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Abstract
In this thesis, we investigate some alternative stochasticmodels to the Black-
Scholes model and use Monte Carlo methods to visualise some of the theo-
retical properties of these models. We confirm the benefits of Stochastic Lo-
cal volatility models in capturing market properties like the leverage effect,
volatility clustering, and volatility smile. Additionally, we obtain sensitivity es-
timates for the Stochastic Local Volatility models with jumps using Malliavin
calculus. Besides these, we discuss the two-factor stochastic volatility model
with jumps (2FSVJ) and the Heston-Lévy model and derive option pricing
decomposition formulas. The option price approximations performed well
numerically under at-the-money and out-of-the-money conditions. Also, for
simple jump structures like Gaussian jumps, the decomposition methods
outperformed the Fourier integral method.
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1. Introduction
“All models are wrong, but some are useful” - George Box

1.1. The History of Options Pricing

The term derivative is an umbrella term that encompasses options, futures,
forwards, and swaps. These are contracts between parties where one entity
purchases the right to buy (call option) or sell (put option) goods or services at
a future date at a predefined price. There are a plethora of flavours of deriva-
tives, however, wediscuss Europeancall optionswhich are contracts that give
the holder the right (but not obligation) to purchase an asset at a predefined
price (K), known as the strike at a predefined future date (T ), known as the
maturity. Though buying a derivative sets an upper bound on potential prof-
its, it also protects against downside risk. This makes trading options a safer
bet than trading the underlying asset itself.

As a result, this field has generated a lot of interest, and researchers are ac-
tively pursuing the development of the most realistic models, the best pric-
ing mechanisms, and optimal risk management measures/practices. This
manuscript aims to contribute in each of these areas.

In the study of options pricing, Fischer Black, Myron Scholes, and Robert
Merton came up with the famous Black-Scholes-Merton (BSM) formula (see
Black and Scholes 1973 and Merton 1973) that assumed that the price of the
underlying asset St, follows a log-normal distribution with mean µ and stan-
dard deviation σ where µ and σ are constants. They expanded upon the work
started by Bachelier 1900 who postulated that if an asset is initially worth S0

then its future price St at time t is given by an ”appropriately scaled Brownian
motion” as follows

St = S0 + σWt.
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where (Wt)0≤t≤T is standard Brownian Motion and σ > 0 is the volatility of
Bachelier’s model.

Bachelier had a significant and long-lasting influence on finance by connect-
ing probability theory and stochastic analysis. However, his formulation had
a non-trivial probability that St can be negative. Nevertheless, his model is
called upon when significant market movements cause prices to become
negative as they did during the 2008 global financial crisis (Choi et al. 2022).
According to researchers like Choi et al. 2022, the COVID-19 pandemic had
such a severe impact on oil markets that they recorded negative oil futures
prices. Accordingly, the Chicago Mercantile Exchange (CME) and Interconti-
nental Exchange (ICE) temporarily resorted to the Bachelier model in 2020.

About 59 years after Bachelier’s findings, Osborne reintroduced the Gaussian
process into finance, noting that the process Yt = log(St+τ/St) has the follow-
ing distribution:

ϕ(y) =
1√

2σ2πτ
exp(−y2/2σ2τ)

which is the ”distribution of a particle in Brownianmotion”. Later, Samuelson,
who found inspiration in Bachelier’s thesis, proposed a Geometric Brownian
motion to model asset prices as follows:

dSt = σStdWt,

S0 = x.

Both formulationsbyOsborneandSamuelson significantly improvedonBache-
lier’s model. See their papers Osborne 1959 and Samuelson 1965. It is against
this backdrop that the celebrated BSM model came into being. They as-
sumed instead that the asset evolved according to the following stochastic
differential equation

dSt = µStdt+ σStdWt,

S0 = x.

As a result, the mean instantaneous return and variance of the asset would
be given by

E
[
dSt
St

]
= µdt,

Var
[
dSt
St

]
= σ2dt
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respectively. In this thesis, unless otherwise stated, it is understood that the
market dynamics are defined by a filtered probability space (Ω,F ,F,P)where
P is the risk-neutral probability measure and F = (Ft)t∈[0,T ] is the filtration. The
European option pay-off at maturity h(ST ) is given as

h(ST ) = (ST −K)+ = max{ST −K, 0}. (1.1)

Thus the option price at time t is given as

P (t) = Et
[
e−r(T−t)h(ST )

]
(1.2)

where we have used the simplifying notation Et [·] = E [·|Ft]. The closed-form
Black-Scholes-Merton option price is as

B̃S(t, St, σ
2) = StN(d+)−Ke−r(T−t)N(d−) (1.3)

with

d± =
ln
(
St

K

)
+ r(T − t)√

σ2(T − t)
±
√
σ2(T − t)

2
, (1.4)

where

N(u) =

∫ u

−∞
ϕ(z)dz and

ϕ(z) =
1√
2π
e−z

2/2

are the cumulative probability function and probability density function of
the standard normal law respectively. By lettingXt = ln(St) an alternative but
equivalent formulation can be obtained as

BS(t,Xt, σ
2) = exN(d+)−Ke−r(T−t)N(d−) (1.5)

with

d± =
Xt − ln(K) + r(T − t)√

σ2(T − t)
±
√
σ2(T − t)

2
. (1.6)

1.2. Option Greeks/Sensitivities

As a riskmanagement tool, traders derive sensitivities or Greeks of the option
price to measure the responsiveness of the option price to changes in some
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value or parameter in themodel. They estimate the potential gain or loss the
option price may accrue if the parameter changes. Suppose γ is a parame-
ter in the model. Then, holding all other parameters constant, one considers
the option price to be given as P = P (t; γ). In particular, when assuming the
option price is defined for a general pay-off function, analysts commonly an-
alyze the following Greeks.

• Delta ∆ =
∂P

∂S
measures the responsiveness of the price to changes in

the underlying asset S,

• Vega V =
∂P

∂σ
measures the responsiveness of the price to changes in

the volatility σ,

• Theta Θ = −∂P
∂τ

measures the responsiveness of the price to changes in
the time to maturity τ = T − t,

• Rho ρ =
∂P

∂r
measures the responsiveness of the price to changes in the

interest rate r, and

• Gamma Γ =
∂2P

∂S2
measures the responsiveness of the delta to changes

in the underlying asset S.

If we know the option price in closed form, as in the Black-Scholes case, we
can easily compute these derivatives. However, this is not always the case.
Hence, the rate of change of the option pricewith respect to the parameter of
interest can be approximated by either one of the following finite difference
formulae:

dP

dγ
(t; γ) =

P (t; γ +∆γ)− P (t; γ)

∆γ
+O(∆γ), (1.7)

dP

dγ
(t; γ) =

P (t; γ +∆γ)− P (t; γ −∆γ)

2∆γ
+O((∆γ)2), and (1.8)

d2P

dγ2
(t; γ) =

P (t; γ +∆γ)− 2P (t; γ) + P (t; γ −∆γ)

(∆γ)2
+O((∆γ)2). (1.9)

Novel methods to compute these sensitivities or Greeks like Malliavin cal-
culus have arisen. In particular, Malliavin Calculus methods are very useful
where Monte Carlo methods are used as they have the capacity to signifi-
cantly speed up the computations. Consequently, we use Malliavin Calculus
in this thesis in Chapter 3.
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1.3. Stochastic Modeling

The Black-Scholes-Merton (BSM) model and formula have become very pop-
ular quickly and are one of the most used models by practitioners up to this
day. Nevertheless, many of the assumptions of the original Black-Scholes op-
tion pricing model have embedded some weaknesses or shortcomings into
themodel. For example, it is assumed that returns are log-normal yet in prac-
tice they are not and rather tend to be leptokurtic, and hence outliers are
more common than expected. More specifically, the return distribution has
fat tails and jumps in the underlying price are more common than expected.
The model also assumes that volatility is constant and was at first obtained
by estimation using historical data and is known as realised volatility. Empiri-
cal evidence suggests that this assumption is inconsistent with reality. Later,
implied volatility was used to estimate the volatility as it was amore futuristic
estimate. However, plots of implied volatility against strike price were found
to have a ’smile’ which suggested that the assumption of constant volatility
was not consistent with observed data. As a result of the above-mentioned,
there is a risk that the computed prices are not fair giving rise to the study
of a wide range of models that seek to deal with these issues. Among such
innovations in literature are the Local Volatility models, Stochastic Volatility
models, and jump models. In this work, we focus our attention on the con-
stant volatility problemand thenon-lognormal returndistributionbyemploy-
ing Stochastic Volatility, Stochastic Local Volatility, and jumps. Several types
of Stochastic Volatility models appeared to overcome this faulty assumption.
In a Stochastic Volatility model, the same option pricing problem is studied,
but the volatility is assumed to be a stochastic process while a Local Volatility
model assumes the volatility depends on the underlying asset.

1.4. Objectives

This thesis aims to contribute to continuous research addressing some of the
issues in the derivatives pricing pipeline.

First of all, we analyse several alternative models whose aim is to better re-
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flect market dynamics. These alternative asset models span Local volatility,
Stochastic volatility, Stochastic Local Volatility (SLV), multi-factormodels, and
jump-driven models. To aid comparisons, in some instances, these models
are calibrated to real data and the analysis of the stylised properties of the
models is carried out. Here we find that hybrid Stochastic Local Volatility
models add a parameter that deepens the volatility smile. In addition, the
leverage effect is more pronounced as seen in the plots in Chapter 3 and El-
Khatib et al. 2022.

Our second and most significant objective is the pricing of options. Here we
conduct a brief survey of existing pricing methods and propose some pric-
ing mechanisms and then compare them to existing methods. We consider
methods like Monte Carlo methods, Fourier integral methods as well as ap-
proximative decomposition methods. We find that decomposition methods
performed well numerically. Decomposition pricing models have computa-
tional speeds that are far better than Monte Carlo methods and noticeably
better than the Fourier integral method under simple jump structures like
log-normal jumps. More is said about this in future chapters.

Thirdly, we aim to compute theoptionprice sensitivities for riskmanagement.
Because the SLV models rely on Monte Carlo methods, we use the Malliavin
techniques to improve the computational speed.

1.5. Summary of Research work

1.5.1. Papers I and II

These papers are summarised as one since the models were related. These
papers deal with the pricing and hedging of European options in a hybrid
stochastic local volatility model with jumps termed Heston-CEV model with
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jumps (HCEVJ) defined as follows:

dSt = µStdt+ Sαt
√
Yt

(
dWt + c

∫
R
yÑ(dt, dy)

)
, (1.10)

S(0) = x > 0,

dYt = κ(θ − Yt)dt+ ξ
√
YtdZt, (1.11)

Y (0) = y > 0

whereZt = ρWt+
√

1− ρ2Bt such that (Wt)t≥0 and (Bt)t≥0 are independent Brow-
nian Motion processes, −1 ≤ ρ ≤ 1 is the correlation, α is the elasticity of the
underlying asset variance, κ is the rate at which Yt reverts to θ, and θ long-
run average price variance, and lastly ξ is the volatility of the volatility or vol
of vol while the parameter c ∈ {0, 1} activates or deactivates the jump part.
Its special cases include the Black-Scholesmodel, Mertonmodel, CEVmodel,
Heston model, Bates model and the SABR model. We cover the continuous
case in the first paper El-Khatib et al. 2022 where Monte Carlo and decom-
position methods are used to compute the option price. Some special cases
are calibrated in the second paper El-Khatib et al. 2023a and their empirical
properties are investigatedusingMonteCarlo techniques. Our findingsdeter-
mine that the hybrid model inherits the leverage effect, volatility clustering,
volatility smile and many more. Moreover, Malliavin techniques are applied
to compute some option price sensitivities.

1.5.2. Paper III

This work extends Merino et al. 2019 work in two directions.

