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Abstract

Artificial Intelligence (AI) models are fundamentally transforming the way clinicians carry

out their daily tasks. By streamlining various processes, AI offers a more robust and consis-

tent method for reviewing medical procedures. This thesis is dedicated to the development

of AI applications for Capsule Endoscopy (CE), a small device that patients swallow, which

is equipped with both a light and a camera to traverse the digestive system, capturing

detailed images of internal organs.

Once these images are captured, physicians are tasked with meticulously reviewing an

extensive number of frames to identify potential pathologies, a process that is both time-

consuming and tedious.

In this thesis, we aim to enhance the entire review pipeline from end to end, providing

support to physicians at multiple stages of the process. These stages include data collection,

data labeling, assessing the usability of the videos (particularly in determining whether

intestinal residues may hinder the process), identifying the entry and exit points of the small

and large intestines, and most crucially, detecting polyps as early indicators of Colorectal

Cancer (CRC).

By employing advanced techniques such as Active Learning (AL) for data labeling and

Vision Transformer (ViT) for polyp detection, we significantly improve upon existing sys-

tems in the literature, achieving state-of-the-art results.

Additionally, the integration of AI into CE holds the promise of not only improving

diagnostic accuracy but also reducing the workload for clinicians, allowing them to focus

on more complex cases. This technological advancement has the potential to revolutionize

gastrointestinal diagnostics, leading to earlier detection of diseases and, ultimately, better

patient outcomes.

Furthermore, this thesis led to the initiation of two clinical studies. The first was a

controlled study that evaluated the performance of the polyp detection application. The

second is a larger study involving over 600 patients, testing an enhanced version of the

application, which is currently under development.
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Resum

Els models d’Intel·ligència Artificial (AI) estan transformant la forma com els professionals

sanitaris duen a terme les seves tasques diàries. Optimitzant diversos processos, la AI ofereix

un mètode més robust i consistent per revisar diferents procediments mèdics. Aquesta tesi

està dedicada al desenvolupament d’aplicacions d’AI per a la Càpsula Endoscòpica (CE),

un petit dispositiu que els pacients empassen, equipat amb llum i càmera, que recorre el

sistema digestiu capturant imatges detallades dels òrgans interns.

Un cop aquestes imatges són capturades, els professionals han de revisar meticulosament

un gran nombre de fotogrames per identificar possibles patologies, un procés que és tant

laboriós com tediós.

En aquesta tesi, ens proposem millorar tot el procés de revisió d’aquests v́ıdeos, de

principi a fi, proporcionant eines de suport als metges en diverses etapes del procés. Aquestes

etapes inclouen la recopilació de dades, l’etiquetatge de dades, l’avaluació de la usabilitat

dels v́ıdeos (particularment per determinar si els v́ıdeos són prou nets per a ser usats), la

identificació dels punts d’entrada i sortida dels intestins prim i gruixut, i el més important,

la detecció de pòlips com a indicadors precoços del càncer colorectal (CRC).

Mitjançant tècniques avançades com l’Aprenentatge Actiu (AL) per a l’etiquetatge de

dades i models complexos com el Transformer de Visió (ViT) per a la detecció de pòlips,

millorem significativament els sistemes existents, assolint resultats de referència.

A més, la integració de la AI en la CE té el potencial no només de millorar la precisió

diagnòstica, sinó també de reduir la càrrega de treball dels professionals, permetent-los

centrar-se en casos més complexos. Aquest avenç tecnològic pot revolucionar els diagnòstics

gastrointestinals, facilitant una detecció precoç de malalties i, en última instància, a millors

resultats per als pacients.

Aquesta tesi ha portat, a més, a l’inici de dos estudis cĺınics. El primer va consistir en

un estudi controlat que va avaluar el rendiment de l’aplicació de detecció de pòlips. El segon

és un estudi més gran que involucra més de 600 pacients, provant una versió millorada de

l’aplicació. Aquest estudi està actualment en desenvolupament.
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This chapter sets the stage for the entire thesis. It provides essential background infor-

mation to aid in understanding the content of this document. We will discuss the process

of reviewing endoscopic videos and introduce Capsule Endoscopy (CE) as an alternative to

traditional colonoscopies. Additionally, the contributions of this thesis will be summarized.

Finally, the structure of the document will be outlined.

1
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1.1 Motivation

Artificial Intelligence (AI) is revolutionizing the way clinicians perform their daily tasks,

offering unprecedented support and efficiency in the medical field. These advanced AI

systems are increasingly being integrated into medical routines, functioning as invaluable

support tools for healthcare professionals. The applications of AI extend far beyond diag-

nostics, encompassing a wide array of routine tasks such as parsing complex medical reports,

translating medical texts, and highlighting potential errors or anomalies in various clinical

processes. This integration of AI not only enhances accuracy and efficiency but also allows

clinicians to focus more on patient care and less on administrative burdens.

This thesis addresses a specific clinical process: the review of CE videos. CE (Iddan

et al., 2000) is a medical technology that enables visualization of the interior of the diges-

tive system, facilitating the detection of pathologies like Colorectal Cancer (CRC), which

remains one of the deadliest forms of cancer today (Bray et al., 2024; Siegel et al., 2024).

By intervening in this review process, we propose a set of AI-driven tools designed to as-

sist physicians, thereby improving the efficiency and effectiveness of the diagnostic process.

These tools aim to streamline the workflow, reduce the time required for video analysis,

and ultimately enhance patient outcomes by enabling earlier and more accurate detection

of Gastrointestinal (GI) issues.

The following chapter serves as an introduction to the full thesis. It begins by presenting

essential anatomical concepts related to the intestine, which are crucial for understanding

the terms frequently used throughout this work, such as small intestine, large intestine,

and polyps. By grounding the reader in these foundational concepts, we set the stage for

a detailed exploration of how AI can transform CE reviews. Subsequent sections will delve

into the technical aspects of the proposed AI tools, their development, and their integration

into clinical practice.

Furthermore, we will explore the current challenges faced by clinicians in reviewing CE

videos, including the sheer volume of data and the meticulous attention to detail required.

We will then demonstrate how AI can alleviate these challenges, offering innovative solutions

that not only speed up the review process but also enhance the accuracy of diagnoses. The

ultimate goal is to show how these advancements can lead to better patient care, reduced

workload for healthcare providers, and more efficient use of medical resources.

In summary, this thesis aims to illustrate the profound impact of AI on medical practices,

particularly in the CE field.

1.2 Artificial Intelligence in Medical Imaging

AI has revolutionized medical imaging and diagnostics by analyzing complex data from

various modalities, including Computed Tomography (CT), Magnetic Resonance Imaging
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(MRI), X-rays, mammography, electrocardiograms, and video-derived images from CE,

among other sources. These screening techniques generate vast amounts of data requiring

meticulous analysis by trained professionals.

The sheer volume of images produced by these devices necessitates careful review by

medical experts, which can be time-consuming and costly. AI can automate certain non-

critical processes, such as routine image assessments or preliminary screenings, thereby

reducing the workload on healthcare professionals. By acting as a support tool, AI helps

streamline the diagnostic process, allowing clinicians to focus their expertise on more com-

plex cases.

Furthermore, AI can assist in prioritizing patients based on the urgency of their condi-

tions. By analyzing imaging data and patient information, AI systems can identify those

who need immediate attention, thus optimizing resource allocation and improving patient

outcomes. This prioritization is especially crucial in high-pressure environments where

timely intervention can make a significant difference.

AI also holds promise as a pre-screening tool for diseases that may present without

symptoms, such as CRC, one of the deadliest cancers nowadays. By analyzing patterns

in imaging data and identifying potential indicators of early-stage disease, AI can help

detect these conditions before they become symptomatic, facilitating earlier intervention

and treatment.

In addition to its diagnostic applications, AI-powered tools can be deployed remotely,

extending diagnostic capabilities to underserved regions with limited access to medical facil-

ities. During emergencies, such as the COVID-19 pandemic, AI provides immediate medical

interpretation, helping to manage and respond to crises more effectively.

Finally, AI has the potential to personalize medicine by tailoring treatments to the in-

dividual characteristics of each patient. By analyzing comprehensive data sets, including

genetic information and response patterns to previous treatments, AI can assist in devel-

oping customized treatment plans that enhance efficacy and minimize adverse effects. This

personalization aims to improve overall patient care and treatment outcomes.

Here are several key areas where AI is making significant advancements in medical

imaging:

Radiology

In radiology, AI enhances image analysis and interpretation by detecting subtle patterns

in X-rays, MRIs, CT scans, and ultrasound images that may be challenging for human

observation (Rajpurkar et al., 2018; Khalid et al., 2020; Zhang et al., 2021). Its ability to

identify early signs of conditions like cancer enables more accurate and timely diagnoses

compared to traditional methods.

AI’s automated segmentation capabilities further boost efficiency by providing detailed
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image analysis, ensuring that critical findings are quickly identified and addressed by ra-

diologists (Lenchik et al., 2019). Additionally, AI facilitates quantitative imaging, which

allows for precise measurements of tumor size and growth rates, essential for monitoring

disease progression and evaluating treatment effectiveness (Bera et al., 2022).

Moreover, AI optimizes workflow by prioritizing urgent cases, thereby improving radi-

ologists’ efficiency and enhancing overall patient care delivery. This advanced technology

not only streamlines the diagnostic process but also contributes to better management of

patient outcomes.

Figure 1.1: AI solution for detecting pulmonary tumors. Image from Rajpurkar et al.
(2018).

Pathology

In pathology, AI is increasingly utilized to analyze digitized tissue samples, enhancing the

identification of cancerous cells, tumor grading, and the detection of various pathological

conditions (Bera et al., 2019; Hosseini et al., 2024). This application improves diagnostic

accuracy and allows pathologists to focus on more complex cases, while ensuring consistent

and reliable results.

AI also supports whole slide imaging by examining high-resolution images of complete

tissue sections (Kumar et al., 2020; Chen et al., 2021a; Tan et al., 2023; Carcagǹı et al.,

2023). This capability enables AI to detect microscopic anomalies that might be missed by

traditional methods, providing detailed insights essential for precise diagnostic assessments.

Additionally, AI helps reduce inter-observer variability among pathologists, contributing to

more consistent and accurate diagnoses (Hanna et al., 2019).

Cardiology

In cardiology, echocardiograms are the primary method for capturing cardiac images to

evaluate cardiac anatomy and function during clinical routines. Echocardiography systems
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Figure 1.2: Two cropped sections from different whole slide images: one showing an ade-
nocarcinoma (left) and the other depicting a squamous cell carcinoma (right). Image
from Chen et al. (2021a).

that integrate AI solutions offer significant benefits for both cardiologists and patients. AI

can assist in identifying conditions such as myocardial infarctions (Makimoto et al., 2020),

arrhythmias (Petmezas et al., 2022), and aortic stenosis (Cohen-Shelly et al., 2021). It can

also aid in measuring heart features, including the aortic valve (Thalappillil et al., 2020)

and the overall heart structure.

Moreover, AI can automatically generate reports following a patient’s visit (Lopez-

Jimenez et al., 2020), helping cardiologists diagnose and manage various heart conditions

more accurately and efficiently. This integration ensures comprehensive and timely patient

care.

Figure 1.3: Aortic valve measurement. Image from Thalappillil et al. (2020).

Ophthalmology

AI excels at interpreting complex medical images, leading to early detection and accurate

diagnosis of conditions such as diabetic retinopathy, glaucoma, and age-related macular

degeneration. Studies have shown that AI models can identify diabetic retinopathy with

greater accuracy than human experts (Vujosevic et al., 2020; Lakshminarayanan et al.,

2021).
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In addition to diagnostic applications, AI-powered tools are being developed to enhance

surgical precision and efficiency. For instance, AI-assisted systems can offer real-time guid-

ance during cataract surgery, improving outcomes and reducing complications (Gutierrez

et al., 2022).

AI is also making strides in teleophthalmology by enabling remote screening and diag-

nosis of eye diseases in underserved areas. AI-powered platforms can analyze images taken

with smartphone cameras, facilitating timely intervention and reducing the risk of vision

loss (Al-Aswad et al., 2021). While the full potential of AI in ophthalmology is still unfold-

ing, the field is experiencing rapid advancements with promising prospects for improving

patient care and outcomes.

Figure 1.4: Diabetic retinopathy. Two different stages of the disease. Image from Laksh-
minarayanan et al. (2021).

Respiratory Medicine

AI is highly effective at analyzing chest X-rays and CT scans, facilitating the early detection

of conditions such as lung cancer, pneumonia, and pulmonary embolism (Soffer et al., 2021).

Research has shown that AI-powered systems can sometimes outperform human radiologists

in specific diagnostic tasks (Wu et al., 2020). However, its primary role remains in assisting

expert radiologists by improving their work and helping to avoid missing small pathologies.

The COVID-19 pandemic underscored AI’s potential in respiratory medicine. AI-

powered tools were quickly developed to assist with diagnosis, triage, and treatment plan-

ning for COVID-19 patients (Xu et al., 2021). For instance, AI algorithms were employed

to analyze chest CT scans, identifying patterns associated with the disease and facilitating

early detection and effective patient management (Abdulkareem and Petersen, 2021; Lasker

et al., 2022).

Gastroenterology

In gastroenterology, AI has been successfully applied to detect liver fibrosis from serum

markers (Hashem et al., 2018), pancreatic cancer from ultrasound images Ozkan et al.

(2016), and colorectal polyps from colonoscopy procedures (Hassan et al., 2021), among
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Figure 1.5: Occlusion area segmentation from CT image for COVID-19 detection. Image
from Xu et al. (2021).

other applications.

In the specific field of CE, AI has been effectively utilized to detect lesions such as

hemorrhages (Musha et al., 2023), angioectasias (Nennstiel et al., 2017), erosions and ul-

cers (Bang et al., 2021), Crohn’s disease (Berre et al., 2019), and polyps (Laiz et al., 2020).

Additionally, AI aids physicians in daily tasks such as capsule localization (Hanscom and

Cave, 2022), assessing bowel preparation quality (Noorda et al., 2020), and improving the

explainability of models, although this field is still in a very early stage (Varam et al., 2023).

Figure 1.6: Polyp detection. Image from Laiz et al. (2020).

This thesis focuses on detecting pathologies in the digestive system, making it essential

to understand some key concepts related to this area.

1.3 The Digestive System

The digestive system, also known as the GI system, is a complex network of organs and

structures that work collaboratively to convert food into energy and essential nutrients.

This intricate system begins at the mouth and extends through the esophagus, stomach,

intestines, and ultimately ends at the anus. Alongside the main GI tract, accessory organs

like the liver, pancreas, and gallbladder are essential in digestion.

At the heart of this system lie the small intestine and the large intestine, the main

organs involved in digestion, nutrient absorption, and waste processing. Their sophisticated

structures and functions are vital to maintaining overall health and will be the focal point of
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this introduction. Figure 1.7 illustrates the main parts of the GI system, with a particular

focus on the intestines.

Figure 1.7: Main sections of the GI system, highlighting the intestines. Image from @brgfx
(Freepik).

.

1.3.1 The Intestines

Small Intestine

The small intestine is the primary site for digestion and absorption of nutrients. It is a

long, coiled tube approximately 6 meters in length and divided into three segments: the

duodenum, the jejunum, and the ileum.

The breakdown of macronutrients into their smaller components (proteins into amino

acids, carbohydrates into simple sugars, and fats into fatty acids and glycerol) is completed

here. Pancreatic enzymes and bile work together to break down the fats ingested. Nutrients

are absorbed through the epithelial lining of the small intestine into the bloodstream. The

extensive surface area provided by villi and microvilli facilitates efficient nutrient uptake.

The small intestine can be divided into three segments:

• Duodenum: The initial segment, where chyme from the stomach is mixed with bile

from the liver and digestive enzymes from the pancreas. This section is responsible

for the emulsification of fats and the neutralization of stomach acids.
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• Jejunum: The middle segment, where the majority of nutrient absorption occurs. It

has a highly folded surface lined with villi and microvilli, which increase the surface

area for absorption.

• Ileum: The final segment, responsible for absorbing remaining nutrients, particularly

vitamin B12 and bile salts, and passing the residue into the large intestine.

Large Intestine

The large intestine, or colon, is about 1.5 meters long and is primarily involved in absorbing

water and electrolytes from the remaining indigestible food matter, transforming it into solid

waste (feces) to be excreted. It is divided into several regions: the cecum, ascending colon,

transverse colon, descending colon, sigmoid colon, and rectum.

• Cecum: A pouch connected to the ileum that serves as a junction between the small

and large intestines. The appendix is attached here.

• Colon: The majority of the large intestine, responsible for absorbing water and salts

from the material that remains after nutrient absorption in the small intestine. It can

be further divided into the ascending, transversal, descending and sigmoid colon.

• Rectum: The final section, where feces are stored before being expelled through the

anus.

1.3.2 Pathophysiology of the Intestines

Given their central role in digestion and absorption, the intestines are susceptible to a range

of disorders and diseases that can significantly impact health:

• Inflammatory Bowel Disease (IBD): Includes Crohn’s disease and ulcerative col-

itis, characterized by chronic inflammation of the GI tract, leading to symptoms like

abdominal pain, diarrhea, and weight loss.

• Inflammatory Bowel Syndrome (IBS): A functional disorder causing symptoms

such as bloating, abdominal pain, and altered bowel habits without detectable struc-

tural abnormalities.

• Celiac Disease: An autoimmune disorder triggered by gluten, leading to damage in

the small intestine and impaired nutrient absorption.

• Diverticulitis: Inflammation or infection of small pouches (diverticula) that can

form in the walls of the large intestine.
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• Colorectal Cancer (CRC): Malignant growths in the colon or rectum, which may

arise from benign polyps and require early detection and treatment for the best out-

comes.

Each of these conditions involves complex interactions between genetics, immune responses,

and environmental factors, highlighting the intestines’ critical role in health and disease.

1.3.3 Polyps

Polyps are abnormal tissue growths that arise on the inner lining of the colon and rec-

tum. While most polyps are benign and asymptomatic, some have the potential to become

cancerous. Understanding the different types of polyps and their development provides

crucial insights into their role in CRC, the second leading cause of cancer-related deaths

worldwide (Bray et al., 2024).

The Paris Classification (Participants in the Paris Workshop, 2002) is a standardized

system used to describe the macroscopic appearance of polyps in the GI tract, particularly

the colon. It categorizes polyps based on their shape and growth pattern as seen dur-

ing endoscopy. This classification helps in assessing the malignancy risk, guiding removal

techniques, and predicting patient outcome (Johnson et al., 2023; Wilson et al., 2023).

According to this classification, as summarized in Figure 1.8, polyps are divided into

two main groups: polypoid lesions, which includes polyps with an elevation larger than 2.5

mm, and non-polypoid lesions, which encompasses those with a smaller elevation. There

is a third group, ulcerated lesions, that account for ulcerations that are eroded into the

intestinal wall as can be seen in the figure.

Figure 1.8: Classification of polyps according to Paris Classification. Image from Wilson
et al. (2023).
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Pedunculated polyps (Type 0-Ip)

Pedunculated polyps resemble mushrooms, featuring a head attached to the mucosal lining

by a narrow stalk. This stalked appearance makes them relatively straightforward to identify

and remove during endoscopic procedures. The presence of a stalk allows endoscopists to

easily snare and remove these polyps during a polypectomy. Generally, pedunculated polyps

are less likely to harbor invasive cancer compared to other types, particularly if they are not

excessively large. Their distinct shape also means they tend to move slightly when touched

by the endoscope, which helps in their identification.

Sessile polyps (Type 0-Is)

Sessile polyps are raised lesions with a broad base and no stalk, sitting directly on the

mucosal surface and resembling a dome in shape. These polyps are more challenging to

manage because their wide base makes complete removal during endoscopy more difficult.

Sessile polyps can pose a higher risk of malignancy, especially if they are large or located

on the right side of the colon, such as in the descending or sigmoid sections. Due to their

broad attachment to the mucosa, sessile polyps do not move as easily as pedunculated

polyps during removal, making them somewhat harder to detect and fully resect.

Non-polypoid lesions (Type 0-II)

Non-polypoid lesions, also known as flat polyps, are characterized by minimal elevation

above the mucosal surface and are classified into three subtypes: slightly elevated (0-IIa),

completely flat (0-IIb), and slightly depressed (0-IIc).

Slightly elevated polyps (0-IIa) have a minimal rise above the mucosa, appearing almost

flat but with a slight bump. Completely flat polyps (0-IIb) lie flush with the mucosal surface,

blending seamlessly with the surrounding tissue. Slightly depressed polyps (0-IIc) show a

slight indentation below the mucosal level, which can make them particularly difficult to

identify.

Flat polyps, especially the depressed type, pose a higher risk for containing cancer-

ous cells. Their subtle appearance makes them challenging to detect during colonoscopy,

increasing the importance of thorough endoscopic examination. These polyps require metic-

ulous attention as they are more likely to be missed and can be harder to remove completely

due to their minimal elevation or depression.

Excavated Polyps (Type 0-III)

Excavated, also known as depressed or ulcerated polyps are characterized by a distinctive

morphology where part of the lesion is below the level of the surrounding mucosa. Unlike
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the more common raised, pedunculated, sessile or flat types, these polyps have a sunken or

crater-like appearance. They may appear as a shallow pit or a deeper excavation into the

mucosal layer, creating a concave surface. This type of polyp is less frequently encountered

in the colon.

1.4 Colorectal Cancer

CRC is the third most common type of cancer worldwide and ranks second on the list of

most aggressive and deadly cancers (Siegel et al., 2024). According to the Global Cancer

Observatory, out of an estimated total of 1.9 million cases in 2022, this disease has caused

the death of more than 903,000 people worldwide (Bray et al., 2024).

Several factors contribute to the risk of developing CRC. Lifestyle is one of the most

important factors; unhealthy habits such as smoking, heavy alcohol consumption, and seden-

tary behavior have been linked to an increased risk of this cancer. Diet is also a significant

factor, with diets high in red and processed meats and low in fiber, fruits, and vegetables

being associated with higher incidence rates (O’Sullivan et al., 2020; Ahmed, 2020). A clear

relationship exists between obesity and CRC, supported by extensive research (Ye et al.,

2020; Lauby-Secretan et al., 2016). Genetic predisposition is another critical factor; indi-

viduals with a family history of this type of cancer or with other inherited conditions are

at higher risk (Valle, 2014).

One of the initial signs of the development of CRC is the appearance of polyps in

the colon that grow in an uncontrolled manner (Bond, 2003). This process, illustrated

in Figure 1.9, can take years, often starting without noticeable symptoms, which makes

regular screening vital. The detection of polyps when they are still small is crucial to

prevent their transformation into cancer. Screening programs are aimed to detect early-

stage cancer, improving the patient’s chances of survival (Levin et al., 2018; Loveday et al.,

2021) because, as the cancer progresses, it can penetrate deeper layers of the bowel wall

and spread to other parts of the body (a process known as metastasis). For individuals at

average risk, screening is often recommended starting at age 50, but those with higher risk

factors may need to begin earlier.

1.5 Endoscopy

Endoscopy is a medical technique that allows doctors to look inside the body without

making large incisions. This is achieved using an instrument called an endoscope, which

is a long, thin, flexible tube with a light and camera at the tip. The camera transmits

images to a screen, providing a clear view of the internal organs or cavities. Endoscopy is

versatile and used in many areas of medicine to diagnose, monitor, and sometimes treat

various conditions.
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Figure 1.9: CRC developement. Due to genetic changes, normal cells mutate and replicate,
forming polyps that can become malignant tumors. Image from @brgfx (Freepik).

.

The types of endoscopy vary depending on the area of the body being examined. For

example, an upper endoscopy, also known as esophagogastroduodenoscopy, looks at the

esophagus, stomach, and the beginning of the small intestine. Bronchoscopy inspects the

airways and lungs, while cystoscopy examines the bladder. Other types include laparoscopy,

which explores the abdominal or pelvic cavities, and arthroscopy, which looks into joints.

Colonoscopy is a specific type of endoscopy that focuses on the colon (large intestine) and

rectum. This procedure is useful for detecting various conditions such as polyps, tumors,

inflammation, and sources of bleeding within the colon. The detailed examination provided

by a colonoscopy is particularly important for screening and early detection of CRC.

The colonoscopy procedure involves several key steps. Before the procedure, thorough

preparation is necessary to ensure the colon is completely empty. This typically involves a

special diet and the use of laxatives the day before the procedure, along with fasting from

solid foods and consuming clear fluids (Hassan et al., 2013).

On the day of the colonoscopy, patients are usually given a sedative or anesthesia. The

doctor then inserts the colonoscope into the rectum and advances it through the colon.

The camera at the end of the colonoscope transmits images to a monitor, allowing the

doctor to examine the entire length of the colon. During this process, the doctor can also

perform interventions such as taking biopsies or removing polyps if necessary, as shown in

Figure 1.10.

