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Transcriptional heterogeneity shapes stress-
adaptive responses in yeast

Mariona Nadal-Ribelles 1,2 , Guillaume Lieb 3, Carme Solé 1,2,
Yaima Matas 1,2, Ugo Szachnowski4, Sara Andjus4, Maria Quintana 1,2,
Mònica Romo1,2, Aitor Gonzalez Herrero 1,2, Antonin Morillon 4,
Serge Pelet 3, Eulàlia de Nadal 1,2 & Francesc Posas 1,2

In response to stress, cells activate signaling pathways that coordinate broad
changes in gene expression to enhance cell survival. Remarkably, complex
variations in gene expression occur even in isogenic populations and in
response to similar signaling inputs. However, the molecular mechanisms
underlying this variability and their influence on adaptive cell fate decisions
are not fully understood. Here, we use scRNA-seq to longitudinally assess
transcriptional dynamics during osmoadaptation in yeast. Our findings reveal
highly heterogeneous expression of the osmoresponsive program, which
organizes into combinatorial patterns that generate distinct cellular programs.
The inductionof these programs is favoredby global transcriptome repression
upon stress. Cells displaying basal expression of the osmoresponsive program
are hyper-responsive and resistant to stress. Through a transcription-focused
analysis ofmore than300RNA-barcodeddeletionmutants, we identify genetic
factors that shape the heterogeneity of the osmostress-induced tran-
scriptome, define regulators of stress-related subpopulations and find a link
between transcriptional heterogeneity and increased cell fitness. Our findings
provide a regulatory map of the complex transcriptional phenotypes under-
lying osmoadaptation in yeast and highlight the importance of transcriptional
heterogeneity in generating distinct adaptive strategies.

Cell adaptation to stress requires themodulation of various aspects of
cell physiology, including gene expression1. In eukaryotes, stress-
activated protein kinases (SAPKs) receive and transmit extracellular
cues to the intracellular environment, leading to the modulation of
cellular functions, such as cell cycle arrest and shifts in metabolic
fluxes to promote adaptation. One of the main outcomes of SAPK
activation is the tight regulationofgene expression,which, in response
to stress, dynamically induces the up- and down-regulation of a large
gene set, affecting 20% of the transcriptome2,3. In Saccharomyces cer-
evisiae (S. cerevisiae), Hog1 SAPK is phosphorylated in seconds in

response to stress and rapidly accumulates in the nucleus, where it
directly associates with target genes,an event that ultimately induces
the expression of a set of osmoresponsive genes4–6. Osmoresponsive
genes include the core environmental stress-responsive genes (iESR), a
set of genes induced by virtually all stressors, together with
osmostress-specific genes, such as those related to glycerol import
and biosynthesis3. This transient upregulation of gene expression is
accompanied by the active downregulation of proliferation-related
genes (rESR), including ribosomal genes (RiBi), and a global decrease
in gene expression and mRNA stability3,7. Hog1 bypasses the global
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transcriptional repressive state by directly regulating transcription
initiation by binding to target genes through transcription factors such
as Msn2/4, Sko1 and Hot1, among others, to then recruit chromatin-
modifying enzymes and transcriptional machinery (RNA Pol II and
associated factors)5,6,8. Additionally, Hog1 serves as a selective elon-
gation factor by traveling with RNA Pol II and associating with chro-
matin remodelers through the target coding regions4,9–11. Once cells
have adapted, Hog1 is dephosphorylated and re-shuttled to the cyto-
plasm, and homeostatic transcription is restored.

Bulk biochemical studies have highlighted the key players
involved in osmostress-induced transcriptional reprogramming. Con-
versely, single-cell analyses have uncovered a paradigmatic scenario in
which the transcriptional output of a gene candiffer dramatically from
others, despite robust and identical Hog1 signaling12. Single gene
reporters and single-molecule fluorescence in situ hybridization
(smFISH) measurements have revealed that impaired chromatin
remodeling strongly contributes to the generation of bimodal dis-
tributions of transcription at stress-induced loci, thereby pointing to
additional regulation downstream of signaling inputs12–15. In parallel,
the expression noise of stress-responsive genes has been described
through the oscillatory behavior of the Msn2 transcription factor, and
the basal expression of some stress-responsive genes has been
detected by scRNA-seq across several studies and observed by time-
lapse microscopy, suggesting residual expression of stress-responsive
genes within a population16–18. However, the effect of transcriptional
heterogeneity on stress adaptation has not yet been addressed in
depth. In recent years, we have seen the successful implementation of
several scRNA-seq protocols suitable for yeast19, but longitudinal
profiling of dynamic environments has not been explored to date20.
Furthermore, multiplexed integration with genetic and environmental
perturbations has been restricted to a limited number of mutants
because of the lack of global barcoding strategies, such as those gen-
erated by CRISPR-gRNAs (Perturb-seq), a widely used system in
mammalian cells21,22. In this study, we applied longitudinal scRNA-seq
profiling, together with comprehensive genetic perturbations target-
ing transcriptional components, to highlight the role of transcriptional
heterogeneity in generating distinct subpopulations of cells with dif-
ferent adaptive potential.

Results
Osmoadaptation increases transcriptional heterogeneity
Most of our understanding of transcriptional adaptive responses is
derived from bulk assays. However, evidence from single-cell tran-
scriptional readouts in response to stress suggests a great degree of
heterogeneity within a population. We systematically characterized
stress responses by generating a time-resolved, single-cell transcrip-
tionalmap using wild-type (WT) and hog1mutant strains as references
for full and impaired transcriptional responses. We cultured wild-type
and hog1 cells carrying unique marker combinations and performed
longitudinal scRNA-seq in response toosmostress (Fig. 1a).Weprofiled
over 21,000 cells and applied stringent filtering criteria, removing low-
quality cells (<500 or >3000 genes) and those expressing more than
one marker (Supplementary Fig. 1a). Overall, we retained 19,866
(93.5%) high-quality singlets with assigned genotypes for further ana-
lysis. Each genotype and condition were represented by more than
1500 cells, with a mean of 1290 genes and 3009 molecules detected
per cell (Supplementary Fig. 1b).

To generate an unbiased overview of the transcriptional changes
caused by stress, we regressed cell cycle effects and excluded ribo-
somal genes before performing unsupervised principal component
analysis (PCA) (see Methods). Under control conditions, WT and hog1
cells showed overlapping clusters, thereby indicating similar tran-
scriptional profiles. In contrast, after 5minutes of osmostress,WT cells
formed a distinct, more heterogeneous cluster that was most pro-
nounced at the peak of the response (15min) and became less distinct

at a later time point (30min) (Fig. 1b, and Supplementary Fig. 1c). At
short time points hog1 overlapped with control and remained closer in
the PCAacross times. Thesefindings thus highlight the role of theHog1
SAPK in the induction of the adaptation program. As expected, we
found stress-responsive genes as the main drivers of clustering (Sup-
plementary Fig. 1d), pointing out these genes as a major source of
intra-genotype heterogeneity.

To assess the dynamics of the stress-responsive genes, we tracked
the expression pattern of 200 consistently induced and repressed
osmoresponsive genes obtained from 5 independent bulk RNA-seq
experiments (hereafter referred to induced/repressed osmo-
consensus) (Supplementary Data 1)23. As expected, under control
conditions, the expression of the osmoconsensus program across
most cells was very low in both WT and hog1 genotypes. However, in
response to stress, there was a rapid and transient induction of the
transcriptional response, which peaked at 15min and was strongly
impaired in hog1 cells (Fig. 1c). Repressed genes also revealed a
stronger response in WT compared to hog1 cells, consistent with bulk
analyses of these signatures (Fig. 1d). The increase in the variability of
gene expression, particularly for the induced programs, was the
highest at the peak of the response while unresponsive genes
remained constant (Fig. 1e, Supplementary Fig. 1e–g). This increased
heterogeneity extends beyond individual genes to entire transcrip-
tional programs, confirming observations from single-gene stress-
responsive reporters12. Thus, the single-cell resolution revealed that
stress induced a high level of transcriptional variability, particularly
within the induced osmoconsensus genes.

Cells display heterogeneous use of the osmoresponsive pro-
gram in response to stress
A potential source of the cell variability in stress response could be
differential usage of the induced genes. For each gene in the osmo-
consensus signature, we calculated the percentage of cells that
expressed a particular transcript and their average expression (Fig. 2a).
Under control conditions, few genes were expressed in both WT and
hog1 mutant cells. After 5minutes of stress (0.4M NaCl), the percen-
tage of cells expressing stress-responsive genes increased, but with
low transcript levels. At 15min, expression peaked, with an increase in
the average expression of osmoconsensus genes. The percentage of
cells expressing was similar in both strains, but the strength of the
response was diminished in hog1 mutant (Fig. 2a). This observation
suggests that gene usage is inherent to the transcription unit as the
percentage of expressing cells showing a degree of similarity between
WTand hog1mutant cells,whereas transcriptional outputwas strongly
regulated by the SAPK.