Firstly, we consider a two-factormodel with either double exponential jumps
or Gaussian jumps as follows:

dSt
St−

= (r − kλ)dt+
√
Y1,t

(
ρ1dW1,t +

√
1− ρ1dB1,t

)
(1.12)

+
√
Y2,t

(
ρ2dW2,t +

√
1− ρ2dB2,t

)
+ d

Nt∑
i=1

(eZi − 1)

dY1,t = κ1(θ1 − Y1,t)dt+ ξ1
√
Y1,tdW1,t (1.13)

dY2,t = κ2(θ2 − Y2,t)dt+ ξ2
√
Y2,tdW2,t (1.14)
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where (Bi,t)t∈[0,T ] and (Wi,t)t∈[0,T ] are pair-wise independent Wiener processes
for i = 1, 2. The i.i.d. jumps (Zi)i∈N have a known distribution and are indepen-
dent of the Poisson process Nt and the Wiener processes. The parameters
κi, θi, ξi and ρi are as defined in the above section. Secondly, we incorporate
the higher order decomposition formula derived in Gulisashvili et al. 2020
and derive a decomposition formula. Furthermore, using the Fourier integral
method as a benchmark, we verify the speed and accuracy of the decompo-
sition formula. We also consider various jump structures like Gaussian and
double exponential jumps. We find that, under Gaussian jumps, the decom-
position formula gives faster computations, unlike in the double exponential
case. Overall the method produces accurate results.

1.5.3. Paper IV

Thiswork extends theworks byMerino et al. 2019 and El-Khatib et al. 2023b by
considering infinite activity jumps. It is a different treatment to the problem
covered by Jafari and Vives 2013 who derive a decomposition formula under
the conditions of Hull and White 1987 and Alòs 2006. Our paper considers
the following return process:

Xt = x+ (r − c1)t−
1

2

∫ t

0

Ysds+

∫ t

0

√
YsdZs +

∫ t

0

∫
R
yÑ(ds, dy). (1.15)

where Yt is defined in Papers I, II, and III and the Lévy process is of infinite activ-
ity but finite variation. We derive two decomposition formulae from different
angles. The first formula is:

P (t) = B(t,Xt, Vt) (1.16)

+
1

8
Et
[ ∫ T

t

e−r(s−t)Γ2B(s,Xs, Vs)d[M,M ]s

]
+

ρ

2
Et
[ ∫ T

t

e−r(s−t)ΛΓB(s,Xs, Vs)
√
Ysd[W,M ]s

]
+ Et

[ ∫ T

t

∫
R
e−r(s−t)∆B(s,Xs− , Vs)ν(dx)ds

]
.

where

∆B(s,Xs, Vs) = B(s,Xs + x, Vs)− B(s,Xs, Vs)− (ex − 1)∂xB(s,Xs, Vs)
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and the processes Vt and Mt are defined in later sections. However, obtain-
ing a computationally tractable version of this formula is an open problem.
The second formula applies Lévy process estimationmethods outlined in As-
mussen and Rosiński 2001 essentially converting an infinite activity problem
to a finite activity problem. The error bounds are defined and numerical es-
timates are obtained and compared to benchmark prices. Though Monte
Carlo methods were required the method was accurate but slow.

1.6. Structure of the Thesis

The rest of the chapters in this thesis are written in the form of papers that
have been published, accepted, or submitted as scientific contributions. It is
organised as follows.

In Chapter 2 we lay down the theoretical preliminaries and technical tools
necessary for this manuscript. Concepts such as Lévy Processes, simulation,
sensitivity analysis, Malliavin Calculus, and decomposition formulae are ex-
pounded amongmany other topics.

Next, Chapters 3, 4, 5, and 6 provide a summary of the research and the find-
ings of this study are recorded and offer a preview of the publications born
out of this work.

Chapter 7 is devoted to discussion, conclusions, and possible future research
work.

In the Appendix, we consider auxiliary results and material needed to under-
stand or reproduce the results in this manuscript.



2. Preliminaries
In this chapter, we formally review notation, definitions, theorems, and some
intuition on the mathematical objects relevant to the thesis. Section 2.1 in-
troduces several definitions and theorems in Stochastic Calculus, Section 2.2
describesMonteCarlo techniques, Section 2.3 coversmodel calibration, while
Sections 2.4 and 2.5 introduce Malliavin Calculus and option price decompo-
sition methods respectively. Lastly, Section 2.6 concludes the chapter.

2.1. Definitions and Theorems

This sectionprimarily relies onCont andTankov 2004, LambertonandLapeyre
2011, with supporting references from Applebaum 2009 and Sato 1999. We
start with a set Ω sometimes known as the sample space. It represents the
set of all possible market scenarios and its elements ω ∈ Ω are known as sce-
narios of randomness that may or may not be observable.

Definition 2.1.1 (σ-algebra). If Ω is a given set, then a σ-algebra F on Ω is a
family of subsets of Ωwith the following properties

1. Ø ∈ F ,

2. If A ∈ F then Ac ∈ F where Ac = Ω− A is the complement of A in Ω, and

3. If A1, A2, · · · ∈ F then ∪∞
i=1Ai ∈ F .

By convention, collections of sets including σ-algebras are represented by
curly capital letters. Each element of the σ-algebra is known as ameasurable
set. Let’s consider another way to generate a σ-algebra.

Definition 2.1.2. Given a collection A of subsets of E, there exists a unique σ-
algebra denoted σ(A) such that if any σ-algebra F ′ contains A then σ(A) ⊂
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F ′. σ(A) is the smallest σ-algebra containing A and is called the σ-algebra
generated by A.

In the case where E = R for example, the σ-algebra generated by all open
subsets is called the Borel σ-algebra and is denoted by B(E) or simply B. Each
set B ∈ B is known as a Borel set.

Definition 2.1.3. Let E be a σ-algebra of subset of E. (E, E) is called ameasur-
able space. A (positive) measure on (E, E), is defined as a function

µ : E → [0,∞]

A 7→ µ(A)

such that

• µ(∅) = 0.

• For any sequence of disjoint subsets of An ∈ E

µ
(
∪n≥1 An

)
=
∑
n≥1

µ(An).

An element A ∈ E is called a measurable set and µ(A) is its measure.

The Lebesgue measure (defined on E = Rd) is a well-known example of a
measure. It computes a d-dimensional volume for a set A ∈ B as follows:

λ(A) =

∫
A

dx.

Another example is the Dirac measure δx associated with the point x ∈ E

defined as follows:

δx(A) =

{
1 if x ∈ A,

0 if x 6∈ A.

In Stochastic Calculus, the notions of probability measures and probability
spaces are fundamental concepts and they are defined below.

Definition 2.1.4 (Probability Measure and Probability Space). Let Ω be a non-
empty set and F be a σ-algebra on Ω, then the pair (Ω,F) is called a mea-
surable space. A probability measure on (Ω,F) is a positive finite measure P
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with total mass 1. It assigns a probability of between zero and 1 to each set
in F . Hence

P : F → [0, 1]

and (Ω,F ,P) is known as a probability space.

Any subset A ∈ F is known as an event. A is said to be null if it is a subset of a
zero probability event (that is A ⊆ B and P(B) = 0). To be specific, A is referred
to as a P-null set. Also, if P(A) = 1 the even A is said to occur P-almost surely
(or P a.s. for short).

Definition 2.1.5 (Filtration). A filtration F on the probability space (Ω,F ,P) is
an increasing family of σ-algebras F = (Ft)t≥0 in F where for any 0 ≤ s ≤
t, Fs ⊂ Ft ⊂ F . Moreover, a probability space equipped with a filtration is
known as a Filtered probability space and is denoted as (Ω,F ,F,P).

A filtration represents the evolution of information with time (See for exam-
ple Lamberton and Lapeyre 2011). Naturally, financial decisions depend on
the amount of information available and we assume that each investor has
complete access to the available information at each given time and that in-
formation available changes over time. We also assume that the filtration is
completed by the P-null sets and that these null sets are in F0 thus all zero-
probability events are known beforehand.

Definition 2.1.6 (Stochastic Process). A random variable X is a measurable
function taking values in a set E such that

X : Ω → E

Moreover, a stochastic process is a family of random variables (Xt)t∈[0,∞) in-
dexed by time where for each realisation of randomness ω ∈ Ω, X(ω) : t →
Xt(ω) defines a sample path of the process.

In our discussion we assume that E = Rd and we say that a random variable
X is F-measurable if for any Borel set U ⊂ Rd, X−1(U) ∈ F . Additionally, we say
that (Xt)t≥0 is adapted to F if for any t > 0, Xt is Ft-measurable.

Definition 2.1.7 (The history of a process). The history of a process X is the
information flow (FX

t )t∈[0,T ] where FX
t is the σ-algebra generated by the past

values of the process, completed by the P-null sets, N

FX
t = σ(Xs : s ∈ [0, t])

∨
N .
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Note that FX
t is the smallest σ-algebra on Ω containing all sets of the form

X−1
t (U) for all open sets U ⊂ Rd.

Definition 2.1.8 (Lévy Process). An Rd valued stochastic process (Xt)t≥0 on
(Ω,F ,P) is called a Lévy process if it satisfies the following properties

• X0 = 0.

• Independent increments: for any increasing sequence of times t0, . . . , tn,
the random variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

• Stationary increments: the law of Xt+h −Xt does not depend on t.

• Stochastic continuity: for any ϵ > 0 and t > 0, lim
h→0

P(|Xt+h −Xt| ≥ ϵ) = 0.

Cont and Tankov 2004 define the Lévy process as a càdlàg process without
loss of generality. recall that a càdlàg process is right continuous with left
limits. They claim that every Lévy process has a unique modification that is
càdlàg.

A well-known example of a Lévy process is the Brownian Motion. It is de-
scribed below.

Theorem 2.1.9. A Lévy process (Xt)t≥0 is a Brownian Motion if for any 0 ≤ s <

t < ∞ Xt − Xs is a normal random variable with mean µ(t − s) and variance
σ2(t− s)where µ and σ > 0 are constant real numbers.

Moreover, Brownian Motion is referred to as standard if X0 = 0 P a.s., E[Xt] = 0,
and E[X2

t ] = t. These characteristics are essential for the simulations in later
sections. In this thesis, Standard Brownian Motion is denoted as (Wt)t≥0.

Another key Lévy process is the Poisson process defined as follows:

Definition 2.1.10. Let (Ti)i≥1 be a sequence of independent, identically, expo-
nentially distributed random variables with parameter λ > 0 (i.e. their den-

sity is equal to λe−λx1x>0). Let τn =
n∑
i=1

Ti. We call the Poisson process with

intensity λ the process Nt defined by

Nt =
∑
n≥1

1{τn≥t} =
∑
n≥1

n1{τn≤t<τn+1}.
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For any t > 0, Nt follows a Poisson distribution with parameter λt:

∀n ∈ N, P(Nt = n) = e−λt
(λt)n

n!
,

Clearly, by definition of the Poisson distribution E[Nt] = λt and Var[Nt] = λt.

We can also define a centred Poisson process Ñt as

Ñt = Nt − λt.

Ñt is an Ft-martingale and is called the compensated Poisson process and λt
is known as the compensator of Nt. For some Lévy process Xt the jump of Xt

at time t > 0 is defined by
∆Xt = Xt −Xt− .

In the case of thePoissonProcess∆Nt ∈ {0, 1}. As a result, its jump structure is
not rich enough tomodel general financial processes. Soweneed to consider
compound Poisson processes as well as general Lévy processes.

Definition 2.1.11. Let Xt be a cádág process, the jump measure of X is a ran-
dommeasure on B([0,∞)× R) defined by

N(t, A) = #{t := ∆Xs 6= 0 and (t,∆Xs) ∈ A}

where if U is a countable set #U means the number of elements in U . In gen-
eral, the jump measure of a set of the form [s, t] × U counts the number of
jumps of size ∆X ∈ U which occur in the time interval [s, t].

Definition 2.1.12. Let X be an R-valued Lévy process. The measure defined
by

ν(U) = E[N(1, U)]

for some U ∈ R is called the Lévy measure of X.

For a complete treatment of Lévy processes see Applebaum 2009, Sato 1999.

Theorem 2.1.13 (Itô-Lévy Decomposition). Let (Xt)t≥0 be a Lévy process on R
and ν it’s Lévy measure where

∫
|y|≤1

y2ν(dy) <∞ and
∫
|y|≥1

ν(dy) <∞. Then,

Xt = γt+ σBt +

∫ t

0

∫
|y|>1

yN(dy, ds) + lim
ϵ→0

∫ t

0

∫
ϵ<|y|<1

y
(
N(dy, ds)− ν(dy)ds

)
. (2.1)

The terms are independent and the convergence in the limit is almost sure
and uniform in t on [0, T ].
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The Lévy process in equation (2.1) can bewritten in differential formas follows:

dXt = γdt+ σdBt +

∫
|y|>1

yN(dy, dt) + lim
ϵ→0

∫
ϵ<|y|<1

y
(
N(dy, dt)− ν(dy)dt

)
. (2.2)

Such processes are called Itô-Lévy processes. For the following theorem, we
consider Lévy processes where

∫
R y

2ν(dy) <∞.