After the procedure, patients are monitored as the effects of sedation wear off. It is

common to experience some mild cramping or bloating due to the air introduced into the

colon during the examination. The doctor will discuss the findings with the patient, and

any tissue samples taken will be sent to a laboratory for further analysis.
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Figure 1.10: Colonoscopy with polyp removal. Image from @brgfx (Freepik).
.

1.6 Capsule Endoscopy

CE is a minimally invasive diagnostic procedure that allows doctors to examine the GI

tract, particularly the small intestine and colon (Iddan et al., 2000). The small intestine

is of special interest because is difficult to reach with traditional endoscopy methods. This

technology utilizes a small, pill-sized camera that patients swallow, enabling the capture

of thousands of images as it travels through the digestive system. These images provide

detailed views of the mucosal lining, helping to diagnose and monitor various GI conditions.

Figure 1.11 shows some of the steps involved in a CE procedure.

Figure 1.11: CE overview. The patient swallows the capsule, which records images of the
digestive system. The data is transmitted wirelessly to a data recorder that can be reviewed
later by medical personnel. Image from gutworks.

One of the primary benefits is its non-invasive nature. Unlike traditional endoscopy,
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which requires sedation and the insertion of scopes into the body, CE involves simply

swallowing a small, pill-sized camera. This approach is far more comfortable for patients and

reduces anxiety associated with more invasive procedures (Ismail et al., 2022). Additionally,

CE is highly convenient. Patients can carry out most of their daily activities while the

capsule is capturing images, making it less disruptive to their routines.

Another advantage of CE is the comprehensive imaging it provides. The capsule captures

thousands of high-resolution images as it travels through the digestive system, offering a

detailed and extensive view of the entire small intestine. This level of thoroughness is

difficult to achieve with conventional endoscopic techniques, which often struggle to access

and visualize the full length of the small intestine due to its complex structure and significant

length. However, the reading of CE videos is time-consuming and requires qualified medical

personnel (Maieron et al., 2004; Rondonotti et al., 2020; Koulaouzidis et al., 2021).

The structure of a CE is quite simple: one or two cameras, a battery, LEDs to illuminate

the scene, and a transmitter to send the images to the patient’s recorder. Figure 1.12 shows

some of the most important devices currently available.

(a) PillCam SB3.
Image from
Medtronic.

(b) PillCam COLON 2.
Image from Medtronic.

(c) Mirocam.
Image from In-
tromedic.

(d) Olympus EC-10.
Image from Olympus.

Figure 1.12: Some of the available CE devices.

The most common types of CE procedures use the natural movement of the digestive

system, known as peristalsis, for the capsule to advance through the digestive system.

Recent methods currently in development use external magnetic fields to guide, orient, and

power the capsule to stabilize it during its advance through the intestines (Shamsudhin

et al., 2017; Jiang et al., 2024).

Since its initial conceptualization in 1980 by engineer Gavrial Iddan and gastroenterol-

ogist Eitan Scapa, and the first pill swallowed in 1997, the technology of these devices has

advanced significantly. In 2001, the Food and Drug Administration (FDA) approved the

capsule from Given Imaging, the company founded by Iddan, for patient use. In 2014,

Medtronic acquired the technology from Given Imaging and has since sold over 4 million

capsules. Table 1.1 summarizes some of the currently available capsules and their specifi-

cations.
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Device Size (mm) Weight (g) Field (degree) Images/s Battery life Resolution (pixels)

PillCam SB 3, Medtronic 11 x 26 3 156 2-6 8h 320 x 320
PillCam SB 3 EX, Medtronic 11 x 26 3 156 2-6 12h 320 x 320
PillCam COLON 2, Medtronic 11 x 32 2.9 172 4-35 10h 256 x 256
PillCam Crohn’s, Medtronic 11 x 32 2.9 168 4-35 10h 256 x 256
PillCam UGI, Medtronic 11 x 32 2.9 172 18-35 90min 256 x 256
EndoCapsule, Olympus 11 x 26 3.3 160 2 12h -
CapsoCam Plus, CapsoVision, Inc 11 x 31 4 360 5 15h -
Mirocam single-lens, Intromedic 10.8 x 24.5 3.2 170 3 12h 320 x 320
Mirocam dual-lens, Intromedic 10.8 x 23.1 3.5 340 3 12h 320 x 320
OMOM, Jlinshan 11 x 25.4 3 172 2-10 12h 512 x 512

Table 1.1: Specifications of different CE devices.

1.7 Analyzing a Capsule Endoscopy Video

A CE procedure does not conclude when the capsule exits the patient’s body. Instead, the

process continues with trained medical personnel reviewing hours of video footage at high

speed to identify lesions and other abnormalities. This review procedure involves several

key steps, summarized below.

1.7.1 Bowel Preparation

Before any exploration of the video from a CE begins, it is essential to ensure that the

footage is usable. This means that the view of the mucosa must be clear and not ob-

structed by intestinal contents or residue. If the presence of these residues is suspected to

obscure potential lesions, the video may be deemed unacceptable for diagnostic purposes.

In such cases, the procedure must be repeated, which involves redoing the CE and possibly

revising the bowel preparation methods used prior to the procedure. This may include opti-

mizing the patient’s diet, using more effective cleansing solutions, or refining pre-procedure

instructions.

1.7.2 Landmark Identification

Once the video footage is deemed usable, the next step is to identify and examine the key

anatomical landmarks of the organ being reviewed. For a comprehensive assessment of the

small intestine, it is important to identify specific areas such as the pylorus, which is the

junction between the stomach and the duodenum, and the ileocecal valve, where the small

intestine connects to the large intestine. Identifying these landmarks ensures that the entire

small intestine is thoroughly evaluated, allowing for the detection of any abnormalities.

Similarly, when analyzing the large intestine, also known as the colon, it is essential to

locate the ileocecal valve, which marks the transition from the small intestine to the large

intestine, and the anorectal valve, which separates the end of the colon from the anus, as

depicted in Figure 1.7.
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1.7.3 Pathology Identification

Once the key anatomical landmarks are accurately identified, the next step is to carefully

review the video footage between these points to detect any potential pathologies. This

process is crucial for ensuring that the entire section of the GI tract in question, whether it

be the small intestine or the large intestine, is thoroughly examined. The goal is to identify

any abnormalities, such as polyps, ulcers, or other lesions, that could indicate underlying

health issues.

The European Society of Gastrointestinal Endoscopy (ESGE) recommends reviewing

these videos at a speed of 10 frames per second (Rondonotti et al., 2018) to balance efficiency

with accuracy. While this guideline is widely followed, it is important to note that there is

no definitive evidence proving that this specific frame rate significantly reduces the risk of

missing potential lesions. However, adhering to such standardized protocols helps maintain

a consistent approach to video review, thereby improving the reliability of the diagnostic

process.

1.8 Contributions

This thesis is presented as a copilot for physicians, designed to assist them in their daily tasks

by offering support tools that simplify their work. Our goal is to enhance the efficiency and

accuracy of medical processes, from data acquisition to pathology identification, through

the integration of advanced AI techniques.

• Dataset Compilation: We developed a method for automatically generating video

CE datasets. Additionally, we present HistoLungs700, a dataset of histological images

specifically designed for detecting lung carcinomas.

• Bowel Preparation Classification: We introduce a method to classify the bowel

preparation quality of CE videos using minimally annotated data. Current methods

are expensive to train due to the large data requirements. Our system, however,

achieves comparable agreement to real physicians with a low-effort annotation strat-

egy.

• Landmark Detection: We enhance the review process by developing a model to

automatically detect landmarks, identifying the entrance and exit points of the in-

testines. This improves upon state-of-the-art methods, streamlining the workflow for

physicians.

• Polyp Detection Tool: We test a polyp detection application in a real clinical

environment, comparing it to the current review method. Our system achieved higher

accuracy in less time, demonstrating that the integration of AI in clinical routines can

reduce the likelihood of missing polyps while being significantly faster than current
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methods. This system is currently being evaluated in a larger clinical trial to fully

assess its potential.

1.9 Document Structure

This thesis is organized into six chapters:

1. Introduction. This chapter lays the foundation for understanding the thesis. It

reviews key concepts of digestive system anatomy relevant to the study and introduces

artificial intelligence applications in medical imaging, specifically focusing on CE,

which is the primary tool used throughout this document.

2. Learning from Data. This chapter emphasizes the importance of data. It presents

a method for automatically creating a dataset of CE videos without the need for previ-

ously annotated data, highlighting the significance of data collection and preparation

in AI applications.

3. Bowel Preparation Assessment. Before reviewing a CE video, it’s crucial to

assess its quality. This chapter introduces a method that uses minimally annotated

data to evaluate bowel preparation using a well-known scale, ensuring the video is

clean enough for analysis.

4. Landmark Identification. Once the video’s quality is confirmed, the next step is to

identify the organ of interest, such as the large or small bowel. This chapter presents a

new method for accurately identifying anatomical landmarks, such as flexures, despite

the camera’s high speed and the large number of images captured.

5. Polyp Detection. This chapter introduces a method for detecting colonic polyps,

which is critical for the early detection of CRC. The study compares the proposed

method with traditional review systems, demonstrating improved accuracy, particu-

larly for small polyps or those appearing in a limited number of frames. Additionally,

this chapter discusses the method’s use in a real clinical trial, the CESCAIL study.

6. Conclusions and Future Work. The final chapter of this thesis summarizes the

key findings and outlines potential research directions that could enhance the results

further. Additionally, it lists all the publications submitted during the course of the

research.
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Datasets are a fundamental component of any AI solution. Training AI methods requires

a data source, whether derived from the real world, simulations, or artificial generation.

This chapter will emphasize the critical role of data. First, it will discuss the significance of

datasets and their impact on AI solutions. Next, it will present a method for automatically

generating a dataset from unlabeled CE videos. Finally, the chapter will describe a collab-

oration with the Hospital Cĺınico Universitario de Valladolid, highlighting how assistance

was provided in creating a dataset and validating an AI solution using it.
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2.1 The learning process

Learning is the process by which a model improves its ability to make accurate predictions

or classifications based on data. This process is grounded in the use of datasets, which

consist of samples and their corresponding labels, D = {xi, yi}Ni=1. Each data point in a

dataset can be denoted as xi (a sample) and yi (the label associated with that sample).

The essence of learning revolves around approximating a function that links these samples

to their labels.

Let’s start with a ground-truth function g, which perfectly maps each sample xi to its

corresponding label yi. In practice, however, the exact form of g is unknown. Instead, we

work with a model function f , which is our attempt to approximate g. The goal of training

the model is to make f as close as possible to g. This means that for each sample xi, the

model’s prediction ŷi = f(xi) should closely match the actual label yi.

During the learning process, the model is initially set up with some parameters, often

denoted by θ. As a result, the model function f can be expressed as fθ where θ represents

the parameters that are adjusted during training. As it processes the data, the model’s

parameters are adjusted to minimize the difference between the predicted values ŷi and

the actual labels yi. This difference is measured by a loss function, which quantifies the

model’s performance. By using optimization techniques, such as gradient descent, the model

parameters are iteratively updated to reduce the loss.

The learning process involves training the model on a dataset and then evaluating its

performance on new, unseen data. This evaluation checks how well the model generalizes

beyond the training examples. A model that generalizes well will make accurate predictions

on new data, not just on the data it has already seen. Overfitting occurs when a model learns

the details and noise in the training data to the extent that it performs exceptionally well

on this data but poorly on unseen data. In other words, the model becomes too specialized

to the training set and fails to generalize to new examples. This happens because the model

captures not only the underlying patterns but also the random fluctuations or anomalies

present in the training data.

Figure 2.1 illustrates illustrates a collection of points with three different fitting func-

tions, demonstrating the problems of overfitting and underfitting.

To detect and avoid overfitting, it is essential to partition the data into three distinct

sets: training, validation, and test, each serving a specific purpose.

The training set is used to fit the model. During training, the model learns to map

inputs to outputs by adjusting its parameters based on this data. Once the model has been

trained, its performance is evaluated on the validation set. The validation set acts as a

proxy for unseen data, providing a measure of how well the model performs when exposed

to new, but not entirely unknown, data. It is also used to fine-tune hyperparameters and

make decisions about the model’s architecture.
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Figure 2.1: Overfitting, underfitting and correctly fitting a set of points. Points were
generated using a sinus function, adding random normal noise to illustrate these concepts.

Finally, the model’s performance is assessed on the test set. This set consists of data that

the model has never seen before and is used to provide a final evaluation of its generalization

ability. The test set is crucial for obtaining an unbiased estimate of how the model will

perform in real-world scenarios, as it has been completely separate from the data used

during training and validation.

To combat overfitting, various techniques such as regularization, cross-validation, and

careful model selection are employed. Regularization methods add constraints to the model

to prevent it from becoming overly complex, while cross-validation helps ensure that the

model’s performance is robust across different subsets of the data. By using these strategies,

the aim is to build a model that generalizes well, providing accurate predictions not only

on the training data but also on new, unseen data.

2.1.1 Deep Learning

Deep Learning (DL) is a subset of Machine Learning (ML) and AI that involves the use of

neural networks with many layers, often referred to as deep neural networks. At the core of

these networks are artificial neurons. Each artificial neuron receives input data, processes

it, and passes the result to the next layer. By stacking many layers of these neurons,

DL networks can automatically learn to recognize complex patterns and features directly

from raw data, without requiring manual feature engineering. This capability makes DL

particularly effective for tasks like image recognition, Natural Language Processing (NLP),

and other complex decision-making processes.

An artificial neuron is a function a : Rn −→ R designed to mimic the behavior of a

biological neuron. It processes input data x ∈ R
n, which can come from either the input

layer or preceding neurons, and produces an output by transforming this data through the

following formula:

a(x) = a(x1, . . . , xn) = σ

(
n∑

i=1

wixi + b

)
= σ

(
wTx+ b

)
(2.1)
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In the expression, w = (w1, . . . , wn) represents the weights assigned to each input, which

determine the significance of each input feature, b ∈ R is the bias, a constant that shifts the

output function and σ : R −→ R is the activation function, which introduces non-linearity

into the model. This non-linearity is crucial because it allows the neuron to learn and model

complex patterns beyond simple linear relationships. The most commonly used activation

functions are sigmoid, tanh, ReLU or Leaky ReLU among others. This expression can be

generalized into the multi-layered artificial neural network. For a neural network of L layers,

the expression would be:

fθ(x) = (aL ◦aL−1 ◦· · ·◦a2 ◦a1)(x) = σL

(
WLσL−1

(
WL−1 . . . σ(W1x+b1)+ · · ·+bL−1

)
+bL

)
(2.2)

where θ is a collection of weights, {Wi}ni=1, and biases, {bi}ni=1.

In broad terms, a DL model is represented as fθ : X −→ Y , where X denotes the input

space and Y represents the output space. The function fθ transforms input data from X

to outputs in Y , with θ denoting the parameters of the model learned during training.

The training process involves minimizing the error associated with a target objective that

depends on a dataset D ⊂ X and the fixed model parameters. This error, also referred to

as the loss function l(D, θ) ∈ R, evaluates the disparity between the model’s predictions

and the actual labels provided in the dataset.

The output of a classifier, which is a neural network designed to assign samples to a finite

number of classes, can be interpreted as Pθ(y|x). This notation represents the probability

that a given sample x belongs to class y given the model parameters θ. For simplicity, the

parameters θ are often omitted in the notation, and the probability is typically expressed

as P (y|x).
Through the backpropagation algorithm, the error is propagated backward through the

layers, starting from the last layer and moving all the way to the first. This process adjusts

the weights of each layer in order to minimize the overall error of the model. This iterative

adjustment of weights based on the error propagation allows the neural network to learn

and improve its predictions over time. By updating the weights in the direction that reduces

the error, backpropagation enables the network to fine-tune its parameters to better match

the desired outputs for the given inputs, thereby optimizing maximum likelihood. This is

equivalent to minimizing the log-likelihood:

argmin
θ

(
−

N∑
i=1

log
(
Pθ(yi|xi)

))
(2.3)
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2.2 Embeddings

Embeddings are a crucial concept in the DL and ML field, particularly in the context

of NLP and other high-dimensional data applications. Essentially, embeddings are dense

vector representations of data, which capture the semantic relationships between items in

a continuous vector space. This transformation from discrete to continuous space allows

for the preservation of meaningful information and relationships, which can be leveraged

by various ML models. For instance, in NLP, word embeddings like Word2Vec (Mikolov

et al., 2013), GloVe (Pennington et al., 2014), and BERT (Devlin et al., 2018) map words or

phrases to vectors of real numbers, where semantically similar words are positioned closer

together in the vector space. This facilitates the models to perform tasks such as sentiment

analysis, translation, and question-answering more effectively.

In the image paradigm, embeddings play an equally significant role. Image embeddings

involve transforming images into high-dimensional vectors that capture essential features

and patterns within the images. Techniques such as Convolutional Neural Network (CNN)

are commonly used to generate these embeddings. These vectors can then be used in various

tasks, including image classification, object detection, and image retrieval. For example, in

a CNN, the final layers produce an embedding that encapsulates the learned features of the

image, which can then be used to compare and categorize images based on their content.

The versatility and power of embeddings make them indispensable in both textual and visual

data applications, enabling more nuanced and sophisticated analysis and interpretation of

complex data.

Image embeddings have been significantly advanced by the development of DL archi-

tectures such as AlexNet (Krizhevsky et al., 2012) and ResNet (He et al., 2016). AlexNet,

marked a breakthrough in image classification by utilizing deep CNNs to learn hierarchical

features from raw image pixels. This architecture, consisting of multiple convolutional and

fully connected layers, demonstrated the effectiveness of DL in extracting rich and infor-

mative embeddings from images. AlexNet’s success in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) showcased the power of deep embeddings in achieving

unprecedented accuracy in image recognition tasks.

ResNet, or Residual Networks, further revolutionized the field by addressing the prob-

lem of vanishing gradients in deep networks, which often hindered training of very deep

models. Introduced in He et al. (2016), ResNet employs residual learning with shortcut

connections to allow gradients to propagate more effectively through the network. This

innovation enabled the construction of extremely deep networks with hundreds or even

thousands of layers, significantly improving the quality of image embeddings. ResNet’s ar-

chitecture, featuring identity mappings (also known as skip connections) and batch normal-

ization, has become fundamental in computer vision, driving state-of-the-art performance

in tasks like image classification, object detection, and segmentation. The advancements

brought by AlexNet and ResNet have cemented the importance of robust embeddings in
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capturing complex visual patterns, driving forward the capabilities of AI in processing and

understanding image data.

Figure 2.2: MNIST images projected into 2-D space using UMAP.

To fully understand the concept of embeddings and how they are created, consider the

following formal definition: Let f be a function that transforms a sample x ∈ X into a

vector representation f(x) = z ∈ R
d. This function f is known as an encoder, and the

resulting vector z is called an embedding of x. Note that this vector representation is not

unique; it is entirely dependent on how the function f is trained and the specific problem

being addressed. Figure 2.2 shows a visual representation of image embeddings. Images

from MNIST (Lecun et al., 1998) dataset, were flattened to a vector representation of 784

values and projected to a 2-dimensional embedding space using UMAP (McInnes et al.,

2018).

Embeddings are typically not learned directly. Instead, they often emerge as feature vec-

tors within the intermediate layers of a neural network architecture. One common approach

to learning embeddings is through the use of an autoencoder.

An autoencoder (Rumelhart et al., 1986) is a type of neural network that does not

require annotated data, which is why it is considered an unsupervised technique. Its primary

characteristic is that the output is designed to have the same shape and domain as the input.

The autoencoder model learns to compress the data from its original space into a smaller

vector representation, the embedding, and then reconstructs the original sample from this

encoded representation. This process helps the model capture and preserve essential features

of the data in the embedding. The basic autoencoder architecture is presented in Figure 2.3.
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Figure 2.3: Basic autoencoder architecture. Images are passed through the encoder to
obtain the embedding, which is the latent representation of the image. This vector is then
passed through the decoder, which reconstructs the image. Image from MathWorks.

2.3 Capsule Endoscopy Datasets

This thesis focuses on CE solutions, making CE images or videos the most crucial resource

for developing methods for physicians. Without these, it is impossible to accurately replicate

a real clinical environment. A high-quality CE dataset must possess several key properties:

• Proper data splitting: Each image needs to be linked to a patient identifier, or

at least ensure that a proper train, validation, and test split can be done. Since the

camera can be stuck for several minutes (resulting in hundreds of frames) in the same

location, a CE video contains a large number of similar frames. Ensuring that all

these frames are not split between the training and validation sets ensures a proper

evaluation. Otherwise, there is a problem of data leakage, one of the most common

issues faced by AI beginners.

• Large variety: A large variety of patients should be considered. Some of the patholo-

gies we will be dealing with later on, such as polyps, appear very infrequently in the

videos. Ensuring there is a large number of patients in the dataset will make it richer

and result in a better model.

• High-quality annotations: Accurate and detailed annotations are essential for

training and evaluating AI models. Each frame in the dataset should be annotated

with relevant clinical information, including the presence of pathologies, anatomical

landmarks, and other significant findings. High-quality annotations help in developing

precise and reliable models.

• Temporal continuity: Maintaining the temporal continuity of frames is important

for understanding the progression of video content. The dataset should include se-

quences of frames that capture the dynamic changes within the GI tract. This allows

models to learn patterns over time, which is essential for detecting anomalies that
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may develop gradually or identifying specific changes in the video, such as the valves

marking the entrance and exit of the small and large intestines.

There are very few large and comprehensive CE datasets, as most published studies

use private data. Releasing such data is challenging due to stringent controls required to

protect patient privacy. Additionally, competing interests from private companies further

complicate the release of these datasets. However, some CE datasets are available, as shown

in Table 2.1.

Dataset Images Labeled Classes Resolution Device Public Organ Published

KID (Set1) 77 77 9 360×360 MiroCam � - Koulaouzidis et al. (2017)
KID (Set2) 2,371 2,371 8 360×360 MiroCam � - Koulaouzidis et al. (2017)

KID (Videos) 3 videos 0 0 360×360 MiroCam � - Koulaouzidis et al. (2017)
RedLesions (Set1) 3,295 3,295 1 Multiple MiroCam, PillCam SB1, SB2, SB3 � Small Bowel Coelho et al. (2018)
RedLesions (Set2) 600 0 2 320×320 PillCam SB3 � Small Bowel Coelho et al. (2018)

CAD-CAP 25,124 25,124 4 576×576 PillCam SB3 Under request Small Bowel Leenhardt et al. (2020)
ChronIPI 3,498 3484 7 320×320 PillCam SB3 Under request Small Bowel de Maissin et al. (2021)

Kvasir-Capsule 4,741,504 47,238 14 336×336 Olympus Endocapsule 10 � Small Bowel Smedsrud et al. (2021)

Table 2.1: CE datasets. Datasets marked with the symbol �, were available at the moment
we downloaded them but are not available anymore.

KID

The Knowledge-based Intelligent Digestive (KID) dataset (Koulaouzidis et al., 2017) is

an open-access, non-profit repository that provides high-quality annotated CE images and

videos. It aims to assist clinicians in diagnosis and to foster the development of automated

medical decision support systems. This dataset includes contributions from an international

community of CE researchers, ensuring that all data provided is anonymized and stripped

of any identifiers. The annotations are verified by expert reviewers from the international

scientific committee of KID, guaranteeing the quality and accuracy of the information.

The dataset is divided into three parts. Dataset 1 comprises 77 CE images from Miro-

Cam capsule endoscopes, illustrating various GI abnormalities such as angioectasias, aph-

thae, chylous cysts, polypoid lesions, villous edema, bleeding, lymphangiectasias, ulcers,

and stenoses (Figure 2.4). Dataset 2 contains 2,371 CE images from the same type of en-

Figure 2.4: KID Set 1: 77 images organized in 9 pathological classes with annotated masks.
In this figure only the border of the masks are displayed for better visualization.

doscopes, depicting a broad spectrum of small bowel findings, including polypoid, vascular,

and inflammatory lesions, along with normal images from the esophagus, stomach, small

bowel, and colon (Figure 2.5).
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Figure 2.5: KID Set 2: 2,371 images organized in 8 classes: 4 pathological and 4 non-
pathological. In this figure only the border of the masks for the pathological classes are
displayed for better visualization.

Additionally, the dataset includes 3 CE videos obtained using MiroCam capsule endo-

scopes, further supporting research and development in GI diagnostics (Figure 2.6).

Figure 2.6: Images extracted from KID’s dataset (Video 1), in sequential order.