Remarkably, analysis of the expression of the whole osmoscon-
sensus program at the peak of expression inWT cells (15min of stress)
revealed that only a few genes (less than 25%) were expressed in most
of the cells (>75%), whereas the rest of the genes were expressed in
only a fraction of the population (Fig. 2b, Supplementary Fig. 2a, and
Supplementary Data 2). Similar results were observed for repressed
genes. In this regard, hog1 mutant cells failed to induce and repress
gene expression (Supplementary Fig. 2b, c). Thus, cell-to-cell varia-
bility in the stress response can be attributed to a combinatorial
expression pattern with only few genes shared by the majority of the
population.

We hypothesized that differential gene expression creates a cell-
specific osmoresponsive fingerprint. By scoring expressed genes per
cell at peak expression (WT 15min, avg. expression >0), we found a
positive correlation between detected genes and average osmo-
consensus program expression (Fig. 2c). The wild-type population
expressed 93 out of 200 genes (46.5%) (Fig. 2d), with this pattern
reproduced by at least 52% of cells. While top-expressing genes were
consistent, selective gene induction generated unique expression
profiles across individual cells (Fig. 2e). Our findings reveal that bulk
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study observations of osmoresponsive-gene programs arise from
heterogeneous gene usage and expression within the population.

Modular activation of functional genes in response to stress
To assess the regulatory logic of osmoresponsive program hetero-
geneity, we clustered cells based on differentially expressed genes
between control and NaCl-treated cells (15min). We identified five
expression pattern subtypes (Fig. 2f, g). Cluster 0 (33% of the popu-
lation) showed weak but relatively homogeneous gene expression.
Cluster 1 (22% of the population) displayed reduced molecule count,
low stress-gene expression, and strong induction of only two genes
(PYC1 and ADE2). Cluster 2 exhibited strong modular expression of 29
genes, particularly protein folding-related genes, including
osmostress-induced chaperones (HSP82, SSA4) and the heat shock-
specific chaperone HSC8223. Clusters 3 and 4 shared metabolic and
oxidative stress genes (86% gene overlap) (Supplementary Data 3, and
Supplementary Fig. 2d). Cluster 4 notably expressed high levels of
neighboring osmoresponsive genes PAI3 and SPI18, with the latter
encoding a hydrophilic protein inhibiting apoptosis through anti-
oxidant effects crucial for desiccation stress (Fig. 2f)24. When scoring

the osmoconsensus program, clusters 3 and 4 showed the highest
expression of the signature, while cluster 1 scored lowest (Fig. 2g). This
differential cluster usage reveals modular gene subprogram expres-
sion, suggesting diverse cellular adaptation strategies.

We then reasoned that the co-expression of specific gene sets
might reflect different transcription factor activity or selection. To
address this question, we generated the signatures of 12 transcription
factors involved in the stress response. These included major tran-
scription factors ranging from the general ESR regulators Msn2/4 and
the stress-specific Sko1 to more specialized factors such as Hot1 and
Mot3, which regulate a small subset of genes6. The activity of Msn2/4
was significantly higher in clusters 3 and 4, which showed the greatest
variability among transcription factors (Supplementary Fig. 2e). In
contrast, most transcription factors like Sko1 and Smp1 showed less
variability (7 out of 12 transcription factors displayed this behavior),
possibly due to their restricted specificity towards osmoresponsive
genes (Supplementary Fig. 2e). However, the activity of specialized
factors such as Mot3 differed slightly between clusters 3 and 4, while
cells in cluster 2 showed higher activity of Hsf1, consistent with a
subset of cells generating a heat stress-like response (Supplementary
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Fig. 1 | Osmoadaptation increases transcriptional heterogeneity. a Schematic
representation of the experimental design. Wild-type cells (BY4741) and derivative
hog1 mutant cells carrying distinct selectable markers. Wild type cells carry an
endogenous tagged TDH3−9myc::KAN and hog1mutant cells (hog1::NAT) carry and
endogenously tagged TDH3−9myc::HPH. Expression of the KAN, NAT and HPH
markers are under a constitutive promoter. Cells were grown individually and
mixed at a 1:1 ratio. Pooled cells were then harvested in control conditions (t0) or

subjected to osmostress for 5, 15 or 30min by treatment with 0.4M NaCl, and a
single 10X v3.1 library was generated for each time point. b Principal component
analysis of each genotype split by the indicated time points. c–e Distribution of
signature expression across the indicated strains and time points for upregulated,
repressed, and unresponsive genes (y-axis) for the indicated samples. Signature
genes were extracted from 5 independent bulk RNA-seq studies23. Black bars indi-
cate the mean expression.
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Fig. 2e). Thus, distinct usage of transcription factor activity/selection
within the population generates the differential gene programs within
the stress response.

Transcriptional heterogeneity shapes the adaptive capacity of
the cells
Leveraging on the unbiased coverage of scRNA-seq, we next examined
whether a global transcriptional context influences the strength and
topology of the stress response. To this end, we re-clustered the WT
15minutes dataset using highly variable genes with Louvain clustering.
This generated 9 subpopulations (Fig. 3a), each ofwhich characterized
by the expression of specific genes (Fig. 3b) and enriched in the

corresponding subpopulation (Fig. 3c). When we scored the expres-
sion of the induced osmoconsensus, wedetected distinct responses to
stress depending on the subpopulation: high responders (50% cells,
clusters 0, 2, 4 and 7), low responders (32% cells; clusters 1, 5 and 8), or
average responders (clusters 3 and 6) (Fig. 3d). To understand the
nature of these subpopulations, we performed a Gene Ontology (GO)
analysis, considering the cluster-specific upregulatedmarkers. Most of
the subpopulations contained genes associated with known physio-
logical processes (Supplementary Fig. 3a and Supplementary Data 4).
Cluster 8 exhibited markers of aged cells, expressing known age-
related genes like FIT3 and iron-regulon genes25,26, with reduced
expression of the osmoconsensus signature. Cluster 5 showed
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deficient response and enrichment in ribosome biogenesis. In con-
trast, clusters 4 and 7 displayed above-average osmoconsensus sig-
nature expression and enrichment in daughter-specific genes (DSE).
Indeed, daughter cells systematically displayed higher expression of
the osmoconsensus signature throughout the time course examined
(Supplementary Fig. 3b). This unbiased clustering recapitulated the
heat stress-like response (clusters 3 and 4, Supplementary Fig. 3a) and
the metabolism/oxidative stress signatures (cluster 0, Supplementary
Fig. 3a) that were identified in the aforementioned clustering per-
formed on stress-responsive genes (Fig. 2f), hence validating that they
represent two distinct subpopulations with defined transcrip-
tion modes.

Of note, cells in cluster 0 comprised the subpopulation with the
highest expression of the osmoconsensus program (Fig. 3d). This
finding could be explained by either the higher expression of globally
used genes and/or the co-expression of a large number of genes of
the osmoconsensus program. Thus, we first tested the activity of
twelve transcription factors involved in osmoadaptation. Cluster 0
consistently scored as the top expressers of the main transcription
factors (Msn2/4, Sko1 and Hot1), except for Smp1 and Hsf1 (Fig. 3e).
Given the wider transcription factor activity, we assessed whether
these cells could co-express a larger fraction of genes. We calculated
the co-expression degree of five representative genes with distinct
expression frequencies ranging from 100% to 10% (see Methods).
This comparison identified a subset of hyper-responsive cells
(n = 180) with a higher degree of co-expression, 156 cells (86%) of
which belonged to cluster 0 (Fig. 3f). Hyper-responsive cells showed
broader gene use with verymild changes inmaximal gene expression
not attributable to the number of molecules/cell (Fig. 3g, h and
Supplementary Fig. 3c–e). Therefore, there is a subpopulation of
hyper-responsive genes in cluster 0 that are likely to show greater
fitness in response to stress.

To validate the phenotype of hyper-responsive cells, we inte-
grated an unstable fluorescent reporter using the HXT5 reporter and
terminator (pHXT5-UbiM-mCherry-tHXT5). We then isolated top HXT5-
expressing cells by Fluorescent Activated Cell Sorting (FACS) and
assayed them in a competition assay (Supplementary Fig. 3f). Hyper-
responsive cells showedgreater competitivefitnesswhen compared to
a WT strain under stress conditions (Fig. 3i). Overall, our data indicate
that the global transcriptional state influences gene selection and total
transcriptional output, generating subpopulations with differential
stress resistance phenotypes.

Stochastic expressionof stress programs in the absenceof stress
Despite the typically repressed and uniform osmoconsensus sig-
nature under control conditions, a small subset of wild-type and hog1
mutant cells unexpectedly showed osmoresponsive gene expression
levels comparable to early stress responses. (WT 5min, Fig. 1c). We
clustered WT and hog1 mutant cells under control conditions indi-
vidually and projected them onto their respective UMAPs (Fig. 4a, b

and Supplementary Fig. 4a, b). Almost 6% of WT cells showed higher
expression of the osmoresponsive genes when compared to the
overall population. WT cells did not form a distinct cluster, although
there was a biased distribution towards clusters 3, 6 and 7, which
were enriched in daughter cells (DSE for clusters 3 and 6) (Fig. 4c,
Supplementary Fig. 4a and Supplementary Data 5). Surprisingly, this
basal expression was Hog1-independent, since 3% of hog1 mutant
cells showed similar basal expression (Supplementary Fig. 4b, c). This
finding suggests that the basal firing of the stress-responsive pro-
gram is partially independent of the upstream signaling/activation of
the HOG pathway, which is required for the transient induction of
stress-responsive genes.