Theorem 2.1.14. Consider the following Lévy stochastic differential equation
(SDE) in Rn

dXt = γ(t,Xt)dt+ σ(t,Xt)dBt +

∫
Rn

α(t,Xt, y)Ñ(dy, dt), (2.3)

X0 = x0, (2.4)

where Ñ(dy, dt) = N(dy, dt)−ν(dy)dt and γ : [0, T ]×Rn → Rn, σ : [0, T ]×Rn → Rn×m,
and α : [0, T ]× Rn × Rn → Rn×l satisfy the following conditions

• (At most linear growth) There exists a constant C1 <∞ such that

‖σ(t, x)‖2 + |γ(t, x)|2 +
∫
R

l∑
k=1

|αk(t, x, y)|2νk(dyk) ≤ C1(1 + |x|2)

for all x ∈ Rn.

• (Lipschitz continuity) There exists a constant C2 < infty such that

‖σ(t, x)− σ(t, z)‖2 + |γ(t, x)− γ(t, z)|2 +∫
R

l∑
k=1

|αk(t, x, y)− αk(t, z, y)|2νk(dyk) ≤ C2|x− z|2,

for all x, z ∈ Rn. Then there exists a unique càdlàg adapted solution Xt

such that
E[|X2

t |] <∞

for all t.

Because of the Itô-Lévy decomposition, Lévy processes can be completely
characterised by the triplet (γ, σ, ν) known as the characteristic triplet or Lévy
triplet. Following from this we can obtain the Lévy-Khinchin formula used to
obtain characteristic functions of Lévy processes.
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Theorem 2.1.15 (Lévy-Khinchin Representation). Let (Xt)t≥0 be a Lévy process
on Rwith characteristic triplet (γ, σ, ν). Then

E[eiuXt ] = etψ(u), u ∈ R

where ψ(u) = iuγ − 1
2
σ2u2 +

∫∞
−∞(eiux − 1− iux1|x|≤1)ν(dx)

Note that under different conditions there are various versions of the above
theorem. If

∫
|x|≤1

|x|ν(dx) <∞we have that

ψ(u) = iuγc −
1

2
σu2 +

∫ ∞

−∞
(eiux − 1− iux)ν(dx)

where γc known as the center of the process Xt is such that E[Xt] = γct and

γc = γ +

∫
|x|≥1

xν(dx). Moreover, in the finite variation case

ψ(u) = iub− 1

2
σu2 +

∫ ∞

−∞
(eiux − 1)ν(dx)

where b = γ −
∫
|x|≤1

xν(dx). See Cont and Tankov 2004 Sections 3.4 and 3.5 for
further details.

Definition 2.1.16 (Martingale). A stochastic process (Mt)t∈[0,T ] is called a mar-
tingale if it is non-anticipating (Ft-adapted), E[|Mt|] <∞ for any t ∈ [0, T ], and
for any s, t ∈ [0, T ] such that s > t > 0 then

E[Ms|Ft] =Mt

Another property used in the study of stochastic processes is the Markov
property named after Andrey Markov and describes the memoryless prop-
erty of stochastic processes. That is, the future behaviour of a process after
a certain time t is independent of its historical behaviour before time t. We
provide a formal definition as follows:

Definition 2.1.17. Let f beaboundedmeasurable function fromRn toR. Then,
for any s ≤ t

E[f(Xt)|FX
s ] = E[f(Xt)|Xs].

Theorem 2.1.18 (Themultidimensional Itô formula. Di Nunno et al. 2009). Let
X = (Xt)t≥0 be an n-dimensional Itô-Lévy process of the following form

dXi,t = αidt+
J∑
j=1

βij(t)dWj,t +
K∑
k=1

∫
R0

γik(t, zk)Ñk(dt, dzk) (2.5)
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for i = 1, 2, . . . , n. Let f : (0,∞) × Rn → R be a function in C1,2((0,∞) × Rn) and
define

Yt = f(t,Xt), t ≥ 0.

Then Y = Y (t) is a one dimensional Itô-Lévy process and its differential form
is given by

dYt =
∂f

∂t
(t,Xt)dt+

n∑
i=1

∂f

∂xi
(t,Xt)αi(t)dt+

n∑
i=1

J∑
j=1

∂f

∂xi
(t,Xt)βij(t)dWj,t

+
1

2

n∑
i=1

J∑
j=1

∂2f

∂xi∂xj
(t,Xt)(ββ

T )ij(t)dt (2.6)

+
K∑
k=1

∫
R0

[
f(t,Xt− + γ(k)(t, z))− f(t,Xt−)−

n∑
i=1

∂f

∂xi
(t,Xt−)γik(t, zk)

]
νk(dzk)dt

+
K∑
k=1

∫
R0

[
f(t,Xt− + γ(k)(t, z))− f(t,Xt−)

]
Ñk(dt, dzk)

where γ(k) is the column number k of the n×K matrix γ = [γik].

2.2. Monte Carlo Simulation

As an alternative to the closed form option pricing one can use Monte-Carlo
methodswhichwe rely on in this thesis in part. To beginwith, wewill assume
that we have a stochastic differential equation defined on an interval [0, T ] of
the form:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt. (2.7)

where µ, σ : R×[0, T ] → R. The Euler-Maruyamadiscretizationmethod and the
Milstein method are well-known methods of simulating such processes in
literature. These are presented below while following the notation and ideas
widely used in literature.

Firstly, the interval [0, T ] is partitioned such that we have 0 = t0 < t1, . . . , tN = T ,
where ∆t = T

N
= ti+1 − ti and ti = t0 + i∆t for i = 0, 1, . . . , N . Let X̂i be the

discretised version of the stochastic processXt at time ti, that isX(ti) = X̂i. So,
given a general SDE (2.7) the Euler-Maruyama discretisation is given by

X̂i+1 = X̂i + µ(X̂i, ti)∆t+ σ(X̂i, ti)∆Wi (2.8)
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and the Milstein method would give

X̂i+1 = X̂i + µ(X̂i, ti)∆t+ σ(X̂i, ti)∆Wi +
1

2
σ(X̂i, ti)σ

′(X̂i, ti)((∆Wi)
2 −∆t) (2.9)

where ∆Wi = Wi+1 −Wi =
√
∆tiZ for some Z ∼ N(0, 1) and σ′ is the derivative

with respect to X . The Euler-Maruyama method is fast and is of order one.
However, since the Cox–Ingersoll–Ross (CIR) process

dYt = κ(θ − Yt)dt+ ξ
√
YtdWt,

Y0 = v0,

is not globally Lipschitz it has been found that the convergence of the dis-
cretisation schemes is not guaranteed. In addition to that, the discretisation
can cause the process to be negative which is undesirable. Assuming that
the Euler-Maruyama discretisation of the CIR process is given as:

Ŷt+∆t = f1(Ŷt) + κ(θ − f2(Ŷt))∆t+ ξ

√
f3(Ŷt)∆Wt, (2.10)

Ŷ0 = v0 (2.11)

where the functions have to satisfy the following conditions: fi(x) = x for all
x ≥ 0 and i = 1, 2, 3, and fi(x) ≥ 0 for all x ∈ R and i = 1, 3. By choosing
from some special functions fixes to the discretization problem have been
proposed as given in Table 2.1 where x+ = max(x, 0). See Lord et al. 2010 and
the references therein for further details. Where required, we employ the full
truncation scheme.

Table 2.1. CIR Euler-Maruyama schemes.

Scheme f1(x) f2(x) f3(x)

Absorption x+ x+ x+

Reflection |x| |x| |x|
Partial Truncation x x x+

Full Truncation x x+ x+

Alternatively, Broadie and Kaya 2006 proposed an exact simulation method
for the CIR process but Lord et al. 2010 and other researchers find that it is
computationally intensive and the Euler-Maruyama technique yields good
results, especially with variance reductionmethods. Andersen 2007 also pro-
pose a schemebasedon the study of theproperties of affine stochastic volatil-
ity models however, their approach is not covered in this thesis.
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We apply Cholesky’s decomposition in order to simulate the correlated Brow-
nian motion paths as ∆W1(ti) =

√
∆t Z1 and ∆W2(ti) =

√
∆t
(
ρZ1 +

√
1− ρ2Z2

)
where Z1, Z2 ∼ N(0, 12).

2.2.1. Monte Carlo Method and Reduction of Variance

The Monte Carlo method numerically approximates solutions by employing
the law of large numbers which says that if {Xi, i ≥ 1} is a sequence of inde-
pendent and identically distributed (iid) random variables whose mean and
standard deviation are µ and σ then

lim
n→∞

∑n
i=1Xi

n
= µ, (2.12)

Var
(∑n

i=1Xi

n

)
= σ2

n
. (2.13)

This Monte Carlo approximation is useful in the calculation of the premium
or option price and normally involves the simulation of several realisations of
the terminal value of an asset.

In the context of options pricing, the price of the European option (1.2) can
be priced either by specifying the distribution of ST or by obtaining several
estimates of ST through simulation and taking the average. According to
Glasserman 2004 for some n ≥ 1 the approximation

P̂n =
e−rT

n

n∑
i=1

h(SiT ) (2.14)

is a strongly consistent unbiased estimate of the option price meaning that
P̂n → P as n→ ∞with probability 1.

Approximations, in general, have an inherent error and according to equation
(2.13) the variance of the Monte Carlo method reduces only if we use more
sample points. However, there is a group of techniques that reduce both the
number of sample points needed for good estimates and the variance of the
results. Thesemethods called Antitheticmethods or variance reduction tech-
niques improve efficiency, accuracy, and improve convergence rates. In our
work, we occasionally employ the Antitheticmethod andmomentmatching.
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Suppose SiT = S(ωi, T ) is the ith realisation of the terminal price of the asset ob-
tained using the Euler-Maruyama discretisation given in (2.8). We represent
(2.8) by the function h(·, ·) below and (2.10) is represented by the function g(·, ·).
We simulate 2n > 0 realisations by using the algorithm below

• Generate a set of Normal random vectors Zk and Ẑ
k
= −Zk where k = 1, 2

• Compute the trajectories of the volatility as V = g(Z1,Z2) and V̂ = g(Ẑ
1
, Ẑ

2
)

where i = 1, 2

• Generate the trajectories/vectors of the price function as ST = h(V,Z1)

and ŜT = h(V̂, Ẑ
1
)

• Compute the call price using 2n realisations of the stock price ST and ŜT .

In thismanuscript, weevaluateEuropeanoptionsusing theMonteCarlometh-
od, the decomposition technique discussed in section 2.5, and Fourier inte-
gral methods for comparison. Some of the parameters used are obtained
from calibration to market data in Chapter 3. Hence, we discuss the calibra-
tion method next.

2.3. Calibration

Given a set of N market quotes denoted by

Cmkt
i = Cmkt

i (r, Si, Ti, Ki)

wewould like to find a set of model parameters p such that themodel prices
Cmod
i (p) = Cmod

i (r, Si, Ti, Ki,p) are as close as possible to the market quotes. It
is assumed that there is sufficient market data of liquid options that can be
easily valued according to Kienitz and Wetterau 2013. They specify several
measures of the distance between market and model prices as follows:

• Mean Square Error

MSE(p) =
1

N

N∑
i=1

(
Cmkt
i − Cmod

i (p)
)2
. (2.15)
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• Root Mean Square Error

RMSE(p) =

√√√√ 1

N

N∑
i=1

(
Cmkt
i − Cmod

i (p)
)2
. (2.16)

• Average Absolute Error

AAE(p) =
1

N

N∑
i=1

|Cmkt
i − Cmod

i (p)|. (2.17)

• Average Percentage Error

APE(p) =
1

N

N∑
i=1

|Cmkt
i − Cmod

i (p)|
Ĉmkt

(2.18)

where Ĉmkt =
1

N

N∑
i=1

Cmkt
i .