CAD-CAP

The Computer-Assisted Diagnosis for Capsule Endoscopy (CAD-CAP) dataset is a com-

prehensive resource designed to support the development of AI tools for interpreting CE

videos. This large, multicenter database encompasses a total of 4,174 third-generation

small bowel CE videos, meticulously collected from twelve French endoscopic centers. Out

of these, 1,480 videos (35%) were identified to contain at least one pathological finding,

while the rest were deemed normal. This vast collection aims to address the tedious and

time-consuming nature of CE, which involves scrutinizing an average of 50,000 frames per

video, typically requiring 30 to 60 minutes per video.

The dataset is composed of 25,124 frames in total, providing a rich source of data for

ML and automated diagnostic tool development. Specifically, it includes 5,184 frames with

pathological findings, which are further categorized into 718 frames showing fresh blood,

3,097 frames with vascular lesions, and 1,369 frames displaying inflammatory and ulcerative

lesions. Additionally, the dataset features 20,000 normal frames extracted from 206 normal

CE videos, offering a robust control set. Each frame is paired with a short video sequence

of 25 frames upstream and downstream to ensure contextual understanding. This database

has already been part of international challenges (Endoscopic Vision Challenge, 2017) on

medical computerized analysis, highlighting its significance and utility in advancing CE

diagnostic technology. Particularly, reduced versions of this dataset were released in the

Gastrointestinal Image ANAlysis (GIANA) challenges: GIANA 2017, GIANA 2018 and

GIANA 2021.
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(a) Inflammatory (b) Vascular Lesions (c) Normal

Figure 2.7: CAD-CAP dataset. The version from GIANA 2018 contains three classes:
Inflammatory, Vascular lesions and Normal images. Some pathological images have acom-
paning masks highlighting the area of interest. Here the masks are replaced by outlines for
better visualization.

RedLesions

The RedLesions dataset introduced in Coelho et al. (2018), is composed of annotated frames

extracted from small bowel CE videos, specifically to train and evaluate algorithms for red

lesion detection. The dataset includes two sets of images:

• Set 1: This set contains 3,295 frames from various devices, including MiroCam and

PillCam models SB1, SB2, and SB3. Among these frames, 1,131 contain red lesions

such as angioectasias, angiodysplasias, and bleeding. The frames have been manually

annotated, with resolutions of either 320×320 or 512×512, all of them resampled to

512×512 for uniformity. Figure 2.8 shows random images from the dataset, highlight-

ing the outline of the available masks.

• Set 2: This set consists of a sequence of 600 frames from a PillCam SB3 video, intended

to provide a more clinically realistic evaluation. Approximately 73% of these frames

include red lesions, labeled as Blood/Non-blood although this annotations are not

publicly available. Figure 2.9 shows a sequence of the dataset containing blood.

Figure 2.8: RedLesion Set1: Random images highlighting the available masks.

Figure 2.9: RedLesion Set2: Sequence containing blood.

The dataset was created to address the lack of publicly available annotated CE images

large enough to train DL models effectively. However, Set 1 contains multiple images of the

same patients without identifiers, making it impossible to perform a proper training split.
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CrohnIPI

The CrohnIPI dataset (de Maissin et al., 2021) is s multicentric dataset for the development

and testing of computer-aided diagnosis tools for small bowel CE. The dataset consists of

66 videos from 63 patients diagnosed with Crohn’s disease, which were acquired using the

Pillcam SB3 system between 2014 and 2018. From these videos, a total of 3,498 frames

were extracted and annotated. These frames were categorized into three groups: 1,630

frames containing pathological lesions, 1,734 non-pathological frames, and 134 inconclusive

frames. The annotation process involved multiple rounds, starting with an initial reading

by one gastroenterology fellow and followed by reviews from three experts. This rigorous

annotation process aimed to ensure the highest accuracy, resulting in a consensus annotation

from the four experts.

Figure 2.10: Images representing all the classes displayed in the CrohnIPI dataset.

The frames were carefully reviewed to ensure that only the most severe lesion was anno-

tated when multiple lesions were present. This dataset not only facilitates the development

of more accurate algorithms but also helps in understanding the inter-observer variability

among experts in annotating CE images. The performance of the neural network classi-

fiers tested on this dataset showed significant improvement, achieving a precision of 93.7%,

sensitivity of 93%, and specificity of 95%.

Kvasir-Capsule

The Kvasir-Capsule dataset, presented in Smedsrud et al. (2021), is a comprehensive CE

dataset collected from examinations at a Norwegian hospital. It includes 117 videos that

together comprise 4,741,504 image frames. Out of these, 47,238 frames are labeled and

medically verified, featuring bounding boxes around findings in 14 different categories, while

the remaining 4,694,266 frames are unlabeled.

The labeled frames include various GI findings, which are categorized for analysis, clas-

sification, segmentation, and retrieval purposes. The dataset is publicly available under a

Creative Commons Attribution 4.0 International License, encouraging its use, sharing, and

adaptation in research and medical education.

Figure 2.11 shows an example image for each of the 14 classes.

The polyp class in the dataset contains only 55 images. In Jha et al. (2021), they

released segmentation masks for the polyps, the Kvasir-Capsule-Seg subset. Images from
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Figure 2.11: Kvasir-Capsule dataset. Shown here are 14 images, each representing a different
category.

this subset are displayed in Figure 2.12. As can be seen, all of them contains the same

polyp, a very big mass seen in different positions.

Figure 2.12: The 55 images depict various views of the same polyp, a very large mass. The
area occupied by the polyp is labeled in the Kvasir-Capsule-Seg subset. Only the borders
of the masks are shown here to enhance visualization.
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2.4 Active Learning

Creating datasets in the medical domain is a complex and challenging task. Collecting

data from patients often involves lengthy procedures, which can take hours and require

strict controls and regulations to ensure patient privacy and protection. This process con-

trasts sharply with data acquisition in other industries, where data collection is often more

straightforward. For example, in the mobile gaming industry, collecting data is relatively

simple because millions of users are constantly generating data every second.

Active Learning (AL) is a technique designed to minimize the amount of labeled data

needed to learn a task (Settles, 2009). The goal of an AL algorithm is to iteratively select

the most informative samples for labeling, thereby reducing the overall labeling effort. By

focusing on the most useful examples, AL aims to achieve efficient learning with fewer

labeled data points.

2.4.1 The Active Learning Framework

Figure 2.13: AL Framework. The annotator takes new data proposed by the method and
adds it to the pool. Image from Settles (2009).

An AL process involves several steps, as depicted in Figure 2.13. Initially, all data

is considered unlabeled. The method then proposes a subset of this data for annotation,

which is provided to the annotator. The newly labeled data, along with the remaining

unlabeled data, is fed back into the model, which then selects the next subset to be labeled.

This iterative process continues until acceptable performance is achieved or the budget is

exhausted.

Let X = {x1, ..., xn} be a finite set of samples. Let L represent the set of labeled samples

and U the set of unlabelled samples, such that X = L ∪ U . Initially, L = ∅ and U = X.

An AL algorithm A takes as input, at least, the labelled and unlabelled data and outputs

a subset U∗ ⊆ U that optimizes a metric m subject to a constraint c:
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U∗ = A(L,U, ·) = argmax
V⊆U

{m(L, V ) such that c(V )} (2.4)

The constraints, like other parameters in this process, are problem-dependent. Typical

constraints include a maximum size for the set V , such as |V | ≤ k. In some cases, it

is required to select exactly k samples in each iteration of the AL process, imposing the

constraint |V | = k.

The core of each AL strategy is the metric m, which scores each subset of data. This

metric often relies on the performance of a classifier to select samples with higher uncer-

tainty, a method known as uncertainty sampling. Alternatively, diversity sampling seeks

samples that not only improve classification directly but also increase the variability of the

classifier, making it more robust to outliers and unseen data. We will now detail some of

the primary techniques that employ both sampling strategies.

2.4.2 Uncertainty Sampling

Uncertainty sampling involves selecting samples for which the classifier is least certain about

how to classify. The output of a binary classifier is typically a probability distribution

between 0 and 1, which can be interpreted as the probability of belonging to the positive

class, denoted here as class 1. We denote this probability as P (y|x) where x ∈ X is a sample

and y ∈ Y is a possible label for that sample, with Y representing all possible labels. In a

binary classification scenario, we can assume Y = {0, 1}.
Classifier outputs in the range [1− ε1] are interpreted as belonging to the positive class,

while outputs in the range [0, ε0] are classified as negative. Here, ε0, ε1 ∈ [0, 1] are threshold

values that need to be tuned based on the problem, and they must satisfy ε0 + ε1 ≤ 1.

Often, ε is set such that ε := ε0 = 1− ε1, ensuring that all samples are classified into one of

the two classes. Otherwise, samples with probabilities in the range (ε0, 1− ε1) may remain

unclassified.

Let us examine the various uncertainty strategies that can be employed. Initially, we will

focus on selecting a single sample, which corresponds to the case where U∗ = {x∗}, x∗ ∈ U

We will then generalize this approach to handle larger subsets. The notation used in this

section follows that established in Settles (2009); Schröder et al. (2021); Gilabert et al.

(2023); Bardaj́ı et al. (2024).

Least Confidence

The first and most direct approach is to take the predictions of the classifier as a measure of

uncertainty. This approach uses the probability of the classifier aforementioned, P (y|x), as
the unique value to compute the metric. It measures the distance from the most confident

prediction to the maximum score, 1. The formula for obtaining the least confident sample
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is:

x∗ = argmax
x∈U

(
1−max

y∈Y
P (y|x)

)
= argmin

x∈U

(
max
y∈Y

P (y|x)
)

(2.5)

Margin of Confidence

Following the same idea as the least confidence, this strategy measures the difference be-

tween the top two predictions for each sample. Samples with a small distance between these

top two predictions are samples the classifier is unsure how to classify. The expression that

satisfies the sample with the largest margin of confidence is:

x∗ = argmax
x∈U

(
1− (P (ym|x)− P (yp|x))

)
= argmin

x∈U

(
P (ym|x)− P (yp|x)

)
(2.6)

where ym = argmax
y∈Y

P (y|x) and yp = argmax
y∈Y \ym

P (y|x).

Ratio of Confidence

Following the exact same idea of the previous metric, ratio of confidence measures the

relation between the top two predictions. The expression is:

x∗ = argmax
x∈U

P (yp|x)
P (ym|x) (2.7)

where ym = argmax
y∈Y

P (y|x) and yp = argmax
y∈Y \ym

P (y|x).

Entropy

Shannon Entropy (Shannon, 1948) is one of the most used metrics in AL. Entropy is a

measure of uncertainty with an interesting property: the uniform distribution have max-

imum entropy. This means that a random classifier would exhibit maximum uncertainty

and would have lower values when the classifier is improving classification. This method

computes the sample with highest entropy, considering all possible labels.

x∗ = argmax
x∈U

⎛
⎝−∑

y∈Y
P (y|x) logP (y|x)

⎞
⎠ (2.8)

The following are some of the most important diversity sampling strategies.
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2.4.3 Diversity Sampling

In the previous section, metrics were defined in an “exact” manner, meaning they rely on

closed formulas that can be systematically applied to select the next sample. In contrast,

diversity sampling aims to capture more complex properties such as coverage, diversity, or

representativeness.

To achieve this, the metrics discussed in this section utilize embeddings produced by

a model M trained on the labeled data. By analyzing the spatial distribution of these

embeddings, the goal is to identify samples that are either the most dissimilar from the

majority of other samples or that exhibit other desirable properties.

For embedding-based metrics, we assume that the classification model M can be ex-

pressed as M = MC ◦ME where ME is a function that transforms data from the original

space into a vector representation, and MC takes this vector and classifies it into one of the

possible classes. This architecture is typical in many CNNs models, where ME corresponds

to the convolutional layers that extract features, and MC includes the final dense layers

that perform classification. Using this notation, ME(x) represents the embedding vector of

a sample x.

Contrastive

This method, presented in Margatina et al. (2021), selects samples with the largest Kullback-

Leibler (KL) divergenece between the predictions and its k nearest neighbors.

x∗ = argmax
xi∈U

⎛
⎝1

k

k∑
j=1

KL
(
P (·|xnnj ) || P (·|xi)

)⎞⎠ (2.9)

In the previous equation xnnj , j = 1, . . . , k are the k nearest neighbors of sample xi. Given

two discrete probability distributions, A,B, that share the same sampling space X, the KL

divergence is defined as:

KL(A || B) =
∑
x∈X

A(x) log

(
A(x)

B(x)

)
(2.10)

Although this strategy may appear to be an uncertainty strategy due to its closed-form

nature, an important aspect that classifies it under diversity sampling is the computation

of nearest neighbors. In the original paper, the nearest neighbors are retrieved by selecting

the top k nearest samples using euclidean distance between their embeddings.
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Coverage

The coverage strategy calculates the distances from each unlabelled sample to its k nearest

neighbors and then computes the average distance. The sample selected by the coverage

strategy is the one that is farthest from its neighbors.

x∗ = argmax
x∈U

⎛
⎜⎝1

k

∑
x′∈NNk

d,L(x)

d
(
ME(x

′),ME(x)
)⎞⎟⎠ (2.11)

where NNk
d,L(x) denotes the k nearest neighbors of x among the already labeled samples,

L, using the distance metric, d.

Cloud-Clustering

The problem with averaging of the coverage strategy is that it can loose some important

information. The mean of a collection of numbers doesn’t retain information of the original

collection and this was addressed in this new metric. To this end, instead of considering the

mean of the distances, the volume of the embeddings is considered. The Convex-Hull of a

set of embeddings is defined as the smallest convex volume that encloses all the embeddings.

This is why it is also called an enclosure of the embedding set.

To develop this method, it is first necessary to cluster the samples into k groups. This

method will then select the cluster that overlaps the least with the other clusters, extending

the idea presented in the coverage method. In the following formula, the cluster with the

smallest intersection with the others is the one selected.

U∗ = argmin
V ∈Clustk(U)

∑
W∈Clustk(U)

W �=V

Volume
(
Convex-Hull(V ) ∩ Convex-Hull(W )

)
(2.12)

In this equation, Clustk(U) is a function that clusters all the data in the unlabelled set

into k groups, and Volume(A) computes the volume the set A occupies.
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2.5 Building colon capsule endoscopy datasets

While CE is a valuable diagnostic tool, reviewing the videos captured by the capsule can

be a long and tedious process (Koulaouzidis et al., 2021; Maieron et al., 2004; Rondonotti

et al., 2020). Each video contains thousands of images that must be carefully analyzed by

trained personnel to detect any abnormalities or signs of disease. The process of reviewing

these videos requires a great deal of concentration and attention to detail, as the images

are often small and difficult to interpret. Additionally, it is worth noting that the process

of labeling videos to create a dataset is a significant challenge, primarily due to the high

cost of hiring annotators.

To fully leverage the potential of DL technology for CE, a vast amount of labeled data

is required to train the algorithms to be robust and reliable in real-world clinical settings.

It is essential that the videos used to train these models are diverse and representative of

the full range of conditions encountered in clinical practice. By including a high diversity of

images and capturing real-world scenarios, DL models that emerge from this training can

be better equipped to predict and identify abnormalities that are present in actual patients.

In the studies by Gilabert et al. (2023); Bardaj́ı et al. (2024), AL frameworks were

developed to build a comprehensive dataset of CE videos. The main objective was to create

this dataset iteratively, starting with a small, labeled subset of videos. The framework then

determined which additional videos required labeling in subsequent iterations.

This selection process focused on diversity scenarios, considering the embeddings of the

video frames. Embeddings represent the key features of the video images and are used

to measure the similarity between different videos. By computing the distances between

these embeddings using specific strategies outlined in the study, the framework identified

which new videos to label next, based on their potential to add valuable information to the

dataset. Further details on the methodology will be provided in the following sections.

2.5.1 Dataset

The dataset used for the experiments consists of 23 Colon Capsule Endoscopy (CCE) videos

from different patients obtained with PillCam SB3 at Raigmore Hospital, Inverness (Scot-

land). From each video, 2,000 images were randomly extracted and a medical doctor with

more than 10 years of experience classified them into one of the following six classes of

interest: Bubbles, Turbid, Large Blob, Wall, Wrinkles, and Undefined. As can be seen in

Table 2.2, the dataset is very unbalanced. The “Undefined” class corresponds to all those

images that have no medical relevance and, therefore, is the majority class with almost 42%

of the images.

Figure 2.14 shows three images per class of a single patient, showing the diversity of the

dataset.
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Bubbles Turbid LargeBlob Wall Wrinkles Undefined

# images 3,073 12,497 2,957 3,020 5,226 19,078
(%) 6.70 27.26 6.45 6.59 11.40 41.61

Table 2.2: Number of images of each class in the dataset.

Figure 2.14: Random images of a patient with their labels grouped in the six classes.

2.5.2 Experimental Setup

Experiments were performed using an NVIDIA 3090 GTX running Tensorflow 2.8 and

CUDA 11.6. An EfficientNetB3 (Tan and Le, 2019) pre-trained with ImageNet was selected

as a backbone model for all the strategies. An additional dense layer was applied at the end

of the backbone to generate an embedding space of n = 64 dimensions. All models were

trained for 20 epochs with 64 images per batch. Adam optimizer with a learning rate of

1×10−5 and weighted cross-entropy as a loss function were used to train the model. The loss

weights were computed using the balanced strategy of sklearn that computes the number

of samples of each class in the training set (currently labeled set, L). All the models were

trained using the same learning rate decay policy: during the 5 first epochs, the learning

rate was fixed at 1×10−5 and linearly decreased after that until 1×10−7. When computing

nearest neighbors for some of the strategies, the number of neighbors was set to k = 30.

Since the “Undefined” class is not medically relevant, it was not taken into account when

computing the diversity metrics.

The video split was performed as follows: from the total of 23 videos, 5 videos were

randomly selected as a validation test, 5 as the test set, 1 video as the initially labeled set

of videos, and 12 videos as the initially unlabeled set of videos. A total of 8 videos were

selected using the active learning algorithm with the three compared strategies. At each

iteration of the process, the model was trained on the labeled set and the metrics of the

20th epoch were reported.
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This same process was repeated three times to ensure its robustness. The results pre-

sented are the average of these three trials.

2.5.3 Active learning strategies

Let M be a model trained with some labeled videos, L. Let U be a set of unlabeled videos.

The goal is to find, at each step, the unlabeled video V ∗ ∈ U that adds the most diversity

possible to the training set. That is:

V ∗ = argmax
V ∈U

d(M,V,L) (2.13)

where d(M,V,L) is a function that scores a video V using the model M , based on those

already present in the training set, L. This is the video that is sent to be labeled by the

expert and added to the labeled pool of videos. The way we define d(·) is crucial since it is

the metric that changes the way videos are selected.

The active learning process can be implemented following the algorithm presented in

Algorithm 1. We start with a set (small) of labeled videos and a set (large) of unlabeled

videos. Then, the video that maximizes d(·) is selected. This video is then added to the

labeled pool of videos and removed from the pool of unlabeled videos. We repeat this

operation until there are no more unlabeled videos.

Algorithm 1 Active learning video selection

Require: Unlabeled videos, U0; labeled videos, L0; model, M
U ← U0

L← L0

while U �= ∅ do
M ← train(M,L) � Train the model on labeled data.
V ∗ ← argmaxV ∈U d(M,V,L)
L← L ∪ V ∗

U ← U \ V ∗

end while

As we have seen in Sections 2.4.2 and 2.4.3, the function d(·) relies on different properties

of the classifier or the embedding space to compute the score for each of the samples to be

selected and the one with the highest value is, indeed, sent to be labeled to the experts.

In the following sections we present different approaches to tackle this problem, providing

results for the CE dataset. All the strategies are reformulated to adapt them to the specific

case. PM is used to express that the model M induces a probability on the classification.

Random Strategy

To compare any method, the random strategy is defined as a discrete uniform distribution on

the videos. Given |U | = n with V1, . . . , Vn ∈ U being the collection of unlabeled videos, we
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define the random distance of each video as drand(M,V,L) = 1
n . In other words, the random

strategy assigns each video an equal probability of being selected, effectively following a

uniform distribution:

V ∗ ∼ Uniform{V1, . . . , Vn}, n = |U | (2.14)

Greedy Strategy

An upper bound on the results must be established, which is done using a brute-force

approach to approximate an almost-optimal strategy. This method involves selecting the

video that yields the maximum improvement in each iteration. While this approach does

not guarantee optimality, since all permutations would need to be considered, it provides

a good upper bound for comparison. The greedy strategy, as outlined in Algorithm 1,

operates similarly but differs in that it trains a classifier for each potential video and selects

the one that maximizes improvement in a chosen metric, such as the Area Under the ROC

Curve (AUC) in our case.

Figure 2.15 illustrates the comparison between the random and greedy strategies. The

figure shows how various metrics on the test set evolve as new videos are introduced. Ini-

tially, the system starts with a single video, and then eight additional videos are added

sequentially. The strategies under consideration should ideally perform better than the

random baseline (indicated by the blue line) and approach, but not exceed, the perfor-

mance of the greedy strategy (indicated by the orange line). The objective is to develop

methods that closely align with the performance of the greedy curve.

Figure 2.15: Greedy vs Random strategies evaluated on the test set. Average of three trials.

Least Confidence Strategy

The least confidence or the discriminative score for an image is the highest value after

the classification layer. Since we are not selecting individual frames but entire videos, to

compute this metric for a video, ddisc is defined as the average of the discriminative score

for each frame.

This is summarized in Eq. 2.15.
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ddisc(M,V,L) = − 1

|V |
∑
x∈V

max
y∈Y

PM (y|x) (2.15)

As can be seen in the equation, this function does not use the labeled set of videos when

computing the score of one video. The video selected using this strategy is presented in

Equation 2.16.

V ∗ = argmax
V ∈U

(
− 1

|V |
∑
x∈V

max
y∈Y

PM (y|x)
)

(2.16)

Margin Strategy

The margin strategy takes into account the top two predictions for each sample. This is

summarized in Eq. 2.17. As introduced in Equation 2.6, ym and yp represent the top-1 and

top-2 prediction, respectively, that is ym = argmax
y∈Y

PM (y|x) and yp = argmax
y∈Y \ym

PM (y|x).

dmarg(M,V,L) =
1

|V |
∑
x∈V

max
y∈Y

(
1− (PM (ym|x)− PM (yp|x)

))
(2.17)

The video selected using this strategy is presented in Equation 2.18.

V ∗ = argmax
V ∈U

(
1

|V |
∑
x∈V

max
y∈Y

(
1− (PM (ym|x)− PM (yp|x)

)))
(2.18)

Entropy Strategy

Shannon’s Entropy can be used to select the most informative video. The distance that

this strategy uses is presented in Equation 2.19.

dentrop(M,V,L) =
1

|V |
∑
x∈V

⎛
⎝−∑

y∈Y
PM (y|x) logPM (y|x)

⎞
⎠ (2.19)

Then, choosing the video with the highest entropy leads to the formula presented in

Equation 2.20.

V ∗ = argmax
V ∈U

⎛
⎝ 1

|V |
∑
x∈V

⎛
⎝−∑

y∈Y
PM (y|x) logPM (y|x)

⎞
⎠
⎞
⎠ (2.20)

The Least Confidence, Margin, and Entropy strategies do not always yield the best

results, as demonstrated for this particular dataset. Figure 2.16 illustrates the evolution of
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loss, AUC, and Matthews Correlation Coefficient (MCC) as new videos are incorporated into

the dataset. For this dataset, these strategies either perform worse than or are comparable

to the random strategy.

Figure 2.16: Uncertainty strategies evaluated on the test set. The curves show that these
strategies perform worse than the random strategy for this specific dataset.

Maximal Coverage Strategy

To better leverage the information on the latent space of the model M , i.e, the embedding

before the last classification layer, we designed a metric that computes the distance from

one video candidate to the current labeled set of videos. In this manner, the video with

the highest distance is expected to be the one that contributes the most to global diversity.

As we did with the previous metrics, we compute the distance of a video to the rest of the

labeled videos by averaging the value calculated per each individual frame.

Our model M can be decomposed into two sub-models M = MC ◦ME where ME gets

an image and projects it to an embedding space R
n and MC is the sub-model responsible

of classifying this embedding into the C classes of the problem. This means applying a

last layer and an activation function, usually a softmax to transform the output into a

probability in the 0-1 range.

To compute the distance of each frame x of the candidate video V to the already labeled

videos L, we first compute the k nearest embeddings per frame. That is, {x′ | x′ ∈ NNk
L(x)}.

We then compute the euclidean distance from each neighbor x′ to the current frame x and

take the mean of these values. This number provides a distance from a video candidate to

the set of currently labeled videos.

Figure 2.17 and Eq. 2.21 summarize the procedure explained above.

dcover(M,V,L) =
1

|V |
∑
x∈V

⎛
⎝1

k

∑
x′∈NNk

L(x)

||ME(x
′)−ME(x)||2

⎞
⎠ (2.21)

Then, to select the video:
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Figure 2.17: Active learning framework using the maximal coverage distance. The algorithm
iterates through two steps: initially training the model on labeled data using cross-entropy
loss, then selecting the optimal video for addition to the training set using the maximal
coverage distance function.