To identify which genes define basal-stressed cells under basal
conditions, we performed differential expression analysis comparing
basal-stress cells (top 10% of cells) to the rest of the WT population
(Supplementary Fig. 4d, andSupplementaryData 6).We found that the
basally stressed population comprised cells that displayed low
expression of histone genes and induced the expression of several
stress—responsive genes (Fig. 4d), mostly regulated by both tran-
scription factors Msn2/4 and Sko1 among others (Supplementary
Fig. 4e). Basal stress-gene expression is lower in S phase cells but
reflects a weak but general activation of the main program rather than
leaky expression of a single gene. To assess the impact of the basal
expression of the stress program, we used two strategies, namely
monitoring nascent transcription through microscopy and assessing
expression using destabilized fluorescent reporters fused to gene
promoters via flow cytometry. First, to assess nascent transcripts, we
implemented the PP7/MS2 system to trace the production ofmRNAby
microscopy, as reported before for osmoresponsive genes25. For each
gene of interest, we integrated a reporter that consisted of the pro-
moter of the gene of interest followed by an array of 24MS2/PP7 loops
in a WT strain constitutively expressing fluorescently tagged viral
protein MS2/PP7. Promoter activation led to fluorescent foci accu-
mulation at the transcription site due to binding of nascent transcripts
with fluorescent phage coat protein. Second, we generated destabi-
lized fluorescent reporters whose expression is controlled by the
promoter and terminator of the gene of interest, and we measured
fluorescence as a proxy of transcriptional output using FACS.

We followed basal stressed cells over time in WT cells expressing
the pHOR7 reporter gene using the MS2-GFP system (maker for basal
stressed cells) and also the pHSP12-PP7-mCherry (an osmoresponsive
marker gene). We simultaneously assessed the transcriptional output
of pHOR7 and pHSP12 in single cells before and after stress and mea-
sure pHSP12 expression as a function of basal pHOR7 activity. High
HOR7 expressing cells also showed elevated HSP12 expression, sug-
gesting that basal stressed cells have a stronger response to stress
(pval = 4.0201e−11) (Fig. 4e, Supplementary Fig. 4f). We hypothesized
that a faster transcriptional response would provide a selective
advantage in response to stress. Thus, we created a destabilized
fluorescent reporter controlled by the HOR7 promoter and terminator

Fig. 2 | Cells show a heterogeneous use of the osmoresponsive program in
response to stress. a Scatter plot represents the scaled average expression of each
of the induced osmoconsensus program (n = 200 genes, x-axis) in WT (red points)
and hog1 cells (blue points) against the percentage of expressing cells (y-axis) for
the indicated times. b Bar plot represents the percentage of cells expressing the
induced osmoconsensus signature in control conditions (red bars) or after a 15-min
treatment with 0.4M NaCl in wild-type cells. c Correlation of the number of
inducedosmoconsensus genes per cell (x-axis) and the average inductionper cell in
the wild-type cells after 15min of treatment with 0.4M NaCl. Detected genes are
considered if expression/cell >0. Points are colored by density (warmer higher
density). Spearman correlation is shown. dHistogram of the number of genes as in
(c). Dashed line indicates the average (93 genes/cell). e Binary heatmap of the
induced osmoconsensus gene expression footprint (x-axis) per cell (rows). Detec-
ted genes (average expression >0) are shown in gray and non-detected genes

(average expression =0) in white. For each cell, the gene with the highest expres-
sion is highlighted in red. fHeatmap of marker genes for subpopulations identified
in the WT 15-min dataset. Differential expressed genes (fold-change ≥1.5, adjusted
p-value < 0.05)obtainedby comparing the control and 15-min conditionswereused
to identify subpopulations using for Louvain clustering. Yellow colors indicate
higher whereas purple colors indicate expression levels. Subpopulation labels are
shownat the top of the heatmap and representative genes and cluster-specific gene
names are shown as well as the median number of molecules and genes per cell.
g Expression distribution of the induced (top), repressed (middle) and unrespon-
sive (bottom) signatures across the identified subpopulations in (g). Dotted line
indicates themedian expression of the entire population as a reference. Two-sided
Wilcoxon test Benjamini–Hochberg adjustedof each cluster against the population
is shown above. Symbols ns/*/**/***/**** represent p-values > 0.05, <0.05, <0.01,
<0.001, <0.0001. Source data are provided as a Source Data file.
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(mCherry). The top 2% of HOR7-expressing cells, isolated by FACS,
showed lower fitness under normal conditions but higher fitness
during osmostress when compared to WT cells (Fig. 4f). These results
suggest that basal expression provides a bet-hedging strategy and that
pre-existing basal stressed (“adapted cells”) cells can contribute to the
appearance of hyper-responsive cells with greater adaptive potential
(persister cells).

Global transcriptome repression favors the induction of the
osmoresponsive program
Stress-inducible gene expression coincides with repression of
certain genes and overall genome-wide downregulation1,3,7,26. Bulk
studies suggest that efficient stress-responsive gene induction
may depend on cells ability to redistribute RNA Pol II to these
genes5,8. We harnessed the single-cell resolution to examine the
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correlation between transcriptional induction and repression.
This revealed a global anti-correlation proportional to the stress
response induction, observed only under stress conditions
(Fig. 5a). This correlation was much weaker in hog1 mutant cells, a
finding that is consistent with their impaired response

(Supplementary Fig. 5a). Indeed, the anti-correlation was even
more pronounced with the expression of ribosomal genes, which
are known to be strongly repressed by osmostress, but not with
the unresponsive genes (Supplementary Fig. 5b, c). The pattern
was not affected by the expression level, as it was not detectable

Fig. 3 | Transcriptional heterogeneity shapes the adaptive capacity of the cells.
a Louvain clustering and projection onto wild-type 15min UMAP, using variable
genes as an input to define subpopulations. Cells are colored according to the
subpopulation and the number is shown on top. b Heatmap shows expression of
subpopulation-specific genes from the upregulated marker genes for each sub-
population defined in (a). Yellow colors indicate high expression and purple colors
indicate low expression. c UMAP projection shows subpopulation representative
genes with magenta for high expression and gray for low expression. d Distribution
of the osmoconsensus signature expression induced for the indicated clusters. Solid
black lines indicate the mean expression of the cluster while dashed black line
indicates the population mean. Two-sided Wilcoxon test Benjamini–Hochberg
adjustment of each cluster against the population is shown above each cluster. eDot
plot of 12 osmostress transcription factor activity across clusters. Dot size reflects
the percentage of expressing cells; color indicates expression level (red = high,
blue = low). f Scatter plot represents the single-cell co-expression of STL1, ALD3,

CTT1,HSP12,GRE1,HXT5 (y-axis) and the induced osmoconsensus signature (x-axis).
Cells are colored according to the Seurat cluster and dot size represents the
expression levels of HXT5 as a representative gene of the hyper-responsive popu-
lation. g Scatter plot represents the average expression correlation for the genes in
the induced osmosconsensus signature for hyper-responsive cells (y-axis) or the rest
of the population. h Scatter plot of the percentage of cells expressing the induced
osmoconsensus program for the hyper-responsive cells (y-axis) or the rest of the
population (x-axis). Black line represents the line of equality. i Bar plot represents
the cell growth of NaCl-sorted top 2% pHXT5-UbiM-mCherry-tHXT5-expressing cells
(red) against NaCl-randomly sorted constitutiveGFP-expressingwild-type cells. Cells
were mixed at 1:1 ratio (time 0) and grown in the presence of 0.8M NaCl for 48 h.
The abundance of each population was determined by FACS. Stacked bar plots the
mean and error bars the standard deviation (n = 3). Two sided t.test against the top
population at t0 is shown. Symbols ns/*/**/***/**** represent p-values >0.05, <0.05,
<0.01, <0.001, <0.0001. Source data are provided as a Source Data file.

Fig. 4 | Stochastic expression of stress programs in the absence of stress.
a Louvain clustering and projection onto wild-type control UMAP, cluster number is
shown b UMAP projection of cell with basal expression of the stress program. High-
lighted cells are above the minimum cut of 0.11 and colored based on the expression
level. Yellow indicates higher expression of the signature. cDistribution expression of
the osmoconsensus signature induced for the indicated clusters in (a). Black lines
represent the cluster mean expression and dashed line represents population mean.
Statistical significance (Two sidedWilcoxon test, Benjamini–Hochberg adjustment) of
each cluster against the population is shown above each cluster. d Volcano plot
showing the number of genes differentially expressed (|log2(fold change)| ≥0.05 and
pval≤0.05) comparing basal stressed cells to the rest. Genes upregulated upon stress
are shown in red and those downregulated in blue. e Dynamics of the pHSP12 tran-
scription site intensity labeled with PP7-mCherry in cells also bearing a pHOR7-MS2
reporter in the green channel. Cells were imaged for ten time points before

stimulation with 0.2M NaCl at time 0 (dashed vertical line). Single cell traces are split
in two sub-populations based on the level of the pHOR7 transcription site intensity
before the stimulus (red: High basal pHOR7 level n=316, blue: low basal pHOR7 level
n=526, n =3). The solid line represents the mean of each subpopulation and the
colored area the standard deviation between single cell traces. f Top 2% of pHOR7-
mCherry and pSAG1-mCherry cells control conditions or after 1 h 0.4M NaCl were
isolated by FlowCytometry andmixed at a 1:1 ratio with wild random sortedwild-type
cells carrying constitutive GFP (10,000 cells/strain). This initial mixture (t0) was then
grown in the in the indicated conditions. The fitness of each strain was determined by
FACS after 48h. Bar plot indicates the percentage of each strain. Error bars represent
the standard deviation of three independent biological replicates. Statistical sig-
nificance comparing the mean abundance to the reference timepoint (t0) is shown
(two-sided t.test). Symbols ns/*/**/***/**** represent p-values >0.05, <0.05, <0.01,
<0.001, <0.0001. Source data are provided as a Source Data file.
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when we compared unresponsive genes, which were highly
expressed (Supplementary Fig. 5d). Our scRNA-seq data support
the hypothesis that global transcription repression is required for
maximal gene induction upon stress.