• Average Relative Percentage Error

APE(p) =
1

N

N∑
i=1

|Cmkt
i − Cmod

i (p)|
Cmkt
i

. (2.19)

In calibration, the aim is to find the set of parameters p∗ that minimise the
distance measure f(p) as follows:

p∗ = argmin
p

f(p).

If f(p) is differentiable, there are many fast gradient-based methods to ob-
tain p∗. These include the the Damped Gauss-Newton method (Levenberg–
Marquardt) and the L-BFGS Quasi-Newtonmethod amongmany others. Re-
fer to Kienitz andWetterau 2013 for a complete discussion of these methods.
The calibrationproblem is often an ill-posedoptimisationproblemwithmany
localminima. Thus, our calibrationprocedure involves a two-stageglobal and
local optimisation which closely follows the outline given by Hilpisch 2015
Chapter 11 which involves an initial brute-force grid search which returns a
point, p∗

1, as close as possible to the global minimum if it exists. Next, using
the output of the brute-force search as a starting point, a polish-up localmin-
imisation is done using the Nelder-Mead simplex algorithm. A complete de-
scription of the algorithm is available fromNelder andMead 1965 and Kienitz
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andWetterau 2013. In some cases, to encourage the algorithmnot towander
too far from the initial guess, an optional penalty function given as

‖p∗
1 − p‖ (2.20)

where p∗
1 is the initial parameter vector is applied. We avoid gradient-based

approaches because they assume differentiability of the objective function
f(p) albeit our model is slow and inefficient. However, advanced methods
that take into account robustness considerations are discussed in the liter-
ature by many researchers. In the context of the CEV model Ballestra and
Pacelli 2011 uses the maximum likelihood method while Yuen et al. 2001 esti-
mates the CEVmodel parameters from time series of the underlying. Kienitz
and Wetterau 2013 consider a wide range of gradient-based techniques to
calibrate the Heston and Bates models.

Following a similar pattern to He et al. 2006, we calibrate the hybrid Heston-
CEV model with finite activity jumps and some of its special cases defined
as:

dSt = rStdt+
√
YtS

α
t

(
dZt +

∫
R0

zÑ(dt, dz)
)
, S0 = x (2.21)

dYt = κ(θ − Yt)dt+ ξdWt, Y0 = v0 (2.22)

where Zt = ρWt +
√

1− ρ2Bt for some independent Wiener processes (Wt)t≥0

and (Bt)t≥0. Constraints were imposed on the parameters as follows:

• −1 ≤ ρ ≤ 1 since this is the usual correlation coefficient,

• ξ > 0 since volatility is positive,

• 0 ≤ v0 and θ ≤ 1,

• κ > 0 for positive mean reversion,

• the Feller Condition 2κθ > ξ2 (see Feller 1951) to guarantee the positive-
ness of the process Yt, and

• α < 1 to model the leverage effect.

The procedure is as follows: using the mean square error function (2.15) as
a distance function, first calibrate the Heston parameters using the global
and local approach. Next, calibrate the jump and elasticity parameters con-
ditioned on the Heston parameters previously obtained. Finally, refine the
search on all parameters while imposing the constraint (2.20).
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2.4. Malliavin Calculus

Malliavin calculuswasfirst applied tofinancebyFournié et al. 1999andFournié
et al. 2001 to compute option Greeks or sensitivities. Their innovation ad-
dressed the convergenceof the computationofGreeksusing theMonteCarlo
method and the finite difference method for diffusion models. According to
Davis and Johansson 2006 their method was particularly useful in comput-
ing Greeks or sensitivities of options with discontinuous payoffs. Since then
researchers have extended their method in many different directions. For
instance, El-Khatib and Privault 2004 consider processes driven by Poisson
processes, Davis and Johansson 2006 analyse jump diffusion problems with
a separability constraint extending the work by León et al. 2002, while Solé
et al. 2007 considers more general Lévy processes.

In this manuscript, we adopt the view of Petrou 2008 and we present their
theory and notation in a manner that suits our needs. Let the following be
defined

U i =

[0, T ] when i = 1, 2

[0, T ]× R when i = 3

dQi =

dWi when i = 1, 2

Ñ(·, ·) when i = 3

With slight abuse of notation we are taking that dQ3 = Ñ(·, ·). Also, we have
that,

d〈Qi〉 =

dλ when i = 1, 2

dλ× dν when i = 3

where dλ is the Lebesgue measure and dν is a Lévy measure. Additionally,
define the following set

Gj1,··· ,jn =
{
(uj11 , · · · , ujnn ) ∈ Πn

i=1Uji : 0 < t1 < · · · < tn < T
}
,

where ji = 1, 2, or 3 for i = 1, 2, . . . , n and

ulk =

tk when l = 1, 2

(tk, x) when l = 3
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Given a deterministic function, gj1,··· ,jn ∈ L2(Gj1,··· ,jn), in this framework we de-
fine the n-fold iterated integral as follows:

J (j1,··· ,jn)
n (gj1,··· ,jn) =

∫
Gj1,··· ,jn

gj1,··· ,jn(u
j1
1 , · · · , ujnn )dQj1(u

j1
1 ) · · · dQjn(u

jn
n ) (2.23)

Theorem 2.4.1 (Chaotic Representation Property). Given a random variable
F ∈ L2(FT ,P), there exists a unique sequence of {gj1,··· ,jn}∞n=0 ⊂ L2(Gj1,··· ,jn) such
that

F = E[F ] +
∞∑
n=1

∑
j1,··· ,jn=1,2,3

J (j1,··· ,jn)
n (gj1,··· ,jn). (2.24)

Furthermore, we have the isometry

‖F‖2L2(P ) = E[F ]2 +
∞∑
n=1

∑
j1,··· ,jn=1,2,3

‖J (j1,··· ,jn)
n (gj1,··· ,jn)‖2L2(Gj1,··· ,jn )

.

At this point, we would like to introduce the directional derivatives with re-
spect to the Wiener processes and the Poisson random measure. We will
use the notation Gk

j1,··· ,jn(t) presented in Petrou 2008 which is Gj1,··· ,jn with the
kth element deleted. In particular,

Gk
j1,··· ,jn(t) =

{
(uj11 , · · · , û

jk
k , · · · , u

jn
n ) ∈ Gj1,··· ,jk−1,jk+1,··· ,jn :

0 < t1 < · · · < tk−1 < t < tk+1 · · · < T
}

where ûmeans we omit the u element.

Definition 2.4.2 (Directional Derivative). Let gj1,··· ,jn ∈ L2(Gj1,··· ,jn) and l = 1, 2, 3.
Then

D
(l)

ul
J (j1,··· ,jn)
n (gj1,··· ,jn) =

∑
j1,··· ,jn=1,2,3

1{ji=l}J
(j1,··· ,ĵi,··· ,jn)
n−1

(
gj1,··· ,jn(· · · , ul, · · · )1Gi

j1,··· ,jn
(t)

)
(2.25)

is called the derivative of J (j1,··· ,jn)
n (gj1,··· ,jn) in the lth direction.

Definition 2.4.2 inspires the definition of a corresponding space D(l) contain-
ing all random variables that are differentiable in the lth direction which is
given below. The respective differential operator of such random variables is
given as D(l) for any l = 1, 2, 3. Moreover, the directional derivatives D(l) actu-
ally represent the following: D(1) = DW1 , D(2) = DW2 and D(3) = DN where the
latter is a difference operator rather than a differential operator.
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1. Let D(l) be the space of all random variables in L2(Ω) that are differen-
tiable in the lth direction, then

D
(l) =

{
F ∈ L2(Ω), F = E[F ] +

∑∞
n=1

∑
j1,··· ,jn=1,2,3 J

(j1,··· ,jn)
n (gj1,··· ,jn) :∑∞

n=1

∑
j1,··· ,jn=1,2,3

∑n
i=1 1{ji=l}

∫
Ui
‖gj1,··· ,jn(. . . , ul, . . . )‖2L2(Gj1,··· ,jn )

d〈Ql〉(ul) <∞
}
.

2. Let F ∈ D(l). Then the derivative in the lth direction is given as

D
(l)

ul
F =

∞∑
n=0

∑
j1,··· ,jn=1,2,3

n∑
i=1

1{ji=l}J
(j1,··· ,ĵi,··· ,jn)
n−1

(
gj1,··· ,jn(· · · , ul, · · · )1Gi

j1,··· ,jn
(t)

)
.

(2.26)

Theorem 2.4.3 (General Clark-Ocone-Haussman Formula). Let F ∈ D(1)∩D(2)∩
D(3) Then,

F = E[F ] +
∫ T

0

∑
i=1,2

E[D
(i)
t F |Ft− ]dWi(t) +

∫ T

0

∫
R0

E[D
(3)
(t,z)F |Ft− ]Ñ(dt, dz). (2.27)

To conclude the preliminary concepts inMalliavin Calculus, we introduce two
more key concepts one of which is the chain rule for differentiation in the
direction of the Wiener processes, and the other is the Skorohod integral.

Theorem 2.4.4. Let F ∈ D(l) for l = 1, 2 and let f be a continuously differen-
tiable function with bounded derivative. Then f(F ) ∈ D(l) and the following
chain rule holds:

D
(l)
t f(F ) = f ′(F )D

(l)
t F. (2.28)

Lastly, it is necessary to formally define the adjoint operator for the derivatives
given above known as the Skorohod integral. The following is extracted from
Petrou 2008 Definition 3 and Proposition 3.

Definition 2.4.5 (The Skorohod Integral). Let δ(l) be the adjoint operator of
the directional derivative D(l) where l = 1, 2, 3. The operator maps L2(Ω × Ul)

to L2(Ω). The set of processes h ∈ L2(Ω× Ul) such that∣∣∣E[ ∫
Ul

(D(l)
u )htd〈Ql〉

]∣∣∣ ≤ c|F | (2.29)
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for all F ∈ D(l), is the domain of δ(l) and is denoted Domδ(l). c is a constant
dependent on h. For every h ∈ Domδ(l) we can define the Skorohod integral
in the lth direction δ(l)(h) for which

E
[ ∫

Ul

(D(l)
u )htd〈Ql〉

]
= E[Fδ(l)(h)]. (2.30)

Moreover, given h(u) ∈ L2(Ul) and F ∈ L2(Ω)with chaos expansion (2.24), then
the lth directional Skorohod integral is

δ(l)(Fh) =

∫
Ul

E[F ]h(u1)dQl(u1) (2.31)

+
∞∑
n=1

∑
j1,··· ,jn=1,2,3

n∑
k=1

∫
Ujn

· · ·
∫
Ujk+1

∫
Ul

∫
Ujk

∫
Uj1

gn(u
j1
1 , · · · , ujnn )h(u)1Gj1,··· ,jn

×1{tk<t<tk+1}dQj1(u
j1
1 ) . . . dQjk(u

jk
k )dQl(u)dQjk+1

(u
jk+1

k+1 ) . . . dQjn(u
jn
n ),

if the infinite sum converges in L2(Ω)

2.4.1. Itô Formula

In the continuous case, an equivalent Itô formula can be derived. See Alòs
2006 and Nualart 2006 for a complete discussion on this in the classical Malli-
avin calculus setting where the classical Derivative D and its domain D1,2 are
defined.

Working in the canonical space, Petrou 2008 showed that the classical Malli-
avin Derivative described in Nualart 2006 for example, is equivalent to the
one in their manuscript. Specifically, they provide the following proposition:

Proposition 2.4.6. On the space D(1) the directional derivative is equivalent
to the classical Malliavin derivative D, that is D = D(1). Respectively on D(3)

the directional derivative D(3) is equivalent to a difference operator D̃.

As a result, we include the necessary definitions for us to provide the equiva-
lent continuous process Itô formula derived in classical Malliavin calculus as
follows:

Let H = L2([0, T ]) and let

W (h) =

∫ T

0

h(t)dWt
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be theWiener integral of a function h ∈ H . Let S be a set of random variables
defined as:

S =
{
F = f(W (h1), · · · ,W (hn)) : f ∈ C∞

b (Rn), where h1, · · · , hn ∈ H,n ≥ 1
}
.

They define the derivative as a random variable

DtF =
n∑
i=1

∂f

∂xi
(W (h1), · · · ,W (hn))hi(x), t ∈ [0, T ].