V ∗ = argmax
V ∈U

⎛
⎝ 1

|V |
∑
x∈V

⎛
⎝1

k

∑
x′∈NNk

L(x)

||ME(x
′)−ME(x)||2

⎞
⎠
⎞
⎠ (2.22)

Figure 2.18 shows an example of how the system works. First, the labeled set of data is

considered. Then, for each video candidate, the embeddings of their images are computed.

The video with the highest distance to the labeled set is selected as the new video to be

labeled. In the figure we can observe how the first video depicted, V1, contains some images

“far” from the distribution of the labeled data. This is the reason why this video has a

higher distance and would be selected among these two videos.

Figure 2.18: UMAP projection to 2-coordinates of the embeddings. Left: Embeddings of
the labeled set. Center, Right: Embeddings of two unlabeled videos. The distance to the
labeled set is computed to choose among the two videos, choosing V1 in this example since
it has a larger distance of 9.11.

An additional experiment was conducted to stabilize the embedding space, as the em-

beddings of the frames tend to change when a new video is introduced. In the initial stages
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of the process, when only one or two videos are used for training, these embeddings cannot

be fully trusted because they can be highly biased by the content of the frames from these

initial videos.

To enhance the embedding representation of the videos, an autoencoder was employed

as an unsupervised method, trained with all the available training data without labels. The

autoencoder consists of an encoder and a decoder. The encoder processes data from the

original space (images, in this case) and outputs an embedding, which in our case is a vector

of 256 values. This vector is then processed by the decoder, which applies upsampling and

deconvolutions to restore the image to its original size. These networks are trained using

reconstruction losses that compare the similarity between input and output, such as Mean

Absolute Error (MAE), Mean Squared Error (MSE), or Categorical Cross-Entropy (CatCE).

In this experiment, cross-entropy was used.

Figure 2.19 depicts the loss, AUC and MCC metrics of the model at each iteration of the

active learning algorithm, evaluated on the test set. It is evident that enhancing the cover

strategy with the autoencoder, incorporates significant videos at each step, approximating

the greedy curve.

Figure 2.19: Cover strategies evaluated on the test set. By using an autoencoder as the
embedding space, the system improves classification.

Selecting the appropriate video is what enables the system to continue improving without

stalling. Figure 2.20 displays four of the top 10 most diverse images from the first three

selected videos. These images contribute the most diversity to the embedding space and

are responsible for the selection of this particular video over other candidates.

As depicted in the figure, the system identifies various types of outliers at each stage,

i.e., images that are far from the labeled set. This is vital information that cannot be

obtained through conventional methods such as the disc strategy, which solely relies on the

classifiers’ confidence without considering the similarity (or dissimilarity) of the images. In

summary, our approach not only selects the most informative videos for experts to review

but also identifies the critical images within those videos that contribute to their selection.

One of the main problems of this method is the embedding aggregation. That is, the

video is represented by the mean embedding of all its frames. This leads to problems when
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Figure 2.20: These images are located far from the distribution of the labeled set. The first
row represents the first video that was selected, while the second and third rows correspond
to the second and third videos, respectively.

the data is not uniform among the embedding space as it is almost always the case. Next

proposed strategies tackle these problems to achieve better results.

Cloud Strategy

Instead of considering the average embedding to represent a video, the Convex Hull of all

its frames was considered. Following the definition from Equation 2.12, this strategy can

be defined as:

V ∗ = argmin
V ∈U

⎛
⎝ ∑

W∈U\V
Volume

(
Convex-Hull(V ) ∩ Convex-Hull(W )

)⎞⎠ (2.23)

Note that in the original equation, Equation 2.12, images needed to be previously cluster-

ized. Now we use the label of the video as a cluster identifier so, instead of selecting one

cluster we are selecting one video.

The most important part of this strategy is the embedding computation. Since em-

beddings were large vectors, to compute the Convex-Hull they were previously projected

into a lower dimension space using two distinct strategies: Principal Component Analysis

(PCA) (Pearson, 1901) and UMAP (McInnes et al., 2018).

Moreover, two distinct approaches were implemented to compute embeddings. First,

the strategy inherited by the cover strategy where the embedding of a frame is the vector

representation output by the first part of the classifier itself. Again, if the classifier is the

model M = MC ◦ME , the embedding of a sample x ∈ X is ME(x). The reliability of

these embeddings is questionable at the first steps of the process, that is, when the model
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is trained with very few examples.

Second, to improve this method, an autoencoder was used to learn the distribution of

all the data in an unsupervised manner and generate embeddings that do not change during

the full process, following the exact same procedure as for the cover strategy.

Figure 2.21 shows the results of this strategy, displaying four of the possible combi-

nations. Curves with the word “cloud” refers to the strategy using embeddings from the

encoder, ME . In “cloud autoencoder”, the embeddings are replaced with those from the

pretrained autoencoder model. For these two strategies, the Convex-Hull is computed with

the original embedding size. The other two strategies follow the same configuration, but

before computing the Convex-Hull, the embeddings are projected into a 2-D representation

vector using UMAP.

Although the idea seems promising, the results for this dataset did not meet expec-

tations. Projecting the embedding space into a lower dimension resulted in the loss of

some important information, and if the Convex-Hull was computed in high dimensions, the

distances would not hold the expected significance. To refine this strategy, an alternative

approach was considered.

Figure 2.21: Cloud strategies evaluated on the test set. All of them produced strategies
that did not meet the expected results.

Clustering Strategy

Lastly, multiple clustering strategies were tested. Following with the autoencoder setting,

an autoencoder was learnt with all the unlabeled data and the embdeding of each frame was

fixed. These embeddings were used during the full active-learning procedure to represent

each frames.

Then, the embeddings of all frames were clusterized into k clusters, C = {C1, . . . , Ck}
using two methods: k-means and gaussian mixture. For each of them, the following three

strategies were considered.

• Entropy: Following the idea of the entropy strategy introduced in the beginning of

this section, the entropy of each cluster is computed. V|Cj
represents the restriction
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of video V that belongs to cluster Cj . It can also be viewed as the intersection

V|Cj
= V ∩ Cj .

V ∗ = argmax
V ∈U

⎛
⎝− ∑

Cj∈C

|V|Cj
|

|V | log

( |V|Cj
|

|V |

)⎞⎠ (2.24)

• Gini: Gini impurity is a measure of the quality of the cluster distribution. It considers

the probability that a random sample in the dataset is classified incorrectly, acording

to the dataset’s class distribution. Therefore, a perfect classification would raise 0

gini impurity and a dataset with just one class would raise 1.

V ∗ = argmax
V ∈U

⎛
⎝∑

Cj∈C

( |V|Cj
|

|V |

)(
1−

|V|Cj
|

|V |

)⎞⎠ (2.25)

• Weighted Log: Inspired by the previous strategies, a new method was developed.

V ∗ = argmax
V ∈U

⎛
⎝∑

Cj∈C
wj log

(
1 + |V|Cj

|
|Cj |

)⎞⎠ , where wj = 1− |Cj ∩ L|
|Cj | . (2.26)

These strategies performed the best for this specific dataset. The use of the autoencoder

and the predefined clusters produced three stable strategies that performed better during

the first iterations were is more difficult to choose videos. Figure 2.22 shows the metrics

for these three strategies. It can be observed how these three curves are the closest to the

greedy strategy, comparing them with the other strategies from previous sections.

Figure 2.22: Clustering strategies evaluated on the test set using the k-means algorithm.
These three strategies are very close to the greedy strategy, indicating that they are among
the best performers.

Table 2.3 summarizes all the implemented strategies. It can be observed that clustering

strategies perform better than all the other ones.

Although the primary focus of this thesis is on solutions for CE, the methods and

algorithms developed have broad applicability across various medical domains.
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loss AUC F1 MCC precision recall P@R 90 P@R 95 P@R 99 accuracy top-3-accuracy

cloud autoencoder 0.894 0.824 0.490 0.458 0.595 0.477 0.374 0.303 0.181 0.647 0.846
cloud 0.878 0.826 0.498 0.465 0.595 0.477 0.383 0.316 0.203 0.652 0.848

cloud umap autoencoder 0.868 0.826 0.493 0.463 0.597 0.481 0.390 0.321 0.210 0.649 0.850
cloud umap 0.871 0.828 0.497 0.469 0.597 0.487 0.388 0.320 0.206 0.659 0.850

margin 0.849 0.829 0.516 0.476 0.600 0.482 0.395 0.328 0.222 0.660 0.852
entropy 0.825 0.833 0.530 0.491 0.612 0.492 0.406 0.335 0.217 0.677 0.856

least confidence 0.815 0.833 0.529 0.492 0.613 0.499 0.412 0.343 0.222 0.676 0.857
random 0.815 0.836 0.532 0.495 0.615 0.499 0.412 0.336 0.211 0.687 0.861

cover 0.796 0.835 0.535 0.498 0.624 0.506 0.420 0.347 0.232 0.680 0.857
cover autoencoder 0.778 0.840 0.541 0.509 0.623 0.511 0.434 0.362 0.238 0.691 0.864

clustering gini 0.782 0.841 0.545 0.512 0.621 0.509 0.431 0.359 0.237 0.699 0.865
clustering entropy 0.781 0.841 0.547 0.513 0.624 0.509 0.431 0.362 0.237 0.700 0.865

clustering log 0.775 0.840 0.548 0.514 0.624 0.511 0.436 0.365 0.235 0.699 0.866
greedy 0.735 0.844 0.559 0.527 0.642 0.536 0.450 0.375 0.250 0.707 0.865

Table 2.3: Metrics comparison: Area under the curves of test metrics during training. Rows
are sorted by the average of all values. Bold values highlight the best result in each column,
while underscored values indicate the second-best.

As this chapter delves into data preparation and validation, it’s important to explore

the intricacies involved in creating a medical dataset. This includes understanding the

specifications of the images, identifying and tagging detected pathologies, and addressing

the technical challenges that may arise during data collection, which can either complicate

or facilitate its use in an AI model.

Once the dataset is created, properly tagged, and its value clearly understood, it must

be presented to the AI community in a structured manner. This involves detailing its char-

acteristics, demonstrating its suitability for training, testing, and validation, and providing

examples of its use in predicting the relevant pathology or pathologies.

In the following pages, you will find an example of this process within the medical

imaging field of respiratory diseases.

2.6 LungHist700

In this section, a novel dataset, LungHist700 (Diosdado et al., 2024a), is introduced, com-

prising 691 images sized 1200× 1600 pixels, depicting both normal lung tissue and primary

lung carcinomas. The carcinomas are classified into adenocarcinomas and squamous cell

carcinomas, each further subclassified based on the degree of carcinoma differentiation into

three levels: well differentiated, moderately differentiated, and poorly differentiated.

Data collection occurred at Hospital Cĺınico de Valladolid in 2023 as part of routine di-

agnostic procedures, involving 45 patients. The dataset encompasses images of hematoxylin

and eosin stained samples extracted from pathology glass slides utilizing a Leica DM 2000

microscope and Leica ICC50 W microscope camera at two distinct magnifications: 20x and

40x. Pathologists meticulously selected the field of view to encompass representative tissue

categories, which are typically discernible in all four quadrants of the image.
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All individuals included in the study underwent surgical procedures, hence all images

pertain to patients with malignancies. Images categorized as depicting normal lung areas

represent regions where tumors have not proliferated.

For each patient, two concurrent evaluations were conducted to determine tumor type

(adenocarcinoma or squamous cell carcinoma) and level of differentiation (well, moderately,

or poorly differentiated). The first analysis involved morphological examination of tissue

based on hematoxylin and eosin stained samples, establishing the classification of well and

moderately differentiated samples. The second evaluation comprised immunohistochemical

tests to discern tumor type (adenocarcinoma or squamous). These tests, supplemented

by contextual information, contributed to accurate classification of poorly differentiated

categories. The performed tests encompassed TTF1, CK7, Napsin A, P40, and CK5/6.

Based on the results obtained from all tests, a specialist pathologist classified images into

the 7 classes of the dataset.

For adenocarcinomas, the differentiation grading system recommended by (Butnor et al.,

2009), the College of American Pathologists, was employed. According to their guidelines,

there are three differentiation levels:

1. Well-differentiated: Tumors primarily exhibiting a lepidic pattern, with no high-grade

components or less than 20% high-grade features (such as solid, micropapillary, or

complex glandular patterns).

2. Moderately differentiated adenocarcinoma: Tumors mainly showing acinar or papil-

lary patterns, with less than 20% high-grade features.

3. Poorly differentiated adenocarcinoma: Tumors that have 20% or more high-grade

features.

Pulmonary squamous cell carcinoma has also traditionally been divided into well differen-

tiated, moderately differentiated, and poorly differentiated, similar to squamous cell car-

cinomas of other organ systems. The degree of differentiation is generally dependent on a

combination of features, such as the presence or absence of keratinization and intercellular

bridges, as well as cellular pleomorphism and mitotic activity Weissferdt (2020). Follow-

ing these guidelines, squamous cell carcinoma has been divided into the following three

categories:

1. Well differentiated: These tumors exhibit keratinization, such as keratin pearls and

intercellular bridges. They typically grow in sheets or nests, with polygonal cells that

have round to oval nuclei, vesicular features, and eosinophilic cytoplasm. Additionally,

mitotic figures and focal areas of hemorrhage or necrosis may be present.

2. Moderately differentiated: These tumors show increased cytologic atypia and mitotic

activity. Although keratinization and intercellular bridges are still present, they are
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less prominent compared to well-differentiated tumors. Moreover, areas of hemorrhage

or necrosis are more common.

3. Poorly differentiated: These tumors grow in sheets and are often unrecognizable as

squamous type without immunohistochemistry. They display significant cellular pleo-

morphism, high mitotic activity, and extensive areas of necrosis.

Figure 2.23 shows adenocarcinoma samples, Figure 2.24 shows squamous cell carcinoma

samples at varying levels of differentiation and resolution. Figure 2.25 shows images of

normal lung tissue at two different resolution.

(a) Well diff.
at 20x.

(b) Mod. diff.
at 20x

(c) High diff.
at 20x

(d) Well diff.
at 40x.

(e) Mod. diff.
at 40x

(f) High diff.
at 40x

Figure 2.23: Images displaying adenocarcinoma at varying levels of differentiation and
resolution.

(a) Well diff.
at 20x.

(b) Mod. diff.
at 20x

(c) High diff.
at 20x

(d) Well diff.
at 40x.

(e) Mod. diff.
at 40x

(f) High diff.
at 40x

Figure 2.24: Images displaying squamous cell carcinoma at varying levels of differentiation
and resolution.

(a) Normal at
20x.

(b) Normal at
40x

Figure 2.25: Normal lung images at different resolution.

The dataset is available at figshare Diosdado et al. (2024b). It consists of 691 images

from 45 patients, with each image having a resolution of 1200×1600 pixels and stored in

.jpg format. These images are captured at either 20x or 40x magnification levels and are

categorized into seven classes (see Table 2.4). An accompanying .csv file links each image

to the associated patient ID. All patients have been anonymized, and the file includes an

identifier to match images from the same patient.



50 CHAPTER 2. LEARNING FROM DATA

Description Id. 20x 40x Subclass total Superclass total

Well differentiated adenocarcinoma aca bd 57 46 103
Moderately differentiated adenocarcinoma aca md 44 46 90
Poorly differentiated adenocarcinoma aca pd 45 42 87

280

Normal lung nor 85 66 151 151

Well differentiated squamous cell carcinoma scc bd 50 49 99
Moderately differentiated squamous cell carcinoma scc md 30 36 66
Poorly differentiated squamous cell carcinoma scc pd 48 47 95

260

Total 359 332 691 691

Table 2.4: The dataset comprises three classes: adenocarcinoma (aca), squamous cell car-
cinoma (scc), and normal (nor). Images showing malignant tissue are further categorized
based on their differentiation level.

Here, we present two baseline methods for classifying the dataset into the three major

superclasses. First, a classic approach was employed where images were resized, and a

Deep Neural Network (NN) was trained. The second method involves a Multiple Instance

Learning (MIL) strategy, where patches of the images were extracted, and the same NN was

used to obtain multiple embeddings, one for each patch. An attention Vaswani et al. (2017)

layer was then applied to relate and aggregate these embeddings for image classification.

All the experiments used the same training configuration: the networks were imple-

mented using Keras and executed on an NVIDIA RTX 3090 with CUDA 11.0. The NN

model used in both methods was a ResNet50 network pretrained on ImageNet. The Adam

optimizer was employed with an initial learning rate of 1e-5, which was reduced by a factor of

0.1 if the model began to overfit. CatCE was used as the loss function in both experiments.

The Albumentations library Buslaev et al. (2020) was utilized to generate augmentations

on the fly during training.

Images were classified into their superclasses: ”aca” (adenocarcinoma), ”scc” (squamous

cell carcinoma), and ”nor” (normal). The data was divided into three sets: 80% for train-

ing, 10% for validation, and the remaining 10% for testing. A patient-wise strategy was

employed, ensuring that images from the same patient were placed in the same set to ensure

fair evaluation and prevent data leakage.

DNN Baseline

To train the ResNet50 model, images were resized to 300×400 pixels to better fit this

architecture. The published dataset, however, contains images at their original resolution

(1200×1600 pixels). Figure 2.26 illustrates the learning curves on the training and validation

splits, as well as the classification confusion matrix of the experiment on the test set for the

20x resolution. The model achieved an accuracy of 90%, a ROC-AUC of 98%, a precision

of 92%, and a recall of 87%.

The experiment was then repeated with the same configuration but using images at 40x
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Figure 2.26: Classification results of the proposed baseline for 20x resolution. Early stopping
was triggered at epoch 28, based on the validation set. After that, the best weights were
loaded. The confusion matrix shows the correctly classified percentage of samples and the
classification errors on the test set. The results are normalized by rows (True label).

resolution. The model achieved an accuracy of 82%, a ROC-AUC of 94%, a precision of

82%, and a recall of 84%.

To assess the validity and explainability of the results, we used Grad-CAM Selvaraju

et al. (2020) on the last convolutional layer of the ResNet50 model. The threshold was set to

0.25 to visualize the Grad-CAM activations. Figure 2.27 shows the explanation masks gen-

erated by the algorithm on some test images, each representing a distinct histopathological

class: adenocarcinoma, normal tissue, and squamous cell carcinoma. The masks illustrate

how the model highlights specific areas relevant to image classification. The results were

cross-checked with the medical team to validate the model’s output.

(a) Adenocarcinoma (b) Normal lung (c) Squamous cell carci-
noma

Figure 2.27: Masks generated by the Grad-CAM algorithm on some test images.
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MIL Baseline

A second strategy based on ResNet50 was also tested. We trained a MIL algorithm that

consisted of a ResNet50 followed by a Multi-Head Attention layer. During training, we

extracted 20 random patches of size 224×224 and used the ResNet architecture to obtain

embeddings for each patch. An attention layer with four heads was then applied, followed by

average pooling to obtain a single embedding for classification. All the training parameters

remained the same, though the batch size was reduced to three to fit within the GPU’s

memory constraints. The results of the MIL algorithm for images at 20x resolution are

shown in Figure 2.28. This baseline model achieved an accuracy of 81%, a ROC-AUC of

89%, a precision of 80%, and a recall of 81% on the test set.

Figure 2.28: Classification performance of the MIL algorithm (ResNet50 + Multi-Head
Attention layer) for 20x resolution. Early stopping was triggered at epoch 28.

2.7 Conclusions

In this chapter, we explored the critical role of datasets in the development and success

of AI solutions, particularly within the field of medical imaging through CE. We began by

discussing the learning process, emphasizing that high-quality datasets are indispensable

for effective model training, validation, and testing. The importance of meticulous dataset

design was highlighted, including strategic data splitting and ensuring diversity to prevent

issues such as overfitting and data leakage.

We then delved into the fundamentals of DL, illustrating how deep neural networks,

with their layered architectures, autonomously learn and extract complex patterns from raw

data. This section also addressed the role of embeddings, which transform high-dimensional

data into more manageable and insightful vector representations—an essential technique in

applications such as NLP and image recognition.

A significant portion of the chapter focused on the integration of AL into the dataset

creation and model training processes. Active learning was presented as a strategy to

enhance the efficiency and effectiveness of model training by selectively querying the most
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informative data points for labeling. This approach is particularly valuable in the context

of CE, where acquiring labeled data is often labor-intensive and costly. By concentrating on

uncertain or ambiguous cases, active learning allows the model to improve its performance

with fewer labeled examples, accelerating the training process and helping to create more

balanced and representative datasets—crucial for ensuring the model’s ability to generalize

to real-world clinical scenarios.

The chapter also discussed a collaboration with the Hospital Cĺınico Universitario de

Valladolid, where we assisted in the creation of a medical imaging dataset, particularly

focusing on lung carcinomas. An AI application was developed alongside the dataset to

demonstrate its practical utility in clinical settings.

In summary, this chapter has underscored the essential role that data plays in any AI

solution. By recognizing the importance of robust datasets, advanced learning techniques,

and efficient labeling strategies, we are better equipped to develop AI models that can aid

healthcare professionals in making accurate and timely diagnoses. The insights gained here

lay a strong foundation for the more specialized discussions in the chapters to follow.
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Analyzing a CE video is a complex task. The initial step, before utilizing the video for

any diagnostic or research purposes, is to evaluate its admissibility. Videos may be deemed

invalid if patients retain GI content, as this can obscure the view of the intestinal mucosa.

In this chapter, we present a contribution from this thesis that introduces a method for

determining an admissibility score for such videos.
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3.1 Bowel Preparation

Performing a CCE involves several important steps to ensure a successful examination. The

process begins with bowel preparation, which is crucial for optimal visualization of the GI

tract. Bowel preparation typically involves a liquid diet before the procedure and an 8-hour

fast (Song et al., 2013). In addition, patients may be required to take other medications,

such as purgative agents, most commonly Polyethylene Glycol (PEG)(Xavier et al., 2019;

Koornstra, 2009; Bjoersum-Meyer et al., 2021), to cleanse the intestines and remove any

residual debris or stool.

Despite this preparation some individuals may not effectively purge their GI tract how-

ever, leading to the presence of residual intraluminal content. This residue can limit visibil-

ity within the intestines, concealing potentially significant findings, which may be overlooked

by physicians reviewing the procedure. Videos from such procedures become ineffective for

patient diagnosis. Consequently, a repeat often becomes necessary, which involves adjust-

ments in bowel preparation to improve cleansing or the switch to a different diagnostic test

such as colonoscopy or CT colonography.

Figure 3.1: Images with varying levels of GI content. Bubbles and debris can hide the
mucosa and, therefore, make the video unusable.

An accurate assessment of the cleanliness score immediately after the procedure can

accelerate this process. Establishing the level of cleanliness of these videos enables the

prompt identification of procedures that require repeating, thus alleviating the workload of

physicians and ensuring a more efficient diagnostic workflow.

As stated in Chapter 2, training an AI model usually requires a substantial amount of

data to achieve the desired results. Obtaining and curating these data is a process that

can be quite laborious, demanding significant time and dedication to build a solid training

database. Specifically in the context of image segmentation, there is an added layer of

complexity. Beyond merely categorizing individual images, one needs to manually outline

the area of interest in each frame, making the overall process slower. In the problem at

hand, if the aim is to create an AI model that computes the visibility of an image, there are

two potential approaches: treating it as a classification task, where each image is mapped

to a predefined scale of cleansing, or as a segmentation task, predicting the visible mucosa

area within each frame.

The method presented is based on the TransUNet (Chen et al., 2021b), one method

that combines the U-Net (Ronneberger et al., 2015) architecture with Vision Transformer

(ViT) (Dosovitskiy et al., 2021) blocks. To fully understand this architecture, let’s revisit
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the most important aspects of image segmentation and the architectures that exist in this

domain.

3.2 Image Segmentation

Image segmentation is one of the most important techniques in computer vision. It involves

partitioning images into regions to simplify their representation and make them more mean-

ingful for analysis. This process transforms images into rich sources of data, enabling various

applications. By dividing an image into distinct regions, each representing different objects

or parts of objects, segmentation enhances the interpretability and utility of image data for

subsequent processing.

In the medical domain, image segmentation offers critical support for diagnostics, treat-

ment planning, and research. For instance, in radiology, segmentation of medical images

such as MRI, CT, and X-rays is essential for identifying and delineating various anatomical

structures. This capability allows radiologists to accurately diagnose and monitor medical

conditions. In brain MRI, segmentation helps differentiate between gray matter, white mat-

ter, and cerebrospinal fluid, which is vital for diagnosing neurological disorders like multiple

sclerosis, Alzheimer’s or detecting brain tumors (Withey and Koles, 2007).