We further explored this by identifying representative genes for
both the induced and downregulated signatures. We selected HSP12
and EFT2 gene pair to generate EFT2-MS2-GFP andHSP12-PP7-mCherry
mRNA reporters and track live single-cell transcription dynamics
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Fig. 5 | Global transcriptome repression favors the induction of the osmor-
esponsive program. a Per cell correlation between induced osmoconsensus score
and repressed genes Points are colored by condition. Density plots show data dis-
tribution. Linear regression with 0.95 confidence interval and Pearson correlation are
displayed. b Per cell expression correlation of representative pair for the induced
osmoconsensus (HSP12) and repressed genes (EFT2). Pearson correlation value is
shown. c Representative microscopy images displaying the transcription foci of the
EFT2 and the HSP12 promoters labeled with MS2-GFPenvy and PP7-mCherry, respec-
tively. In control, the green pEFT2 transcription sites are visible (green arrowhead),
upon stress, the red pHSP12 transcription sites (red arrowhead) are detected (n=4).
Dynamics of the pEFT2 (d) and pHSP12 (e) transcription site intensities following a
0.2MNaCl at time 0 (dashed line). Basal activity of pEFT2was detected and induction
of pHSP12 following stress was observed (35% of the whole population) (573 cells,
n=4). The solid line represents themean and the shaded area the standard deviation.
f These single cell traces were sorted in two sub-populations based on the level pEFT2

repression following stress. High pEFT2 repressors show a drop of transcription site
intensity of more than 50%. (489 cells) and display a higher inducibility of pHSP12
compared low repressionof pEFT2 (84 cells). Boxplot represent 25th percentile (Q1) to
the 75th percentile (Q3), with the central line indicating the median. The whiskers
extend to data points within 1.5 times the interquartile range (Q3-Q1) (IQR). Data
points outside this range are considered outliers and plotted with red crosses. Two-
sided t.test is shown (p-value=0.0031). gViolin plots show the distribution of RNAPol
II occupancy by ChIP-seq in bulk as the ratio of the normalized reads between NaCl
(10min 0.4M NaCl) and control conditions from5. Genes are classified according to
their bulk expression23, osmoinduced (yellow, n=677), osmorepressed (purple,
n=639), and other genes (green, serving as control n= 5136 genes). Boxplot displays
summary statistics, median, interquartile range (Q1–Q3) and whiskers represent data
points within 1.5 times the IQR. Two-sided Wilcoxon test is shown. Symbols ns/
*/**/***/**** represent p-values >0.05, <0.05, <0.01, <0.001, <0.0001. Source data are
provided as a Source Data file.
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(Fig. 5b, c). As expected, EFT2 expression was high under control
conditions and decreased immediately in response to stress (Fig. 5c,
d), while HSP12 expression was low under control conditions and
transiently increased upon stress (Fig. 5c, e). We categorized EFT2-
expressing cells into high repressors (>50% signal reduction) and low
repressors (≤50% signal reduction) based on EFT2 expression under
stress. TracingHSP12 expression in these subpopulations revealed that
high repressor cells showed a stronger HSP12 induction compared to
low EFT2 repressors (Fig. 5f). Thisfindingpoints to a direct relationship
between the extent of general transcription repression and the
induction of the osmoresponsive genes.

We hypothesized that transcriptional resources (e.g., RNA Pol II)
from repressed genes are shuttled towards osmoresponsive genes
upon exposure to stress. To explore this notion, we used available
ChIP-seq data from the same time point and conditions (control and
0.4M NaCl 15min)5 and calculated the ratio of RNA Pol II before and
after stress in upregulated, repressed and unresponsive genes. As
expected, stress-induced genes showed increased RNA Pol II, while
repressed genes exhibited greater RNA Pol II loss compared to unre-
sponsive genes (Fig. 5g). This suggests an interplay between tran-
scriptional induction and repression, with repression potentially
facilitating stress-responsive gene induction by freeing up transcrip-
tional resources.

A genetic screen identified key elements of the osmoadaptive
response
To define the molecular logic underlying the transcriptional pheno-
types of the osmostress response, we performed scRNA-seq profiling
of mutants with transcription-related processes. To this end, we pro-
filed a total of 325 mutants from of the Yeast Knockout Collection
(YKOC) belonging to the gene ontology terms: chromatin organiza-
tion; chromatin binding; chromatin remodeling; transcription regula-
tion; transcription DNA template; RNA catabolism; and transcription
factors (Fig. 6a). Additionally, we included mutants from the HOG
pathway and a set of randomly selectedmutants as a subset of control
mutants. The YKOC, contains non-essential deletions in which the
ORFs are replaced by a deletion cassette composed of a constitutive
promoter (pTEF1), a resistance gene (G418), and a heterologous ter-
minator and two non-transcribed barcodes upstream and downstream
of the transcription unit (Uptag and Downtag)27 (Supplementary
Fig. 6a).We engineered RNA-barcoded gene deletions by replacing the
G418 ORF and heterologous terminator with a URA3 auxotrophic
marker. This strategy preserved the Uptag barcode and constitutive
promoter while shortening the original YKOC terminator (from 263 to
43 nt) and incorporating theDowntaggenotype barcode into theURA3
transcript’s 3’UTR (Supplementary Fig. 6a). The resulting mutants
allowed us to trace the genotype identity of complex cell mixtures by
3’-based polyA based scRNA-seq (see Methods). We individually
transformed the strains from the YKOC and selected positive mutants
by successive rounds of growth in selective media.

Todetermine the gene expressionprofile of eachmutant, we grew
each genotype individually in 96-well plates, with twowild-type strains
as a reference. Cellswerepooledbefore subjecting themtoosmostress
(control and 0.4M NaCl 15min) andmethanol-fixed cells were used to
generate droplet-based scRNA-seq libraries (10X Genomics) (see
Methods, Fig. 6b). We profiled a total of 45,000 cells (25,610 control
cells and 27,287 NaCl-treated cells) and performed a quality control
filter to remove cell with an excess of molecules or with more than a
single genotype barcode (see Methods). The resulting dataset con-
tained 22,689 high-quality singlets and covered 260 distinct mutants
with at least 6 cells in both condition. Each genotype was equally
represented by an average of 34 and 43 cells in control and stress
conditions (Supplementary Fig. 6b), respectively. We confirmed the
robustness of our data using several metrics. First, we scored the
expression of the osmoconsensus signature across genotypes

(Supplementary Fig. 6c) (SupplementaryData 7). As expectedhog1 and
pbs2 kinase mutants and msn2 transcription factor mutants, were the
mutants with the lowest expression (Supplementary Fig. 6c), con-
sistentwith bulk studies2,5. Finally, cells clustered in theUMAP space by
condition (Fig. 6c) and not by genotype nor gene function (Fig. 6d, e).
These results are also in agreement with the condition-dependent
clustering observed in a 12-transcription factor deletion scRNA-seq
study28.

Effect of genetic perturbations on the heterogeneity of the
osmoadaptive program
In the scRNA analysis of the WT cells, we found that 6% displayed an
increased expression of stress-responsive genes under control condi-
tions (Fig. 4b and Supplementary Fig. 4c). To identify mutants with
increasedbasal expressionof stress-responsive genes,we established a
threshold based on the top 10% of WT cells exhibiting higher osmor-
esponsive gene expression under control conditions. For eachmutant,
we calculated the percentage of cells exceeding this threshold, label-
ing those with at least 25% of cells as hyper-responsive. This approach
allowed us to identify 33 mutants with a high frequency of basal
stressed cells (Fig. 6f and Supplementary Data 7). To understand the
nature of these regulators, we performed a physical protein-protein
interaction networkusing onlyexperimental evidence (Supplementary
Fig. 6d). We detected multiple activities related to histone acetylation
(Rpd3L, SAGA and Nua4 complexes), ATP-dependent chromatin
remodeling complex SWI/SNF, and mutants related to the RNA Pol II
and the Mediator complex (Supplementary Fig. 6d). Several subunits
of the histone deacetylase complex Rpd3 Large (Rpd3L) were present
within the top mutants that accumulated a large fraction of cells with
an induced osmoconsensus program (30–63%of basal stressed cells in
rxt3 andpho23mutants, respectively) (Supplementary Fig. 6d). Indeed,
mutants of histone deacetylase Sin3 and Nua4 complexes (yng2), the
SWI/SNF chromatin remodeling complex (snf5), and the transcrip-
tional regulator (spt21) displayed higher expression of the pHOR7-
mCherry-tHOR7 reporter under basal conditions (Fig. 6g, Supple-
mentary Fig. 6e). Hence, our data suggest that impaired homeostasis
of histone acetylation by Rpd3L or unstructured chromatin structure
caused by the mutation SWI/SNF allows basal input-independent gene
expression. Of note, some of these activities have been reported to be
relevant for the induction of osmostress program4,29, suggesting a dual
role of these proteins in the switch between repressed to induced
states.