Let D1,2 be the closure of S with respect to the norm defined by

‖F‖21,2 = ‖F‖2L2(Ω) + ‖DWF‖2L2([0,T ]×Ω)

and let L1,2 := L2(Ω;D1,2). Now we are ready to provide the Itô formula for
anticipating processes.

Theorem 2.4.7 (Alòs 2006). Let us consider a process of the form Xt = X0 +∫ t
0
ϕ(Xs)ds +

∫ t
0
ψ(Ys)dWs where X0 is an F0-measurable random variable and

let ϕ and ψ be adapted functions in L2([0, T ]×Ω). Consider also a process Yt =∫ t
0
θsds for some θ ∈ L1,2. Let F : R3 → R be a twice continuously differentiable

function such that there exists a positive constantC such that, for all t ∈ [0, T ],
F and its derivatives evaluated at (t,Xt, Yt) are bounded by C . Then it follows
that

F (t,Xt, Yt)− F (0, X0, Y0) =

∫ t

0

∂F

∂s
(s,Xs, Ys)ds (2.32)

+

∫ t

0

∂F

∂x
(s,Xs, Ys)dXs +

∫ t

0

∂F

∂y
(s,Xs, Ys)dYs

+

∫ t

0

∂2F

∂x∂y
(s,Xs, Ys)dXs(D

−Y )sψsds

+
1

2

∫ t

0

∂2F

∂x2
(s,Xs, Ys)ψ

2
sds

where (D−Y )s =
∫ T
s
DW
s Yrdr.

For the complete introduction and proof see Alòs and Nualart 1998.



2.4. Malliavin Calculus 28

2.4.2. Differentiability of Stochastic Differential Equations

Let (Xt)t≥0 bean n-dimensional stochastic process defined in ageneral setting
as follows:

dXt = µ (t,Xt−) dt+ σ (t,Xt−) dWt +

∫
R0

γ (t, z,Xt−) Ñ(dz, dt),

X0 = x,

(2.33)

where x ∈ Rn, (Wt)t∈[0,T ] is a d-dimensional Wiener process, and Ñ is the com-
pensated Poisson random measure. We assume that µ : R × Rn → Rn, σ :

R× Rn → Rn × Rd, and γ : R× R× Rn → Rn × R are continuously differentiable
with bounded derivatives and satisfy the following linear growth condition:

‖µ(t, x)‖2 + ‖σ(t, x)‖2 +
∫
R0

‖γ(t, z, x)‖2ν(dz) ≤ C
(
1 + ‖x‖2

)
, (2.34)

for each t ∈ [0, T ], x ∈ Rn, C a positive constant and ρ : R → R such that

‖γ(t, z, x)− γ(t, z, y)‖ ≤ D|ρ(z)|‖x− y‖, (2.35)

whereD is a constant. In the process of computing sensitivities, the so called
first variation process Vt = ∆xXt will be commonly seen where Vt satisfies

dVt = µ′ (t,Xt−)Vt−dt+ σ′
i (t,Xt−)Vt−dW

i
i +

∫
R0

γ′ (t, z,Xt−)Vt−N̄(dz, dt),

V0 = I,

(2.36)

and prime denotes the derivative with respect to X and I is the identity ma-
trix.

Remark 2.4.8.

• The derivative of Xt in the Wiener direction is

D(1)
s Xt = VtV

−1
s− σ (Xs−) 1{s⩽t}, (2.37)

for s ≤ t.

• From here onwards, in order to be as general as possible, we assume
that the payoff function is given as h = h (Xt1 , . . . , Xtm) . Hence the price
of the claim would be given by

u = E[h (Xt1 , . . . , Xtm)]. (2.38)
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• Weassume thatmatrix σ is uniformly elliptic. That is, there exists a con-
stant k such that for all y, x ∈ Rn

yTσT (t, x)σ(t, x)y ≥ k|y|2. (2.39)

2.4.3. Variations in the SDE

To compute the Greeks defined in Section 1.2 we need to establish several
propositions as described in Petrou 2008 and Davis and Johansson 2006.

Variation in the Drift Coefficient

We desire to evaluate the sensitivity of the option to variations in the drift
coefficient. Thus for some scalar ϵ and some bounded function ζ consider
the perturbed process Xϵ

t defined as

dXϵ
t = (µ(t,Xϵ

t ) + ϵζ(t,Xϵ
t )) dt+ σ(t,Xϵ

t )dWt +

∫
R0

γ (t, z,Xϵ
t−) Ñ(dz, dt),

Xϵ
0 = x.

Proposition 2.4.9. Let σ be a uniformly elliptic matrix and denote uϵ(x) as

uϵ(x) = E[h(Xϵ
T )].

Then,
∂uϵ(x)

∂ϵ

∣∣∣∣
ϵ=0

= E
[
h (XT )

∫ T

0

(
σ−1 (t,Xt−) ζ (t,Xt−)

)T
dWt

]
. (2.40)

Variation in the Initial Condition

In the sensitivity analysis of options, we are interested in the effect of the ini-
tial condition and this includes Delta for example. First define the following
set of square integrable functions:

Γ =

{
ζ ∈ L2([0, T )) :

∫ ti

0

ζ(t)dt = 1, ∀i = 1, . . . , n

}
. (2.41)

Thus we state the following proposition:
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Proposition 2.4.10. Assume that the diffusion matrix σ is uniformly elliptic.
Then for all ζ ∈ Γ

(∆u(x))T = E
[
h (Xt1 , . . . , Xtn)

∫ T

0

ζ(t)
(
σ−1 (t,Xt−)Yt−

)T
dWt

]
. (2.42)

Variation in the Diffusion Coefficient

In order to investigate the impact of the diffusion coefficient we consider the
following perturbed process

dXϵ
t = µ(t,Xϵ

t )dt+
(
σ(t,Xϵ

t−) + ϵζ(t,Xϵ
t )
)
dWt +

∫
R0

γ (t, z,Xϵ
t−) Ñ(dz, dt),

Xϵ
0 = x,

where ϵ is a scalar and ζ is a continuouslydifferentiable functionwithbounded
gradient. Define also the variation process Zϵ

t =
∂Xϵ

t

∂ϵ
as follows:

dZϵ
t = µ′ (t,Xϵ

t−)Z
ϵ
t−dt+

(
σ′(t,Xϵ

t−) + ϵζ ′(t,Xϵ
t )
)
Zϵ
t−dWt + ζ(t,Xϵ

t )dWt

+

∫
R0

γ′ (t, z,Xϵ
t−)Z

ϵ
t−µ̃(dz, dt),

Zϵ
0 = 0.

(2.43)

In this context, we need to define the following set

Γn =

{
ψ ∈ L2([0, T )) :

∫ ti

ti−1

ψ(t)dt = 1, ∀i = 1, . . . , n

}
. (2.44)

Proposition 2.4.11. Assume that the diffusion matrix σ is uniformly elliptic,
and that for βti = V −1

ti Zti , i = 1, . . . , n we have σ−1(t,Xt−)Ytβt ∈ Domδ(1) for all
t ∈ [0, T ]. We denote uϵ(x) as

uϵ(x) = E[h(Xϵ
t )].

Then, for all ψ ∈ Γn

∂uϵ(x)

∂ϵ

∣∣∣∣
ϵ=0

= E
[
h (Xt1 , . . . , Xtn) δ

(1)
(
σ−1 (t,Xt−)Vt− β̃t

)]
(2.45)

where

β̃t =
n∑
i=1

ψ(t)
(
βti − βti−1

)
1{ti≤t<ti}, (2.46)
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for t0 = 0. Moreover, if β ∈ D(1) then

δ(1)
(
σ−1 (t,Xt−)Vt− β̃t

)
=

n∑
i=1

[
βTti

∫ ti

ti−1

ψ(t)
(
σ−1 (t,Xt−)Vt−

)T
dWt

−
∫ ti

ti−1

ψ(t)Tr
((
D

(1)
t βti

)
σ−1 (t,Xt−)Vt−

)
dt

−
∫ ti

ti−1

ψ(t)
(
σ−1 (t,Xt−)Vt−βti−1

)T
dWt

]
.

(2.47)

Note that for a square matrix Bn×n the trace Tr(B) is the sum of all main diag-
onal entries given as

Tr(B) =
n∑
i=1

bi,i

where bi,i is the row i column i entry of the matrix B.

2.5. Option Price Decomposition

Thedecompositionmethods covered in thismanuscript find their roots in the
Hull-White formula introduced in Hull and White 1987 and later extended in
Alòs 2006. Given a stochastic volatility model:

dSt = ϕStdt+
√
YtdWt,

dYt = µYtdt+ ξYtdZt.

Hull andWhite 1987 used distribution arguments to show that the European
option price was given by:

P (t) = E
[
BS(t,Xt, Y t)|Ft

]
(2.48)

where BS(t, x, y) is the Black-Scholes-Merton option pricing formula and

Y t =
1

T − t

∫ T

t

Ysds (2.49)

is the future average variance. Hull and White 1987 considered the uncorre-
lated case while Alòs 2006 considered the non-zero correlation case and em-
ployed Malliavin Calculus to obtain the decomposition formula. Later, a dif-
ferent derivation employing classical Itô calculus techniques was introduced
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in Alòs 2012 in the Heston case. They replaced the future average variance
with the expected future average variance

Vt = Et[Y t] =
1

T − t

∫ T

t

Et[Ys]ds (2.50)

which changed the problem to a non-anticipative problem. In this case, we
know that the European option price was given by

P (T ) = BS(T,XT , VT ) (2.51)

and it is also known that the process

e−rtP (t) = e−rtBS(t,Xt, Vt)

is a martingale. Then applying the appropriate Itô formula to the discounted
option price e−rtP (t) yields a general decomposition formula. When using the
anticipative process ȲT Itô formula (2.32) is used while when VT Itô formula
(2.6) is employed. To simplify the computations two relations are used:

1

σ(T − t)

∂BS

∂σ
(t, x, σ) =

(
∂2

∂x2
− ∂

∂x

)
BS(t, x, σ), (2.52)

LσBS(t, x, σ) = 0, (2.53)

which are namely the Gamma-Vega relationship and the Black-Scholes op-
erator which will be introduced at the appropriate time.

For a log-price process given by

Xt = x+ rt− 1

2

∫ t

0

Ysds+

∫ t

0

√
Ys(ρdWs +

√
1− ρ2W̃s), (2.54)

withW and W̃ two independent Brownianmotions, the formula according to
Alòs 2012 is

P (t) = BS(t,Xt, Vt) (2.55)

+
1

8
Et
[ ∫ T

t

e−r(s−t)(∂2x − ∂x)
2BS(s,Xs, Vs)d[M,M ]s

]
+

ρ

2
Et
[ ∫ T

t

e−r(s−t)(∂2x − ∂x)∂xBS(s,Xs, Vs)d[M,W ]s

]
where ρ is a correlation parameter, W is the Brownian motion and V and M

are defined in Lemma B.0.1.
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Formula (2.55) has been extended in different directions during recent years,
but in particular, in Merino et al. 2019, it has been extended to stochastic
volatility models with finite activity jumps, like for example, the Bates model.
However, this decomposition version is difficult to employ in option price cal-
culations. Thus, researchers employed a ”freezing” technique where the inte-
grands in (2.55) are frozen obtaining the approximative version:

P (t) = BS(t,Xt, Vt)

+ (∂2x − ∂x)
2BS(t,Xt, Vt)Et

[1
8

∫ T

t

e−r(s−t)d[M,M ]s

]
+ (∂2x − ∂x)∂xBS(t,Xt, Vt)Et

[ρ
2

∫ T

t

e−r(s−t)d[M,W ]s

]
.

This simplification introduces an error that is estimated using the following
Lemma:

Lemma 2.5.1 (Alòs 2012). For every n ≥ 0, there exists C = C(n) such that

|ΛnΓBS(τ, x, y)| ≤ C

(
√
yτ)n+1

(2.56)

where

Λ = ∂x, and Γ = ∂xx − ∂x.

In deriving decomposition formulae, several intermediate mathematical ob-
jects are routinely employed. These are summarised and proved in Appendix
B.