Figure 3.2: Example of image segmentation. Relevant regions are manually highlighted,
creating a mask (right). In this example, different types of tissue are differentiated: white
matter (red), gray matter (green) and cerebrospinal fluid (blue). Image from Withey and
Koles (2007).

From a data science perspective, advances in deep learning have revolutionized image

segmentation. Convolutional Neural Network (CNN) have markedly improved the accu-

racy and efficiency of segmentation tasks. Architectures such as U-Net (Ronneberger et al.,

2015), designed initially specifically for biomedical image segmentation, have become widely

adopted due to their ability to produce precise segmentations with limited training data

and extend to other computer vision fields. These models leverage large annotated datasets

to learn intricate patterns and structures within medical images, enabling automatic seg-

mentation with high accuracy.
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Figure 3.3 shows examples of different anatomical organs and their segmented structures.

As can be seen, this task is quite challenging for most of them.

Figure 3.3: Segmentation examples on medical images. Image from Wang et al. (2022).

3.2.1 U-Net architecture

The U-Net is a CNN architecture that has become a benchmark in the field of biomedical

image segmentation. Introduced by Ronneberger et al. (2015), the U-Net is specifically

designed to handle the complex and often minute details present in medical images. Its

architecture consists of a contracting path that aggregates pixels into a lower dimensional

representation and a symmetric expanding path that reconstructs the image, forming a

U-shaped structure. The contracting path or encoder applies successive convolutions and

max-pooling operations to downsample the input image, while the expanding path or de-

coder uses upsampling and concatenation with high-resolution features, the horizontal paths

between the encoder and the decoder to restore spatial information. This design allows the

U-Net to produce high-resolution segmentations.

The U-Net and its variants, have proven particularly effective in segmenting various

medical images, including those of the brain (M. Gab Allah et al., 2023), liver (Manjunath

and Kwadiki, 2022), and retina (Zhao et al., 2020), making it an invaluable tool for diag-

nostics, treatment planning, and medical research. Figure 3.4 shows the architecture of the

network.

3.2.2 Transformer

The Transformer architecture introduced in Vaswani et al. (2017) revolutionized the NLP

field and is now being applied to other domains, such as medical imaging. Figure 3.5

displays its main architecture. The most important part of the Transformer, and the part

that is crucial to understand for the following sections, is the Transformer block with its

attention mechanism. The attention operation is the core of the Transformer. It consists

of a dot product of vectors and a non-linear function that relates all the inputs together,
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Figure 3.4: U-Net architecture. Image from Ronneberger et al. (2015).

providing scores that weight their importance. In the following paragraph, this mechanism

is briefly introduced.

Figure 3.5: Transformer architecture. Image from Vaswani et al. (2017).

A Transformer block is a function f : Rn×d −→ R
n×d, that is, given a collection of n

samples of size d, it outputs another collection of the same number of samples of the same

size. A Transformer block learns three matrices of weights Wq,Wk,Wv ∈ R
d×k to project

an input sample x ∈ R
n×d into three new spaces: Q = W T

q x, K = W T
k x, V = V T

v x. These

spaces receive the names of Queries, Keys, and Values respectively. Then, the attention

operation, presented in Equation 3.1, is computed to obtain the attention weights.
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α := Attention(K,Q, V ) = softmax

(
QKT

√
k

)
V (3.1)

The attention weights are applied to the values to obtain the desired output: z = W T
c αTV

where Wc ∈ R
k×d is also a learned matrix. This process is shown in the left part of Fig-

ure 3.6. Authors of Vaswani et al. (2017) also propose to parallelize the process and compute

h independent transformations, called heads. The output of all the heads is concatenated

and a last fully-connected layer between two layer normalizations (Ba et al., 2016) is applied

to reshape the data into the final shape. Heads can be seen in the right part of Figure 3.6.

Moreover, these blocks are usually stacked together to create a larger network.

Figure 3.6: Attention and Multi-Headed attention. Image from Vaswani et al. (2017).

As mentioned, what the Transformer architecture does is, indeed, transform the data

from samples x ∈ R
n×d to z ∈ R

n×d. It is important to note that these transformations

are applied to samples, not sequences. This means that all the samples are transformed in

parallel without any temporal information; the model doesn’t know which sample comes

before which other, and so this information is not used to produce the output. This is why

positional encoding is necessary. Positional encoding is a mechanism that gives the model

information about the order of the samples in a sequence. The first approach to positional

encoding was presented in the original paper (Vaswani et al., 2017) and used sinusoidal

functions to encode the position. Later works (Gehring et al., 2017) established that these

positional representations could be learned during the training of the network.

3.2.3 Vision Transformer

The ViT (Dosovitskiy et al., 2021) takes all the relevant parts of the Transformer and

applies them to images. Although the Transformer was specifically developed for NLP

problems, it has been successfully applied to the image domain with some twists. The

idea behind the ViT is quite simple, to maintain as much as possible from the original

Transformer architecture but to change the type of the input and output data. While the
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original Transformer architecture acts as a sequence to sequence model, the ViT acts as

a classifier. What the authors proposed is to divide the images in patches of fixed size

(see Figure 3.7) and project these patches into an embedding of size d so that it mimics

the input of the Transformer network. Now the positional encoding needs 2-dimensional

Figure 3.7: ViT architecture. Image from Dosovitskiy et al. (2021).

information and they also introduce an extra learnable token, the [class] token. The output

of the Transformer encoder uses the modified version of this token for a final Multi Layer

Perceptron (MLP) layer that transforms it into a probability between the target classes.

An implementation of the ViT architecture is available on GitHub (Gilabert, 2024).

3.2.4 TransUNet

The TransUNet architecture (Chen et al., 2021b) uses the strengths of the applications

previously introduced. It uses a U-Net-like architecture, that is, maintaining the skip con-

nections of the original architecture but also use ViT blocks to encode the data in deeper

parts of the network. Figure 3.8 shows its global structure.
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Figure 3.8: TransUNet architecture. Image from Chen et al. (2021b).

3.3 Cleansing Score

Efforts have been made to standardize the review process for CE videos (Koulaouzidis et al.,

2021), but consensus on the reproducibility of the readings remains elusive (Cortegoso Val-

divia et al., 2022; Lee et al., 2022; Leenhardt et al., 2021).

A thorough and safe evaluation of CE videos requires clean visualization of the GI

tract (Vuik et al., 2021). Residual debris can obscure crucial pathology or lesions, compli-

cating the task of reviewing the video and risking missing these findings. Assessing how

clean a CE video is can be difficult, as it involves looking at both the overall video quality

and individual frames. This makes it even harder to agree on a standard way to score them.

Several scales have been proposed to standardize CE readings over the years. The

introduction of the CAC Score in 2018 (Becq et al., 2018) quantified cleanliness by calcu-

lating the percentage of red over green in each frame. The KODA Score (Alageeli et al.,

2020) used a two-scale system, evaluating the percentage of visible mucosa and obstructed

view, using predefined scores ranging from 0 to 3. Simplifying this approach, the CC-

Clear Score (de Sousa Magalhães et al., 2021) assigns cleanliness scores also from 0 to 3

based on thresholds of visible colonic mucosa percentages, later adapted into the SB-Clear

Score (Macedo Silva et al., 2022) to assess cleanliness for the small bowel. The CC-Clear

score has a higher degree of consensus in practice (Tabone et al., 2021) compared to the

previous scales, and so was selected for our evaluation.

Various solutions have been presented to assess the cleanliness of CE videos using various

models and methodologies. Early approaches, such as those of Buijs et al. (2018), utilized

support vector machines to classify images into binary categories of dirty and clean. Pro-

gressing into the era of deep learning, subsequent works such as that of Noorda et al. (2020)
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employed neural networks to classify patches of size 64×64 pixels into these same categories.

More recent efforts, such as those of Nam et al. (2021a,b), explored systems that classify

images into five categories and compared them with cleanliness scores assigned by physi-

cians. Mascarenhas Saraiva et al. (2023) introduced a system to classify images into three

categories: excellent, satisfactory, and unsatisfactory. All of these previous works attempted

to assign scores to CE videos by classifying either images or patches of images. Ju et al.

(2022) introduced a system for automatically segmenting intraluminal content and dark

areas in images. While the method is interesting, it has a significant drawback: the cost of

annotation. It takes a considerable amount of time to effectively segment the GI content in

a set of images.

3.4 Assessing a Cleanliness Score

The method we present consists of three steps. Figure 3.9 shows a visual representation of

all of them.

Figure 3.9: Overview of the method to assess the cleanliness score. The method consists of
three steps: segmentation, feature extraction and classification.

1. Image segmentation. A TransUNet neural network is trained to segment images

using patch labels, that is, without using fully annotated segmentation masks. We

implemented a custom loss function we have named Patch Loss.

2. Feature extractor. Using the area of intestinal content in each image, we extract

features to represent the cleanliness of a video.
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3. Segment classification. Using the features extracted for each video, we predict the

CC-Clear Score by training a RandomForest classifier, taking as ground truth the

scores provided by expert physicians.

In the following sections, we explain the full method in further detail.

3.4.1 Intraluminal Content Segmentation

To create a segmentation model, labeled masks for the regions containing intraluminal

content are usually required, serving as ground truth for the models. These segmentation

masks consist of images that are the same size as the original ones and that highlight all

the area obscured by intraluminal content, and that the model will learn how to generate.

However, this traditional labeling process is slow and expensive. To address this, we suggest

optimizing the annotation procedure by redefining image labeling. We propose a binary

classification task for image patches, where a label of 1 indicates the presence of intraluminal

content that obscures part of the image, and 0 signifies the absence of such content. The

labeling criteria are straightforward: A patch receives a label of 1 if a physician believes that

the intraluminal content present in the patch could conceal a pathology and 0 otherwise.

Traditionally, the task of classifying clean and dirty patches has been performed using

only the patches themselves (Noorda et al., 2020), without considering the content of the

entire image. We propose to maintain this straightforward approach of annotating patches

alone but leverage this information within the loss function during segmentation model

training. By doing so, we condition the segmentation model on the patch-level information

we have.

To achieve this, we use a TransUNet that takes an input of (256,256,3) and produces a

mask of the same size. Given an image Xk and a patch Pk of the same image, we define

the Patch Loss as a cross-entropy loss restricted to each patch. For a batch of B patches,

it can be expressed as:

Patch Loss = − 1

B

B∑
k=1

Lk

Lk =
H∑
i=1

W∑
j=1

(
yk log(P (X

(i,j)
k |Pk

, yk) + (1− yk) log(1− P (X
(i,j)
k |Pk

, yk)
) (3.2)

where X
(i,j)
k indicates the pixel with coordinates (i, j), yk is the patch label assigned

by the expert and H,W are patch height and width, respectively. In our setting, both

dimensions are 64.

To smooth the result, we apply a gaussian kernel of size 0.4. Final segmentation masks
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are then obtained as those pixels with an activation higher than 0.5, obtaining binary masks

for all the frames.

3.4.2 Feature extractor

Using the masks from the previous step, we compute the area that the segmentation oc-

cupies. That is, the number of pixels in the segmentation mask over the total number of

pixels in the image, ignoring the black area in each corner.

Having this score per image, we create a plot depicting the visibility score per frame

of the entire segment. This score represents the evolution of visibility across the entire

segment and it is relevant for understanding areas where the capsule is stuck in a zone of

poor visibility.

From the visibility plot we extract features following the CC-Clear Score. We compute

the number of frames with visibility <50%, 50-75%, 75-90% and >90%, respectively. These

four features are used in the last step of the process.

3.4.3 Segment Classification

Since achieving reproducibility is challenging due to the inter-interpreter variability of as-

signing a cleanliness score to an entire video (Cortegoso Valdivia et al., 2022), we propose

to validate the system at a segment level. That is, to extract 10-minute clips and assess

their cleanliness using the system proposed.

We randomly extracted 10min clips (real capsule moving time) that were evaluated by

three experienced physicians. Each physician of them assigned a CC-Clear Score to each

clip ranging from 0 to 3, assessing the level of cleanliness of the segment.

Using the features extracted in the previous steps, we trained a Random Forest classifier

with a leave-one-out cross-validation strategy (Hastie et al., 2009). The physicians’ scores

served as the ground truth for training. We explored two approaches:

• Individual Model Training: We trained separate models to replicate the scoring

patterns of each physician.

• Consensus Model Training: We trained a single model using the consensus score

derived from the three physicians as the ground truth. This consensus score was

calculated by averaging the individual scores given by the physicians and rounding

the result to the nearest integer.

This dual approach allows us to capture both individual scoring nuances and a consen-

sus view of video cleanliness. For each method, we assessed the agreement between the

physicians’ scores and the model’s predictions.
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3.5 Experimental Setup

3.5.1 Dataset

This study utilizes 165 CCE videos, sourced from two retrospective studies conducted at

the facilities of the NHS Highlands Raigmore Hospital in Inverness. Both studies included

patients who were referred with symptoms or for surveillance within the Highlands and

Islands area of Scotland. All these patients had a positive Fecal Immunochemical Test

(FIT).

All patients underwent bowel preparation following a standardized protocol that in-

volved a split-dose of PEG.

The videos were captured using a PillCamTM COLON 2, which contains two cameras

(front and rear). To ensure patient confidentiality, all videos were anonymized removing

relevant information stamped on the images.

3.5.2 Data Splits

To ensure a fair train, evaluation and test, we split the videos into two main groups to avoid

data leakage between the steps. The total set of 165 videos is split in the following way:

• We used 113 videos to train, validate, and test the image segmentation model. From

these videos, 8,492 patches of size 64×64 were randomly extracted. This set of 113

patients was split into three groups: 69 patients for training (5,306 patches), 22 for

validation (1,539 patches), and 22 for testing (1,647 patches) to evaluate the model’s

performance.

• The remaining videos, 52, were used to train and evaluate the performance of the

segment classifier using a leave-one-out strategy.

3.5.3 Training configuration

All the deep learning code was implemented in Python and executed in an NVIDIA 3090

RTX GPU.

We used Keras as framework to reproduce (Noorda et al., 2020) strategy and used a

pretrained TransUNet as a core of our method.

To evaluate the effectiveness of our solution, we not only performed the segmentation

task but also compared our method against other classifiers for patch classification. Al-

though our primary focus is on segmentation rather than classification, we assigned labels

to patches based on the model’s segmentation output. Specifically, a patch was labeled
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as positive (Dirty, 1) if the predicted segmented area covered 50% or more of the patch.

Conversely, it was labeled as negative (Clean, 0) if less than 50% of the patch was segmented.

For the CC-Clear score classifier, we employed a leave-one-out cross-validation strategy

using the remaining 52 videos. This approach involves training a model on a subset of

51 videos and testing it on the one remaining video, ensuring that every video is used for

testing exactly once. We trained a Random Forest classifier with 100 estimators and set the

maximum depth to 2 to prevent overfitting. Standard algorithms from the sklearn library

were utilized throughout the process.

3.6 Experiments and Results

The results we present are organized in the following way. Firstly, we present an evaluation

of the image segmentation. Secondly, we compare the patch classification performance.

Lastly, we present results on the segment classification.

3.6.1 Segmentation Results

We initially demonstrate the model’s ability to segment intraluminal content by requesting

an expert to manually segment a small, random set of 32 images. Table 3.1 presents the

Strategy mIoU

Noorda et al. (2020) 0.43
ResNet50 0.48
ViT-B16 0.55
TransUNet + Patch Loss (Ours) 0.73

Table 3.1: Mean intersection over union score evaluated on 32 images manually segmented
by an expert annotator.

mean Intersection over Union (mIoU) results comparing the predicted masks to the ground

truth. Our model, shown in the final row, exhibits improved segmentation masks with the

introduction of this conditioned loss.

Figure 3.10 showcases the segmentation performance of the TransUNet with the Patch

Loss strategy. Each row in the figure sequentially displays the original images, the ground

truth masks manually annotated by an expert, the masks predicted by our model, and the

final binary masks obtained by applying a 0.5 threshold to the model’s predictions. This

visual comparison illustrates the accuracy and effectiveness of our approach in segmenting

intraluminal content with a low annotation strategy. It is important to highlight the inherent

difficulty in segmenting intraluminal content accurately. As evident in the images, the

boundaries of the areas occluded are often not clearly defined. This lack of clear demarcation
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Figure 3.10: Segmentation results for the TransUNet + Patch Loss strategy. Random
images annotated by an expert. The rows are ordered as follows: the original image, the
ground truth mask as annotated by an expert, the predicted mask from the model, and the
thresholded mask with a 0.5 cutoff.

makes segmentation particularly challenging and leads to significant variability in the masks

depending on the expertise and interpretation of the annotator.

3.6.2 Patch Classification Results

We evaluated patch classification using the method previously explained, to compare our

proposed strategy with other baseline methods.

Strategy Acc. AUC Prec. Rec. F1

Noorda et al. (2020) 0.89 0.82 0.92 0.67 0.78
ResNet50 0.89 0.87 0.75 0.84 0.79
ViT-B16 0.90 0.88 0.84 0.82 0.83
TransUNet + Patch Loss (Ours) 0.97 0.96 0.93 0.93 0.93

Table 3.2: Results of the four strategies evaluated on the test set. Results show that the
proposed strategy, TransUNet + Patch Loss, improves patch classification.

Table 3.2 compares four strategies: Noorda et al. Noorda et al. (2020), ResNet50, ViT-

B16 and TransUNet + Patch Loss, evaluated on the test set of 22 videos. The results clearly

demonstrate that our proposed strategy surpasses the previous methods across all metrics

presented.
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3.6.3 Segment Classification

We randomly extracted 10-minute clips from 52 new videos, one per video, and three expert

physicians evaluated their cleansing. Following the CC-Clear score, each clip received a

score between 0 and 3. 0 being a video almost without visible mucosa, and therefore

unusable, and 3 a video with a very clean mucosa without any doubt of missed pathology

because of the presence of intraluminal content. The scores that the physicians reported

are shown in Table 3.3. A moderate agreement based on the Cohen’s kappa score was

CC-Clear Score 0 1 2 3 Mean Score

Physician #1 4 12 27 9 1.79 ± 0.82

Physician #2 1 10 23 18 2.12 ± 0.78

Physician #3 2 10 27 13 1.98 ± 0.78

Table 3.3: Video clip scores. Number of videos each physician scored for each different
score.

found between the experts: k12 = 0.537, k23 = 0.459, and k13 = 0.643, where kij represents

the score between physician i and physician j. The average score among the physicians is

k̄orig =
k12+k23+k13

3 = 0.546. These results highlight the significant inter-observer variability

previously noted in existing literature.

Figure 3.11: Example of a test procedure. Clean mucosa prediction for each frame in the
clip. A centered moving average is applied to smooth the results. At the top of the plot,
the predicted CC-Clear score for each part of the video clip is shown using a color scale.
Red (<50%), Orange (50-75%), Yellow (75-90%), and Green (>90%) which matches with
the thresholds set by the horizontal dashed lines.

Figure 3.11 shows a test procedure with the predicted cleanliness of each frame. Horizon-

tal dashed lines show the different thresholds set for the CC-Clear Score. These thresholds

are better visualized in the colored bar at the top of the plot, summarizing the cleanliness

score of each area of the video. Depending on the level of cleanliness of the neighboring

frames, the scale is Red (<50%), Orange (50-75%), Yellow (75-90%), and Green (>90%).

The plot shows the predicted percentage of clean mucosa and a centered moving average

for better visualization.

For each clip, we extracted four features based on the number of frames in each of the four

regions of visibility, obtaining a 4-dimensional vector representing the video. Figure 3.12
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Figure 3.12: Feature vector for each video. Each video is a column showing its 4 values. A
darker color means a higher value. Values are sorted first by ground truth (physician score)
and then by the first component of the vector (first row of each plot).

shows a visual correlation between the features and the ground truth established by the

physicians. We can observe that, while the extremes seem more homogeneous, the central

area of the plots is more ambiguous.

Following the process explained in the methodology, we evaluated the system using two

strategies: Individual Model Training and Consensus Model Training:

Individual Model Training

We independently trained a model to replicate each of the physicians’ scoring.

Figure 3.13: Confusion matrices for the three models. Each model is trained on the scores
of a single physician using a leave-one-out strategy.

Figure 3.13 presents the confusion matrices for these three models. The first model,
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trained to mimic the first physician, achieved a Cohen’s kappa agreement of k1 = 0.649

with an accuracy of 76.9%. The second model, aligned with the second physician, reached

an agreement of k2 = 0.645 and also an accuracy of 76.9%. The third model, corresponding

to the third physician, attained an agreement of k3 = 0.528 with an accuracy of 69.2%. The

average agreement across these individual models is k̄indiv = 0.607. Notably, both the mean

agreement and each individual model’s agreement with their respective physician exceed the

average original inter-observer agreement between the physicians, which was k̄orig = 0.546.

Consensus Model Training

We also developed a Random Forest classifier model using the average of the physicians’

scores, rounded to the nearest integer, as the consensus ground truth. This approach

simulates the combined consensus scoring of each video by the three physicians. Figure 3.14

shows the confusion matrix for the consensus model’s results.

Figure 3.14: Results of a regressor model trained using the average of physicians’ scores as
ground truth.

The consensus model achieved a Cohen’s kappa agreement of kcons = 0.586, which is

an improvement over the average original inter-observer agreement between the experts,

k̄orig = 0.546.

Physician Individual Model Consensus Model
P1 P2 P3 M1 M2 M3 Mcons

P1 - k12 = 0.537 k13 = 0.643 k1 = 0.649 - -
kcons = 0.586P2 - - k23 = 0.459 - k2 = 0.645 -

P3 - - - - - k3 = 0.528

avg. k̄orig = 0.546 k̄indiv = 0.607 -

Table 3.4: Summary of agreement scores: physicians, individual models, and consensus
approach.
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Table 3.4 summarizes all the numbers mentioned in the previous sections.

3.7 Conclusions

We propose a novel method to enhance the classification and segmentation of intralumi-

nal content with minimal labeling effort. By leveraging our model’s training approach, we

achieve more accurate segmentation masks when compared with existing low-effort anno-

tating methods. Our process involves several stages, each validated with different CCE

videos to ensure robustness and prevent data leakage.

To support our claims, we conducted a series of experiments. Initially, we evaluated

the segmentation performance without relying on annotated masks. We achieved a high

mIoU score by introducing a conditioned loss on annotated patches. Subsequently, we

assessed the patch classification accuracy across all models, with our newly introduced

model demonstrating the highest accuracy.

Given the significant variability in determining cleanliness scores for entire videos, as

noted in the literature, we focused on evaluating our method using 10-minute clips from

various CCE videos. Three physicians provided cleanliness scores on a scale from 0 to 3 for

each clip. Using these scores, we trained Random Forest classifiers –one for each physician–

to replicate their scoring patterns. The models exhibit stronger agreement in replicating

physician assessments than the individual scores provided by the physicians. Specifically,

the mean achieved agreement of the models was k̄indiv = 0.607, surpassing the original

inter-physician agreement, which was k̄orig = 0.546.

Furthermore, we developed a jointly trained Random Forest classifier model using the

physicians’ average scores as consensual ground truth. This model, which simulates a

consensued score by three physicians, achieved an agreement of kcons = 0.586, also an

improvement when compared to the original inter-physician agreement.

Overall, our approach demonstrates significant advancements in both segmentation and

classification tasks in the context of CCE, with minimal manual annotation. By effectively

combining individual physician assessments into a consensus model, we provide a robust

framework that enhances the reliability and accuracy of intraluminal content analysis. These

findings suggest promising applications for our method in clinical practice, potentially re-

ducing the burden on medical professionals and improving patient outcomes through more

accurate diagnostics.



Chapter 4

Landmark Identification

Contents

4.1 Organ Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Signal Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3 Landmark Identification . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.2 Landmark Localization . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.3 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

In the process of reviewing a CE video, the next step is to correctly identify the or-

gan to be analyzed. This chapter presents existing solutions for organ segmentation and

presents a state-of-the-art method to automatically detect organ boundaries. Specifically,

the presented solution is able to automatically delimitate the small and large intestines in

CE videos.
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4.1 Organ Segmentation

Organ segmentation is the task of identifying the entrance and exit of an organ in a video.

As displayed in Figure 4.1, in CE videos this task consists of detecting the entrance and exit

of the small intestine, that is, the last pylorus image and the ileocecal valve image; and the

entrance and exit of the large intestine which are the first cecal image and the last rectal

image.

Figure 4.1: Landmark detection.