We next applied the same rationale to study the genetic logic
hyper-responsive cells. To this end, we calculated the percentage of
cells in eachmutant with higher expression of stress-responsive genes
in response to stress. We identified 44mutants that had at least 25% of
hyper-responsive cells (Fig. 6h) (Supplementary Data 7). The physical
protein-protein interaction network showed that regulators span
multiple functions (Supplementary Fig. 6f), including expected ones
such as chromatin remodeling (i.e. ies4, from the INO80 complex)30,31,
histone deacetylases (e.g. hsa1) and bem1, a scaffold protein upstream
from the Sho1 branch of the HOG pathway previously reported to
display stronger response than the wild type12,32. Additionally, within
the network, several unexpected functions were observed, transcrip-
tion silencing proteins (sir1, sir3), RNA Pol II regulators (ctk2), HOG
signaling, and other factors linked to the induction of the osmostress
program, such as transcription factors (rtg1/rtg3, cin5)33–35 and chro-
matin remodeling complex RSC (rsc1, npl64,11 (Supplementary Fig. 6f)).
In yeast, the RSC complex, recruited by Hog1 to osmoresponsive
genes, facilitates induction by removing nucleosomes. Conditional
RSC alleles (Rsc9ts) and SAGA complexmutants (gcn5) exhibit bimodal
stress-response expression at 0.4M NaCl, where WT cells remain
unimodal. However, mutants like rsc1, gcn5, and hda1 display sub-
populations with higher expression under the same conditions by
scRNA-seq12. To validate the hyper-responsive subpopulations, we
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integrated the pHXT5-mCherry-tHXT5 reporter in 4 of these regulators,
which included ATP-dependent remodeling complexes (isw1), histone
modifiers (eaf7 and yng2), and an RNA Pol II regulator (ctk2). We
measured pHXT5 by FACS and detected that all mutants showed a
higher frequency of HXT5-expressing cells, thus validating the scRNA-
seq data (Fig. 6i, Supplementary Fig. 6g). Hence, our data point to a
multifunctional network that limits the appearance of hyper-
responsive cells within a population.

Our analysis identified a subpopulation of mutants with a hyper-
responsive phenotype including expected (SAGA and RSC) among

other unknown regulators. Indeed, we observed that mutants with
hyper-responsive populations exhibited increased variability in the
osmoconsensus program (Supplementary Fig. 6h, 6i). To identify
regulators of osmoresponsive heterogeneity, we scored the standard
deviation of eachmutant in the stress condition.We found 44mutants
(16% of mutants) whose deletion led to an increase in the hetero-
geneity of the induced osmoconsensus program (Fig. 6j, k, and Sup-
plementary Fig. 6j), which correlates with the Fano factor
(Supplementary Fig. 6k) (Supplementary Data 7). At the level of gene
function, the signature exhibits comparable expression variability
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across its associated GO categories (Supplementary Fig. 6l). To gain a
global understanding of the nature of the transcriptional mutants that
impact heterogeneity, we generated a physical protein-protein inter-
action network (Fig. 6k). Interestingly, gcn5 emerged as a central node,
connected to ada2, both components of the SAGA histone acetyl-
transferase complex and also subunits of the RSC complex. Of note,
SAGA and RSC have been previously identified as drivers of bimodal
gene expression upon osmostress using single gene reporters12. These
findings reinforce the role of chromatin remodeling as a driver of
heterogeneity in the expression of the entire signature and the
potential of our dataset in identifying uncharacterized regulators.
Additionally, we found several unknown mutants, including RNA
binding proteins (lsm1, ski3), regulators of histone post-translational
modifications (yox1, hpa2, sir3, eaf7, hda1, hda3), transcriptional acti-
vators or repressors (spt21, gis1, yox1, dal81, dal82), and several tran-
scription factors (rtg3, rtg3, pho2, phd1), that showed an increase in
transcriptional heterogeneity whenmutated. Overall, our data suggest
that transcriptional heterogeneity in response to stress is modulated
through several mechanisms, which range from direct transcriptional
regulators to signaling proteins.

We assessed the phenotypic consequences of transcriptional
heterogeneity by focusing on Ada2. Despite ada2mutant shows a low
overall expression of the osmoconsensus (Supplementary Fig. 6c), it
exhibited significant heterogeneity, with some cells expressing the
osmoconsensus higher thanwild type (SupplementaryFig. 6j).Wenext
tested if pre-stressing variable mutants such as ada2 with a mild
osmostress pulse (0.4MNaCl 30min) could provide a beneficial effect
to higher osmostress36–38. To do so, we compared the growth of wild-
type and ada2 mutant strain under control or high osmolarity (1M
NaCl), with and without pre-exposure to osmostress (0.4M NaCl
30min). As anticipated, wild-type cells exhibited a significant growth
delay when switched from control conditions to 1M NaCl and dis-
played aminimal effect on growth if pre-stressed (Fig. 6l). Remarkably,
ada2 cells, which displayed a slower growth when directly exposed to
1M NaCl, showed an enhanced growth when compared to the wild
type when pre-stressed (Fig. 6l). Similarly, pre-stressing ada2 cells led
to a 2.2-fold increase in pHXT5-Ubi-mCherry-tHXT5 expression, while
wild-type cells exhibited only a 1.3-fold increase when compared to
non pre-stressed cells (Supplementary Fig. 6m). We then investigated
whether variable mutants exhibited enhanced fitness when pre-
stressed. We monitored the growth of the 13 most variable mutants
(Fig. 6j), encompassing diverse functions including chromatin regula-
tion (see Methods). We calculated the ratio of endpoint growth
between pre-stressed and cells directly switched to 1M osmostress.
Notably, 8 out of 13 mutants (61.5%) demonstrated faster adaptation

compared to the wild type (Fig. 6m). This observation suggests a
pattern where variable mutants display improved fitness when pre-
stressed, indicating a change on adaptive fitness. These findings sug-
gest that stress-induced transcriptional heterogeneity can generate
sufficient cell variability within the population to prime the emergence
of long-term stress-resistant phenotypes.

Discussion
Our study combines longitudinal scRNA-seq with a transcription-
focused single-cell perturbation screen to build a high-resolution
transcription map of the adaptive gene expression landscape. The
canonical model for stress-activated expression assumes “bulk”
behavior where sets of genes are upregulated or downregulated upon
stress. Single-cell reportermeasurements suggested that homogenous
activation of Hog1 SAPK upon stress leads to a heterogeneous tran-
scriptional output12. Here we showed that, even at the peak of the
expression, the structure of the osmoadaptive program shows high
heterogeneity: with only a core set of genes (25%) universally used and
a mean response per cell that involved only half of the responsive
genes revealing that cells explore multiple adaptive strategies. A small
subset of hyper-responsive cells used more genes during stress,
showing enhanced fitness. Notably, these cells exhibited reduced fit-
ness under normal conditions, indicating that the number of stress-
responsive genes must be carefully controlled to prevent transcrip-
tional burden and maintain cellular fitness. Induction of stress-
responsive program seems to be limited by transcriptional resource
availability. Osmostress causes transient dissociation of chromatin-
bound proteins, leading to genome-wide transcriptional inactivation5.
This releases transcriptional resources simultaneously with Hog1
activation and target gene association, potentially favoring tran-
scriptome rewiring. Our data indicate RNA Pol II machinery as a critical
limiting factor in the response, revealing a proportionality between
induction and repression. Stronger global genome repression corre-
lates with increased transcription, more responsive genes per cell, and
higherRNAPol II occupancy.Our longitudinal studydemonstrates that
repression is crucial for induction stress response, suggesting that
cells engage inone transcriptional programata time, asno cells trigger
adaptive responses without accompanying repression.