2.6. Conclusion

In this chapter, we laid the foundations for the remaining chapters where
we add to the literature in the areas of alternative models, pricing formulae,
and sensitivity analysis. We outline relevant theory in Stochastic processes,
Monte Carlo simulation, option price decompositionmethods, model calibra-
tion, and Malliavin calculus.
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A B S T R A C T   

In this paper we investigate, since both, the theoretical and the empirical point of view, the 
pricing of European call options under a hybrid CEV-Heston model. CEV-Heston model captures 
two typical behaviors of financial assets: (i) the leverage effect and (ii) the stochastic volatility. 
We prove theoretically that the CEV-Heston model covers the leverage-effect and show empiri
cally the volatility clustering property. Then, we utilize a decomposition of the option price to get 
an approximate formula for European call options. The accuracy of this estimate is compared with 
the Monte Carlo method. The results show the efficiency of our approximate formula.   

1. Introduction 

The Black-Scholes option pricing formula, based on the Osborne-Samuelson model (see Black and Scholes, 1973), is today 
extensively used by practitioners. Nevertheless, many of its assumptions have embedded some weaknesses into the model. For example 
it is assumed that returns are log normal but in practice they are not and rather tend to be leptokurtic and hence outliers are more 
common than expected. The model also assumes that volatility is constant and can be estimated using historical data by what is known 
as realized volatility. However, empirical evidence suggests that this assumption is inconsistent with reality. Later, the so-called 
implied volatility, based on market expectations, was used to estimate the volatility. However, plots of implied volatility against 
strike price were found to have a smile which suggested that the assumption of constant volatility was not consistent with observed 
data. As a result of the above mentioned facts, there is a risk that the computed prices using Black-Scholes formula are not fair. This 
gave rise to the introduction of the idea of stochastic volatility (SV), and several stochastic volatility models appeared in the literature 
to overcome this faulty assumption. 

In the present paper we consider a hybrid SV model based on two of the most famous stochastic volatility models, the Constant 
Elasticity of Variance (CEV) model (Cox, 1975) and the Heston model (Heston, 1993). Our study confirm that the considered model 
preserves the advantages of each of the two models. It aim is, firstly, to investigate the problem of pricing European options under the 
considered model, and secondly, to discuss the properties of the model, or in other words, the stylized facts shown by the model, that 
address the limitations of the Black-Scholes model stated above. To study the option valuation, we provide an estimate of the option 
price using a decomposition method as in Alòs (2012), Merino and Vives (2015) and Merino and Vives (2017). In addition, a numerical 
computation of the option price using Monte Carlo techniques is obtained. In particular, we use numerical methods to provide 
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simulations of the hybrid model and to explore several of their stylized facts. 
Hybrid CEV-SV models have been studied in several papers. Among others, Lord et al. (2010), Choi et al. (2013), and El-Khatib and 

Hatemi-J (2014). Its advantage is that they capture the leverage effect. In Choi et al. (2013), the volatility is assumed to be an 
Ornstein-Uhlenbeck (OU) process and asymptotic methods are applied to the pricing problem. In El-Khatib and Hatemi-J (2014), the 
price PDE is derived and an optimal hedging strategy is found, in this case under the true CEV-Heston model, that is, with a volatility 
described by a CIR process. In Lord et al. (2010), simulation schemes for different CEV-SV models are developed, including CEV-OU 
and CEV-Heston cases. 

The rest of the paper is structured as follows: In section 2 we present the hybrid model as well as its properties. In section 3, a 
decomposition of the pricing formula under the hybrid CEV-Heston model is obtained and moreover, it is used to obtain an 
approximate closed form formula for option pricing. In Section 4 we give some numerical price simulations and we use the Monte Carlo 
method to price European options under the CEV-Heston model. Several illustrations for asset price trajectories and option prices are 
provided. Lastly, section 5 concludes the paper. 

2. The Hybrid Heston-CEV Model 

Consider two independent Brownian motions W := (Wt)t∈[0,T] and B := (Bt)t∈[0,T] defined on a filtered probability space (Ω,F , F,P),
where F := (F t)t∈[0,T] is the complete natural filtration generated by W and B and F = F T .

As in El-Khatib and Hatemi-J (2014), we consider the Hybrid Heston-CEV model 

dSt = rStdt +
̅̅̅̅
νt

√
Sα

t dZt, S0 > 0 (1)  

dνt = κ(θ − νt)dt + ξ
̅̅̅̅
νt

√
dWt, ν0 > 0. (2)  

Here, κ is the mean reversion rate, θ is the long run variance and ξ is the volatility of the variance process ν. Like in Heston and SABR 
models, the two Brownian motions are assumed to be correlated in order to take into account the leverage effect. Thus, we set Zt = ρWt 

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

√
Bt with |ρ| < 1. Remark that taking parameter α = 1 our model reduces to the classical Heston model. 

Our model is calibrated to match market dynamics by taking into consideration the following characteristics. Parameter κ regulates 
the skew and must be very small, while ξ must be significant in value, and θ has to be very close to the implied volatility. These 
parameters are chosen such that 2κθ > ξ2, which is known as the Feller condition, in order to guarantee the positivity of the variance 
process ν. The Heston model achieves calibration to today’s observed plain vanilla option prices by balancing the probabilities of very 
high volatility scenarios against those where future instantaneous volatility drops to very low levels. 

On the other hand, the CEV model was introduced by Cox (1975) to capture the leverage effect where the underlying asset price is 
obtained from our SDE (1) where 

̅̅̅
ν

√
is replaced by constant volatility σ. In this case, α is known as the elasticity parameter and σ is the 

volatility scale parameter. For different values of α the CEV model reduces to other models covered in the existing literature. When α 
= 1 the CEV model reduces to the constant volatility geometric Brownian motion process employed in the Black-Scholes model, when α 
= 0, the model reduces to the classical Bachelier’s model and for α = 1

2 the model reduces to square-root model of Cox, Ingersoll and 
Ross. 

Of the several well known stylized facts that we desire to verify, we consider the leverage effect and the volatility clustering 
property. In Figure 1a we notice that simulated returns are non-normal in that their distribution has a higher peak and is not perfectly 
symmetrical. In addition, the q-q plot of returns in Figure 1b shows also the non-normality of its distribution. 

Next, we consider the leverage effect where we find that the hybrid model inherits leverage properties from the CEV and Heston 

(a) Histogram of returns (b) Quantile-quantile plot of returns

Fig. 1. S0 = 2.9, K = 2.8 and α = 0.5 when ν0 = 0.16, r = 0.06, θ = 0.16, κ = 1, ξ = 2, ρ = − 0.8  
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models. 

Proposition 1. The returns of the Hybrid Heston-CEV model (1)-(2) satisfy the leverage effect provided α < 1 and ρ < 0. 

Proof. Consider log-returns R̂t = ln(St). Define moreover 

Rt = ln(St) −

∫ t

0

(

r −
1
2

νuS2(α− 1)
u

)

du.

By Itô formula the dynamics of R is given by the following pair of stochastic differential equations: 

dRt =
̅̅̅̅νt

√
e(α− 1)R̂ t dZt =

̅̅̅̅
νt

√
ρSα− 1

t dWt +
̅̅̅̅
νt

√
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ρ2
√

Sα− 1
t dBt

dνt = κ(θ − νt)dt + ξ
̅̅̅̅νt

√
dWt.

Clearly, Rt has zero expectation, 

Var(Rt) = E

[(∫ t

0

̅̅̅̅̅
νu

√
e(α− 1)R̂u dZu

)
2
]

= E

∫ t

0

νu

S2(1− α)
u

du  

and 

Cov(Rt, νt) = ρξE

∫ t

0

νu

S1− α
u

du.

Note that this last quantity coincides with Cov(logSt , νt), and therefore under the hypotheses ρ < 0 and α < 1 is a negative quantity 
that in absolute value increases when S decreases and vice versa. □ 

Figure 2 illustrates the leverage effect for the hybrid model. Notice that Figure 2 also shows the volatility clustering characteristics. 
Large changes in the asset returns are followed by large changes, and small changes are followed by small changes, and there is an 
inverse relationship between returns and volatility. 

3. Decomposition formula for the option price 

In this section we derive a closed form approximate option price formula under our Hybrid CEV-Heston model. Our model (1)-(2) is 
a particular case of the general price model 

dSt = μ(t, St)dt + Θ(t, St, νt)dZt,

introduced in Merino and Vives (2015), for Θ(t, St , νt) =
̅̅̅̅νt

√ Sα
t and μ(t, St) = rSt . When necessary we will write Θt := Θ(t,St ,νt).

Let 

(BS)(t, St, σ) = SΦ(d+) − e− rtΦ(d− )

be the usual Black-Scholes formula, where Φ(z) is the cumulative probability function of the standard normal distribution and 

d± =
ln(S/K) + (r ± σ2/2)(T − t)

σ
̅̅̅̅̅̅̅̅̅̅̅
T − t

√ .

Fig. 2. Rolling mean returns for S0 = 2.9, K = 2.8 and α = 0.5 when ν0 = 0.16, r = 0.06, θ = 0.16, κ = 1, ξ = 2, ρ = − 0.8  
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For the case μ(t, St) = rSt , recall that if we define the Feynman-Kac operator 

L Θ = ∂t +
1
2
Θ2

t ∂SS + rS∂S − r,

we have L Θ(BS)(t,St ,Θt) = 0.
We introduce moreover the following operators which will be useful in our presentation: Γ = S2∂2

S , Λ = S∂S and Γ2 = Γ ∘ Γ. We 
intend on pricing options driven by the Hybrid CEV-Heston model as corrections of the Black-Scholes model following (Merino and 
Vives, 2015), (Merino and Vives, 2017) and (Alòs, 2012). So, we proceed as below. 

It is well-known that the price of an European call option where the stochastic volatility is independent of the asset price is given by 

P(t) = Et

[

(BS)
(

t, St,
̅̅̅̅
νt

√
)]

(3)  

where νt =
1

T− t
∫ T

t νsds is known as the future average variance, expectations are taken under a risk neutral measure and Et [.] = E[.|F t ]. 
Pricing in this case requires anticipative calculus techniques, so instead, we define the adapted version of future average variance as 

Vt =
1

T − t

∫ T

t
Et[νs]ds.

Define also Mt =
∫ T

0 Et [νs]ds. Therefore 

Vt =
1

T − t

(

Mt −

∫ T

0
νsds

)

and 

dVt =
1

T − t

(

dMt + (Vt − νt)dt
)

Denote (BS)t := (BS)(t, St ,
̅̅̅̅̅
Vt

√
). From Merino and Vives (2015) we can deduce the following decomposition formula for the Hybrid 

CEV-Heston model. 

Theorem 1. (Decomposition Formula for the Hybrid CEV-Heston model) For all t ∈ (0,T], we have 

Et[e− rT(BS)T ] = e− rt(BS)t

+
1
2

Et

[ ∫ T

t
e− ruνu

(
S2(α− 1)

u − 1
)
Γ(BS)udu

]

+
ρ
2

Et

[ ∫ T

t
e− ru ̅̅̅̅̅

νu
√

Sα− 1
u ΛΓ(BS)ud[M,W]u

]

+
1
8
Et

[ ∫ T

t
e− ruΓ2(BS)ud[M,M]u

]

From the previous theorem we can deduce the following approximate formula which is obtained by applying Theorem 1 to its terms 
as in Gulisashvili et al. (2020). 

Proposition 2. (Approximate Formula for the Hybrid CEV-Heston model) The decomposition formula in Theorem 1 can be written as 

Et[e− rT (BS)T ] = e− rt(BS)t + e− rt
(
S2(α− 1)

t − 1
)
Γ(BS)tCt

+e− rtSα− 1
t ΛΓ(BS)tRt + e− rtΓ2(BS)tUt + ϵt  

where ϵ is an error term and 

Ct =
1
2

Et

∫ T

t
νudu =

1
2

(

θ(T − t) + (νt − θ)φ(t)
)

,

Rt =
ρ
2Et

∫ T
t

̅̅̅̅̅νu
√

d[M,W]u

=
ρξ
2κ2

(
θκ(T − t) + (νt − 2θ)kφ(t) + κ(T − t)(θ − νt)e− κ(T − t)

)
,
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Ut =
1
8
Et

[ ∫ T

t
d[M,M]u

]

=
ξ2

8κ2

(

θ(T − t) + (νt − 3θ)φ(t) + (νt − θ)(2φ2(t) − φ(t).