The organ segmentation task has been extensively studied by various researchers, with

several significant solutions emerging over the years. Before the advent of deep learning,

traditional image analysis methods dominated this field. One of the pioneering efforts was

by Berens et al. (2005), who compared the performance of a Support Vector Classifier and

a Nearest Neighbor Classifier to detect the last pylorus image and the ileocecal valve using

hue-saturation chromaticity histograms. Similarly, Lee et al. (2007) focused on contraction

patterns of different organs to automatically detect their entrance and exit points, extracting

these patterns using color features in the Hue-Saturation-Intensity (HSI) range. Continuing

in this vein, Mackiewicz et al. (2008) presented a solution that utilized a feature vector

containing color information from HSI histograms and motion information from selected

image patches. Haji-Maghsoudi et al. (2012) approached the problem from a classification

perspective, extracting image features, including color, to create a representative vector for

each image. They then employed two different methods: Fuzzy K-Means and a MLP. Lastly,

Li et al. (2015) distinguished between the small and large intestines using HSI histograms

and color Uniform Local Binary Patterns (ULBP).

Deep learning came to improve all these methods. The latest and most important works

in the field include CNNs and the use of Transformers (Vaswani et al., 2017), following the

global tendency in the deep learning field. Zou et al. (2015) and Chen et al. (2017) presented

CNNs solutions to classify frames into three and four classes respectively. The approach

from Zhao et al. (2021) used an encoder step, a ResNet, to generate an embedding of each

frame in the image. These embeddings were then introduced into a Transformer module that

compared each frame with its neighbors and classified them into three categories: esopha-

gus/stomach, small intestine and colorectum. Moreover, they apply a search algorithm to

assess the exact frame of entrance and exit of the organ. More recent works include the
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method presented by Son et al. (2022) that use a combination of CNNs, a Savitzky-Golay

filter and a median filter to find the frame of transition between organs.

It is evident that deep learning methods outperformed all the previous works in terms

of classification approaches. Moreover, only Zhao et al. (2021) and Son et al. (2022) apply

thresholding techniques to identify the boundaries of the small bowel. To the best of our

knowledge, all the studies were performed using private datasets and with only one type of

capsule.

4.2 Methodology

The method presented in Figure 4.2 is specifically designed to segment organs in CE videos.

Following the approaches of Zhao et al. (2021) and Son et al. (2022), the method consists

of three main steps:

1. Train a deep learning model to assess the probability of each frame belonging to a

specific organ, such as the small or large intestine.

2. Smooth the probability signal of the full video by introducing two new features: tem-

poral features that help to identify nearby frames and motion features that use the

similarity between images to account for the speed of the camera.

3. Use the smoothed signal to identify the entrance and exit of the desired organ by

fitting a rectangular pulse to the signal.

These steps will be explained in detail in the following sections. As mentioned, the method

is based on three important features that can be observed in Figure 4.2. If i is the index

of the ith frame of the video, these features are: frame temporal information, st(i), frame

probability of belonging to the organ sp(i) and frame motion, sm(i).

Figure 4.2: Overview of the method. Blue: frames outside the organ. Yellow: frames inside
the organ.
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4.2.1 Image Classification

Let xi ∈ V be an image, where xi is the ith frame of a CE video V with k frames so that

|V | = k. Let f(·) be an encoder architecture that, given an image, returns an embedding.

This low-dimensional representation of the image xi can be defined as x′i = f(xi) ∈ R
n.

Let ti be the time, in seconds, that has elapsed from the start of the video, normalized

by the length of the video, that is:

st(i) := ti =
timestampi
video length

∈ [0, 1], ∀i = 1, . . . , k (4.1)

This value can be concatenated to the embedding vector to obtain a larger embedding that

contains this temporal information. We can express it as zi = x′i ‖ ti ∈ R
n+1 where ||

represents the concatenation operation.

The capsule advances through the GI tract, recording all organs in a continuous manner.

It is worth noting that although the camera might move back and forth, it remains within

the same organ. This allows the model to establish a relationship between time and the

organs. The temporal feature added by our system enables the model to discard erroneous

predictions in different sections of the video.

To extract the probability of each frame, a linear classifier is used. The classifier, g(·),
receives the extended embedding and classifies it as inside or outside of the organ of interest.

Equation 4.2 summarizes the process explained above.

sp(i) := g(zi) = g(x′i ‖ ti) = g(f(xi) ‖ ti), ∀i = 1, . . . , k (4.2)

4.2.2 Signal Smoothing

The second step in the pipeline involves assessing the movement of the capsule. When the

camera is moving at high speed, the images will exhibit more differences compared to when

the camera is stationary in the same area for an extended period. This information helps

relate nearby frames not only from a temporal perspective, as in the previous step, but

also from a spatial perspective. This feature considers two frames to be similar if they are

physically located near each other. Another critical aspect to consider is the consistency of

the signal. As the camera moves through the digestive system, it may move back and forth

due to natural intestinal movements, but it cannot switch organs more than once, because

the valves separating the organs prevent the camera from returning to a previous organ.

Therefore, the signal obtained in this step must be consistent and should not account for

more than one entrance and one exit.

The movement signal is defined as the function sm(·). This signal is computed by

considering the similarity of frames, particularly the distance between frame embeddings.

A self-supervised method from Pascual et al. (2022) was used to compute these embeddings.
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Figure 4.3: Self-Supervised learning strategy to generate similarity embeddings. Image
adapted from Pascual et al. (2022).

This method considers an anchor frame, the central frame of a sequence, and all its

neighbors within a specified window size as positive, while frames outside this window are

considered negative. Using the Triplet Loss (TL) function, it learns meaningful embeddings

that capture the visual characteristics of the frames. Following this strategy, neighboring

frames will have similar embeddings.

Let ei = fss(xi) be the temporal embedding of an image using the self-supervised

encoder, fss. Let M be the matrix of euclidean distances between embeddings, Mij =

||ei − ej ||2. The motion signal for the ith frame is the vector computed by taking the

normalized ith row of M , that is:

sm(i) =
Mi∑k

j=1Mij

, ∀i = 1, . . . , k (4.3)

Figure 4.4 presents a representation of the values in matrix M . Due to the intractable

size of the complete matrix, only four moments of a video are illustrated here. Each column

showcases one video from three different datasets.
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(a) Kvasir-Capsule
dataset

(b) VH dataset (c) Capri dataset

Figure 4.4: Camera movement visualization on four key moments: the beginning of the
video, the first landmark, the interior of an organ, and the second landmark. Each row rep-
resents a single video of three different datasets. Brighter colors represent larger Euclidean
distances between frames.

Each of the twelve subplots contains a blue line in the middle, indicating that the

distance from a frame to itself is zero; in the plots, brighter colors represent higher values.

The videos are divided into four key moments: the first row represents the beginning of the

video, the second row corresponds to the first landmark annotated by experts, the third

row captures a random moment within the organ, and the fourth row presents the second

landmark annotated by experts. The second and fourth rows display the transition frame

from one organ to another, marked by a black dashed line. In these plots, only the nearest

500 temporal frames are displayed for each central frame.

With this, the three relevant signals for the method are computed: sp(i) representing

the probability signal, st(i) representing the temporal signal and sm(i) representing the

motion signal. To combine them, the Context-Motion-Temporal (CMT) block is applied.



4.2. METHODOLOGY 79

The CMT block is composed by two bi-directional Long Short-Term Memory (LSTM) layers

and one dense layer that receives the three signals and outputs a single smoothed one, s(i).

Figure 4.5: Overview of the CMT block with a window size of w = 5. The block recieves the
three feature signals, i.e., the probability sp, the motion, sm and the time st and produces
a single smoothed signal s by combining them.

As can be seen in Figure 4.5, a window size, w is considered as an hyperparameter so

that, to compute value s(i), the CMT block receives the values with indexes i− w−1
2 , . . . , i+

w−1
2 of the three signals as a concatenated vector. The exact formulation of the CMT block

is:

s(i) = CMTw

(
swt (i) || swp (i) || swm(i)

)
with

swt (i) =

(
st

(
i− w − 1

2

)
, . . . , st

(
i+

w − 1

2

))

swp (i) =

(
sp

(
i− w − 1

2

)
, . . . , sp

(
i+

w − 1

2

))

swm(i) =

(
sm

(
i− w − 1

2

)
, . . . , sm

(
i+

w − 1

2

))
(4.4)

4.2.3 Landmark Identification

From the output signal s(·), the last step is to identify the entrance and exit of the organ.

To do so, the best frames for the entrance and exit of the organ need to be found. From

the plot in Figure 4.5, one can see when this transition occurs. Given a rectangular pulse,

that is, an expression with closed form:

V (t) = u(t− a)− u(t− b), u(t) =

⎧⎨
⎩0 if t < 0

1 if t ≥ 0
(4.5)
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a minimization problem between this pulse and the signal needs to be solved. This

means finding the best values for a and b that satisfy that the distance between V and s is

minimal. Figure 4.6 represents the minimization problem.

Figure 4.6: Rectangular pulse minimization. The signal that the model outputs is minimized
against the rectangular pulse by finding the best a and b parameters that adapts the best
to the function.

Formally, this means solving this constrained expression:

a∗, b∗ = argmin
a,b

a−1∑
i=0

s(i) +

b−1∑
i=a

(1− s(i)) +

n∑
i=b

s(i) s.t. a < b (4.6)

4.3 Experimental Setup

4.3.1 Datasets

The proposed method was evaluated on three datasets: a public one, Kvasir-Capsule (Smed-

srud et al., 2021) and two private datasets: VH and Capri.

Kvasir-Capsule dataset

The Kvasir-Capsule dataset comprises 117 videos recorded at a Norwegian hospital using

an Olympus EC-S10 capsule. Out of these, only 24 videos include anatomical landmarks,

specifically the entrance and exit of the small intestine. Images of the intestine make up

approximately 75% of the dataset. Each video averages around 44,000 frames, but does not

include temporal information for these frames.

VH dataset

The VH dataset consists of 48 videos recorded at Vall d’Hebrón Hospital in Barcelona using

a PillCam SB3. Expert physicians annotated the entrance and exit of the small bowel in all
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videos. Each video contains an average of 35,000 frames, with a mean duration of 4 hours

and 36 minutes. Intestine images comprise approximately 71% of the dataset.

Capri dataset

The Capri dataset comprises 68 videos recorded at Raigmore Hospital - NHS Highland in

Inverness, using a PillCam COLON 2. This device captures images with two cameras, front

and rear, both of which are utilized in the study. All the videos contain expert annotations

marking the entrance and exit of the colon. They have an average duration of 8 hours and

19 minutes, containing around 14,000 frames each. Colonic images make up approximately

75% of the dataset.

4.3.2 Evaluation Criteria

All models developed for the datasets were evaluated using the methodology described in

the original Kvasir-Capsule paper by Smedsrud et al. (2021). This approach involves a

two-fold cross-validation strategy based on patients. This ensures that frames are split into

two groups, with frames from the same patient belonging to only one group. Table 4.1

presents the number of patients and frames of each group.

Dataset Partition #Patients #Inside #Outside Total

Kvasir-Capsule
Fold 0 12 400K 160K 560K
Fold 1 12 384K 97K 481K

Total 24 784K 257K 1M

VH
Fold 0 24 602K 246K 848K
Fold 1 24 592K 249K 841K

Total 48 1.2M 495K 1.6M

Capri
Fold 0 34 347K 148K 495K
Fold 1 34 393K 97K 490K

Total 68 740K 245K 985K

Table 4.1: Number of patients and frames in each of the folds used to train the models.
Patients were divided into two folds to ensure that all their frames belong to the same
group, preventing data leakage. The “Inside” and “Outside” columns display the number
of frames within and outside the corresponding organ, depending on the dataset.

Following the validation presented in previous works (Zou et al., 2015; Chen et al.,

2017; Adewole et al., 2020; Zhao et al., 2021; Son et al., 2022), the methods were evaluated

using the following metrics: AUC, Accuracy (ACC), Mean Accuracy (mACC), Specificity

(SPEC), and Sensitivity (SENS). AUC and mACC are particularly suitable for assessing

the performance of binary classification models on imbalanced datasets. AUC quantifies the
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model’s ability to distinguish between images belonging to the target organ and those that

do not, while mACC and ACC measure the overall accuracy of predictions. It is important

to note that mACC is computed by calculating accuracy per video and then averaging

across the number of videos.

To report the anatomical landmark localization performance, MAE and Median Abso-

lute Error (MedAE) are used, following the results presented in Mackiewicz et al. (2008);

Li et al. (2015); Zhao et al. (2021); Son et al. (2022). These metrics measure the distance

in number of frames and time between the anatomical landmark annotated by the expert

physician and the one predicted by the method. The Kvasir-Capsule dataset does not con-

tain time information, so only the error in the number of frames is presented. To account

for the differences in the lengths of the videos, all the presented metrics are computed per

video independently and then averaged to report a single value.

4.3.3 Implementation Details

The core of the model is a ResNet50 (He et al., 2016) pretrained with ImageNet weights.

As previously mentioned, the CMT block consists of two bidirectional LSTM layers with

200 and 100 units, respectively, followed by a dense layer with two neurons and softmax

activation for classification.

All experiments were conducted on a single NVIDIA GeForce RTX 2080 TI using Ten-

sorFlow 2.4 with CUDA 11.0. The training methodology comprised two steps: first, training

the ResNet50 network, and second, freezing its weights to train the CMT block.

For ResNet50, the optimization process utilized Stochastic Gradient Descent with a

batch size of 256. All networks were trained for 10,000 iterations, starting with a learning

rate of 0.1, which was decreased by a factor of 0.1 every 2,000 steps. All images were resized

to 128 × 128 pixels, with black edges masked to ensure the removal of any artifacts. Data

augmentation techniques such as 90, 180, and 270-degree rotations, vertical and horizontal

flips, and brightness adjustments were randomly applied during training.

For the CMT block, optimization was performed using the RMSprop algorithm with a

fixed learning rate of 10−3 over 4,000 iterations and a batch size of 512. A grid search was

employed independently for each dataset to determine the optimal value for the window

hyperparameter, w.

4.4 Results

The experiments conducted to evaluate the proposed method were two-fold. First, experi-

ments were performed to classify each of the three datasets as either within or outside the

studied organ. Second, another set of experiments focused on identifying the anatomical

landmarks, specifically the exact frame marking the transition between organs. To conclude
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this section, some qualitative results displaying specific videos are presented.

Before detailing these two types of experiments, a grid search was applied to deter-

mine the best window parameter for each dataset. Table 4.2 shows various window size

parameters, the AUC results obtained, the error in the number of frames for each evaluated

dataset, and the total error as the sum of the entrance and exit values. As seen in the

table, the optimal values are around 151 and 251 in most cases, so w = 201 was selected as

the window size for the Kvasir-Capsule and Capri datasets, and w = 151 was selected as

the window size for the VH dataset. These parameters correspond to the lowest total error

value for each dataset.

Window Size

Datasets

Kvasir-Capsule VH Capri

AUC
Median Error

AUC
Median Error

AUC
Median Error

Entrance Exit Total Entrance Exit Total Entrance Exit Total

11 95.66 58.25 982.00 1040.25 98.09 46.50 266.75 313.25 99.61 4.00 1.50 5.50
51 95.47 55.75 693.25 749.00 98.66 31.25 276.75 308.00 99.79 2.75 1.50 4.25
75 95.53 82.75 954.25 1037.00 98.59 35.75 260.00 295.75 99.74 3.00 1.50 4.50
101 94.60 75.75 1540.50 1616.25 98.55 37.25 259.00 296.25 99.76 3.50 1.75 5.25
151 95.41 111.75 1082.75 1194.50 98.54 41.50 210.75 252.25 99.78 6.25 1.50 7.75
201 96.00 76.50 487.25 563.75 98.68 53.75 260.00 313.75 99.79 2.75 1.00 3.75
251 93.71 92.75 758.00 850.75 98.43 43.50 218.00 261.50 99.62 3.50 2.25 5.75
301 95.63 76.00 777.00 853.00 98.41 42.50 218.00 260.50 99.70 2.75 1.00 3.75

Table 4.2: Grid search to find the best window size for each dataset. The proposed method
was trained using different window size for the CMT block and the parameter that produces
the best value, i.e., as the lowest total error, is individually selected for each dataset.

To demonstrate the effectiveness of the presented methodology, for each of the two

experiments, two types of results are showcased. First, comparisons of the proposed strategy

with state-of-the-art methods, followed by ablation studies illustrating the impact of each

specific addition to the method. In particular, each added feature is individually tested.

Table 4.3 introduces the nomenclature used in these ablation experiments.

For comparison purposes, the baseline ResNet50 model, which lacks any of the new

features proposed, is trained and evaluated. The “Temp. Block” refers to the concatenation

of the frame embedding with the temporal signal for each frame. The other three settings

relate to the three signals detailed in the Methodology section: sp, sm, and st. Note

that the proposed method incorporates all the features, namely, ResNet + Time + CMT.

Henceforth, the term “Proposed Method” will be used to refer to this model.

4.4.1 Image Classification

The first set of experiments focused on classifying images as either inside or outside of

the organ. For the Kvasir-Capsule and VH datasets, the organ was the small intestine,

while for the Capri dataset, the organ was the colon. In Table 4.4, the proposed method is

compared with those from Zou et al. (2015), Chen et al. (2017), Zhao et al. (2021), and Son
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Method Temp. block Prob. sig., sp Mot. sig., sm Temp. sig., st

ResNet
ResNet + C �
ResNet + CM � �
ResNet + CT � �
ResNet + CMT � � �
ResNet + Time �

ResNet + Time + C � �
ResNet + Time + CM � � �
ResNet + Time + CT � � �

ResNet + Time + CMT (Proposed Method) � � � �

Table 4.3: Ablation study nomenclature. Each feature is introduced incrementally. This
notation is used in the subsequent result tables. The first column indicates the temporal fea-
ture concatenated to the embedding, while the last three columns represent the probability,
motion, and time signals, respectively.

et al. (2022). The results demonstrate that the proposed method outperforms all others in

almost all metrics and is comparable to the second-best in those metrics where it does not

rank first.

Following the notation in Table 4.3, Table 4.5 presents the ablation experiments. The

introduction of the different components of the method significantly improves all metrics.

Across all datasets, the temporal block enhances the performance compared to the baseline

ResNet. Similarly, models incorporating the context block outperform the baselines (ResNet

and ResNet + Time). Generally, adding time or motion to the context block leads to even

better results, indicating that the combination of visual, temporal, and contextual infor-

mation creates a powerful discriminative model. The highest performance of the proposed

model is an AUC value of 99.79% on the Capri dataset. For Kvasir-Capsule and VH, the

obtained AUC values are 96.00% and 98.54%, respectively.

Several factors contribute to the performance differences observed among datasets. The

primary distinctions include: 1) the specific organ under study (colon for Capri versus

small bowel for Kvasir-Capsule and VH ); 2) the type of capsule device used (Olympus

EC-S10, Medtronic PillCam SB3, and Medtronic PillCam COLON 2); and 3) variations

in intestinal content volume. Consequently, differences in capsule characteristics such as

optics, illumination, and resolution, as well as variations in intestinal mucosa and content,

contribute to these disparities. Additionally, the statistical characteristics of each dataset,

as summarized in Table 4.1, further underscore these distinctions. Despite these variations,

the results exhibit coherence across the different datasets.
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Dataset Methods AUC (%) ACC (%) MACC (%) SPEC (%) SENS (%)

Kvasir-Capsule

ResNet 91.48± 4.96 87.13± 7.00 82.10± 7.78 71.75± 15.43 92.45± 7.22

Zou et al. (2015) 75.37± 9.42 69.51± 11.67 69.11± 8.68 70.19± 16.35 68.03± 14.60
Chen et al. (2017) 83.65± 10.37 82.38± 9.20 76.90± 10.28 67.95± 16.18 85.84± 10.96
Zhao et al. (2021) 94.05± 4.50 89.46± 7.72 85.09± 7.87 76.29± 14.40 93.89± 7.46
Son et al. (2022) 95.75± 4.85 90.96± 6.56 81.03± 12.55 64.42± 26.40 97.64± 4.40

Proposed Method 96.00± 4.57 91.36± 5.75 87.47± 7.49 78.91± 16.28 96.03± 4.29

VH

ResNet 94.42± 6.70 84.60± 9.59 86.26± 8.36 88.26± 13.96 84.25± 10.27

Zou et al. (2015) 90.05± 9.91 84.56± 11.00 74.78± 12.22 56.87± 24.96 92.68± 9.98
Chen et al. (2017) 95.86± 5.46 90.29± 8.12 87.69± 8.28 82.53± 15.62 92.84± 10.02
Zhao et al. (2021) 97.81± 4.24 93.56± 7.12 91.95± 8.04 87.54± 14.89 96.37± 5.07
Son et al. (2022) 96.46± 6.65 89.27± 9.35 90.46± 8.73 91.05± 14.59 89.88± 9.21

Proposed Method 98.54± 2.36 94.58± 5.17 92.26± 7.74 87.25± 15.78 97.27± 3.42

Capri

ResNet 99.09± 1.41 95.71± 3.67 92.36± 4.62 85.70± 9.06 99.00± 3.16

Zou et al. (2015) 86.06± 7.93 80.64± 12.24 65.93± 6.29 33.50± 12.51 98.35± 2.02
Chen et al. (2017) 95.28± 4.37 88.42± 7.84 88.69± 6.49 88.31± 10.25 89.07± 9.62
Zhao et al. (2021) 99.85± 0.47 98.59± 2.23 98.17± 2.94 97.76± 3.74 98.58± 4.14
Son et al. (2022) 99.93± 0.21 97.94± 2.74 96.06± 4.30 92.57± 8.22 99.57± 2.58

Proposed Method 99.79± 0.82 99.07± 2.12 98.96± 2.21 98.58± 3.48 99.35± 2.97

Table 4.4: Comparison of the proposed method with the previous ones. The results clearly
show that the proposed method outperforms the others in almost all the metrics.

4.4.2 Landmark Localization

The second set of experiments aimed to locate the exact transition frame between organs

by comparing the predicted values with annotations provided by expert physicians. For the

Kvasir-Capsule and VH datasets, this involved identifying the anatomical landmarks at the

entrance and exit of the small bowel: specifically, the last pylorus image as the entrance

and the ileocecal valve as the exit. In the Capri dataset, the task focused on identifying

the boundaries of the large bowel (colon), i.e., the first cecal image as the entrance and the

last rectal image as the exit.

As detailed in the methodology section, the boundary identification method consisted

of minimizing a rectangular pulse against the signal outputted by the method. Table 4.6

presents a comparison of the proposed method with previous methods described in the

literature. Error is reported in terms of the number of frames and time, where available. It

is evident that the proposed method significantly outperforms all previous strategies.

Table 4.7 shows the ablation study of the different features introduced in the method

for this second task. The introduction of each of the different features clearly improves the

baseline method as can be seen in the last row of each dataset.
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Dataset Methods AUC (%) ACC (%) MACC (%) SPEC (%) SENS (%)

Kvasir-Capsule

ResNet 91.48± 4.96 87.13± 7.00 82.10± 7.78 71.75± 15.43 92.45± 7.22
ResNet + C 93.53± 5.51 87.24± 13.04 82.78± 10.18 73.05± 16.82 92.50± 11.90
ResNet + CM 92.70± 6.22 88.47± 11.18 83.95± 9.71 74.41± 16.75 93.49± 10.66
ResNet + CT 94.40± 6.22 87.65± 11.59 83.72± 11.06 75.45± 18.98 91.98± 11.32
ResNet + CMT 95.47± 5.39 90.07± 7.25 85.18± 8.86 75.23± 17.76 95.12± 6.54
ResNet + Time 92.40± 5.06 87.88± 6.04 81.16± 7.66 67.92± 15.42 94.40± 5.27

ResNet + Time + C 94.91± 4.29 89.53± 6.73 87.69± 7.31 82.11± 15.57 93.27± 6.96
ResNet + Time + CM 94.67± 5.24 89.87± 6.54 87.39± 7.48 80.83± 15.88 93.95± 6.30
ResNet + Time + CT 96.36± 3.98 90.80± 5.80 87.62± 7.77 80.21± 16.73 95.03± 4.92

Proposed Method 96.00± 4.57 91.36± 5.75 87.47± 7.49 78.91± 16.28 96.03± 4.29

VH

ResNet 94.42± 6.70 84.60± 9.59 86.26± 8.36 88.26± 13.96 84.25± 10.27
ResNet + C 96.28± 6.93 93.44± 6.27 91.89± 8.01 87.31± 15.88 96.47± 3.97
ResNet + CM 97.70± 4.05 93.78± 5.94 91.97± 7.86 87.15± 15.69 96.79± 3.93
ResNet + CT 97.81± 3.69 92.59± 6.93 91.12± 8.37 86.10± 17.00 96.15± 4.68
ResNet + CMT 97.98± 3.31 93.49± 6.52 92.02± 8.06 87.55± 15.86 96.49± 4.19
ResNet + Time 95.97± 6.28 88.64± 8.16 89.24± 7.57 89.94± 12.64 88.56± 9.00

ResNet + Time + C 97.17± 6.35 94.63± 5.84 92.58± 8.06 88.00± 16.06 97.16± 3.85
ResNet + Time + CM 98.13± 3.49 94.55± 5.84 92.41± 8.07 87.56± 15.96 97.26± 3.81
ResNet + Time + CT 98.20± 3.79 94.69± 5.79 92.55± 7.94 87.25± 15.89 97.84± 3.28

Proposed Method 98.54± 2.36 94.58± 5.17 92.26± 7.74 87.25± 15.78 97.27± 3.42

Capri

ResNet 99.09± 1.41 95.71± 3.67 92.36± 4.62 85.70± 9.06 99.00± 3.16
ResNet + C 99.83± 0.81 98.63± 3.40 98.51± 3.30 98.50± 3.63 98.52± 5.59
ResNet + CM 99.82± 0.74 98.70± 3.21 98.37± 3.56 97.83± 5.01 98.90± 4.94
ResNet + CT 99.79± 0.92 98.54± 3.51 98.51± 3.13 98.54± 3.03 98.47± 5.69
ResNet + CMT 99.86± 0.54 98.73± 3.18 98.42± 3.54 98.01± 4.90 98.84± 5.07
ResNet + Time 99.66± 0.76 97.18± 3.50 96.51± 3.37 93.82± 6.46 99.20± 2.28

ResNet + Time + C 99.88± 0.54 98.97± 2.22 98.79± 2.36 98.08± 4.19 99.51± 2.28
ResNet + Time + CM 99.59± 1.52 98.91± 2.55 98.76± 2.51 97.92± 4.66 99.60± 2.11
ResNet + Time + CT 99.90± 0.47 99.02± 2.01 98.90± 2.16 98.43± 3.49 99.36± 2.81

Proposed Method 99.79± 0.82 99.07± 2.12 98.96± 2.21 98.58± 3.48 99.35± 2.97

Table 4.5: Ablation study to show that the introduction of the different components of the
proposed method makes the model to improve gradually.

The minimization of the rectangular pulse in the final step (Step 3) of our pipeline adds

significant value by enabling the method to accurately identify the best transition frames

between organs. To conclude the quantitative analysis, this final step of identifying the

boundaries was incorporated into the methods proposed by Zhao et al. (2021) and Son

et al. (2022). The aim is to demonstrate that this step enhances the accuracy of landmark

identification. Table 4.8 supports this hypothesis, showing that the inclusion of this final

process reduces the error in identifying landmarks. This improvement underscores the

importance of the rectangular pulse minimization in achieving precise boundary detection

between organs.

4.4.3 Qualitative Results

Figure 4.7 presents a qualitative analysis of one video from each dataset. Each plot rep-

resents the probability of a specific frame belonging to the inside of an organ, denoted as
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Dataset Methods

Entrance Exit

MAE Median MAE Median

Frame Time Frame Time Frame Time Frame Time

Kvasir-Capsule
Zhao et al. (2021) 2644.16± 4637.65 - 1251.00± 115.25 - 4603.58± 1545.95 - 1669.00± 185.26 -
Son et al. (2022) 2711.00± 3435.83 - 1786.00± 231.93 - 2409.00± 3106.30 - 1506.75± 1161.42 -

Proposed Method 465.88± 918.13 - 76.50± 46.50 - 1679.67± 2775.72 - 487.25± 163.75 -

VH
Zhao et al. (2021) 1304.23± 1394.26 00 : 08 : 20 915.25± 22.98 00 : 04 : 34 3308.58± 583.28 00 : 31 : 44 1765.25± 461.03 00 : 16 : 59
Son et al. (2022) 1390.47± 3487.30 00 : 07 : 12 304.75± 220.97 00 : 02 : 14 1552.00± 520.78 00 : 16 : 47 627.75± 1469.01 00 : 08 : 09

Proposed Method 443.69± 1064.05 00 : 02 : 38 41.50± 11.00 00 : 00 : 15 837.77± 1485.79 00 : 09 : 46 210.75± 164.75 00 : 03 : 14

Capri
Zhao et al. (2021) 214.24± 437.6 00 : 07 : 28 85.0± 23.33 00 : 01 : 11 524.94± 1258.34 00 : 35 : 23 23.5± 2.12 00 : 01 : 02
Son et al. (2022) 56.39± 161.94 00 : 04 : 00 14.50± 0.70 00 : 00 : 08 32.25± 111.27 00 : 07 : 29 7.50± 0.70 00 : 00 : 43

Proposed Method 29.40± 83.94 00 : 00 : 55 2.75± 0.25 00 : 00 : 01 7.91± 37.82 00 : 01 : 47 1.00± 0.00 00 : 00 : 01

Table 4.6: This figure compares the proposed method with two prior approaches from
the literature. The results show that the proposed method significantly outperforms the
others, achieving lower errors in the number of frames and time relative to actual landmarks
annotated by expert physicians.

signal s(·). The four rows depicted show the results of training the proposed model with

varying feature sets described in the methodology section. In the first row, a plain ResNet

is trained. The second row adds the “Temporal” block. The third row includes the “CMT”

block, which incorporates the three signals of Probability, Time, and Motion. Finally, the

last row combines all features: “Temporal” and the “CMT” block.

These plots are color-coded: blue corresponds to frames identified by experts as outside

the organ, and yellow to those inside. The green dashed line indicates the expert-identified

transition frames from outside to inside, while the purple dashed line shows the transition

detected by the proposed method. In the VH dataset, it is particularly evident that the

addition of these extra features to the model results in more accurate landmark identifica-

tion.

The sequence near the expert annotations and the frames predicted by the method are

presented using the same color palette for the landmarks: green for the expert-annotated

transitions and purple for those predicted by the method. Finding the exact transition

frame is extremely complex and requires reviewing the full sequence to account for the

camera’s movement.

Some false positive and false negative frames, those incorrectly predicted as outside or

inside the organ, are displayed. Many of these frames are very similar to others in the

opposite class or contain intestinal content that obscures part of the mucosa, complicating

accurate identification.

Nevertheless, the plots demonstrate that the predicted boundaries are close to the real

ones, highlighting the good performance of the proposed system.
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Dataset Methods

Entrance Exit

MAE Median MAE Median

Frame Time Frame Time Frame Time Frame Time

Kvasir-Capsule

ResNet 668.34± 1091.84 - 111.75± 28.25 - 1875.96± 2747.54 - 1124.00± 493.00 -
ResNet + C 1505.83± 3316.56 - 207.50± 153.00 - 2147.42± 2967.07 - 908.50± 757.50 -
ResNet + CM 1504.54± 3272.05 - 217.25± 131.75 - 1877.62± 2736.03 - 928.00± 684.50 -
ResNet + CT 1677.79± 3509.05 - 139.00± 51.50 - 1902.29± 2683.68 - 1220.50± 391.50 -
ResNet + CMT 830.08± 1341.51 - 127.50± 31.00 - 1770.79± 2771.27 - 743.75± 580.25 -
ResNet + Time 785.88± 1182.88 - 93.00± 15.50 - 2002.38± 2959.43 - 1077.00± 539.00 -

ResNet + Time + C 535.50± 1089.54 - 26.75± 2.25 - 1710.71± 2769.83 - 559.00± 169.00 -
ResNet + Time + CM 606.08± 1104.42 - 61.25± 9.25 - 1727.67± 2767.06 - 651.50± 383.00 -
ResNet + Time + CT 556.38± 951.79 - 116.00± 43.00 - 1730.50± 2756.90 - 663.25± 83.25 -

Proposed Method 465.88± 918.13 - 76.50± 46.50 - 1679.67± 2775.72 - 487.25± 163.75 -

VH

ResNet 667.70± 1070.13 00 : 04 : 00 220.75± 191.75 00 : 01 : 45 2710.98± 4505.58 00 : 22 : 02 1235.75± 1126.75 00 : 12 : 20
ResNet + C 559.98± 1007.92 00 : 03 : 11 78.50± 17.00 00 : 00 : 34 1290.33± 2117.18 00 : 14 : 52 198.50± 82.00 00 : 04 : 02
ResNet + CM 512.38± 870.20 00 : 02 : 59 91.75± 48.75 00 : 00 : 39 1028.02± 1704.22 00 : 12 : 14 199.50± 85.50 00 : 03 : 24
ResNet + CT 557.83± 1181.40 00 : 03 : 10 78.25± 16.75 00 : 00 : 32 1279.73± 1774.48 00 : 14 : 55 369.75± 3.75 00 : 05 : 53
ResNet + CMT 500.90± 1166.62 00 : 02 : 45 50.50± 17.0 00 : 00 : 25 1077.35± 1605.62 00 : 12 : 05 259.50± 109.00 00 : 05 : 40
ResNet + Time 731.71± 1451.30 00 : 03 : 57 103.50± 59.50 00 : 01 : 14 2050.94± 4142.68 00 : 17 : 01 397.00± 350.00 00 : 06 : 26

ResNet + Time + C 502.62± 877.55 00 : 02 : 47 59.50± 4.00 00 : 00 : 25 911.23± 1619.69 00 : 11 : 38 167.25± 106.25 00 : 03 : 03
ResNet + Time + CM 417.79± 814.67 00 : 02 : 18 44.00± 7.00 00 : 00 : 10 1110.48± 1992.44 00 : 13 : 02 166.50± 103.00 00 : 03 : 00
ResNet + Time + CT 443.46± 1092.63 00 : 02 : 31 50.25± 8.25 00 : 00 : 23 1051.17± 1933.66 00 : 11 : 37 225.25± 170.25 00 : 03 : 29

Proposed Method 443.69± 1064.05 00 : 02 : 38 41.50± 11.00 00 : 00 : 15 837.77± 1485.79 00 : 09 : 46 210.75± 164.75 00 : 03 : 14

Capri

ResNet 53.70± 110.44 00 : 01 : 19 14.50± 4.00 00 : 00 : 06 13.80± 48.35 00 : 02 : 19 1.00± 0.00 00 : 00 : 01
ResNet + C 28.94± 85.33 00 : 00 : 59 4.50± 0.50 00 : 00 : 02 41.76± 215.63 00 : 04 : 44 3.00± 0.00 00 : 00 : 01
ResNet + CM 32.43± 97.72 00 : 01 : 00 2.75± 0.25 00 : 00 : 01 38.58± 210.08 00 : 03 : 01 1.75± 0.25 00 : 00 : 01
ResNet + CT 32.62± 91.01 00 : 01 : 02 5.00± 1.00 00 : 00 : 02 48.45± 240.70 00 : 07 : 08 2.00± 0.50 00 : 00 : 02
ResNet + CMT 32.35± 100.58 00 : 01 : 01 2.50± 0.50 00 : 00 : 01 37.71± 209.38 00 : 03 : 06 2.00± 0.00 00 : 00 : 01
ResNet + Time 38.40± 86.46 00 : 01 : 11 5.00± 2.00 00 : 00 : 02 19.80± 114.86 00 : 05 : 37 1.00± 0.00 00 : 00 : 01

ResNet + Time + C 29.57± 81.18 00 : 00 : 51 4.50± 1.50 00 : 00 : 01 8.89± 38.02 00 : 02 : 13 1.00± 0.00 00 : 00 : 01
ResNet + Time + CM 23.58± 69.27 00 : 00 : 41 3.50± 0.50 00 : 00 : 01 8.26± 38.02 00 : 02 : 04 1.00± 0.00 00 : 00 : 01
ResNet + Time + CT 30.40± 79.19 00 : 00 : 58 5.25± 3.25 00 : 00 : 01 8.88± 38.15 00 : 02 : 09 1.00± 0.00 00 : 00 : 01

Proposed Method 29.40± 83.94 00 : 00 : 55 2.75± 0.25 00 : 00 : 01 7.91± 37.82 00 : 01 : 47 1.00± 0.00 00 : 00 : 01

Table 4.7: This figure illustrates the incremental introduction of each feature in the proposed
method, demonstrating the value added by each component.

4.5 Conclusions

This chapter introduces and validates a deep learning solution for organ segmentation, a

crucial initial step for physicians when reviewing a CCE video.

Identifying anatomical landmarks is a complex task due to its reliance on neighboring

frames. To address this challenge, the proposed method incorporates multiple modules

designed to enhance the accuracy of landmark identification.

The system first integrates temporal information for each frame, which helps to accu-

rately position the frame within the sequence of the video. Next, it introduces motion infor-

mation, a feature that measures the similarity or dissimilarity between neighboring frames,

providing insights into camera movement. Similar frames indicate slow camera movement,

whereas significant differences between adjacent frames suggest rapid movement.

These two features, temporal and motion information, are then utilized to smooth the

probability signal that determines whether a frame is inside or outside of an organ, thereby

significantly improving boundary detection accuracy.

We conducted extensive experiments to compare the proposed method with existing ap-

proaches in the literature, achieving superior results. The inclusion of motion and temporal

features proved to be highly beneficial, as demonstrated by incorporating these features into

existing methods, which led to enhanced performance in all experiments.”
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Method
Dataset

Kvasir-Capsule VH Capri

Entrance Exit Entrance Exit Entrance Exit

Zhao et al. (2021) 1251.00 1669.00 915.25 1765.25 85.00 23.50
Zhao et al. (2021) + Step 3 93.00 702.50 65.00 478.00 3.50 1.00

Son et al. (2022) 1786.00 1506.00 304.75 627.75 14.50 7.50
Son et al. (2022) + Step 3 686.25 1683.25 214.50 1236.00 35.50 6.00

Proposed Method 76.50 487.25 41.50 210.75 2.75 1.00

Table 4.8: Adding the final step of the presented system to existing methods helps improve
the detection of anatomical landmarks.
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(a) Kvasir-Capsule dataset

(b) VH dataset

(c) Capri dataset

Figure 4.7: Visual comparison of the methods. Each subfigure displays a random video from
one of the datasets. For each dataset, four models are shown with the gradual addition of
features introduced in the methodology. Real annotated landmarks and predicted ones are
overlaid on the plot in green and purple dashed lines, respectively. The green lines indicate
the transition between outside (blue dots) and inside the organ (yellow dots). To better
understand these transition frames, the sequence is presented visually. Some misclassified
frames are also shown in a side figure.
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The last step in the video review process is to identify pathologies. Colorectal cancer

is the third most common type of cancer worldwide and ranks second on the list of most

aggressive and deadly cancers. One of the initial signs of the development of colon cancer is

the appearance of polyps in the colon that grow in an uncontrolled manner. The detection

of polyps when they are still small is crucial to prevent their transformation into can-

cer. Screening programs are aimed at detecting early-stage cancer, improving the patient’s

chances of survival. This chapter presents existing AI solutions for polyp detection.

91
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5.1 AI for polyp detection

Since the public release of CE technology in Iddan et al. (2000), extensive research has been

conducted on polyp detection. Early studies focused on shape descriptors (Li et al., 2009),

geometric features (Figueiredo et al., 2010), and custom-defined filters based on color and

illumination (Hwang and Celebi, 2010).

With the advent of ML, more sophisticated algorithms were introduced, including those

based on support vector machines (Li and Meng, 2012; Yuan and Meng, 2014) and custom-

designed algorithms for polyp detection and segmentation (Mamonov et al., 2014).

As deep learning emerged, the focus shifted to detecting polyps using CNNs (Yuan and

Meng, 2017; Yuan et al., 2020; Guo and Yuan, 2019; Laiz et al., 2020).

With the appearance of the ViT, we tested a new method for polyp detection. Following

the same methodology and data as in Laiz et al. (2020), the ViT architecture was evaluated

for polyp detection using 120 videos in a 5-fold cross-validation setup to ensure robust

results. The images were resized to 224 × 224 × 3 to match the architecture’s default

input shape. A patch size of 16 × 16 was selected, resulting in 196 patches per image

(224/16)2. The network was initialized with pre-trained ImageNet weights, including both

the network weights and the learned positional embeddings of the patches. The Transformer

was configured with 12 ViT blocks, each comprising an attention module with 12 heads.

The internal embedding dimension was set to 768, and the MLP was defined with 3,072

units. The code from Gilabert (2024) can be adjusted to match the specified configuration.

To train the network, Binary Cross-Entropy (BCE) was used with Stochastic Gradient

Descent (SGD) as optimizer. The learning rate was initialy set to 2.5 × 10−3 and reduced

by a factor of 0.2 on training step 8k and again by a factor of 0.02 on step 16k.

The addition of the Sharpness-Aware Minimization (SAM) (Foret et al., 2020) algorithm

to the base SGD optimizer was also tested. This addition boosted the results of the polyp

detection method, achieving the best results. Table 5.1 shows the comparison of these

methods. Most research papers evaluate network performance using private test datasets

Method AUC Spec@99% Spec@95% Spec@90% Spec@80%

SSAEIM (Yuan and Meng, 2017) 57.76 - 6.98 13.29 27.82
UDCS (Yuan et al., 2020) 88.64 - 70.44 78.22 83.31

ANET (Guo and Yuan, 2019) 90.44 - 72.02 78.92 85.23
ResNet50 + TL (Laiz et al., 2020) 93.65 53.56 74.17 81.77 88.41

EfficientNetB3 + TL 94.14 61.83 77.90 83.60 88.89
Vision Transformer + BCE 97.13 64.89 84.64 91.82 96.46

Vision Transformer + BCE + SAM 97.45 66.94 86.01 92.67 97.07

Table 5.1: Polyp detection results. Some results are extracted from Laiz et al. (2020).

and report the results. In the final section of this thesis, two studies are presented, each

deploying a polyp detection algorithm in real clinical practice. The first study evaluates
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the method from Laiz et al. (2020), where a tool incorporating this network was developed

and tested by physicians who assessed its output and usefulness. The second study, still

in a preliminary stage, introduces a more advanced architecture, which was deployed and

tested on a larger population.

5.2 Reviewing videos with the RAPID tool

Before going into detail in the specific configuration of the studies for polyp detection, let’s

revise how the clinicians are currently revising CE videos to search for pathologies.

RAPID Reader v9.0 is a proprietary software developed by Medtronic for reviewing and

interpreting CE videos. Widely used by professionals specializing in CCE, this software

is designed for comfortable and efficient video review. The software displays the video in

temporal order and includes features such as image labeling, commenting, and measuring

with an integrated ruler function. Users can adjust the replay speed of the video at any

time, and the application indicates the approximate area of the abdomen where the capsule

is located. Additionally, it alerts users if the capsule is moving through an area at high

speed, signaling that special attention may be needed.

RAPID offers several modes for video review: single view with the frontal camera, twin

head mode displaying both cameras simultaneously (Figure 5.1), or Top 100 mode, which

shows a batch of frames selected using traditional computer vision techniques (Figure 5.2).

Figure 5.1: RAPID Reader Software v9.0: screen with images from both camera heads
(green/yellow) and marked thumbnails.

The first part of a clinician’s job is to gather patient information, including medical

history, current medications, and, most importantly, the reason for referral for a CE. This

information is crucial for analyzing the video with the necessary detail and focus, especially

when looking for a specific pathology or condition (Yamamoto et al., 2017; Rondonotti

et al., 2020; Koulaouzidis et al., 2021; Pennazio et al., 2023).
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Figure 5.2: The Top 100 mode displays the most important frames the physician need to
review, summarizing the video.

The next step is to open the video in the RAPID software and begin the analysis. After

confirming that the video is admissible, ensuring that intraluminal content does not obstruct

a complete view of the intestinal walls, the first task is to perform a quick overview of the

entire video to identify key anatomical landmarks for detailed review (Koulaouzidis et al.,

2021). The frame rate is then slowed to 8-15 frames per second (Koulaouzidis et al., 2021;

Rondonotti et al., 2018) to carefully detect all potential pathologies or significant frames

that will be included in the final report. The RAPID software’s Top100 mode can assist

in highlighting important frames. Although the CE may take up to 5 hours to traverse

the small bowel, a physician should dedicate 40-50 minutes to thoroughly review the video.

This process is complex and requires a high level of concentration (Rondonotti et al., 2020).

Finally, a detailed report must be written, including comprehensive information on the

detected pathologies, measurements of polyps if found, the number of different polyps iden-

tified, and the duration of the video within each organ to identify any potential motility dis-

orders. A more detailed specification of a quality CCE report can be found in Koulaouzidis

et al. (2021).

5.3 Improving the polyp detection with the AI-Tool

The AI-Tool is a software designed to assist clinicians in the detection of polyps, by comple-

menting any proprietary video reviewing software, such as RAPID. It embeds a CNN into

a web tool that presents images with potential polyps to the user in a sequence of declining

certainty. Therefore, images that are very likely to contain a polyp will appear first. At

the time this study was started, the model from Laiz et al. (2020) was the state of the art

for polyp detection so it was chosen among other candidates (Yuan and Meng, 2017; Yuan

et al., 2020; Guo and Yuan, 2019) as the core of the AI-Tool. The hyperparameters of the

model were fixed after a 5-Fold cross validation process using 120 CCE videos (2,080 polyp
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images and 246k negative images). Different hyperparameters were tested (the same for

the five models) and those that gave the best results in the validation sets were selected.

A single model was then trained using the 120 CCE and embedded into the AI-Tool. The

experimental validation of the network has shown a sensitivity over 90% at a specificity of

95% when evaluated in a fully automatic setting (when no expert is involved) using full

videos. All 120 videos used in the training of the CNN were excluded for this experiment.

The AI-Tool computes two outputs using a CNN: a probability score per frame to contain

a polyp and a heatmap to visualize the reasoning behind the score using CAM (Zhou et al.,

2016), an algorithm that uses the values of the latest CNN layers to display the image

areas most relevant for classification. In this particular case, this method presents the most

relevant image zones that allow the CNN to classify an image as polyp.

Each potential polyp image is displayed along with eight context frames, the four pre-

ceding and the four following it (Figure 5.3). For each frame, a colored square is shown to

indicate the probability of it being a polyp using a colorblind friendly palette that can be

customized when the application starts. Each image can be enlarged by clicking on it, then

further information is presented such as the probability or the timestamp of the sequence.

The image sequence can be also displayed as a video using the left and right keyboard

arrows. Heatmaps can always be activated showing the most likely area to contain a polyp

(Figure 5.4). A further benefit of the heatmap is that it helps readers to understand the

reasoning behind the polyp probability and as a consequence, increase their trust in the

system.

Figure 5.3: Candidate polyp sequence displayed in the AI-Tool. Each colored bar shows
the probabilities for a polyp in one head of the capsule. The proposed image is presented
in the center frame and 4 context images are placed by each side.

5.3.1 Study Population

Eighteen videos of patients with at least one colon polyp obtained using the PillCam

COLON 2 capsule were randomly selected for this experiment following a Simple Random-

ization strategy. The data used in this study are retrospective CCE videos from patients

that were conducted on behalf of the NHS Highland Raigmore Hospital in Inverness. All

patients from this study came from referrals for symptoms or were on surveillance lists

within the Highlands and Islands area of Scotland and had a positive FIT. Referrals and
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(a) Images can be enlarged for better visualiza-
tion

(b) Heatmap activated.

Figure 5.4: A heatmap layer can be activated at any moment to visualize where the tool is
focusing when classifying an image as polyp.

Figure 5.5: Detailed view of the tool. The user is able to highlight anything relevant in the
image.

final diagnoses were made based on local considerations, outside the influence of the teams

conducting CCE procedures. Bowel preparation in accordance with a standardized, PEG-

based, split-dose cleansing protocol was performed in all patients. All videos were obtained

using PillCam COLON 2 which has two heads (front and rear). They were anonymized to

protect patient information. Patients’ mean age was 58.1 ± 18.7 years (range, 18–92 years)

and mean colon transit time was 4h 10 min (range, 0.17–14.2 hours).

Before the experiments began, the two videos obtained from each of the heads of the

capsule were meticulously reviewed by four independent CCE readers, experts from now

on, in order to create the ground truth for the experiments (gold standard). Each detected

polyp was assigned a unique identifier, the timestamp of the first and the last image where

the polyp was visible, and from which head it was reported. The independent analysis of the

experts was then shared with all experts, reaching a consensus in case of discrepancies. As
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experts, we have arbitrarily considered CCE readers with at least three months of experience

in CCE. All of them have formal training in reviewing CCE videos and they analyze about

5-20 videos a week. On a daily basis, they follow the standard review protocol to ensure

that each video is reviewed in a consistent, repeatable and well-documented manner. The

results of all of them were validated by a medical doctor with two years of experience who

created a final report about the results. In no case were any concerns reported back by

that clinician either from the review nor from any possible follow-up procedure about the

quality of the report. Both the final report and the gold standard used as ground-truth for

the experiment in this study are the responsibility of the medical doctor that approved the

results.

During this process, a total of 52 unique polyps were found. The video with the most

polyps had 7, while there were 5 videos with only one polyp. The polyps’ size was estimated

with RAPID. A total of 23 polyps were identified as large (≥ 6mm) and 29 polyps as small

(< 6mm). There were 5 polyps larger than 10mm and only one polyp smaller than 3mm.

The characterization of morphologies was done in accordance with the requirements from

the referring clinicians, matching standard Paris classifications where possible. In no case

polyps were selected or discarded based on size or morphology, all polyps reported by the

physicians were included in the study.

5.3.2 Experimental Design

Three experienced CCE readers reviewed the videos selected for this experiment. Each

reader reviewed half of the videos using the standard RAPID Reader Software v9.0 (Medtronic)

and the other half using the AI-Tool. Results obtained by the experts using each of the

tools are reported in terms of number of polyps detected (sensitivity) as well as time needed

to complete the reviews (screening time).

The experiment conducted in this study was restricted to the images of the colon. Iden-

tification of the entrance and exit of the colon was previously provided to the readers. When

they used RAPID software, they were asked to perform the standard screening procedure

without any screening time limitation. No information other than a single video identifier

was provided to the reviewers during the analysis of the videos. For the AI-Tool, the review

time was limited to 30 minutes regardless of the video’s length.

For both tools, readers were required to review the videos without pauses or external

stimuli that could lead to distractions. During the review, the readers labelled the images

that they identified as a polyp using the tools provided within each of the applications. In

the case of RAPID, experts were asked to tag all the unique polyps they found. When using

the AI-Tool, experts were asked to make a decision, polyp, clear or other, for each sequence

that was presented to them.
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5.3.3 CCE Readers

The expert readers are endoscopy nurses with at least 2 years of experience with CCE. They

have a formal CCE training and conduct between 5-20 video analyses per week. On a daily

basis, they follow a standard operating procedure to ensure that each video is analyzed in a

consistent, repeatable way and documented according to common standards. None of these

three readers were part of the gold standard creation process.

5.3.4 Results

Polyp detection

The overall sensitivity of polyp detection using RAPID as the screening procedure was

81.08% while using the AI-Tool the sensitivity increased to 87.80%. Table 5.2 shows the

percentage of polyps found using both tools distinguishing between three categories: polyp

size (in millimeters), visibility (in number of frames) and morphology. The sensitivity using

RAPID turned out to be 76.92% for polyps smaller than 6mm and 85.71% for larger polyps.

Both numbers increased when the AI-Tool was used (85.42% and 91.18% for small and large

polyps respectively).

#Polyps RAPID AI-Tool

Size Small (<6mm) 29 76.92% 85.42%
Large (≥ 6mm) 23 85.71% 91.18%

Visibility Low (< 4 frames) 9 58.33% 80.00%
Normal (4− 10 frames) 15 73.91% 81.82%
High (> 10 frames) 28 92.31% 93.33%

Morphology Pedunculated 4 100.00% 100.00%
Sessile 25 81.82% 92.86%
Flat 23 75.76% 80.56%

52 81.08% 87.80%

Table 5.2: Detection of polyps distinguishing by size, visibility and morphology.

The biggest difference between both tools was observed in the visibility of the polyp. For

polyps appearing in a few frames (low visibility), the table shows a significant improvement

when using the AI-Tool. While RAPID achieved an accuracy of 58.33%, the AI-Tool reached

80.00%. This represents a 37.15% increase in this category. Smaller improvements using

the AI-Tool were also reported for polyps appearing in a larger number of frames.

These results show that small polyps and polyps that appear for only a few frames are

more likely to be detected using the AI-Tool than using the RAPID application.
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CCE Screening Time

One of the aims of this study was to compare the time needed for the detection of polyps

using RAPID and our AI-Tool. The average time required for the experiments performed

with RAPID was 47.11 minutes (11.6 minutes for each hour of CCE video reviewed) with

a maximum of 126 minutes. Let us recall that the time for analysis using the AI-Tool was

fixed at 30 minutes for all the experiments.

Figure 5.6 shows the average sensitivity curve as a function of time for both applications.

AI-Tool took only 8.00 minutes to reach the same accuracy as RAPID (point A). Since the

mean of RAPID experiments was 47.11 minutes we can state that the AI-Tool reduces the

time needed to reach the same accuracy as RAPID by a factor of 47.11/8.00 ≈ 6. We can

also see that RAPID experiments reached a 55.41% of sensitivity (point B) by minute 30

when the AI-Tool experiments finished.

Figure 5.6: Mean sensitivity curve of the experiments using both applications. In green the
Super-Expert curve (gold standard) that represents the maximum value that the blue line
could reach. This curve has been calculated simulating an expert who never makes mistakes
when identifying a polyp while using the AI-Tool.

The shape of the curves is also an aspect worth considering. While the RAPID curve

has an almost linear behavior, the AI-Tool curve shows an initial steep slope and, after

minute 16, it is almost flat. In the first 10 minutes of the analysis 84.14% of the polyps are

detected. In the next 10 minutes, this number rises to 86.59%, which represents an increase

of 2.91% in this period. Finally, only 1.21% of the polyps are detected in the last 10 minutes

of the experiment. This indicates that our application is proposing the relevant images in

the first minutes of visualization. It is also worth mentioning that without limiting the time

to 30 minutes as we did, the detection of polyps may slightly increase because those with

a very low score would have been presented to the reviewers. However, this was not the

objective of our study, since we aimed to see if the video review could be done better and

in a shorter period of time.
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Qualitative Results

Heatmaps are a key element of our tool. They allow the medical staff to trust the system

and make an informed decision on each image sequence. Figure 5.7 shows the heatmaps

activation for three different categories. First, in the image on the left, we see high-scoring

polyps. We observe how the heatmaps generated by the CAM algorithm are well defined

and show the area where the polyp is located. In the center, we see polyps with a very low

score, which the network erroneously classifies as negative. In this case, the heatmaps are

not activated. Finally, in the image on the right we can see images that do not contain any

polyp but to which the system assigns a high score.

Figure 5.7: Left: Images of correctly identified polyps with their respective heatmaps (True
Positives). Center: Images of polyps with a very low score (False Negatives). Right: Images
that do not contain a polyp but still have a very high score (False Positives).

It can also be seen that the false positive patterns correspond to textures and mor-

phologies compatible with polyps. In almost all of them a rounded area is displayed which,

without the context of the other images, can be difficult to classify as a polyp image or not.

In addition, this is a valuable information for the reviewers of the video, as the heatmap

shows the area on which it is important to focus their attention.

We now focus on showing the images of polyps that have not been detected with either

of the two applications (specificity). Figure 5.8 shows those polyps not detected with the

AI-Tool because of the imposed time restriction (30 minutes). The score given to these

image does not exceed 15%, therefore, the experts never reviewed them. In fact, these four

images are the polyps with the lowest score of this study. The polyps of these images are

difficult to find since they are partially occluded or do not present a regular morphology.

Figure 5.8: Polyp frames to which the app has attributed a small score and, therefore, none
of the experts have been able to review in the first 30 minutes. Polyps are circled in white.

Figure 5.9 shows images of polyps reviewed and discarded by all the experts even though
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the AI-Tool assigned them a remarkably high probability. These missed polyps are the result

of human error or discrepancies between the video reviewer and the experts who generated

the ground truth.

Figure 5.9: Images that all experts have reviewed and found not to be polyps. Polyps are
circled in white.

Finally, Figure 5.10 shows some examples of polyp images missed in RAPID experiments

but correctly detected using the AI-Tool. Due to the size of the polyp and the fast movement

of the capsule that took few images, these polyps are especially difficult to find using RAPID.

In contrast, they are easy to find for AI-Tool users as they are presented with the clearest

image.

Figure 5.10: Example of polyps missed in RAPID experiments. Polyp frames are tagged
with a red square. Polyps are circled in white.

5.4 Reordering sequences

The Super-Expert is a key feature for evaluating whether the system is improving. Although

it was not previously discussed in detail, the Super-Expert represents the best performance

achievable by the physician given the model’s limitations. If a polyp is not shown to a

physician because the model fails to predict certain images as polyps, it is impossible for

the physician to identify them. Conversely, if there is a very clear and evident polyp that
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appears in many frames, the model lacks the ability to prioritize more diverse images over

redundant ones.

The solution to handle the first of these two problems is clear: to improve the latent

model. The second one can be tackled by improving the way the frames are shown to

the physicians, ensuring a higher diversity of frames. In Gilabert and Segúı (2022) a very

simple, yet powerfull approach was presented to tackle this problem. The idea behind the

method is to obtain a representation of the frames that can be used to find similar frames

and discard them in favor of different ones. This process is done relatively to the prior order

of the images that were sorted by probability. The following explanation contains a more

formal definition of the problem and the solution proposed.

Let V be a CE video with n frames: f1∗ , . . . , fn∗ temporally ordered. Let M be a polyp

detector model that assigns to each frame a score, M(f i∗). M induces a new ordering of

the video, f̂1∗ , . . . , f̂n∗ where each frame has the same or less score of being a polyp than the

previous one, i.e., M(f̂ i∗) ≥M(f̂ i+1∗ ) ∀i = 1, . . . , n− 1.

Moreover, let PV = {p1, . . . , pk} be the set of different polyps in video V . Each frame

of the video has a PV label if it contains a polyp, or a non-polyp label label, p∅. This label
is indicated in the sub-index, e.g., f1

p∅ . Let P̂V = PV ∪ {p∅} be the set of all possible labels

of a frame.

The goal is to find a new ordering f̄1
q1 , . . . , f̄

n
qn , qi ∈ P̂V ∀i = 1, . . . , n such that the

number of frames required to display all polyp labels is the minimum possible, i.e, we want

to find an ordering such that the value m is minimal:

f̄1
q1 , . . . , f̄

m
qm

∣∣∣ m⋃
i=1

qi ⊃ PV , m ≤ n (5.1)

To transform the initial ordering f̂1∗ , . . . , f̂n∗ to the new ordering f̄1∗ , . . . , f̄n∗ we use a similarity

distance metric between frames computed using the image content. Let S be a model that

extracts an embedding from each image, S(f i) = ef i , we compute the similarity between

two frames f i and f j as:

ds(f
i, f j) = ||S(f i)− S(f j)||2 = ||ef i − efj ||2 (5.2)

Then, to reorder the sequence of frames f̂1∗ , . . . , f̂n∗ we compute the similarity distance

between each frame and all the next ones and we modify its score if it is below a threshold,

μS , i.e.,

f̄1
∗ , . . . , f̄

n
∗ ← f̂1

∗ , . . . , f̂
n
∗

score(f̄ j
∗ )← score(f̄ j

∗ )ds(f̄
i
∗, f̄

j
∗ ) ∀i ≥ 1 ∀j > i ( if ds(f̄

i
∗, f̄

j
∗ ) < μS )

(5.3)

At each step i we reorder the sequence of frames f̄ i+1∗ , . . . , f̄n∗ according to this new score.

To avoid underflow problems we use logarithms in Equation 5.3.
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5.4.1 Results

Figure 5.11 shows the result of applying this process using three different similarity models,

S, pretrained using ImageNet: ResNet50(0.3), EfficientNetB3(0.4), ViT-B/16(0.4). Inside

the parenthesis we indicate the value of μ obtained after a gridsearch process. We used the

polyp detector model, M , from Laiz et al. (2020). All of them present a similar behaviour

since no process of fine-tuning was done, we simply used the default ImageNet weights.

EfficientNetB3(0.4) achieved the highest score in both accuracy at frame 100 and area

under the curve from Figure 5.11.

(a) Temporal Sorting (b) Probability Sorting

Figure 5.11: These plots compare the accuracy of the Super-Expert method when videos are
sorted by probability alone (blue) versus after applying the reordering algorithm (orange).
The left plot shows an example from a single video, while the right plot displays the average
across the entire dataset. It can be observed that the orange line requires fewer frames to
detect more polyps in the videos.
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(a) Temporal Sorting

(b) Probability Sorting

(c) Probability + Similar discarding

Figure 5.12: Comparison of different sorting methods. The last row sorts the frames by
probability and utilizes frame embeddings to discard similar frames, thereby avoiding re-
dundancy.

5.5 The CESCAIL Study

The Capsule Endoscopy delivery at Scale through enhanced AI anaLysis (CESCAIL) study

investigates the application of the AI-Tool developed in this work to enhance the accuracy

and efficiency of diagnosing colonic polyps and colorectal cancer (Lei et al., 2023). Sponsored

by University Hospitals Coventry and Warwickshire and funded by the National Institute for

Health and Care Research (NIHR) AI in Health and Care Award, the study involves multiple

institutions, including CorporateHealth International UK Limited (CHI), NHS Highland,

NHS Arden & GEM Commissioning Support Unit (AGEM CSU) and the University of

Barcelona. The CESCAIL study leverages AiSPEED™, whose development was led by

CHI, to automate the video analysis of CCE and uses the AI-Tool developed in this work

as a core system. This AI-enabled analysis is compared to conventional clinician analysis,

aiming to validate its diagnostic accuracy and productivity.

The study design is a combined retrospective and prospective multicenter diagnostic

study, with a targeted recruitment of 674 participants. These participants are either re-

ferred routinely for CCE or urgently for lower GI symptoms as part of their standard care

pathway. The study includes both retrospective patients who have previously undergone

CCE and prospective patients newly referred for the procedure. Demographic details, past

medical history, and procedural data are collected and stored in a GCP-compliant elec-

tronic data capture system. The primary outcomes focus on comparing the sensitivity and

specificity of the AI-enabled analysis with the gold standard of clinician analysis, ensuring

a comprehensive assessment of AiSPEED™’s effectiveness.

The CESCAIL study’s robust methodology involves detailed data collection and man-
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agement practices to ensure the integrity and security of patient data. Pseudonymization

techniques are applied to maintain confidentiality, with data securely stored and accessible

only to authorized study team members. The study not only seeks to validate the AI tool

but also aims to observe its performance in real-world settings, potentially revolutioniz-

ing lower GI diagnostics. By addressing the demand for more efficient diagnostic tools,

CESCAIL has the potential to significantly impact clinical practices and patient outcomes

in colorectal care.

Althought the study is currently in developement, preliminary results (Lei et al., 2024)

demonstrate a comparable sensitivity and positive predicted value to the standard polyp

review method while reducing the total revision time.

5.6 Conclusions

This chapter explored the advancements and efficacy of AI-based tools in enhancing polyp

detection during CCE procedures, a critical aspect of CRC prevention. The study high-

lighted the evolution of detection methodologies, from early shape descriptors and geomet-

ric features to the more advanced deep learning techniques, particularly the application

of CNNs and variants of the Transformer architecture. The implementation of innovative

approaches like the ViT+SAM algorithm further optimized the performance of AI models,

showcasing the potential for ongoing improvements in AI-assisted diagnostics. The findings

highlight the importance of integrating AI-driven solutions in clinical practice to enhance

patient outcomes.

The integration of AI models, such as the AI-Tool examined in this chapter, signifi-

cantly improved the accuracy and efficiency of polyp detection. Specifically, the AI-Tool

demonstrated a notable increase in sensitivity compared to traditional methods, achieving

a sensitivity rate of 87.80% compared to 81.08% when using the RAPID Reader software

alone. This enhancement is particularly crucial in CE, where accurate detection of polyps is

vital given the procedure’s non-invasive nature and the vast amount of video data generated.

Additionally, the successful application of our AI-Tool in the CESCAIL study under-

scores its practical value and effectiveness in a real-world clinical setting. The involvement

of this tool in the CESCAIL study not only validates its efficacy but also positions it as a

critical component in the future of CCE and CRC screening.
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This chapter concludes the thesis, summarizing the key topics explored and the ma-

jor contributions made to CE, especially in advancing AI integration in the video review

pipeline.

It also highlights new challenges and areas for future research, such as exploring emerging

technologies and interdisciplinary approaches, to further enhance the impact and develop-

ment of CE.
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6.1 Summary of Findings

Dataset Compilation

A key objective of this thesis was to understand, optimize, and improve the data-gathering

pipeline. While data is crucial for any AI solution, its importance is often overshadowed by

the focus on advanced model architectures.

To emphasize the significance of data, in Chapter 2, we conducted several studies. We

developed an AI-based solution for automatically creating CE datasets using AL. AL is an

AI paradigm where the model selects the most informative data points to label from a pool

of unlabeled data. By doing so, the model is trained on the most diverse and representative

samples, optimizing the use of the labeling budget. This approach is especially useful in

cases where labeling is expensive or time-consuming, such as in medical imaging or video

datasets, as it minimizes the amount of labeled data required to achieve high performance.

The method aimed to gather a diverse range of data to maximize the overall diversity

of the dataset. We evaluated various methods from the literature and proposed new ap-

proaches, achieving the best results in our CE dataset. The most effective system employed

a hybrid strategy: precomputing clusters of frame embeddings from all unlabeled data and

utilizing these embeddings throughout the process without further modification as a rep-

resentation of the frames. Videos that appeared in the most clusters were selected as the

most diverse, labeled, and added to the training set. This process was repeated until the

budget was exhausted, which, in our experiments, involved selecting a total of eight videos.

In this same chapter we also presented a collaboration with the Hospital Cĺınico de

Valladolid. We released a dataset of 691 images of lung carcinomas from 45 patients and

validated an AI solution to classify them, establishing a baseline for the research community.

Bowel Preparation Assessment

In CE, videos with significant intraluminal content, meaning a large amount of residue re-

maining in the intestines after bowel preparation, cannot be effectively analyzed for patholo-

gies. Classifying videos as usable or unusable helps speed up the review process, as unusable

videos can be flagged early and redone if necessary.

In Chapter 3, we present a method to automatically assign a CC-Clear score, a scale from

0 to 3 that evaluates the quality of bowel cleansing in the videos. Our method calculates

the cleanliness of each video by first computing the cleanliness of each frame, segmenting

the intraluminal content. Traditional approaches would require full image segmentation

for model training, as seen in conventional U-Net (Ronneberger et al., 2015) and similar

architectures, which typically use MSE or BCE as loss functions.

However, our system introduces a custom-designed loss function, Patch Loss, which
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evaluates segmentation performance only in specific regions of the image, small patches,

previously classified by expert physicians. This allows us to train the system using binary

labels (clear/no clear) for these patches, significantly reducing the annotation workload for

physicians.

Landmark Identification

Once videos are classified as usable, the next challenge is to accurately identify the organ of

interest. These videos are typically long, and the transitions between organs are not always

clearly defined. Even for physicians, pinpointing the exact frame where the transition occurs

can be difficult.

While this might seem like a straightforward classification task, the problem is compli-

cated by the fact that there is only one landmark (a positive example) among hundreds of

frames showing the organ’s interior (negative examples). This imbalance, combined with

the importance of temporal information in video analysis, requires a more sophisticated

approach.

In Chapter 4, we introduce a method for automatically finding the boundaries of large

and small intestines, achieving higher precision in identifying the entrance and exit points

than existing methods in the literature. Our approach utilizes a custom-designed archi-

tecture that incorporates both temporal information from the video sequence and frame

similarity to track the motion of the capsule, classifying frames as either inside or outside

the organ of interest. Additionally, we applied a rectangular pulse fitting to the method’s

output, allowing us to precisely identify the entrance and exit frames. This additional step

was also tested on other methods from the literature, improving their results.

Polyp Detection

All the preparatory work with the videos culminates in the detection of GI pathologies.

In Chapter 5, we focus on the early detection of CRC by identifying polyps. We first

demonstrate the effectiveness of ViT and SAM in improving polyp classification, comparing

the results with other state-of-the-art architectures.

Next, we present two clinical studies. The first compares the performance of the tra-

ditional review method using the RAPID app for CCE with our newly developed AI-Tool.

The AI-Tool is a web-based application that incorporates a polyp detector and presents the

frames to physicians by sorting them according to the output of the polyp detector model.

This allows videos to be reviewed more quickly by focusing on the most relevant frames.

The experiments showed that the AI-powered method detects more polyps in less time.

Notably, the highest improvement in accuracy was observed in detecting small polyps or

polyps appearing in only a few frames, which are often missed by physicians during video
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reviews. The second study, currently in progress, focuses on deploying one of these AI tools

in a clinical setting, testing it on over 600 patients.

We also present a preliminary approach to avoid duplicate images during the review

process. Experiments demonstrate that by using a simple method to identify similar frames

proposed by the AI-Tool, the review process can be expedited even further.

6.2 Future Work

While the results presented in this thesis demonstrate significant advancements in AI-based

solutions for improving the CE video review process, there are several opportunities for

further exploration and enhancement.

Datasets

Access to public data is essential for advancing medical research, especially for teams that

may not have access to large private datasets. Unfortunately, despite our efforts to release

a large, well-annotated public dataset of CE videos, we were ultimately unsuccessful. We

believe that significant effort is needed in this area, with a focus on making as much data

publicly available as possible to foster collaboration and innovation in the field.

In addition, it is crucial to develop systems that can effectively handle data from various

CE devices. Different manufacturers often produce devices with distinct specifications,

such as resolution, frame rate, and video format. To maximize the utilization of available

data, AI systems must be designed to standardize and integrate these diverse data sources.

By creating models that are device-agnostic and adaptable to a variety of data formats,

researchers can tap into a much larger pool of data. This would not only enhance the

training and validation of AI models but also improve their robustness and generalizability,

making them more suitable for widespread clinical adoption across different institutions and

regions.

A promising approach to addressing the challenges of integrating data from various CE

devices is federated learning. Federated learning allows AI models to be trained across de-

centralized datasets from different devices and institutions without requiring the transfer of

sensitive data to a central location. This method is particularly advantageous in healthcare,

where data privacy and regulatory constraints often limit the sharing of patient informa-

tion. By training models locally on each institution’s data, federated learning enables the

development of robust, device-agnostic AI systems. These systems can generalize across

different device specifications, improving diagnostic accuracy and facilitating widespread

clinical adoption without compromising patient privacy.
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Improving Polyp Detection

One of the primary limitations identified during this thesis is the scarcity of annotated data

for polyps. However, the potential for improvement is significant if more finely-grained

data were available. A key area that requires further attention is the characterization of

the morphology and size of polyps. Current tools lack the precision needed to measure

polyp size accurately, as the size can appear to fluctuate based on the camera’s field of

view. Developing a robust, well-annotated dataset of polyps would enable a more reliable

training for AI systems for size and morphology estimation.

Another challenge arises from the movement of the capsule within the digestive tract.

As the capsule moves back and forth due to the natural contractions of the intestines,

it constantly changes its field of view of the intestines. This makes the re-identification of

polyps particularly difficult, as the same polyp might appear different in subsequent frames.

Reliable labeled datasets that account for these shifts in perspective are critical to address

this challenge. Training models to recognize polyps despite these changes would enhance

the reliability of polyp detection and tracking over time.

Additionally, a promising direction for future research lies in patient-oriented screening

programs. CE is often used to monitor patients over time, and as such, these programs

typically involve multiple endoscopy sessions. With a comprehensive dataset of a patient’s

endoscopic images collected across time, it would be possible to develop personalized systems

capable of tracking the growth and evolution of polyps. This would significantly enhance

the prediction of CRC, as AI models could be trained to detect subtle changes in polyp

size or morphology across sessions, offering more precise and early predictions of cancer

development.

Finally, this thesis focused on solutions primarily based on individual images, as that

was the data available during the research. However, with the adoption of more advanced

architectures, such as the Transformer and other sequence-based models, future research

could leverage full sequences of images or even complete video data for training. This

shift would allow for more contextual understanding, leading to improvements in polyp

detection and overall diagnostic performance. The exploration of sequence-based data could

unlock new possibilities in CE, pushing the boundaries of what AI models can achieve in

GI diagnostics.

System Integration and Real-World Application

Throughout this thesis, we developed a comprehensive suite of applications designed to en-

hance the CE video review process. While each of these modules has proven effective indi-

vidually, we believe that integrating them into a unified system could significantly streamline

the overall workflow and improve the user experience. A fully integrated platform would

allow for smoother transitions between different stages of the review process, from data
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preprocessing and landmark identification to polyp detection and pathology classification.

Most of these systems were tested on controlled datasets, which may not fully represent

the variability and challenges encountered in real-world clinical settings. To ensure the

robustness and generalizability of the proposed solutions, larger-scale trials, such as those

conducted in the CESCAIL project (Lei et al., 2023), should be performed before moving

these systems into production. These trials would help assess performance across diverse

patient populations and real-world conditions, addressing potential limitations and ensuring

that the integrated system can be effectively deployed in clinical environments.

Much of the research is centered around comparing objective metrics to existing methods

in the literature. While this approach is essential, we believe it is equally important to ensure

that these systems are understandable to physicians. Developing interpretability modules

that explain the decisions made by AI models, along with the associated confidence levels,

is crucial. Physicians must recognize that these systems are not intended to replace their

expertise but rather to enhance and accelerate their work. By providing a more consistent

and repeatable method of evaluation, AI tools can help improve diagnostic accuracy and

efficiency, ultimately benefiting patient care.

6.3 Research Outcome
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doi: 10.3389/fmed.2022.1000726.
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