Stress-responsive gene usage reveals amodular cellular response.
About 30% of wild-type cells show a heat stress-like signature, typically
masked in bulkmeasurements23. An additional module with metabolic
and oxidative stress genes suggests diverse transcriptional stress
adaptation paths. Stress cross-protection in yeast involves improved
tolerance from initial adaptive responses37,39–42. Msn2 overexpression
or expression of ESR genes (CTT1 and TSL1) provides multi-stress

Fig. 6 | A genetic screen served to identify key elements of the osmoadaptive
transcriptional phenotypes. a Distribution of the selected mutants for targeted
Perturb-seq. Columns indicate the total number of genes in the GO term and the
manually selected HOGpathway. The number of viable and profiledmutants from
the YKOC are shown including mutants belonging to multiple categories.
b Schematic representation of the experimental design. Briefly, the selected
mutants were grown individually and pooled and harvested in the absence of
control and stress (15min NaCl 0.4M). UMAP of the entire dataset colored by
treatment (c), GO class (d) genotype (e). f Basal expression distribution of the
induced osmoconsensus signature across mutants with ≥6 cells. Point size
reflects the percentage of cells per mutant exhibiting high expression (≥90% of
wild-type). Mutants with ≥25% of high expressing cells over the wild-type cells are
highlighted in red (dotted line). g Barplot represents the mean and standard
deviation expression of basal stress- marker (pHOR7-UbiM-mCherry-tHOR7) by
FACS for the selected mutants from (f) (n = 3). Two sided t.test against the wild
type (gray) is shown. h Expression of osmoconsensus signature across genotypes
under stress. Point size indicates percentage of hyper-responsive cells; high-
lighted points show mutants with ≥25% of hyper responsive cells (wild type in
black). i Expression of the hyper-responsive marker (pHXT5) by FACS for hyper-

responsive mutants selected from (h). Bar plot represents the mean expression
and standard deviation (n = 3). Basal expression is determined using the wild type
strain as a reference (gray bar). Two side t.test is shown against the wild type. j the
variance of the induced osmoconsensus signature for each strain; color points
and dotted line selected strains. k Physical protein-protein interaction network of
mutants showing high heterogeneity (n = 44, from (j)).The network was gener-
ated using STRING and based on experimental evidence, and connection between
nodes represent confidence values above 0.150. l Growth dynamics of wild type
and ada2 strains in control conditions (blue) or in 1M (green) or pre-stressed and
0.4M NaCl for 30min and then grown in 1M (red). Solid line represents the mean
and ribbon represents the standard deviation (n = 6–7).m Boxplot represents the
distribution of growth ratios (prestress/stress) across different strains, showing
the median, interquartile range (Q1–Q3), and individual data points colored to
indicate ratios respect to the WT threshold (black dot and dashed line). Mutants
shown in purple exhibit a higher growth ratio (fitness) than the wild type when
prestressed (ada2, bem1, cla4, fap1, hda3, ies2, ptc1, ski3), than mutants in gray
(lsm1, dbr1, npl6, rtg3, pdh1) compared to theWT (n = 6–7). Symbols ns/*/**/***/****
represent p-values > 0.05, <0.05, <0.01, <0.001, <0.0001. Source data are pro-
vided as a Source Data file.
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resistance, though an undefined general mechanism18,43–45. Our data
imply that the modular expression of stress genes could create spe-
cialized cell subpopulations that enable population stress cross-
protection but also suggest that not all cells will acquire tolerance to
the same stresses. We also found that heterogeneity extends beyond
individual genes and involves different transcription factors, generat-
ing subpopulations with differential adaptive potential. This mechan-
ism may explain persister-like phenotypes in clonal populations.

Under basal conditions, histone acetylation levels are actively
controlled, but excessive acetylation may derepress the expression
of the osmoresponsive genes. Negative regulators of the stress
responses have often been overlooked. Our findings expose an
unexpected multifunctional negative regulator network involving
osmoadaptation components. Notably, mutants promoting hyper-
responsive populations demonstrate significant heterogeneity,
underscoring the role of negative regulators to shaping the adaptive
response.

Bimodal gene expression is a globally conserved example of
transcriptional heterogeneity. In S. cerevisiae, bimodality has been
measured through gene-specific reporters and is often described as a
property of stress-responsive genes (e.g., diauxic shift and
osmostress)12–15. Partial nucleosome eviction in osmoresponsive
genes through the impaired function of Gcn5 and Rsc9 (SAGA and
RSC complexes, respectively) is one of the determinants of this
bimodal behavior12. In our targeted genetic perturbation profiling,
gcn5 scored as one of themost heterogeneousmutants, alongwith its
interactor ada2, a coactivator of the SAGA/ADA complex, which
promotesGcn5 acetyltransferase activity46. Additionally,we identified
subunits of the Nua4 histone acetyltransferase complex (EAF7), as
well as the catalytic subunit of histone deacetylase complex (HDA1)
and the subunit required for its activity (HDA3)47,48. Additional reg-
ulators included a variety of functions regulating the heterogeneity of
the osmoresponsive program, ranging from transcription factors,
RNA decay, mitochondrial retrograde signaling, to upstream and
downstream signaling proteins5127. We examined the phenotypic
consequences of transcriptional heterogeneity in variable mutants
like ada2. These mutants showed reduced growth under normal
conditions but increased phenotypic plasticity, enabling greater
adaptability to extreme stress. This enhanced flexibility may explain
the emergence of persistent cells in response to treatments in highly
heterogenic cell populations. Therefore, our study provides a time-
resolved single cell-resolved map of the transcriptional landscapes
underlying adaptive phenotypes and reveals geneticmechanisms that
regulate them.

Methods
scRNA-seq strains
For the longitudinal profiling of wild type (BY4741) was used as
parental strain to which hog1::NAT deletion was performed using
PCR tagging. Both strains were used to generate C-terminal tagged
TDH3-9myc::KAN and TDH3-9myc::HPH respectively. Standard yeast
transformation was done using the LiAc method into the corre-
sponding yeast background and colonies were selected by marker
selection and colony PCR. PCR cassettes were obtained using primers
in Supplementary Table 1 using the yeast PCR toolbox plasmids as a
template49.

For the generation of targeted Perturb-seq strains, frozen glycerol
stocks from the haploid yeast knock out collection (YKOC)were grown
on YPD (Yeast Peptone Dextrose medium) supplemented with G418
(Geneticin, 200mg/L). Strains were individually transformed and
selected in URA3 plates. Two BY4741 strains were manually trans-
formed to integrate the barcoded pTEF1 URA3 construct containing
the Downtag barcode, these strains were validated by sequencing. The
primers used to modify the YKOC and the corresponding wild type
strains are listed in Supplementary Table 2.

Fluorescent reporters
Recombinant DNA techniques and transformation of bacterial and
yeast cells were performed using standard methods. To generate
reporters for cell states, we used the MoClo Yeast Toolkit Modular
cloning system50. Building of the plasmid constructs was achieved
using Golden Gate assembly. Each reporter contains a transcription
unit composed of the corresponding promoter (700 bp upstream of
the annotated ATG), UbiM degradation signal, florescent protein, and
terminator (300 bp downstream of annotated STOP codon). All part
sequences were either mutated or synthesized to avoid of the BsmBI,
BsaI, and NotI recognition sequences. Promoter and terminator
sequences were amplified from BY4741 genomic DNA and purified
using the MiniElute PCR purification (28004, Quiagen). Plasmids
generated in this study are described in Table 3.

Live mRNA tracking strains
The strains and plasmids used for nascent transcript monitoring are
included in Supplementary Tables S2 and S3. All strains are derived
from the Saccharomyces cerevisiae W303 background (Ralser et al.,
2012). The nuclearmarker was created by tagging Hta2with the tdiRFP
protein with a TRP or a NAT marker in MATa or MATα cells, respec-
tively (Wosika et al., 2016). The strains were then transformed with the
PP7-mCherry (MATa) or the MS2-GFPenvy (MATα), expressed under
the constitutive ADH1 promoter (Wosika & Pelet, 2020). In these
strains, PP7 or MS2 stem loops, regulated by a promoter of interest,
were integrated in the GLT1 locus (Larson et al., 2011; Wosika & Pelet,
2020). The promoters (−1000 to 0 before ATG) were amplified form
W303 genomic DNA and cloned in front of the stem loops. The length
of the stem loops integrated in the genome were verified by colony
PCR. The MATa and MATα cells were mated on YPD plates and the
diploid strains were isolated on selective plates (SD-HUT+NAT).

Live mRNA tacking analysis
Cells were inoculated in SD-full medium (Complete CSM DCS0031;
ForMedium) and grown overnight until saturation. The culture was
then diluted in fresh medium and maintained in log-phase growth
(OD <0.4) for 24 h through successive dilutions before imaging. 200 µl
of cell suspension at OD 0.05 was loaded in the well of a 96-well plate
(PS96B-G175; SwissCI) that had been pre-coated with Concanavalin A
(L7647; Sigma-Aldrich). Imaging was carried out on a Nikon Ti2
inverted microscope housed in a temperature-controlled incubation
chamber set to 30 °C, with micro-manager software controlling the
system (Edelstein et al., 2010, Ch. 14, Unit14.20). Fluorescent excitation
was provided by a Lumencor Spectra III light source. For transcription
site measurements, the LED intensity was reduced respectively to 20%
(GFP) and 25% (mCherry) of the maximum power to minimize photo-
bleaching. Cells were imaged using a 40X oil objective, a quadruple
band dichroic (DAPI/FITC/Cy3/Cy5, F68-400; Chroma), and appro-
priate emissionfilters. Imageswere capturedwith aHamamatsuORCA-
Fusion sCMOS camera.