. − 2(T − t)e− k(T − t)) + θφ2(t)
)
,

φ(t) =
1
κ
(
1 − e− κ(T − t)), and φ2(t) =

1
2κ

(
1 − e− 2κ(T − t)).

If we assume that the error ϵ is very small we can apply the below approximate formula 

Et[e− rT (BS)T ] ≃ e− rt(BS)t + e− rt
(
S2(α− 1)

t − 1
)
Γ(BS)tCt

+e− rtSα− 1
t ΛΓ(BS)tRt + e− rtΓ2(BS)tUt,

(4)  

to estimate the option price. In the next section we compare two numerical methods to estimate the option price: Monte Carlo method 
and the approximate formula (4). It is shown from the illustrations that (4) has a better performance. The empirical experiments 
conducted in the coming section show that ϵ is negligible, and we expect to obtain the same conclusion by investigating an estimation 
of the error ϵ using the same methodology as in Alòs et al. (2015). This is a subject of current work outside the interest of this study 
which emphasizes on proving empirically that the approximate formula (4) provides a good estimation of the option price better than 
the traditional Monte Carlo method in the case of our Heston-CEV model. 

4. Simulation and Numerical results 

In this section we outline our approach to the Monte Carlo approximation of the option price. We first deal with the discretization of 
the stochastic differential equations and the simulation of the underlying asset price. 

4.1. Simulation of the hybrid Heston-CEV model 

Since the square-root process (2) is not globally Lipschitz then the convergence of the discretization scheme is not guaranteed and it 
can cause the process to be negative, which is undesirable. Several fixes have been proposed to this problem namely absorption, 
reflection and full truncation as given by Lord et al. (2010). Broadie and Kaya (2006) proposed an exact simulation method for the CIR 
process but Lord et al. (2010) and other researchers find that it is computationally intensive and the Euler-Maruyama technique yields 
good results especially with variance reduction methods. In addition, they verify that among the fixes full truncation is the best. As for 
the discretization scheme, Lord et al. (2010) highlight that the second order schemes do not add any advantage, and indeed find that 
they improve neither the accuracy nor the speed of computation especially if the full truncation method is used in the square-root 
process. In our study, we apply the Euler-Maruyama and Milstein schemes and find that they give similar results. In short, the most 
important numerical scheme is to handle the possible negatives of the CIR process. 

We employ discretization schemes for equations (1) - (2) as follows:  

• Naive Euler Maruyama scheme : 

ν̂i+1 = ν̂i + κ
(

θ − ν̂+

i

)
Δt + ξ

̅̅̅̅̅̅

ν̂+

i

√

ΔW,

νi+1 = ν̂+

i+1,

Si+1 = Si + rSiΔt +
̅̅̅̅̅

ν+
i

√

Si
αΔZ,

where x+ = max(x,0), and ν̂0 := ν0, and S0 are two positive given constant.  
• Kahl-Jackel scheme (using an Implicit Milstein scheme on the volatility and an additional discretization of the log stock process in 

order to ensure that St > 0 for any t) : 

ν̂i+1 =
1

1 + κΔt

[
ν̂i + κ

(
θ − ν̂+

i

)]
Δt + ξ

̅̅̅̅̅̅

ν̂+

i

√

ΔW, νi+1 = ν̂+

i+1,

lnSi+1 = lnSi +
(

r −
νi

2
S2(α− 1)

i

)
Δt +

̅̅̅̅̅

ν+
i

√

Si
αΔZ.

4.2. Numerical Pricing of the European option 

The value of plain vanilla option price under the hybrid model (1)-(2) cannot be calculated in closed form since the law of the 
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random variable St is not known. Hence, we utilize Monte Carlo method and the decomposition technique to evaluate the option price 
(3). In our work we employ the Antithetic method as well as moment matching. 

We approximate the option price as P ≈ 1
2N
∑2N

i=1f(Si(T)), where 2N is the number of simulations carried out, and Si(T) = S(ωi,T) is 
the ith realization of the terminal price of the asset obtained using the Euler-Maruyama discretization. 

We have done 2N = 2000 simulations with n = 1000 steps, with the terminal time being T = 1.0. In order to reduce the number of 
necessary computations, variance reduction techniques on the generation of the uniform random variables were done. This has the 
added advantage of improving the convergence rate. Trajectories were generated as above for the approximation of the stock price 
path and the obtention of the ST realizations, among other computations. We evaluate the option using the Monte Carlo method as well 
as the decomposition technique discussed in Section 3 using parameters obtained from Medvedev and Scaillet (2010). A Core i7 (8th 
Gen) CPU 1.90 GHz 2.11GHz with 16GB RAM computer with Windows 10 (x64) is used to do the necessary computations in iPython 
and the results are obtained in table 1. The table illustrates a comparison between two prices for the vanilla option under our Hybrid 
model (1) -(2), one using the Monte Carlo method and the other using the approximate decomposition formula of Proposition 2. We 
find that the Monte Carlo estimate and the decomposition estimate are very comparable, often differing only in the third decimal place. 
Applying the Milstein discretisation resulted in the exact same results. 

The analysis of the price differences reveals that the approximate pricing formula based on the decomposition method provides a 
reasonable estimate under in-the-money (ITM) or at-the-money (ATM) conditions and to a lesser extent under the out-of-the-money 
(OTM) conditions. However, the computational convenience is astounding. The calculation based on the decomposition method, 
for all the values in Table 1, took 0.02 seconds, while the same computations took 2.80 seconds via Monte Carlo simulation. As a 
conclusion, to use the developed approximate formula based on the decomposition method under our model is a viable alternative in 
short maturity pricing of ITM and ATM options. OTM option pricing error is higher for long maturities. 

In addition, the approximate price formula enables plots of the price as shown in Figure 3a and 3 b which would take a great deal of 
time under Monte Carlo methods. 

5. Conclusions 

Stochastic volatility models are a strong tool that offers better representation of financial asset price fluctuations. However, solving 
the pricing problem under such models is more complicated and in general closed form solutions are not available. In this paper we 
have studied a hybrid CEV-Heston stochastic volatility model. An approximate formula based on the decomposition method is derived 
and used in the estimation of option prices. Numerical simulations are conducted and show that CEV-Heston model covers more 
stylized facts compared to Black-Scholes, Heston or CEV models alone. Moreover several illustrations comparing vanilla option prices 
obtained by Monte Carlo method and applying Proposition 2 demonstrates the efficiency of our new approximate formula. Future 
studies should target to generalize our results to a model with jumps. 

Table 1 
Call option prices when S0 = 100, ρ = − 0.6, r = 0.05, κ = 1.5, θ = 0.02, ν0 = 0.04, ξ = 0.15  

T K = 90  K = 100  K = 110   

MC Decomp. MC Decomp. MC Decomp. 
0.5 12.223 12.222 2.490 2.469 0.000 0.000 
1.0 14.374 14.389 4.877 4.877 0.000 0.000 
2.0 18.566 18.565 9.530 9.516 1.166 0.468  

Fig. 3. Plot of the option price against various parameters where for various S0, K when ν0 = 0.16, r = 0.06, θ = 0.16, κ = 1, ξ = 2, ρ = − 0.8  
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A B S T R A C T

This paper deals with the problem of pricing and hedging financial options in a hybrid stochastic
volatility model with jumps and a comparative study of its stylized facts. Under these settings,
the market is incomplete, which leads to the existence of infinitely many risk-neutral measures.
In order to price an option, a set of risk-neutral measures is determined. Moreover, the PIDE
of an option price is derived using the Itô formula. Furthermore, Malliavin–Skorohod Calculus
is utilized to hedge options and compute price sensitivities. The obtained results generalize the
existing pricing and hedging formulas for the Heston as well as for the CEV stochastic volatility
models.

1. Introduction

The valuation of financial derivatives is a crucial problem in risk management. One of the hard challenges for all specialists in
this area is how to model the underlying asset price’s trajectories. That is, the selected predicted model has a vital effect on the
accuracy of the derivative’s price. An ultimate query is then how to construct a valid prediction model for the underlying asset
prices. An equally important fact to remember when pricing financial derivatives is how to determine the asset price volatility
which aims at measuring the degree of asset price variations. A large number of studies are reported in the literature to address this
subject. Earlier research has highlighted that several features need to be considered in order to enhance the prognostic quality of
asset price models. Consequently, many papers on the good properties of an asset price model offer an improved derivative price.
There have been numerous studies on this issue relating market observations to the goodness of a model. With the huge advance
in new technology, taking properties of an asset from market observation has become easier and more accessible. A large number
of existing studies investigate the stylized facts which are nontrivial statistical evidence captured from financial markets (Cristelli,
2014). Therefore, appropriate prediction models and volatility properties are subject to stylized facts detected from the market. As it
has been earlier stated in the literature, a prediction model is more precise if the asset dynamic shows stochastic volatility, numerous
scholars have developed models for pricing derivatives under stochastic volatility (Broadie & Jain, 2008; Cont, 2001; Elliott et al.,
2007; Heston, 1993; Hull & White, 1987; Stein & Stein, 1991). Among the utmost prevalent models in the literature are the Heston
and the CEV stochastic models. Each of these models covers several stylized facts that the other one misses. In comparison, to
exemplify, the CEV model and the Heston model have diverse relative properties regarding the leverage and the smile effects.
Likewise, of the numerous stochastic volatility models in practice the Heston model (Heston, 1993) and the CEV model (Cox, 1975)
are some of the most popular. Researchers like El-Khatib and Hatemi-J (2014), Choi et al. (2013), and Lord et al. (2010) studied
a Hybrid Heston–CEV model in order to capture as many of the qualities of the CEV model and the Heston model as possible.
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Empirical evidence suggests an inverse relationship between the stock price and its variance which can be explained by both the
operating and financial leverage effect according to Beckers (1980). On the other hand, a significant part of the literature has used
processes with jumps to model asset prices (Bates, 1996). Hence, in addition to the evidence outlined in the discussion above, we
seek to analyze a continuous time L𝑒́vy version of the model in El-Khatib and Hatemi-J (2014) bringing more randomness to the
model.

After the groundbreaking research of Merton (1973) and Black and Scholes (1973), researchers have sought alternative models
to deal with the shortcomings of the Black–Scholes-Merton model by catering for the stylized facts observed in practice. As a result
of these stylized facts, there is a risk that the computed prices are not fair giving rise to the study of stochastic volatility (SV) models,
local volatility (LV) models and models with jumps. Some practitioners have come up with various models aimed at capturing such
stylized facts observed in practice that include SABR (see Hagan et al., 2002) and Heston (see Heston, 1993) which belongs to the
stochastic volatility group of models, CEV (see Cox, 1975) which is a local volatility model, and hybrid (see El-Khatib et al., 2021)
models among many others.

Research on these kinds of models is still ongoing and it has been noted that SV models are indeed an improvement in the
progression of models. However, they lack the flexibility to accommodate sudden movements, that is, they are not able to model
market jumps. As a result, adding jumps has been proposed by many researchers as well. The study of such models has given rise to
a wide spectrum of models which are of different complexity. Early models that incorporate a compound Poisson process in addition
to Brownian motion like those of Merton (1976) and Bates (1996) were referred to respectively as a jump-diffusion model and a
stochastic volatility model with jumps (SVJ).

More general models consisting of various L𝑒́vy processes have been proposed and these models seem to fall into three families
as follows. First, we have the generalized hyperbolic models that cover the Variance Gamma (VG), Hyperbolic, and Normal-Inverse-
Gaussian (NIG) models. Secondly, KoBol models (so named after Koponen, 1995 and Boyarchenko & Levendorskiı̌, 2000) like the
CGMY model, and lastly, the Meixner models. Refer to Schoutens (2003) and the references therein for a rough overview of the
jump-type models in the literature. Additionally, Geman (2002) provides another survey by looking at Lévy distributions and their
mathematical properties with regards to asset pricing. It is reasonable to consider L𝑒́vy models to model price processes since jumps
have been noted in data as well as the fact that due to obvious reasons, assets are traded in discrete time rather than continuous
time. Tankov and Voltchkova (2009) emphasizes that jumps in models allow one to quantify and take into account the possibility
of large stock price changes in risk management. However, he notes that L𝑒́vy models also have some blind spots such as the fact
that they are not sensitive to new market information because of the stationarity of increments. In particular, for a L𝑒́vy process, the
law of 𝑋𝑡 for any given time horizon 𝑡 is completely determined by the law of 𝑋1. Consequently, models involving a combination
of stochastic volatility and jump processes seem to be the most powerful like the model proposed by Bates (1996).

The main objective of this paper is to investigate a hybrid CEV–Heston model for the underlying asset prices driven by a L𝑒́vy
process, in particular, merging several existing models and to investigate solutions for pricing and hedging financial derivatives as
well as the computation of its sensitivities. The paper will combine stochastic volatility and L𝑒́vy processes for price trajectories.
Malliavin–Skorohod calculus tools are going to be used for hedging and computation of price sensitivities following works of
application of this calculus to Finance as León et al. (2002), Solé et al. (2007), Petrou (2008), El-Khatib and Privault (2004) or
the book (Di Nunno et al., 2009) among others.

The rest of this discussion is structured as follows. Section 2 describes the model. In Section 3 we compare our HCEV-Jumps
model to CEV, Heston, CEV–Heston, and Bates models. In addition to that, in Section 4 we obtain the equivalent martingale measure
and the hedge strategy. In the process, we discuss the pricing of the option. Furthermore, Section 5 covers some sensitivities for
a Vanilla European option and Section 6 lays out some numerical computations including the price and the sensitivities. Finally,
Section 7 concludes the paper.

2. The model

Let (𝛺, ,F, 𝑃 ) be a complete filtered probability space. Recall that a real valued F-adapted process {𝑥(𝑡)}𝑡≥0 with 𝑥(0) = 0 a.s.
is called a Lévy process if 𝑥(𝑡) is continuous in probability and has stationary and independent increments.

Our model of interest for a price process (𝑆𝑡)𝑡≥0 is the following:

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎(𝑡, 𝑆𝑡, 𝑌𝑡)𝑑𝐿𝑡 (1)
𝑆(0) = 𝑥 > 0

𝑑𝑌𝑡 = 𝜅(𝜃 − 𝑌𝑡)𝑑𝑡 + 𝜉
√

𝑌𝑡𝑑𝑊2(𝑡) (2)
𝑌 (0) = 𝑦 > 0

where (𝐿𝑡)0≤𝑡≤𝑇 is the Lévy process driving the stock and

𝜎(𝑡, 𝑆𝑡, 𝑌𝑡) =
√

𝑌𝑡𝑆
𝛼
𝑡

or any other structure suitable to the financial situation. In addition, 𝛼 is the elasticity of the underlying asset variance, 𝜃 is the
long run average price variance, 𝜅 is the rate at which 𝑌𝑡 reverts to 𝜃, and lastly, 𝜉 is the volatility of the volatility, or vol of vol.

We let (𝑊1(𝑡),𝑊2(𝑡))𝑡∈[0,𝑇 ] be a two dimensional Brownian motion such that 𝑑⟨𝑊1,𝑊2⟩ = 𝜌𝑑𝑡 where 𝜌 ∈ (−1, 1) or

𝑊2(𝑡) = 𝜌𝑊1(𝑡) +
√

1 − 𝜌2𝑍(𝑡)
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Table 1
Calibrated parameters.

Parameter CEV Heston HCEV Bates Our model HCEV-Jumps

𝜅 – 19.621 17.265 28.691 20.072
𝜃 – 0.024 0.025 0.023 0.024
𝜉 – 0.961 0.915 1.156 0.961
𝜌 – −0.826 −0.748 −0.845 −0.845
𝑣0 0.82 0.034 0.036 0.037 0.035
𝜆 – – – 0.00025 0.410
𝜇 – – – 0.009999 −0.202
𝜎 – – – 0.4508 0.001
𝛼 0.796 – 0.995 – 0.999

where 𝑍(𝑡) is another Brownian motion independent of 𝑊1. In addition to that, 𝑁̃(𝑡, 𝐴) = 𝑁(𝑡, 𝐴)−𝜈(𝐴)𝑑𝑡 is the compensated random
measure of the Poisson Random Measure 𝑁(𝑡, 𝐴) with compensator 𝜈(𝐴) = E[𝑁(1, 𝐴)].

We assume F = (𝑡)𝑡∈[0,𝑇 ] is the natural filtration generated by (𝑊1(𝑡))𝑡∈[0,𝑇 ], (𝑊2(𝑡))𝑡∈[0,𝑇 ] and (𝑁̃𝑡)𝑡∈[0,𝑇 ].
Following the model derivation outlined by Chan (1999) we consider (𝐿𝑡)0≤𝑡≤𝑇 to be the Lévy process defined as

𝐿𝑡 = 𝑐𝑊1(𝑡) + ∫

𝑡

0 ∫R0

𝑧𝑁̃(𝑑𝑡, 𝑑𝑧) + 𝑎𝑡

where 𝑎 = 𝐸[∫ 1
0 ∫R0

𝑧𝑁(𝑑𝑡, 𝑑𝑧)], and 𝜈 is a Lévy measure.
We assume that given 0 < ℎ1, ℎ2 ≤ ∞ then, for all ℎ ∈ (−ℎ1, ℎ2)

∫{|𝑥|≥1}
𝑒−ℎ𝑥𝜈(𝑑𝑥) <∞

which guarantees finite moments of all orders. We will neglect the term 𝑎𝑡 for simplicity and will assume that the L𝑒́vy part of
the process (1) is of finite variation (i.e ∫𝑅 |𝑧|𝑑𝜈(𝑧) < ∞) because according to Cont et al. (2004) and Schoutens (2003), in general
adding the Wiener process to an infinite variation version will not add any significant insight to the model.

3. Model justification

Combining three important stylized facts which are critical for asset pricing: volatility, leverage effect, and jumps, we can offer a
more accurate prediction model for the underlying asset prices. To have the three properties together, we incorporate jumps to the
Hybrid Heston-CEV model. Then, the benefit of our suggested model is not only that it encompasses among others three of the most
common stylized facts, but it generalizes three of the most popular existing prediction models, namely, Heston, CEV, and Bates, and
preserves the benefits of these three models. To show these properties, firstly, we calibrate each of the models, and then next we
explore the model characteristics by comparing the Heston–CEV-Jumps model to the CEV, Heston, CEV–Heston, and Bates models
to determine the empirical and statistical properties of our model of interest.

The model parameters are calibrated to the EURO STOXX 50 European option quotes of 30 September 2014 where for a set of
𝑁 market quotes we minimize the following mean-square-error (MSE) objective function:

𝑀𝑆𝐸 = min
𝑝

1
𝑁

𝑁
∑

𝑖=1

(

𝐶𝑚𝑘𝑡𝑖 − 𝐶𝑚𝑜𝑑𝑖 (𝑝)
)2

where 𝐶𝑚𝑘𝑡𝑖 is the 𝑖th market price and 𝐶𝑚𝑜𝑑𝑖 is the 𝑖th model price for a given set of parameters, 𝑝. The CEV, Heston, and HCEV
parameters were obtained via a two-step global and local optimization process. However, the CEV model converged slowly and had
a relatively higher error. The HCEV-Jumps and Bates models required a global and local optimization for the non-Heston parameters
and then a local optimization for the entire parameter set with a penalty function:

‖𝑝0 − 𝑝‖.

Our calibration procedure follows closely the outline given by Hilpisch (2015) The results of the calibration are given in Table 1.
Secondly, we analyze some of the stylized facts of the models in question by studying the Monte-Carlo simulations of the sample

paths for each model. Clearly, as seen in Fig. 1 the HCEV-Jumps model exhibits a strong leverage effect as seen by the negative
correlation between the returns and the volatility. Moreover, Fig. 2 indicates that the returns and the volatility of the hybrid models
(HCEV and HCEV-Jumps) have a larger negative correlation as compared to the other models. In addition, the CEV and the Heston
model can have a positive correlation between the returns and the volatility. Hence, in this regard, the hybrid models perform
better.

Next, we investigated the volatility smile and the impact of the elasticity parameter 𝛼. The HCEV-Jumps model inherits the
capacity to model the volatility smile from the Heston model as expected. Also, it is known that the jump parameters impact the
curvature of the volatility smile. In this part we investigate the influence of the elasticity parameter and we find that 𝛼 impacts the
curvature of the volatility smile at the money where the larger the 𝛼 the gentler the volatility smile. For small values of 𝛼 the smirk
is more pronounced as seen in Fig. 3 where the volatility smile for the HCEV model is obtained.
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Fig. 1. (a) Rolling mean annual return (blue) and volatility (red) and (b) Rolling annual correlation for the HCEV-Jumps model. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Correlation between rolling annual returns and rolling volatility for the CEV, Heston, Bates, HCEV, and HCEV-Jumps models.

Fig. 3. Implied volatility.

After testing for skew and excess kurtosis (that is kurtosis minus 3), we found that the HCEV-Jumps model has more negative
skew and higher excess kurtosis in comparison to the other model with a significant 𝑝-value (see Table 2). Clearly, by analyzing
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Table 2
Statistical tests for the skew and kurtosis.

Skew p-value Kurtosis p-value

CEV 0.63835 0.09057 0.50630 0.03775
Heston 0.20898 0.29251 −0.42150 0.01957
CEV–Heston 0.58826 0.0000 0.49358 0.04155
Bates −0.02953 0.78350 −1.07455 0.00000
HCEV-Jumps 1.01496 0.00000 1.50808 0.00001

the histogram of returns and the qq-plots we see that the HCEV-Jumps has a higher peak than the other distributions. Also, the left
tail of the histogram is longer and the left end of the qq-plot deviates widely from the ideal normal quantiles. See Fig. 4 for further
details.

4. Pricing and hedging

Another central aspect of the market is completeness. Recall that a market is said to be complete if every contingent claim1 in
the market is reachable, i.e., there exists a self-financing strategy whose value at maturity equals the claim’s value.

It is well-known that there are no arbitrage opportunities if there exists at least one probability 𝑄 equivalent to the historical
probability 𝑃 filling the fact that the discounted price process (𝑆𝑡𝑒−𝑟𝑡)𝑡∈[0,𝑇 ] is a Q-martingale. If it exists, the probability 𝑄 is called
a P-Equivalent Martingale Measure (P-E.M.M.) and is known in the literature as a risk-neutral probability. Moreover, the market is
complete if and only if there exists a unique E.M.M. (First and Second Fundamental Theorem of Asset Pricing, see Harrison & Kreps,
1979; Harrison & Pliska, 1981).

4.1. EMM

The market considered in this paper is incomplete. An equivalent martingale measure is not unique in our case. The next
proposition derives the set of all equivalent martingale measures for our model. See the book of Miyahara (2011) for a more general
discussion on incomplete markets and equivalent martingale measures.

Proposition 1. Let 𝑃 be a historical probability of a particular stochastic process (𝑆𝑡)𝑡∈[0,𝑇 ] defined in Eq. (1). Then 𝑄 ∈  is an
Equivalent Martingale measure defined as

𝑑𝑄 = 𝑍𝑡𝑑𝑃

where 𝑍𝑡 is the Radon–Nikodym derivative satisfying

𝑑𝑍𝑡 = 𝑍𝑡(𝛽1𝑑𝑊1 + 𝛽2𝑑𝑊2 + ∫R0

𝛽3𝑁̃(𝑑𝑡, 𝑑𝑧))

provided 𝛽1, 𝛽2 and 𝛽3 > −1 are chosen to satisfy

𝜇 − 𝑟 +
𝜎𝑡
𝑆𝑡

(

𝛽1 + 𝜌𝛽2 + ∫R0

𝛽3𝑧𝜈(𝑑𝑧)

)

= 0 (3)

where 𝜎𝑡 = 𝑆𝛼𝑡
√

𝑌𝑡 for simplicity.

Proof. We want 𝑒−𝑟𝑡𝑆𝑡𝑍𝑡 to be a martingale. Then

𝑑(𝑒−𝑟𝑡𝑆𝑡𝑍𝑡) = 𝑑(𝑒−𝑟𝑡)𝑆𝑡𝑍𝑡 + 𝑒−𝑟𝑡𝑑(𝑆𝑡𝑍𝑡) (4)

= 𝑒−𝑟𝑡𝑍𝑡𝑆𝑡
[

(

𝜇 − 𝑟 +
𝜎𝑡
𝑆𝑡

(𝛽1 + 𝜌𝛽2 + ