1). Correspondingly, we observed a reduced expression of the
knockout gene in the assigned genotype (Fig. 1e). We incorporated
clone barcodes into the YKOC to extend its functionality for bulk and
single-cell applications. Of note, clones of genotypes with high clonal
coverage ( > 10 cells per clone), displayed a similar transcriptomewith
77% of the clones displaying <3 differentially expressed genes, sug-
gesting that clonal differences are small (Supplementary Fig. 1d). Thus,
the library now permits clonal analyzes, allowing comparisons and
deeper analyzes of single cell heterogeneity.

To generate the transcriptome atlas, we estimated the global
effect of each mutant by comparing its transcriptome against the wild
type in the corresponding condition. In control conditions, our data
indicates thatmostmutants exhibit a patternof differential expression
favoring upregulated genes (Fig. 1f, Supplementary Fig. 1e,f).
Approximately 50% of the mutants have more than 10 differentially
expressed genes, with 10% having a very strong transcriptional phe-
notype (Fig. 1g). These data align with the largest transcriptomic pro-
filing in bulk ( > 1400 mutants), where most deletions also biased
towards upregulation of gene expression21. However, this trend fades
under stress conditions, resulting in a balanced outcomewithmutants
displaying both upregulation and downregulation of gene expression
(Fig. 1h,i, Supplementary Fig. 1g,h). To validate the robustness of the
data, we compared our scRNA-seq dataset to the largest bulk tran-
scriptome profiling of deletions in yeast using micorarrays21. Despite
substantial methodological differences, our dataset showed a con-
sistent correlation between the number of differentially expressed
genes per genotype in both studies (Supplementary Fig. 1i). Similarly,
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mutants known to have an impaired transcriptional response ranked
among the lowest expressing mutant in agreement with previous
reports22,23 (Supplementary Fig. 1j). Overall, these results indicate that
our scRNA-seq dataset recapitulates bulk transcription patterns.
Additionally, these results provide an overview of the functional
impact of geneticmutations andhighlight the relevanceof the external
conditions.

To identify sources of intrinsic heterogeneity and avoid normal-
ization biases, we regressed the cell cycle and removed ribosomal
genes from the expression matrix as these are known to introduce

technical noise and are commonly accounted for in scRNA-seq
analysis2,24. We used highly variable genes as an input to represent
the transcriptome of single-cells using Uniform Manifold Approxima-
tion and Projection (UMAP) embedding. This approach revealed stress
condition as the predominant clustering factor over genotype identity,
batch, and detectable before and after cell cycle regression (Fig. 1j,k,
Supplementary Fig. 1k–m). To cluster cells based on their degree of
transcriptional similarity, we applied the Louvain algorithm25 to extract
the transcriptional signature associated with each cell state. Interest-
ingly, we observed that cell states within a population are robust to
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loss-of-functionmutations (Fig. 1l). These results are concordantwith a
condition-dependent clustering recently reported in a targeted tran-
scription factor scRNA-seq profiling grown is several conditions in
yeast17. Thus, we developed a robust framework that enabled us to
build a systematic atlas of the single-cell transcriptome response to
genetic and environmental perturbations of more than 3500 mutants
under control and stress conditions.

Cells in a population organize into heterogeneous gene
expression states
Given the large-scale dimension of the dataset and the important
contribution of cell states, we clustered each condition independently.
In the UMAP space, cells distributed into 20 states in control (0–19 C)
and 18 states in stress conditions (0–17 N) (Fig. 2a,b). In both condi-
tions, cells mainly organized into a central cluster defining a con-
tinuum of cell states. We identified the genes that define
transcriptional states by extracting state markers and assign function
using upregulated genes (log2FC >0.25 and p-value < 0.05) (Fig. 2c,
Supplementary Data 2,3). Interestingly, these markers were not
markedly distinct, and several genes were shared across states,
thereby pointing to a continuum of states within a cell population. In
addition, we found that the wild type and, remarkably, 90% of the
mutant strains, in both conditions, shared the samedistribution across
states (Supplementary Fig. 2a–d). Most cell cycle phases were dis-
tributed across cell states; however, despite cell cycle regression, we
identified one cluster (10C and 11 N) enriched in S phase cells, char-
acterized by high expression of histone genes (Supplementary Fig. 2e,f
and Supplementary Data 4). Therefore, our data suggests that several
cell states represent stable and defined transcriptional states rather
than genotype-specific states and thus, extremely robust against
genetic perturbations.

In control conditions, cell states involved a variety of functions
encompassing the following: cell morphogenesis (e.g., cell wall bio-
genesis, cell conjugation, pheromone signaling and agglutination
genes); metabolic processes (e.g., carbon metabolism, phosphate
metabolism, iron metabolism and mitochondrial genes); and protein
homeostasis, among others (Supplementary Data 2,3). Three distinct
clusters fully separated from the core UMAP, and these displayed the
upregulation of: the environmental stress response (ESR) (14 C), aging-
related signatures (15 C), and mating genes (16 C) (Fig. 2a). Of note,
clusters 16 C, 2 C and 12 C (31% of the population) displayed gene sig-
natures of mating pheromone signaling pointing to this pathway as an
important contributor to cell state diversity (Supplementary Fig. 2g).
Indeed, the heterogeneous expression of pheromone signaling genes,
including the detected cell state markers (e.g. FIG, AGA genes), has
been found in a similar percentage of the population under normal
conditions using nascent transcription reporters, thereby reinforcing
the robustness of our dataset26.

Among the cell state markers, we recognized well-known tran-
scription programs, such as those that define daughter cells, char-
acterized by the expression of daughter-specific genes (DSE1-4, among
others27. Of note, based on the expression of the DSE genes, we dis-
tinguished two subpopulations of daughter cells with a differential
degree of development; one of them shows the described co-
regulation of the DSE1,2 pair with CTS1 (the chitinase responsible for
degrading the mother-daughter barrier) that identifies the most naive
daughter cells (3 C) versus a second population in which cells
expresses the DSE3,4-genes together with the mother early G1 marker
PIR1-HSP150 (1 C) (Supplementary Fig. 2g)17, thus recapitulating known
yeast developmental stages.

Remarkably, clusters 8 C and 19C showed a strong upregulation
of the iron regulon (FIT2, FIT3, FET3, ARN1, among others), mirroring
the hallmark signature of aged cells defined by bulk RNA-seq28 (Fig. 2d)
and correspondingly, accumulated iron28. Of note, while 8 C highly
expressed the iron regulon, 19 C had fewer cells but also expressed a
larger number of genes involved in cell wall organization induced
during stress conditions, perhaps representing a later aged stage and
allowing us to trace different degrees of phenotypical development.
Moreover, extending the aging signature defined in bulk to the top 10
genes and distinguishing between iron-related and unrelated genes,
clusters 4 Cand 15 Calso stoodout, revealing a bimodalitywithin aging
states in the cell population. This second module (4C and 15 C)
included the upregulation of genes known to be induced under
hypoxia (TIR, DAN and PAU families) but not the upregulation of iron
genes (Fig. 2d and Supplementary Fig. 2h). Thus, the scRNA resolution
allowed us to resolve the bulk aging signature into two distinct tran-
scriptional programs underlying two different aging subtypes via
modular expression of iron (represented by FIT3) or hypoxic genes
(HUG1) indicating that aging is a transcriptionally defined cell state that
can occur via different pathways.

To confirm whether transcriptional signatures indeed reflect an
aged population, we generated three destabilized fluorescent repor-
ters (mCherry) driven by the expression of iron or hypoxia related
promoters and terminators and a reporter from the pheromone sig-
naling pathway as a control of an unrelated cluster (16 C) (FIT3, HUG1
and SAG1 respectively). We isolated the top 2% expressing population
of each reporter by Fluorescence Activated Cell Sorting (FACS) (Sup-
plementary Fig. 2i) and measured their replicative age (number of cell
divisions) by counting bud scars stained using Calcofluor White stain
and measured mitochondrial morphology using MitoTracker staining
compared to a randomly sorted wild type expressing a constitutive
mCherry reporter (pTEF1). Correspondingly, cells expressing either of
the differential aging reporter genes (i.e. FIT3 or HUG1) but not the
SAG1 reporter, showed an aged phenotype as seen by the number of
scars compared to wild type (Fig. 2e), and an increase in fused mito-
chondria (Fig. 2f), both classical markers of aged cells29,30. Thus,

Fig. 1 | Redesign of the YKO collection with RNA-traceable deletions to enable
genome-scale genetic and environmental perturbation screens. a Schematic
representation of the RNA-traceable YKOC. Structure of the original deletion
(upper panel) and structure of the RNA-barcoded clone and genotype their posi-
tion in the 3’UTR.b Experimental layout. Cellsweregrown individually before being
pooled together and subjected or not to stress (0.4M NaCl for 15min). Fixed cells
were used for microwell based scRNA-seq. The transcriptome of each cell was
linked to the transcriptome through theURA3 transcript (seemethods). cGenotype
coverage per each condition is shown based for all detected genotypes (dark
orange), genotypes with >5 cells (light orange) and unassigned cells based on the
4162 genotypes of the RNA-barcoded collection. d Correlation of cell number per
genotype across conditions. Points are colored by density, warmer colors indicate
higher density. Marginal histograms show the distribution of cell numbers for each
condition. The mean and median cell number per condition are shown in the
corresponding axis. e Heatmap showing the expression levels of knocked-out
genes in relation to assigned genotypes for the top 200 highest expressing genes.

Each row (y-axis) represents a knocked-out gene, while each column (x-axis)
represents an assigned genotype based on barcode expression. Color intensity
indicates gene expression level, warmer colors indicate representing higher
expression. The diagonal blue pattern indicates reduced expression of each
knocked-out gene in its corresponding genotype. f Scatter plot represents the
comparison of upregulated (x-axis) and downregulated (y-axis) genes for each
genotype (points) in control conditions compared to thewild type strain in control.
g Fraction of genotypes in which genes are differentially expressed in control.
h Scatter plot represents the comparison of upregulated (x-axis) and down-
regulated (y-axis) genes for each genotype (points) in control conditions compared
to thewild type strain in stress (NaCl 0.4M 15min). i Fraction of genotypes inwhich
genes are differentially expressed in stress. j–l UMAP of the entire dataset across
conditions (j), genotype identify (k) and cell states defined by Seurat (L). UMAPS
represent the complete dataset of cells passing the quality check and assigned to a
genotype (n = 710952 cells). Source data are provided as a Source Data file.
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indicating that within a cell population, coordinated heterogeneous
gene expression programs lead to interconnected cell stateswhich can
generate distinct cell fates. Taken together, our dataset captures and
extends known cell states, providing the most comprehensive map of
cell states defined by specific gene programs which reflect distinct cell
fates within a population.

Transcriptome mapping unveils core and responsive cell states
To assess whether cell states are conserved in different conditions, we
assessed the degree of transcriptional correlation across cell state
markers across conditions. We classified “core states” as those whose
gene expression patterns were reciprocally represented in both con-
ditions (e.g., daughter, aged cells), while “responsive states” were
defined as those differentially modulated depending on the condition
(Fig. 3a,b).To assess the stability of cell states we took 2 approaches.
First, we assessed the between control and stress clusters using
upregulated cell state markers and found that a large proportion of

states in the control condition had at least one counterpart upon
exposure to stress (Fig. 3c). We next performed a quantitative an
unbiased approachusing a label transfer approach to identify cell pairs
that share the same transcriptional state across conditions (see
Methods).Wedefined core states as thosewhere at least 40%of cells in
a control cell state paired uniquely with a stress cluster (Supplemen-
tary Fig. 3a, and Supplementary Data 5). Core states included devel-
opmental andmorphogenic programs, cell cycle, the aging states, and
states related to mitochondrial function. These observations thus
indicate a high degree of conservation of the core clusters of gene
expression across conditions.

Responsive states arose either because the expression of cell state
markers are modulated upon stress thus losing their specificity, or
because novel stress-regulated states appear during adaptation. For
example, under stress, markers of the hypoxic aging and phosphate
metabolism clusters (4–15C and 9C, respectively) were no longer
cluster-specific, suggesting altered cell wall composition and

Fig. 2 | Cells in a population arrange in heterogeneous gene expression states
associatedwith biological function. a,bUMAPof the control a andNaCl b dataset
individually. Cells are colored by cell state indicated by boxed numbers colored
according to the corresponding cluster. c Expression of two representative cell
state marker genes in the control dataset. Dots size represent the percentage of
expressing cells and are colored from high (red) to low (blue) expression.
d Expression of the indicated aging signatures across control cell states. e Number
of scars per 100 cells determined by Calcofluor White Stain for a wild type

population or the top 2% of cells expressing the pFIT3- pHUG1-or SAG1-reporters.
Data represents the mean and standard deviation of three independent replicates.
p-values represent Benjamini–Hochberg corrected paired t.test against the wild
type (n = 3) (p-value 0.0002 (FIT3), 0.0004 (HUG1), 0.5992 (SAG1)). fDistribution of
mitochondrial morphologies for the indicated strains under control conditions by
MitoTracker staining. Mean and standard deviation for each morphology category
is shown (n = 3). (p-value 0.005 (FIT3), 0.004 (HUG1), 0.554 (SAG1)). Source data are
provided as a Source Data file.
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metabolism (Fig. 3b). On the other hand, some stress-dependent cell
states showed a weak correlation with control states due to the
expression of stress-related markers genes. These involved multiple
functions, including carbon metabolism (clusters 0N and 13N), ADP
metabolism (cluster 14N), and protein folding (cluster 17N), thereby
suggesting that clusters that arise in the presence of stress are related
to specialized protective functions (Fig. 3c, Supplementary Fig. 3b and
Supplementary Data 2,3). For example, the stress cluster 9 N corre-
lated with the basal-stress cluster in the control condition (14 C) and
both displayed higher expression of the induced Environmental Stress
Response (iESR) (e.g HSP12) identified by bulk RNA-seq31,32 (Fig. 3d,e
and Supplementary Fig. 3c).

We then assessed the phenotypic consequenceof high expression
of the iESR of cells residing in clusters 14 C and 9N. To this end, we
expressed a destabilized fluorescent reporter (pHSP12-iRFP-tHSP12) as
mean to label these populations in control or upon stress or used the
SAG1 reporter (pSAG1-mCherry-tSAG1) as a control.We isolated the top
2% of cells expressing the reporter and tested their competitive fitness
in comparison to wild type labeled with a constitutive mCherry
reporter (pTEF1-mCherry-tTEF1) or GFP to compete against the top
HSP12 or SAG1 expressor cells. The stress response program (14 C)
exhibited a fitness trade-off: it reduced fitness under normal condi-
tions but showedbetterfitness under stress (Fig. 3f). This suggests that
the unnecessary expression stress-responsive genes impairs growth,
yet provides a bet-hedging strategy under stress. In contrast, the top
2% of SAG1-expressing cells showed no change in competitive fitness

under either normal or stress conditions (Supplementary Fig. 3d). In
addition, we noticed that cluster 13 N which was also hyperesponsive,
was enriched in the expression of daughter-specific transcripts (Sup-
plementary Fig. 3b). A global comparison of the response of mother
and daughter cells revealed that the latter systematically showed a
stronger induction of the iESR (Supplementary Fig. 3e), thereby sug-
gesting that cell states determine the plasticity and resistance to dif-
ferent environmental conditions.

Therefore, the Yeast Transcriptome Atlas examined the tran-
scriptional behavior of cell states under both stress and non-stress
conditions formore than 3500mutants. This allowed us to distinguish
between core states and those dynamically responding to the envir-
onment and depicted their adaptive potential. Cell states represent an
essential trait that is robust to genetic perturbations but dynamic to
environmental perturbations.

Single-cell genotype-to-phenotype analysis highlights reg-
ulators of yeast cell states
Our atlas provides a comprehensive genotype-phenotype information
at organismal level. To understand the genetic determinants of cell
states, we assessed the enrichment or depletion of specific genotypes
over the defined cell states (Supplementary Data 6,7). The wild type
andmostmutants (approx. 90%)were not biased towards any cell state
in either condition tested (Fig. 4a,b and Supplementary Fig. 4a,b). It is
worth noting that approximately 10% of mutants were significantly
enriched in or depleted from specific cell states (253 in control and 331

Fig. 3 | Transcriptome mapping unveils core and responsive cell states that
determine fitness. a,b Examples of core and responsive cell states. UMAP shows
the distribution of the cell state-specific signatures for the indicated clusters and
condition. Cells are colored by degree of signature expression using two repre-
sentative genes per cell state. Darker colors represent higher expression. c Pairwise
cell state marker expression correlation across cell states. Per each cell state the
expression of upregulated genes was correlated, dots colors represent the degree
of similarity determined by Fisher test (darker color indicate higher correlation).
d,e Expression of the iESR signature for the indicated cell states compared to the
median of population (gray; and gray line). Stars indicate significance comparing

against the median. (3 d, Wilcoxon test, <2e−16, 3e, Wilcoxon test <2e-16 for all
groups. f Competition assay to determine cell state fitness. Cells with the top 2%
expression of the HSP12 or SAG1 reporter were sorted and grown in combination
with a wild type cell (labeled with GFP) in richmedia (control) or in the presence of
stress (1MNaCl).Growthof the twopopulationswas assessed at time0orafter48h
by flow cytometry. Data represents mean and standard deviation of three inde-
pendent experiments and statistical significance is shown respect to the wild type
strain (n = 3). Control p-value= 8,19388E-06, NaCl p-value = 8,64624E-05. Source
data are provided as a Source Data file.
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in stress; with 162 of them common to both conditions) (odds ratio >1,
p-value < 0.05) (Supplementary Fig. 4c,d). Cell-state biased mutants
tended to be enriched in or depleted of a single state and rarely in
multiple states (Fig. 4a, Supplementary Fig. 4a) a pattern that is clone
independent (Supplementary Fig. 4e,f). Surprisingly, cell state
enrichment occurred more frequently than cell state depletion
(Fig. 4b, Supplementary Fig. 4b), suggesting that there is a preferential
role for preserving cell state plasticity. Our results suggest that cell

state organization is a highly robust biological process resistant to
most genetic or environmental perturbations.

We then analyzed the distribution of the biased mutants across
cell states. Two related states were observed to be preferentially
enriched by mutants in control and stress conditions (8C and 9C in
control and 8N and 14N in stress) (Fig. 4c and Supplementary
Figs. 4g,h). Indeed, cluster 8 C (related to 8N) displayed the aged iron-
regulon signature, and mutants that impair mitochondrial functions
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(mitochondrial translation and ATP transport) and iron homeostasis
accumulated in these clusters and displayed this iron-dependent pre-
mature aged signature in both conditions (Fig. 4d). Of note, mutants
defective for endocytosis (i.e., endosomal sorting and ESCRT com-
plexes) also accumulated in the same state (Fig. 4d). These findings
suggest, and reinforce the initial observations, that defects in mito-
chondrial function lead to impaired iron homeostasis29 promoting a
premature aged transcriptome as the most common phenotype
induced by loss-of-function mutations.

We validated that indeed representative mutants (based on the
protein interaction network) of the mitochondrial function or
endosomal sorting (8 C and 8 N) showed a higher expression of a
reference marker for the iron-starvation cluster (pFIT3 mCherry)
when compared to wild type (Fig. 4e). The expression of the iron-
cluster leads to an aged phenotype (Fig. 2e,f), hencewe examined the
mitochondrial morphology in these mutants. While mutants related
to mitochondrial function (mss16 and mrpl7) displayed an increased
percentage of cells with fused mitochondria, mutants related to
endocytosis (snf7 and rim8) showed even a more severe phenotype
with most of the population ( > 60% of cells) displaying fused mito-
chondria (Fig. 4f). These results are in agreement with the described
role of Snf7, a member of the ESCRT complex, in macromitophagy33.
Our results demonstrate that gene deletions can lead to the accu-
mulation of cells in specific cell states, characterized by distinct
expression patterns. Although most cell states are shared across
genotypes, mutations influence their relative abundance. This
information allows us to leverage the similarity in transcriptional
phenotypes to link functionally related genes and elucidate
phenotype-genotype interactions.

The transcriptional response to genetic perturbations also
provides information-rich profiles to naturally infer and predict
gene function. For example, in the control condition, the second
cell state with the larger number of biased mutants (9 C) showed a
strong transcriptional signature similar to phosphate starvation
(expression of the PHO pathway and VTC complex (Fig. 3b)34.
Accordingly, genotypes depleted from this cluster include hmt1, a
mutant in an arginine methyltransferase and known positive reg-
ulator of phosphate genes35, whereas genotypes that accumulated
in this cluster include mutants in known negative regulators of
phosphate metabolism (e.g pho85, kcs1)36,37 (Fig. 4g and Supple-
mentary Fig. 4e). Additionally, we identified other mutants involved
in histone acetylation, namely the SAS (sas4, sas5 a trimeric histone
acetyl transferase complex) and Nua4 (eaf3) complexes, as mutants
with increased expression of the phosphate genes and biased
towards cluster 9 C, suggesting a role for these complexes in
phosphate homeostasis (Fig. 4g).

Within theprotein interactionnetwork that contained the SAS and
NuA4 complexes, we identified YPL216W, a paralog of unknown func-
tion of ITC1, a component of the Isw2 chromatin remodeling complex
involved in gene silencing. Given its link with histone acetylation
complexes, we sought to validate its involvement in the regulation of
the phosphate regulon by assessing the levels of acetylation at phos-
phate genes by chromatin immunoprecipitation (ChIP). Indeed, the
deletion of YPL216W, SAS4 and SAS5 led to a decrease in lysine acet-
ylation at promoters of phosphate genes (i.e., PHO84 and VTC1)
(Fig. 4h). It is known that alkalization of the media resembles phos-
phate starvation and mutants defective in phosphate metabolism like
pho85 (Supplementary Fig. 4e) displayed reduced growth in alkaline
media. Based on the phosphate-starvation transcriptome of ypl216w
and sas4 and sas5 deletions, we hypothesized that these mutants
should also be sensitive to alkaline conditions. As expected, these
mutants showed a significant slower growth as observed by the lag
time difference when we monitored growth in standard rich (pH=5.5)
and alkaline media (pH=8.8) (Fig. 4i), validating a role for these genes
in the regulation of phosphate homeostasis.

To determine the overall phenotypic effects of cell state con-
finement, we evaluated thefitness of allmutantswith a biased cell state
distribution (253 from control and 331 from stress, Supplementary
Fig. 4c) using available environmental screens across 14 stressors38.
Cell state-biased mutants from both conditions systematically dis-
played lower fitness scores compared to a random permutation,
regardless of the stressor type (Fig. 4j, k). These observations indicate
that cell state variety is a defining property of healthy populations, and
that mutants showing enrichment towards certain cell states associate
with reduced fitness.

Therefore, by integrating single-cell transcriptome data, cellular
state mapping, and genetic perturbations, by using the cell state dis-
tribution, we identified underlying mutations that promote cell state
attraction or deplete cells from a state. The Yeast Transcriptome Atlas
provides a unique resource that links genotype-transcriptome-phe-
notype, offering insights into gene function that are difficult to discern
at the population level.

Different cellular functions drive transcriptional heterogeneity
under control and stress conditions
Transcriptional heterogeneity is a source of cell plasticity, and it has an
impact on cell phenotype. Leveraging on the single-cell resolution of
the Perturb-seq,we reasoned that scoring thedegree of transcriptional
heterogeneity shown in each mutant would reveal genetic drivers of
heterogeneity and their conservation across conditions. By applying
an SVD-based leverage score as previously reported genome-scale
human Perturb-seq11, we determined the genetic perturbations that

Fig. 4 | Single-cell genotype-to-phenotype analyzes highlights regulators of
yeast cell states. aDistribution of the number of enriched cell states per genotype
in control conditions. b Volcano plot shows the cell state enrichment of each
mutant in control conditions (wild type is shown in red). Black line indicates the
threshold for statistical significance (two-sided Fisher test Benjamini-Hochberg
adjusted p-value <0.05). c Number of genotypes enriched (blue) or depleted (red)
per each cell state in each condition. d Protein enrichment network of mutants in
control condition enriched in cluster 8 C (odds ratio >1, two-sided Fisher test
Benjamini–Hochberg adjusted p-value<0.05). Nodes are colored according to
module enrichment (MDCE, see Methods). e Expression of the pFIT3 reporter (8C)
measured by flow cytometry, reporter expression is shown in the x axis against the
side scatter 8SSC) for the indicated strains colored as in (d). Histograms represent
density of the x and y axis. Graphs shows a representative experiment. Mean,
standard deviation and significance to the wild type (paired t.test) (n = 3).
f Representative images of mitochondrial morphology stained by MitoTracker for
the indicated strains. Barplots show average of each mitochondrial morphology
under control conditions (n = 3, 150 cells/strain). Paired t.test was performed
comparing the frequencyof tubularmorphology between thewild typeandmutant

strains (pvalues 0,00019 (mss116), 6,42E-05 (mrpl7), 1,30E-05 (snf7), 0,00012
(rim8)). g Protein–protein interaction for genotypes enriched in cell state 9C
colored according to theirMDCE.h Levelsof Lysine acetylationdeterminedbyChIP
at the indicated strains and promoters in control conditions for the indicated
promoters. Bars represent the mean and standard deviation of three independent
biological replicates (dots). Benjamini-Hochberg corrected paired t.test is shown
respect to the wild type (pvalues for the indicated strains (left to right) PHO84;
0.00219, 0.00043, 0.00022, 7.6e-05; VTC1; 0.0126, 0.0126, 0.0126, 0.0097.
i Growth curve of the indicated strains in control (CSM pH=5.5) or alkaline condi-
tions (CSM pH=8.8). The bars represent the average and standard deviation
between the difference in Lag time between the alkaline media respect to control
(n = 3). Benjamini–Hochberg corrected paired t-test is shown respect to the wild
type (p-value for the indicated strains (left to right) 0.0171, 0.0002, 0.0012, 0.0082.
j Radar plot shows the fitness score across a stressor panel for mutants enriched in
specific cell states in control conditions (orange) or a random permutation as a
reference (gray). Light gray ribbons show the 95% confidence interval. k Fitness
score as in j for mutants enriched in cell states in stress conditions (blue). Source
data are provided as a Source Data file.
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resulted in significantly deviated gene expression from the wild type.
Of note, the average leverage score strongly correlated across condi-
tions (Supplementary Fig. 5a). While the variance of the leverage did
not linearly correlate with cell number, lower cell counts were asso-
ciated with higher variability in leverage scores (Supplementary
Fig. 5b,c). We then used the standard deviation of the scaled leverage
score to identify mutants with increased (negative regulators) or
decreased (positive regulators) heterogeneity, using a 30% threshold
relative to the wild type (see Methods). While most mutants, in both
conditions, did not lead to changes in transcriptional heterogeneity,
we identified a larger fraction of negative regulators of transcriptional
heterogeneity (approx. 150mutants) than positive regulators (approx.
20 mutants) (Fig. 5a,b) (Supplementary Data 8). This pattern mirrors
the observations in the human Perturb-seq dataset11 (Supplementary
Fig. 5d,e), thereby suggesting that transcriptionalheterogeneity is kept
within a defined range and only a few mutations alter it.

To understand the nature of the potential drivers of hetero-
geneity, we projected the negative regulators of each condition indi-
vidually onto the yeast genetic interaction map39,40. Negative drivers
spanned a variety of functions in both conditions. As expected, under
control conditions, chromatin, transcription, and translation mutants
were present, but surprisingly, genes related to vesicle trafficking,
cytokinesis,mitochondrial function, and tRNAmodifications were also
included (Fig. 5c). Of note, mutants related to mitochondrial dys-
function generate increased heterogeneity in mammals11. Upon stress,
we found that negative regulators involved some specific cellular
functions, such as peroxisome function, nuclear transport, and chro-
matin/transport. However, mutants related to mitochondrial function
were also among the most represented drivers (Fig. 5d). While both
control and stress drivers showed shared functions, such as mito-
chondrial function, the identity of these genes poorly overlapped (10%,
Fig. 5e and Supplementary Fig. 5f,g). Surprisingly, transcriptional het-
erogeneity is regulated by several core processes, and it is condition-
specific, suggesting that the identification of molecular drivers should
be performed for each specific condition of study. Therefore, our
extensive genome coverage provides a comprehensive annotation of
genes and pathways for their role in transcriptional heterogeneity.

To assess the physiological impact of transcriptional hetero-
geneity, we extracted cell fitness scores from the top and bottom 50
drivers for each condition from 14 phenotypic screens, as shown in
Fig. 4j,k38. Mutants with decreased heterogeneity under control con-
ditions showed significantly higher fitness upon stress than genotypes
with high variability41 (Fig. 5f). Conversely, mutants with high tran-
scriptional heterogeneity in osmostress displayed consistently lower
fitness in most stress conditions (Fig. 5g). These observations suggest
that transcriptional heterogeneity is a quantitative trait that influences
cell fitness. Our results support the notion that excessive transcrip-
tional heterogeneity generates deviated transcriptional patterns from
the wild type that ultimately render cells vulnerable to stressors,
thereby weakening cell adaptability.

Discussion
Functional profiling of the eukaryotic genome was pioneered in yeast
through the use of the YKOC38,39,42–46 and has systematically been
applied by many groups at the phenotypic level (Yeast Phenome16).
However, the YKOC is not suitable for single-cell studies. Here we
performed a single-cell genome-scale Perturb-seq in S. cerevisiae by
modifying the initial structure of the (non-essential) YKOC to generate
RNA barcoded mutants, which allowed us to exploit the genotype-
transcriptional phenotype, including clonal resolution. Thus, our study
provides an updated version of the YKOC that contains genotype RNA
barcoding structure suitable for genome-scale Perturb-seq. Our 3’UTR-
based barcoding deletion strategy systematically profile isogenic
perturbations with clonal resolution which can be reassayed at any
time and condition as a full collection or for a subset of mutants. Of

note, unlike CRISPRi based approaches, deletion-based strategies are
permanent perturbations in isogenic cells. However, integrated dele-
tions do not allow to profile essential genes and may result in com-
pensatory mechanisms. Our design extends the functionality of the
YKOC providing a framework for tracing clonal expression dynamics
by scRNA-seq as well as integrating a way to trace clonal fitness in
conventional phenotypic screens.

The analysis of the library under two different conditions enabled
us to generate a genome-scale Yeast single-cell Genotype-to-
Transcriptome Atlas that covers most of the genome of a eukaryotic
organism (more than 75% of the genes) with single cell resolution and
in two different conditions recapitulating previously reported tran-
scription patterns obtained in bulk21. Therefore, the breadth and depth
of the atlas provides a high resolution transcriptional data to integrate
with the vast amount of information acquired over decades and will
serve to assess transcriptional single cell data for ubiquitous studies. In
our study we provide evidence for multiple uses of the atlas. An
interesting findingwas the identification of shared core transcriptional
states within a cell population. While many perturbations induced
changes in expression, only few mutants dramatically changed the
transcriptional landscapeperhapsdue to redundancy in gene function.
However, about 90% of the mutants retained cell state plasticity,
highlighting the robustness of cell states against genetic and envir-
onmental perturbations.

We categorized cell states into “responsive”, which aremodulated
by external conditions and promote specialized adaptive functions,
and “core”, which are genotype- and condition-independent. These
transcriptional states involve developmental and core functional
transcriptional programs (oxidative phosphorylation, cell cycle, cell
wall morphogenesis, protein homeostasis, and stress responses,
among others). Interestingly, some of the core states associated with
protein homeostasis, cell cycle, oxidative phosphorylation and stress
response are also found in human Perturb-seq11, thus indicating partial
conservation of functional cell states. The analyzes of the transcrip-
tional programs in each state served to deconvolute different degrees
of phenotypical development or distinct transcriptional paths that
lead to aging phenotypes.

The high amount of information provided by this Perturb-seq
yields a comprehensive snapshot of cellular states as a function of
genotype and condition. We harnessed the potential of 10% of the
mutants that showed biased cell state accumulation. Some mutations
irreversibly confined cells to specific transcriptional states, acting as
stage attractors, whilst others, depending on the environmental con-
ditions, relocated or pushed cells into specific states. Notably, muta-
tions inmitochondrial homeostasis emerged as a core function leading
to cell state rigidity, an event that promotes aging through iron-
starvation like signatures. The transcriptional response of the mutants
also provides information to infer and predict gene networks and
functions. For example, in the control condition, the second cell state
with the larger number of biased mutants displayed a strong tran-
scriptional signature related to phosphate metabolism and this served
to identifyregulatory layers of phosphate homeostasis.

In addition to uncovering the genetic underpinning of cell states,
the catalog of transcriptional phenotypes captures genotype-specific
gene expression patterns, thus enabling the identification of positive
and negative regulators of transcriptional heterogeneity. Whereas in
higher eukaryotes these have been linked mainly to changes in copy
number, our data in yeast suggest that negative regulators involve
several cellular functions, including transcription, translation, and
metabolic functions. Of note, some of the most abundant negative
regulators involved several mitochondrial functions. Similarly, per-
turbation of mitochondrial dysfunction in the human Perturb-seq
leads to increased heterogeneity11. These results highlight the impor-
tance of considering both global and condition-specific effects when
assessing the impact and regulation of transcriptional heterogeneity.
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Predicting molecular responses upon any kind of perturbation at the
single cell level is a core question in biology and a challenge that
requires genome-wide perturbations11,47,48. We believe that our dataset
provides an experimental framework with paired genetic and envir-
onmental perturbations, serving as a rich resource from in silico

screening. In summary, the Yeast single-cell Genotype-to- Tran-
scriptome Atlas provides a reference map, enabling both hypothesis-
driven and hypothesis-generating exploration of cellular behaviors at
several levels, such as genotype-phenotype relationships, and it can be
used to identify conserved traits between eukaryotes.

Fig. 5 | Different cellular functions drive transcriptional heterogeneity under
control and stress conditions. a,b Distribution of the standard deviation of het-
erogeneity (scaled leverage score, y axis) per eachgenotype (x axis) in control a and
stressb. Genotypes in the x axis are plotted in the sameorder. Dashed lines indicate
the >30% increase or decrease threshold compared to thewild type. Colored points
represent positive or negative regulators. The total number of genotypes above
and below threshold is shown in graph. c,d Projection of negative regulators of
heterogeneity per each condition (control, c and NaCl, d). The list of candidates
overlaid with the yeast genetic interaction network to associate genes to function.
Points represent the density of mutants over each indicated cellular function from

the cell map. e Comparison of transcriptional heterogeneity per genotype (stan-
dard deviation scaled leverage score). Each point represents a genotype in control
(x axis) or stress (y axis). Points are colored according to the >30% difference
respect to the wild type (red point). f,g Radar plot shows the fitness score across a
stressor panel formutants of top50 (red and turquoise) and bottom 50 (purple and
blue) genotypes with increased/decreased heterogeneity per each condition
(f control and g NaCl) against a random permutation as a reference (gray). Light
gray ribbons show the 95% confidence interval. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-025-57600-4

Nature Communications |         (2025) 16:2645 10

www.nature.com/naturecommunications


Methods
Generation of a single cell transcription atlas by using a mod-
ified yeast knock out collection
To generate a genome-scale library of RNA-traceable deletionmutants
we reengineered the deletion of the original yeast knockout collection
(YKOC)49. Briefly, we generated a PCR cassette to replace the G418
resistance marker with URA3 to shorten the heterologous terminator
linking the original Downtag barcode to the 3’UTR of URA3 to a mini-
mum (43 nt) and added a clone barcode (5 random nucleotides)
downstreamof theURA3 STOP codon (see below). This strategy allows
the labeling and transcriptional tracing of genotypes and clones.

Oligonucleotides used for the modification of the YKOC
collection
Oligonucleotides for strain generation (Integrated DNA Technologies)
were purifiedby PAGEpurification and resuspendedwith nuclease free
water (Thermo, 10977035) at a final concentration of 100 µM.

For YKOC deletion strains. OMN761: CACATCACATCCGAACATAAAC
AACCatgggtaaggaatcgaaagctacatataaggaac

OMN773:TCGATGAATTCGAGCTCGTTTTCGACACTGGATGGCGG
CGTTNNNNNttagttttgctggccgcatc

Primers to generate WT strains. OMN774:GATTCGGTAATCTCCGAG
CAGAAGGAAGAACGAAGGAAGGAGCAGACATGGAGGCCCAGAATACC

OMN775:ATTTGTGAGTTTAGTATACATGCATTTACTTATAATAC
AGTTCGGTGTCGGTCTCGTAGNNNNNNNNNNNNNNNNNNNNATC
GATGAATTCGAGCTCGTTTTCGACACTGGATGGCGGCGTTNNNNN
ttagttttgctggccgcatc

For OMN773 and OMN775 a stretch of 5 random nucleotides (N5)
was added after the stop codon to include a clone barcode. Addi-
tionally, to generate barcoded WT strains, OMN775 contains an addi-
tional stretch of 20 nt.

The PCR product resulting from OMN761-OMN773 contains
homology to regions within the original deletion cassette targeting the
junction of the pTEF1-KAN and the 1 nt upstream of the genotype bar-
code (D2-Downtag-D1), therefore shortening the terminator (from 262
nt in the original YKOC to 43 in the RNA-barcoded collection) enabling
the use of the endogenous terminator. A total of 7 different WT strains
were generated with distinct clone and genotype barcodes as controls.
These wild type strains were verified by Sanger sequencing. For wild
type strains the PCR product resulting from OMN774-775 contains
homology regions upstream and downstream of the URA3 loci.

Generation of the PCR cassette was done by pairing OMN761-
OMN773 and OMN774-OMN775 for deletion strains and WT strains
respectively. Expand High Fidelity PCR System (Roche, 11759078001)
wasused to amplify theURA3marker using 10 ngpRS406 as a template
in reactions of 100 µl (Buffer# 2 10X with MgCl2, dNTPs mix 1mM
(Promega, U1420), 1 µMOMN761 or OMN773 (Fw), 1 µM of OMN773 or
OMN774, and 2.6 U (0.75 µl) of Expand High Fidelity EnzymeMix. PCR
product was purified using PB Buffer (Qiagen, 19066), transferred to a
DNA purification column (EconoSpin Columns, 1910-050) and cen-
trifuged for 1minute at 21000 × g, washed once with PE Buffer
(Quiagen, 19065) and eluted using nuclease free H2O. Finally, the
purified PCR product was diluted to 400 ng/µl.

Sequence of the RNA-barcoded Yeast Knock Out deletion
structure
GATGTCCACGAGGTCTCTNNNNNNNNNNNNNNNNCGTACGCTGC
AGGTCGACGGATCCCCGGGTTAATTAAGGCGCGCCAGATCTGTTT
AGCTTGCCTCGTCCCCGCCGGGTCACCCGGCCAGCGACATGGAG
GCCCAGAATACCCTCCTTGACAGTCTTGACGTGCGCAGCTCAGG
GGCATGATGTGACTGTCGCCCGTACATTTAGCCCATACATCCCC
ATGTATAATCATTTGCATCCATACATTTTGATGGCCGCACGGCGC

GAAGCAAAAATTACGGCTCCTCGCTGCAGACCTGCGAGCAGGGA
AACGCTCCCCTCACAGACGCGTTGAATTGTCCCCACGCCGCGCC
CCTGTAGAGAAATATAAAAGGTTAGGATTTGCCACTGAGGTTCTT
CTTTCATATACTTCCTTTTAAAATCTTGCTAGGATACAGTTCTCAC
ATCACATCCGAACATAAACAACCatgggtaaggaatcgaaagctacata-
taaggaacgtgctgctactcatcctagtcctgttgctgccaagctatttaa-
tatcatgcacgaaaagcaaa-
caaacttgtgtgcttcattggatgttcgtaccaccaaggaattactggagttagttgaagcat-
taggtcccaaaatttgtttactaaaaacacatgtggatatcttgactgatttttccatggagggca-
cagttaagccgctaaaggcattatccgccaagtacaattttttactcttcgaagaca-
gaaaatttgctgacattggtaatacagtcaaattgcagtactctgcgggtgtatacagaatagca-
gaatgggcagacattacgaatgca-
cacggtgtggtgggcccaggtattgttagcggtttgaagcaggcggcggaagaagtaa-
caaaggaacctagaggccttttgatgttagca-
gaattgtcatgcaagggctccctagctactggagaatatactaagggtactgttga-
cattgcgaagagcgacaaagattttgttatcggctttattgctcaaagagacatgggtggaaga-
gatgaaggttacgattggttgattatgacacccggtgtgggtttagatgacaaggga-
gacgcattgggtcaacagtatagaaccgtggatgatgtggtctctacaggatctga-
cattattattgttggaagaggactatttgcaaagggaagggatgctaaggta-
gagggtgaacGTTACAGaaaagcaggctgggaagcatatttgagaa-
gatgcggccagcaaaactaaNNNNNAACGCCGCCATCCAGTGTCGAAAAC
GAGCTCGAATTCATCGATNNNNNNNNNNNNNNNNNNNNCTACGA
GACCGACACCG

Sequence legend:
N: Random nucleotides N20 genotype barcodes from original

YKOC and N5 represents the added clone barcode.
Lowercase: open reading frame of the URA3 gene. Bold letters

denote nucleotides remaining from theoriginalG418 resistance. These
nucleotides were kept to increase the efficiency of the integration.

Underlined regions: original D2 and D1 sequences from the
original YKOC

Modification of the yeast knock out collection
For the generation of themodified strains, frozen glycerol stocks from
the haploid yeast knock out collection were grown on YPD (Yeast
Peptone Dextrose medium) supplemented with G418 (Geneticin,
200mg/L) into 96 well plates using a Robot (Singer instruments).
Strains were allowed to grow for 48h until saturation at 25 °C before
transformation.

For high-throughput liquid transformation, 10 µl of saturated
cultures were transferred and diluted into deep 96 well plates con-
taining 700 µl of YPD using EpMotion 96 (Eppendorf). Cells were
allowed to grow for 6 h, media removed and 200 µl of LiAc solution
was dispensed using a Multidrop Combi (Thermo, 5840300). A 1:1
mix of 40 µl of ssDNA (10mg/ml) and a denatured PCR cassette for
deletion strains (PCR product OMN761-773) and for WT strain
(OMN774-OMN775) (400 ng/µl) was added to the cell-LiAC mix with
an EpMotion. Last, 300 µl of 50% PEG solution was added to the mix.
Yeast transformation plates were incubated at 30 °C for 1 h and after
35 µl of DMSO was dispensed and briefly shacked with Multidrop
Combi. Transformations were heat shocked for 30min at 42 °C using
a water bath, cells were centrifuged, and transformation reagents
removed. Pelleted cells were washed with 200 drop out media (CSM
URA, MPBio, 1145112-CF) centrifuged, resuspended in 300 µl of URA-
and incubated at 30 °C overnight. Then plates were centrifuged, and
cells resuspended in fresh URA- media for 48 h. Transformation
efficiency was determined by transferring 10 µl of the transformation
into fresh URA- media and check for growth using a microplate
reader (Synergy HX1, Agilent Technologies). Grown cells were mixed
with URA-50% glycerol to make frozen stocks of the RNA-barcoded
Yeast Knockout Collection. The genotype genomic location of
reengineered strains was validated using the 3’UTR region of URA3
and themedian distance to the expected deletion has can be found in
Supplementary Data 1.
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Yeast Growth and harvest for the Perturb-seq experiments
Frozen glycerol stocks of each individual mutant from the tran-
scriptionally barcoded yeast knock out collection were recovered on
URA- media at 25 °C for 48h until saturation. The next day, 5 µl of
cultures were refreshed into another 96 well plate containing 200 µl of
YPD. Cells were allowed to grow for 6 h until they reached mid expo-
nential phase average OD660 0.6–0.8. Tomaximize representativeness
of each mutations optical density for all plates was assessed after
seeding and before pooling using a Synergy HX1 reader. Cells then
were pooled together into large flasks and shacked vigorously to
ensure a homogeneous mixture.

We subjected or not cell pools to osmostress (0.4M NaCl for
15min) and followed the cell fixation protocol from GEXSCOPE®
Microbial Single Cell RNA Library Kit HD (Yeast) (4161031). The selec-
tion of this experimental conditions is based on a combination of
extensive transcriptomics data50,51 that determines the peak of
expression of osmoresponsive genes. Briefly, 100ml cells where cen-
trifuged 1min 850 × g, media poured off and cells immediately fixed
and resuspended in 10ml of ice cold 80% Methanol (Scharlab,
ME0301005P). For each condition methanol-fixed cells were split into
20 different aliquots (1ml) from each condition (control/NaCl) and
stored at −20 °C, to avoid multiple freezing and thawing.

Library generation
To perform the yeast, Perturb-seq experiments we followed GEX-
SCOPE® Microbial Single Cell RNA Library Kit HD instructions
(4161042, Singleron Biotechnologies). Briefly, A methanol frozen ali-
quot of each condition was equilibrated for 15min at 4 °C (ice) before
pelleted (2min 1640g at 4 °C). Supernatant was discarded and cells
were washed twice with 700 µl of rehydration buffer (DPBS1X, BSA
20mg/ml (Thermo Fisher Scientific, 14190144 and AM2616), RNase
inhibitor (40U/µl) (Takara, 2313 A), Actinomycin D (2mg/ml) (Sigma,
A1410-2MG)). To disaggregate potential cell clumps we filtered twice
with PluriStainer (PluriSelect,43-50040-03) and cells were counted
with a Neubauer chamber. A total of 220,000 cells (120 µl) of the yeast
suspension per matrix-cartridge in the High Density Singleron Matrix
v1.0.1instrument. For each batch, a total of 2 matrix-cartridges were
run simultaneously each one loaded with control and NaCl simulta-
neously. Batch 11 was performed only with one stress sample. The
position of each sample in the Singleron Matrix instrument (upper/
lower slot) was exchanged per every run. A total of 29 matrix-
cartridges were run (14 control and 15 NaCl).

Single-Yeast Partitioning, mRNA capture, reverse transcription,
cDNA amplification and cDNA purification were performed according
to manufacturer’s instructions. For cDNA library amplification 8 PCR
cycles were used. Samples were processed per run (as group of two
samples, control/NaCl) until cDNA purification. The cDNA quality of
each cDNA was assessed by Qubit (Q33231, Thermo Fisher Scientific,
Qubit™ 1X dsDNA HS Assay Kits), the size and integrity of the full-
length cDNA was inspected with a DNA Pico Bioanalyzer chip (Agilent
technologies). Library preparation was done using 50ng of purified
cDNA as an input and library amplification was done with 10 PCR
cycles. Finally, library quality check was performed with Qubit and
library sizewasdeterminedwithDNA Pico Bioanalyzer chip. Equimolar
pools of the 29 librarieswere pooled together and sequenced inone S4
NovaSeq lane (CeGAT, Tübingen) using paired end 150 cycles (PEx150
cycles). A total of 3.58 Tb of data were generated from a single run.

Targeted Amplification (TA-libraries)
For each of the 29 full length cDNA libraries, a total of 5 ng was used as
an input to amplify the URA3 transcript and the 3’UTR with a one-step
PCR reaction. PCR was generated using the NEBNext Ultra II (E7645L,
New England Biolabs) in a final volume of 25μl following manu-
facturer’s instructions. The primer design incorporates the P5/
P7 sequences, the index barcode and the Illumina read 1/2 sequences

to enable direct sequencing of the purified PCR products. The result-
ing PCR products (102 bp excluding the primer overhangs) were pur-
ified using AmpureBeads at a 1.5× ratio and elutedwith 30μl of elution
buffer. Library size was inspected by Bioanalyzer chip and equimolar
amounts of each library were pooled together for sequencing using a
NextSeq500 (Illumina).

Read pre-processing, alignment, and filtering
To process the sequencing data (FASTQ), we used standard CeleScope
(v1.14) pipeline from Singleron (https://github.com/singleron-RD/
CeleScope). To process FATSQ files, we first trimmed the D1+down-
stream and D2+upstream reads originating from the knock-in loci to
retain only the genotype sequences. Reads were aligned to a Yeast’s
sacCer3 reference genome with all the genotype sequences appended
as additional contigs to obtain counts of gene and genotype barcode
expressions. Sequences of the genotype barcode were downloaded
from the Yeast Deletion Project (http://www-deletion.stanford.edu/
YDPM/YDPM_index.html). Additionally, an artificial chromosome
containing the clone barcodes (5 nucleotides), the common termi-
nator region and the genotype barcode (D2-Downtag-D1)was added to
the reference genome to enable genotype identification from the
expression matrix. Example of an artificial genotype chromosome:

>bc-Systematic Name
NNNNNAACGCCGCCATCCAGTGTCGAAAACGAGCTCGAATTC

ATCGATNNNNNNNNNNNNNNNNNNNNCTACGAGACCGACACCG
Naming of replacement strains; the original YKOC and commer-

cial collections contain some replacement strains which represent
repetitions for conflictive strains. The names of these replacement
strains and genotype barcodes are identical between repetitions. To
include these strains in the reference genome and to avoid a naming
conflict, chromosomes of each repeated strain was named sequen-
tially: bc-systematic name, bc-systematic name-2, or bc-systematic
name-3.

Analysis of the targeted amplicon library
Barcode and UMI information were extracted from FastQ files with
Singleron Celescope software version 1.14.1, using commands ‘celes-
cope rna sample --chemistry auto’ and ‘celescope rna barcode’, and
Singleron v3 whitelist and linker files.

Resulting fastq files were imported into R. Clone information was
extracted from the sequenced read at positions 21–25. In order to find
the genotype information, the region between the D1 and D2 inserts
was extracted by matching the corresponding sequences allowing at
most 3 mismatches. Only reads containing both D1 and D2 were kept
for further analysis. In case of multiple matches of any of the insert
sequences the one with maximum start position was chosen. Reads
were further filtered for starting matching positions of D1 between 85
and 90, and D2 between 48 and 51. The inserted sequence corre-
sponding to knock out genotypes in the library were compared to the
remaining sequences using the vmatchPattern R function with a
maximum mismatch of 2. Cells assigned to more than one genotype
with no genotype present in more than 70% of reads were discarded.

To combine both sets of assignments, cells with different geno-
types assigned in both libraries were marked as “conflicted” and
omitted from downstream analysis. Cells with the same genotype
assigned in both libraries were given that genotype. Cells with geno-
type assigned in only one of the 2 libraries were also given the assigned
genotype.

Genotype position
Because the YKOC is a globally used resource the assessment of the
location of each deletion has only been performed manually for
selected mutants or only available for the homozygote diploid col-
lection at a global scale with Whole Genome Sequencing52. Our strat-
egy enables todefine the genomic locationof eachdeletion in theRNA-
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barcoded YKOC collection by leveraging the high resolution of the
targeted amplification which has coverage of the endogenous termi-
nator. To assign the genomic position all the FASTQ reads were com-
bined and aligned against the yeast genome (saccer3, SGD). The
median nucleotide distance between the mapped read and the anno-
tated STOP codon was done to assess the genomic position of the
intended deletion. Genotypes with greater distances greater than
300bp from the genomic loci were considered incorrect (Supple-
mentary Data 1).

Downstream processing
The complete scRNA Yeast GenomeDataset includes a single processed
Seurat object (Seurat v4)53 that contains all cells profiled in both con-
ditions and the corresponding metadata. Additionally, we generated an
additional Seurat object corresponding to the control or stressed sam-
ples and the corresponding metadata available at E-MTAB-14004. As it
has been done before and to ease the information to the community
given the wide usage of the YKOC we have reported all the information
for all genotypes detected and removed incorrect genotypes for
detailed analysis and experimental validation.

To generate the Seurat Objects, the outputs of Celescope were
used to generate the corresponding cell expression matrix either by
combining both conditions or for each condition individually. To
normalize gene expression across cells, we applied the SCTransform
procedure. In order to mitigate the cell cycle effects, we used the
Seurat function CellCycleScoring to calculate and classify cells in the
corresponding cell cycle phase using expression of canonical phase
specific genes previously used in scRNA-seq (see Supplementary
Data 4 for cell cycle distribution per genotypes/conditions and Sup-
plementaryData 9 for gene lists)17. Thenwe regressedout the cell cycle
scores by supplying the cell cycle variable genes to the vars.to.regress
argument. The preprocessed objects and code allow to explore the
data before and after cell cycle normalization. The final log normalized
results were used for all downstream analysis. We followed standard
Seurat clustering guidelines with the following parameters7. We also
identified highly variable genes using the FindVariableFeatures from
the Seurat package with nfeatures =1. To perform cell clustering, first
we performed a linear dimensional reduction using the “RunPCA”
function from Seurat Package using PC1 and PC2. Visualization of gene
loadings for the complete dataset was done by using the VizDim-
Loading function of PC1. To cluster cells we then applied the Seurat
pipeline FindNeighbors (dims 1:14) andFindClusters (resolution=1). To
visualize the UMAPs we used RunUMAP (dims 1:14).

Clone comparison
Only the 220 genotypes with more than 200 cells were considered for
the analysis. For each genotype, clones with more than 9 cells were
compared against the rest of the clones (with at least 3 cells) using the
FindMarkers function from Seurat (adjusted p-value <0.05).

Cell state markers
To extract cell state markers, we applied the differential expression
function included in Seurat through FindAllMarkers for the complete
dataset (both conditions) and each condition individually. Gene
ontology enrichments of upregulated cell state markers were per-
formed using Metascape v3.5.2023050154 default parameters and we
used S. cerevisiae as input and output specie. The enrichment terms
per each input list was downloaded and appended to Supplementary
Data 2 and 3.

To visualize the expression signatures per each condition indivi-
dually, we generated lists of the all genes upregulated genes of each
cluster using the FeaturePlot (order=TRUE). To visualize the co-
expression of the aging signature we used the UCell package
AddModuleScore_UCell aging genes defined by RNA-seq. The top 15
aging genes were retrieved from Patnaik et al. (https://pubmed.ncbi.

nlm.nih.gov/35858543/)55, and used to generate an unbiased cell sig-
nature, or either a signature split in iron-containing or non-iron sig-
nature. The gene list of induced Environmental Response genes was
obtained frompublisheddatasets31,32 using theupdated list fromGasch
et al.32 (https://sgd-prod-upload.s3.amazonaws.com/S000343511/ESR_
clusters_UPDATED_2017.xlsx). Gene lists used for signatures are listed
in Supplementary Data 9. For violin plots, dashed line indicates the
global mean of each corresponding graph and black lines indicate the
mean of each variable. The statistical significance was calculated using
the stat_compare_means function from the ggpubr package.

Conservation cell state enrichment across conditions
To calculate the degree of similarities between states, we calculated
the correlation of expression between the upregulated cell state
markers across clusters identified in each condition independently. To
calculate the degree of similarities between states, a two-sided Fisher
Test was performed comparing the common upregulated markers
(Benjamini–Hochberg adjusted p-value <0.05 and average log2 Fold
Change > 0.25) between conditions cell states.

For the label transfer analysis, we employed the built-in function
from Seurat. First, due to the similarity of cluster 14 C (basal-stress) to
the entire NaCl dataset, themarkers for this cluster (stress genes) were
removed from both control and NaCl to prevent all stress states
mapping to 14 C. Then renormalizedusing the sameprocedureapplied
to the original control samples. Subsequently, we used the MapQuery
function to transfer annotations from the control to the stress sample.
The normalized proportions of cells transitioning between control and
stress clusters inbothdirections are reported in SupplementaryData 5.
Core states were defined as those that share at least 40% of cells with a
stress state. Of not cell state 14 C was manually included as core state.

Cell state genotype enrichment
Cell state enrichment per genotype was done for genotypes with ≥6
cells to avoid biases due to cell number. To determine the enrichment
degree a two-sided Fisher Test was performed and the odds ratio of
each genotype per cluster was calculated. We considered enriched
genotypes if the odds ratio was >1 and adjusted p-value <0.05 or as
depleted if the odds ratio was <0 and adjusted pvalue <0.05. Cell state
enrichment per each genotype is reported in Supplementary
Data 6 and 7 respectively.

To visualize the protein interaction between enriched genotypes
in a specific cluster we used the Metascape v3.5.20230501 default
parameters. These parameters only include physical interactions using
STRING (physical score > 0.132) and BioGrid. Additionally Molecular
Complex Detection (MCODE) algorithm was used to define densely
connected networks within the Metascape default parameter app.

Transcriptional heterogeneity
Differential expression. Differential gene expression was assessed
using the Wilcoxon rank sum test. Each mutant was compared to wild
type in control and stress samples separately. For each comparison,
genes with 0 counts were first removed. For global transcriptome
analysis (Fig. 1F-I and S1E-S1H) differentially expressed genes were
considered with using a threshold log2 fold change ≥ 1 and ≤ −1 and
p-value < 0.05 for upregulated and downregulated genes respectively.
To optimize statistical power, independent filtering was applied based
onmean normalized expression. To identify the optimal threshold for
average counts, we: (1) Applied different thresholds to filter out genes
with averaged counts less than the thresholds. (2) Performed pvalue
adjustment using Benjamini-Hochberg procedure on the remaining
genes that passed the threshold and (3) Counted the number of sta-
tistically significant genes with adjusted p values lower than 0.05. The
threshold resulting in the highest number of significant genes was
finally used. This threshold was found and applied separately for the
control ( < 1.27) and stress treated samples ( < 1.19).
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Comparison with bulk datasets. To compare the similarity between
gene expression from our dataset to previously published bulk
microarray samples reported by Kemmeren et al.21 in control condi-
tions. The expression table ([deleteome_all_mutants_controls.txt]) was
obtained from https://deleteome.holstegelab.nl. For the genotypes
and genes shared across both studies (n = 837), we compared the
median number of genes with p-value <0.05. Given that a comparable
dataset does not exist for stress conditions, we scored the expression
of the ESR signature (see Supplementary Data 9 for genes) across
mutants for at least 6 cells.

Leverage score. The leverage score was calculated in the sameway as
in ref. 11, except that we used log normalized counts yielded from
SCtransform procedure instead of plate level z-score because of the
variable composition of the wild type cells in each plate that might
introduce more variance. Specifically, we (1) Constructed a count
matrix depicting cells in rows and genes in columns, consisting of all
genes with mean expression >0.25 UMI counts per cell. (2) We calcu-
lated the top 20 left singular vectors for each plate using the partial
SVD algorithm (scipy.sparse.linalg.svds) with the arpack solver and
k = 20. Row wise square norm of the resulting n by 20matrices (where
n is the number of cells) was calculated to give the leverage scores.
These scores were normalized so that the sum over all cells in each
plate is 1. (3) To normalize leverage scores across plates, we log
transformed the scores from theprevious step, and z-score normalized
these scores relative to the scores of wild type cells (subtracting the
mean and dividing by the standard deviation of thewild type cells). We
reported the leverage score and the scaled leverage score of each cell
in the corresponding metadata. Supplementary Data 8 contain the
average, standard deviation, variance of the leverage score raw and
scaled per each condition.

We ranked genotypes according to the standard deviation of the
leverage score (wild type =1). For both conditions, and similar to the
cell state enrichment in Fig. 3, and only for genotypes with at least 6
cells. The standarddeviationwas calculated using baseR functions and
the dplyr package56. We then visualized the negative drivers
( ≥ 1.3 standard deviation leverage score) or positive drivers
( ≤0.7 standard deviation leverage score) per each condition. The
projection into the yeast interaction network was done using The-
CellMap using the overlay function with the default parameters
(https://thecellmap.org/)40. Functional enrichment analysis of control
or stress genotypes with increased ( > 30%) or decreased hetero-
geneity ( < 30% of the wild type strain) was analyzed the Spatial Ana-
lysis of Functional Enrichment (SAFE) build in TheCellMap, applying
default settings.

Experimental validations
Cell state reporters. Recombinant DNA techniques and transforma-
tion of bacterial and yeast cells were performed using standard
methods. To generate reporters for cell states, we used the MoClo
Yeast Toolkit Modular cloning system57. Building of the plasmid con-
structs was achieved using Golden Gate assembly. Each reporter con-
tains a transcription unit composed of: the corresponding promoter
(700bp upstream of the annotated ATG), UbiM degradation signal,
florescent protein and terminator (300bp downstream of annotated
STOP codon). All cloned sequences were either mutated or synthe-
sized to avoid of the BsmBI, BsaI, and NotI recognition sequences.
Promoter and terminator sequences were amplified from BY4741
genomic DNA and purified using the MiniElute PCR purification
(28004, Quiagen). Plasmids generated in this study are described in
Supplementary Table 1.

Entry plasmids were generated using the MoClo guidelines and
were amplified in Escherichia coliDH5α competent cells grown at 37 °C
in LB medium supplemented with the corresponding antibiotic for
selection. Plasmidextractionwasdoneusing the E.Z.N.A.® I Kit (D6942-

02, Avantor) and verified by Sanger sequencing. Purified plasmid was
linearized with NotI (NEB) and integrated into the yeast genome.
Standard yeast transformation was done using the LiAc method into
the corresponding yeast background and colonies were selected by
marker selection and colony PCR. Strains harboring cell state reporters
generated in this study are described in Supplementary Table 2.
Expression of the reporters was followed by flow cytometry
(see below).

Calcofluor white staining and mitochondrial morphology (bud
scars; aging phenotype analyzes)
Wild type cell or cells carrying the corresponding reporter, were
grown to exponential phase in SCmedia. Cells were filtered with a 70
μmmesh and a total of 300,000 cells was sorted using a FACS Aria III
cell sorter into 15ml falcons. The top 2% of the population (pFIT3-
mCherry-tFIT3 and pHUG1-mCherry-tFIT3) were fixed by directly
sorting into Ethanol 100%. Additionally, a random sort for the entire
population or for a wild type strain were collected as controls using
the same fixation strategy. Fixed cells were stored at 4°C until Cal-
cofluor white staining.

To visualize and count bud scars, we stained cells with 200 µg/
ml Calcofluor White Stain as reported58 (18909 Fluka Analytica)
withminormodifications. Briefly, the indicated populations of cells
were sorted directly into Ethanol fixed cells and washed once with
DPBS 1X to remove excess Calcofluor. Scars per each cell for
each corresponding population were counted using at 100x mag-
nification (Plan Apo VC 60x Oil objective) using a Nikon
Eclipse Ti inverted microscope and an ORCA digital camera
(Hamamatsu). Per each biological replicate a total of 250–300 cells
were counted.

To assess mitochondrial morphology, we used the same pro-
cedure as above except that cells were sorted into rich media (YPD)
containing 100 nM MitoTracker™ Red CMXRos (Invitrogen,
M7512). Cells were incubated in this media for 30min, washed with
media without MitoTracker and fixed in YPD 4% formaldehyde and
stored for imaging. The morphology of mitochondria was assessed
for at least 100 cells per each biological replicate of the indicated
strains. Representative images of mitochondrial morphology were
selected and processed individually with Image J, the brightness
and contrast of each cell has been individually modified to improve
clarity.

Chromatin Immunoprecipitation
Cells were grown to mid exponential log phase and 50ml were har-
vested at OD660 0.6. Fixation was done by adding 1% formaldehyde
(Sigma, F1635) for 20min and quenched with Glycine 125mM for
15min at room temperature. Cells were pelleted by centrifugation and
washed with TBS 1X four times at 4°C. Chromatin immunoprecipita-
tion was done as described in ref. 59 Briefly, a total of 0.5 μg antibody
per sample against Lysine acetylation (Cell Signaling, 9441S) and
conjugated to 25 μ rabbit Dynabeads® M-280 Sheep Anti-Rabbit
IgG(Life Technologies, 11204D) overnight at 4 °C. Levels of Lysine
acetylation was determined by qPCR using primers specific to the
indicated promoters to: PHO84 (Fw: GGACGTGTTATTTCCAGCAC and
Rv: CAGGCAAAACGGGAGAAGAG) and VTC1 (Fw: TTGGCATCGC
TATTTTCGGA and Rv: ACCGACCGTAACAAGCGATA) and as loading
control an intergenic region of the right arm of chromosome VI was
used (Fw: ACCACTCAAAGAGAAATTTACTGGAAGA and Rv: CTCGTTAG
GATCACGTTCGAATC). For qPCR Power SYBR™ Green PCR Master Mix
(Life Technologies, 4368708) was used in a final volume of 10 µl fol-
lowing manufacturer’s protocol and qPCR reaction conditions. The
resulting Ct values each gene was normalized to the loading control
and delta Ct method60 as used to calculated abundance of acetylated
Lysines. The values for the wild type strain set to 1 and used as a
reference.
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Competition assays
Wild type strains carrying the indicated expression reporters were
grown to mid exponential log phase and sorted using Aria SORP
(Becton Dikinson). A total of 20,000 cells of each top 2% of the
population was sorted and 20,000 cells of a wild type strain carrying a
constitutive GFP (pTEF1) was sorted on top in a final volume of 200μl
of rich media (YPD). A total of 150μl of the mixed culture was fixed
with 4% formaldehyde as time 0. The remaining culture was evenly
split into YPD andYPD 1MNaCl. Cellswere diluted every 24 h andfixed
after 48 h.

Flow cytometry analysis
Cells were recorded from each sample according to their FSC and
SSC distributions and unmixed to identify the fluorescence signal
for each fluorophore (mCherry, iRFP or GFP). For competition
assays, cells were gated based on the constitutive expression of
GFP of the wild type strain versus the side scatter for three biolo-
gical replicates. To read the expression of pFIT3-mCherry reporter
in mutants in mutants enriched in cluster 8 C, the full spectrum of
10,000 cells were recorded Cytek® Aurora (4-laser and 64 Fluor-
escence Emission Detection Channels) gated according to the FCS
and SSC distributions. The unmixed signal was used to assess the
expression distribution of each mutant against the wild type and
themean expression (arbitrary units) per each strain and biological
triplicates. The mean and median expression of each strain was
obtained for 3 biological replicates. Cytometry data were analyzed
using FlowJo™ Software (BD Life Sciences). A representative
example of the FACS gating strategy for sorting and analysis is
shown in Supplementary Fig. 2i. For all experiments the first gate
was performed using the Forwards Light Scatter (FSC-A) side
scatter (SSC-A) to select for cells. For isolation of the top 2%
populations the first gate was subsequently used to isolate single
cells using the FSC-A (area) and FSC-W (width). Single cell particles
(second gate) were then used to isolate top 2% expression popu-
lation using FSC-A and the reporter of interest (mCherry or iRFP).
For competition assays and expression analysis, cells were gated
using the same strategy (FSC-A and SSC-A) and the expression of
the gene of interest or population of interest (GFP-mCherry, GFP-
iRFP) was assessed from this gate.

Comparison of fitness scores
This analysis was performed using Supplementary Table 1 (Mutant
Fitness Conditions) from https://pubmed.ncbi.nlm.nih.gov/
33958448/, encompassing 14 stressing conditions and 4429 geno-
types. Only common genotypes between the publicly available
dataset and our data were included. Three gene sets were built: the
first comprised the top 50 genotypes with the highest standard
deviation of the scaled leverage score, the second consisted of the
bottom 50 genotypes with the lowest standard deviation of the
scaled leverage score, and the third, called biased, that comprised
enriched genotypes (Benjamini–Hochberg adjusted p-value < 0.05
and an odds ratio > 1) identified through the Fisher test. A one-sided
permutation test was conducted for each stress score and
each gene set by comparing the mean of the gene set with the
mean of 1000 randomly selected unclassified genotypes of equal
length.

Growth curves
The indicated strains were grown below OD(660) = 1 in rich media. For
the experiment cells were washed three times with complete synthetic
media pH=5.5 or pH=8.8. Then cells were diluted to OD(660) = 0.05 in a
final volume of 200 μl in a 96 well plate. Plates were incubated under
orbital shaking at 30 °C in a Synergy H1 (BioTek® Instruments) and
OD(660) was recorded every 30min for 48h. The Lag Time was calcu-
lated using the Gene 5 software (BioTek® Instruments).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data for transcriptome and targeted amplification
generate in this study are available in the Array Express databaseunder
accession code E-MTAB-14004. Fully processed Seurat objects con-
taining the individual or combined datasets are available on Zenodo
[https://doi.org/10.5281/zenodo.14062629]. Other data used in this
manuscript: yeast fitness data across stressor panel were obtained
from Costanzo et al.38 (Supplementary Table 1). The leverage score
from human Perturb-seq were obtained from Replogle et al.11

(Table S2). The bulk expression table from Kemmeren et al.21 was
obtained from the authors repository https://deleteome.holstegelab.
nl. Source data are provided with this paper.

Code availability
All the code used in this study is available through Zenodo [https://doi.
org/10.5281/zenodo.14062629].
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