Using a piezo stage (Nanodrive; Mad City Lab City), five Z-planes
were recorded (−1 to +1 µm) in thefluorescent channels (FITC andCy3),
with transcription sites recorded every 15 seconds. The nuclearmarker
(Cy5) and brightfield images, used to segment the cells, were captured
at every third time point. At each time point, up to five XY positions in
one well were imaged, with focal plane accuracy ensured by hardware
autofocus. Before the tenth time point, the acquisition was paused to
add 100 µl of stimulation medium concentrated threefold to reach a
final concentration of 0.2M NaCl.

Segmentation and data analysis
The recorded time-lapse measurements were analyzed using the
YeastQuant platform51. Brightfield segmentation was performed with
CellPose based on the cyto2 model52,53. The detected cell objects were
then combined with an intensity-based segmentation of the nuclear
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marker to define a nucleus and cytoplasm objects for each cell. An
ExpandedNucleus object is defined by dilating the nucleus by 5 pixels.

Two additional objects are defined to quantify the transcriptional
activity of the different promoters driving the stem loop transcripts.
The HighPix object represents the 10 brightest pixels in the expanded
nucleus of each individual cells in the fluorescent channel of the phage
coat protein. The ConnectedHighPix object verifies the local con-
nectivity of these high intensity pixels. If at least 5 pixels are connected,
the ConnectedHighPix object is defined. Three consecutive Con-
nectedHighPix must be detected to determine that a cell is actively
transcribing. If three consecutive ConnectedHighPix are observed
before the induction, cells are considered as basally transcribing.

The transcription site intensity is calculated as the difference
between the mean intensities of the HighPix object and of the expan-
ded nucleus. The identification of the ConnectedHighPix allows to
determine when transcription starts and ends. During this window of
time, the peak intensity canbemeasured as the differencebetween the
maximum of the transcription site intensity trace and the basal level.
The basal level corresponds to the mean intensity of the 10 points
before the stimulus.

The basal level of the pHOR7 reporter was used to split the cells in
two sub-populations. Cells where the basal level was above the mean
basal level +1x the standard deviation of the whole population were
categorized as high basal cells.

To characterize the repression of the pEFT2-MS2 cells, basally
transcribing traces were selected. The transcription site intensity
measurementswas normalized (normalizedData = (celltrace −minval)/
(basalactivity −minval)). If the drop between the basal and post-
induction levels in the normalized trace is >50%, the cell belongs to
high repression sub-population.

Competition assays
Wild type strains carrying the indicated expression reporters were
grown to mid exponential log phase (OD660 = 0.6) in Synthetic Com-
pleteMedia (SCM) and sorted using Aria SORP in the absence (control)
or presence of stress (0.4M NaCl 1 h) (Becton Dikinson). A total of
20,000 cells of each top 2% of the population was sorted and 20,000
cells of a random sorted wild type strain carrying a constitutive GFP
(pTEF1-YumuGK1) and grown in the same conditionswas sorted on top
in a final volume of 200μl of rich media (YPD). A total of 150μl of the
mixed culture was fixed with sodium azide (S2002, Sigma-Aldrich) as a
fixating agent that does not disturb fluorescence of the reporters as
time 0. The remaining culture was evenly split and incubated in YPD
and YPD 1MNaCl and grown at 30 °C. Cellswere diluted every 12 h and
fixed after 48 h from t0. Abundance of each population was deter-
mined by flow cytometry (see below).

Flow cytometry analysis
Cells were recorded from each sample according to their FSC and SSC
distributions and unmixed to identify the fluorescence signal for each
fluorophore (mCherry or GFP). For competition assays, cells were
gated based on the constitutive expression of GFP of the wild type
strain versus the side scatter for three biological replicates.

To read the expression of destabilized fluorescent reporters
(pHOR7-UbiM-mCherry-tHOR7 and pHXT5-UbiM-mCherry-tHXT5), the
full spectrum of 1000 cells were recorded Cytek® Aurora (4-laser and
64 Fluorescence Emission Detection Channels) gated according to the
FCS and SSC distributions. Cells were grown in selective media (SCM)
to mid exponential phase and subjected or not to osmotic stress
(0.4M NaCl). Fluorescence was measured before and after stress
(0.4MNaCl 1 h). The unmixed signal was used to assess the expression
distribution of each mutant against the wild type. To calculate the
basal signal of the unstained strain was used as a reference and the
expression of the wild type strain carrying the pHOR7-UbiM-mCherry-
tHOR7 reporter. For mutants carrying the same reporter, the basal

fluorescence was calculated using the wild type strain carrying the
reporter as a reference. For hyper responsive cells, the expression of
wild type cells carrying the pHXT5-UbiM-mCherry-tHXT5 was deter-
mined by comparing the expression of the strain upon stress (0.4M
NaCl 1 hour) to its expression in control conditions. For mutants car-
rying the same reporter,weassessed the expressionupon stress (0.4M
NaCl 1 h). Cytometry data were analyzed using FlowJo™ Software (BD
Life Sciences). Per each strain we used three independent biological
replicates which are represented in the standard deviation bars. Sta-
tistical significance is shown using a paired t.test.

Growth curves and reporter expression in pre-stressed
conditions
Indicated cells were grown overnight rich media. The next day cells
were diluted and allowed to recover to mid exponential phase. Then
cells were diluted at an OD660 of 0.025 and pre-treated or not to 0.4M
NaCl for 30min (pre-stressed condition). Then control and pre-
stressed cells were grown in YPD or YPD 1M NaCl at 30 °C for 50h.
Growth was monitored using a Synergy HXT instrument by reading
absorbance at 660 nm every 30minutes. In each biological replicate
(n = 7, except for CLA4, n = 6). For each genotype we calculated the
mean absorbance of the prestressed and 1M NaCl using all the biolo-
gical replicates for each condition. To calculate the ratio we divided
the prestressed or not prestressed. The ratio of the wild type was used
as a reference to identify mutants with higher or lower ratio. To
measure the effect of pre-stressing on gene expression we integrated
the pHXT5-UbiM-mCherry-tHXT5 reporter in wild type and ada2
mutant. Cells were grown to mid exponential log phase in SCM and
pre-stressed or not with 0.4MNaCl. Then cells were shifted to SCM 1M
NaCl for 1.5 h before the addition of Cycloheximide (0.1mg/ml)
(C4859-1ML) and incubated for 1 h. The fluorescence of 5000 per
sample was measured by flow cytometry Cytek® Aurora and analyzed
as described above. For each strain and condition (pre-stressed or not)
the median expression of the population was extracted using the
FlowJo software. The difference in expression between conditions was
calculated by ratio of HXT5 signal of pre-stressed/ not pre-stressed in
which values higher than 1 indicate higher expression of pre-stressed
cells. Themean ratioof 3 independent biological replicateswasused to
calculate the difference between strains (Wilcoxon test).

Cell growth and harvesting
For the wild type and hog1 dataset, each strain was grown individually
overnight in YPD. The day of the experiment, cells were diluted to
OD660 0.05 and cells were allowed to grow to mid exponential log
phaseOD6600.6. Cellswere pooled at a 1:1 ratio in a beforebeing or not
subjected to osmostress 0.4M NaCl for 0, 5, 15, and 30min. At each
time point cells were pelleted by centrifugation 1min at 3000 rpms,
and pelleted cells without media were immediately resuspended with
ice cold 80% (Scharlab, ME0301005P).

Library preparation
For both datasets, methanol fixed cells were rehydrated as suggested
by 10X genomics instructions. Briefly cells were allowed to equilibrate
on ice for 20min and then pelleted by centrifugation 3min at
3000 rpm. Wells were washed twice with DPBS 1X (Thermo Fisher,
14190144) with 0.04% BSA (Thermo Fisher, AM2616) and diluted in the
same media at a final concentration of 1000 cells/μl that was used for
chip loading. Each time point (0,5,15,30) was loaded into an individual
lane. In the deletion-based scRNA-seq profiling, we loaded control
samples into one lane, and NaCl-treated samples into two lanes since
NaCl-treated samples typically have a lower recovery rate. Samples
were processed following manufacturer protocol CG000315 Rev C
(10Xgenomics)with aminormodification. Due to the presence the cell
wall 11μl of Zymolyase T (100mg/ml) was added to the cDNA reaction
mix and loaded into the chip.
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A total of 9 PCR cycles were performed for each sample yielding
a concentration of 1–2 ng/μl after bead purification. Amplified cDNA
was quality controlled on the Bioanalyzer 2100 system. Single Cell 3’
Gene Expression libraries were generated using 10 μl (25%) of the
total cDNA (40 ul) following manufacturer’s protocol. A total of 13
PCR cycles were performed to generate dual index barcoded
libraries. After purification library concentration was measured by
Qubit and expected library size distribution was confirmed using
the Bioanalyzer 2100 system. For sequencing libraries, all samples
from each dataset—whether longitudinal or deletion-based scRNA-
seq—were combined and sequenced. The longitudinal assay was
sequenced using a NovaSeq S4 while the deletion-based scRNA-seq
was sequenced using a NextSeq500.

Read pre-processing and alignment
Resulting FATSQ files were processed using Cell Ranger (v4.0.0)54

using default parameters. Reads were aligned using the reference
genome from55. Additionally for the wild type and hog1mutant dataset
the sequence of the resistancemarkers KAN,NAT andHPHwere added
as separate chromosome to the referencegenome. For the Perturb-seq
experiments the Downtag barcodes were downloaded from (http://
www-deletion.stanford.edu/YDPM/YDPM_index.html) and added as a
separate chromosome to the reference genome with the corre-
sponding barcode (bc-systematic name). The Yeast Knock out collec-
tion contains replacement strains. To avoid naming conflicts with the
aligner, we named repeated genotypes in the YKOC with sub-indexes
(-1, -2 or -3 for the successive repeated genotypes in the YKOC). Wild
type strains YMN478 and YMN479 barcodes (Supplementary Table 2)
were addedmanually to the barcode list. With the following structure:

>bc-Systematic Name
NNNNNAACGCCGCCATCCAGTGTCGAAAACGAGCTCGAATTCAT
CGATNNNNNNNNNNNNNNNNNNNNCTACGAGACCGACACCG

Data processing
Genotype assignment. For the longitudinal scRNA-seq dataset we
used a genotype specific marker gene-expression based assignment
(Supplementary Fig. 1a) using the following criteria. Initial quality
control was applied to remove low-quality cells and potential doublets.
Cells with fewer than 500 or more than 3000 detected genes were
excluded from further analysis. Then, genotype assignment was based
on the expressionof specific geneticmarkersusing LoupeCell Browser
(10XGenomics).Wild-type (WT) cellswere identifiedby the expression
of KAN (>1 counts) and the absence of NAT and HPH expression (0
counts). For hog1 mutant cells were identified by the expression of
HPH and/or NAT (>1 count) and the absence of HOG1 expression (0
counts). The assigned cell genotypes were then imported into the
metadata of each Seurat56 object. Cells not meeting either of these
criteria were excluded from further analysis.

For the deletion based scRNA-seq of transcription mutants, we
scored the expression of all possible genotype barcodes. We imple-
mented a stringent assignment systems un which cells were only
assigned and kept for analysis. Cells with no detectable expression of a
genotype barcode were labeled as “Unassigned” and cells with more
thanonedetectedbarcodewere labeled as “Doublet”, whichwereboth
removed from the analysis. Additionally, genotype barcode sequences
were removed from the expression matrix before proceeding to
downstream analysis.

To perform the downstream analysis, the Cell Ranger outputs of
each dataset were used to generate the corresponding cell expression
matrices by combining all samples of each dataset. We generated a
total of 6 Seurat objects. The complete longitudinal experiment con-
tains merged Seurat objects of the time course (times 0, 5, 15 and 30)
including both wild types. From this experiment we performed indi-
vidual analysis by generating individual objects of wild type time 0 and
time 15min, and hog1 mutant cells time 0. Finally, for the deletion-

based scRNA-seq we merged the time 0 and time 15 samples into a
single dataset.

Data normalization and clustering
To normalize gene expression, for all datasets (longitudinal and dele-
tion scRNA-seq) we removed ribosomal protein genes (RPL and RPS)
and used the standard Seurat processing guidelines. We normalized
data using the NormalizeData function from Seurat (Seurat v4.0)56. We
used previously reported cell cycle variable genes in scRNA-seq
studies28 to score the cell cycle stage using the CellCycleScoring
function. Calculated cell cycle scores were used to regress out the cell
cycle effects using the vars.to.regress function and the calculated cell
cycle scores. We also identified highly variable genes using the Find-
VariableFeatures nfeatures = 200.

To perform cell clustering, first we performed a linear dimen-
sional reduction using the “RunPCA” function from Seurat Package
using PC1 and PC2. For the deletion-based scRNA-seq we then then
applied the Seurat pipeline FindNeighbors (dims 1:10) and FindClus-
ters (resolution =0.5). To visualize the UMAPs we used RunUMAP
(dims 1:10).

To extract cell state markers, we applied the differential expres-
sion function included in Seurat through FindAllMarkers for the
complete dataset (both conditions) and each condition individually.
Gene ontology enrichments of upregulated cell state markers were
performed using Metascape v3.5.2023050157 default parameters using
S. cerevisiae as a specie (markers and Gene Ontology results). To score
the expression of gene signatures (see below for information of gene
lists) we used the UCell package AddModuleScore_UCell58.

Gene signatures
A list of genes used in each signature is available as Supplemen-
tary Data 1.

For induced, repressed and unresponsive genes, we used already
available OsmoAtlas dataset23. This dataset represents a consensus
expression comprises 5 independent RNA-seq experiments.

Inducedgenes. This signature represents the top 200 genes classified
as upregulated (FC ≥ 2 and pval <0.05).

Repressed genes. This signature represents the bottom 200 genes
classified as downregulated (FC ≥ −2 and pval <0.05).

Unresponsive genes. This signature represents a set of 200 genes
classified as unresponsive (FC −0.5 to 0.5 and pval<0.05).

Representative signature genes. To identify genes whose expression
correlated with the induced osmoconsensus (Upregulated 200),
repressed (Downregulated 200) or unresponsive (Unresponsive 200),
we calculated the Pearson correlation of each gene in the expression
matrix against both signatures.

To generate the transcription factor signatures, we extracted the
positive regulated targets genes from SGD (www.yeastgenome.org/).
For Msn2/4 that overlapped with the upregulated genes in the
OsmoAtlas23.

Daughter cells: This signature represents a set of genes curated
from the literature and SGD whose expression is specific for daughter
cells59,60.

To calculate themean,median, standarddeviation andvarianceof
each gene signature was performed in R using the: mean(), median(),
sd(), var() functions respectively. Each signaturewhose expressionwas
calculated using the UCell package and stored in the metadata (#ref).
To calculate the Fano factor (defined as the variance-to-mean ratio).
The gene signature expression data was extracted from the metadata
and grouped by sample and condition for the longitudinal daset and
for the genotype and condition for the targeted perturbation dataset.
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the Fano factor was calculated using this formula: Fano Factor =
Variance of Expression/Mean of Expression.

Subpopulation definition
To identify subpopulations with specific transcriptional phenotypes,
we used an expression-based threshold using induced osmoconensus
signature. For basal stressed cells in the wild type time 0 (longitudinal
dataset), the last decile of expression (0.9) from the expression of the
Upregulated 200 signature. For the detection of hyperresponsive
genes we calculated the co-expression of STL1, ALD3, CTT1, HSP12,
GRE1, HXT5 using the Plot_Density_Joint_Only function from the
scCustomize package (v0.6.1)61. We extracted the co-expression values
of each cell to add the values as “Upreg_coexp” column in thewild type
time 15min objectmetadata. Cells whose expression is higher than the
mean plus the Gmd were considered as hyperresponsive.

For the deletion based scRNA-seq dataset, we defined basal
stressed population using as a threshold the last decile of expression
(0.9) from the expression of the Upregulated 200 signature of thewild
type cells included in the same experiment. We calculated this
threshold for wild type cells as control andNaCl conditions separately.
Then for all detected mutants we calculated the percentage of cells
above their respective threshold. For the analysis we only considered
cells with at least 6 cells, but we reported the values for all detected
genotypes (SupplementaryTable 7).We consideredmutants displayed
a higher frequency of basal stress or hyperresponsive cells if they had
at least >25% of hyper-responsive cells.

To identify genotypes with higher variability, we first calculated
themean and standard deviation of the Upregulated 200 signature for
the two wild type cells included in the same experiment. We con-
sidered mutants with a standard deviation greater than the mean +
2 SD from the wild type threshold.

Ranking of signature gene usage
To calculate the number of cells expressing each of the induced and
repressed signatures, we used the DotPlot function from Seurat using
the entire longitudinal dataset. To this end we plotted the resulting
DotPlot$data column to generate the graphs of the percentage of
expressing cells for each gene.

Protein network. To visualize the protein networks for the mutants
selected for each transcriptional phenotype (basal stress, hyperre-
sponsive or highly variable) we used the complete list to generate
protein interaction networks using STRING62. The network was build
using only physical interactions based on experimental data using
0.150 confidence threshold. The resulting networks were exported to
Cytoscape63 for color and layout editing.

Differential expression
To identify genes with significant expression changes between con-
ditions, we performed a differential expression (DE) analysis using the
Seurat package in R. Our analysis focused on comparing two groups
within the different datasets.

To generate the expression matrices for differential expression
we set two comparisons. First, for basal stressed cells, we generated
a comparison matrix based on the “basal_stress” parameter TRUE
versus FALSE. Second, to generate clustering only based with stress-
induced genes, we made an object that contained the time 0 and
time 15 of wild type cells. Then, we generated a comparison matrix
between time 0 and time 15min. For each comparison, we used the
FindMarkers function from Seurat to identify differentially expres-
sed genes between groups. We used the build in Wilcoxon rank sum
test to determine statistical significance. The genes upregulated
above FC ≥ 1.5 (log2 ≥ 0.58) and pval < 0.05 were used to perform
generate a Seurat object to perform the analysis using only
osmostress-induced genes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data and pre-processed data for the longitudinal
scRNA-seq profiling and the transcription targeted deletion profiling
Gene Expression Omnibus GSE274661. Source data are provided as a
Source Data file Source data are provided with this paper.

Code availability
All the code used in this study is available through Zenodo: 10.5281/
zenodo.13731922 [https://doi.org/10.5281/zenodo.13731922]
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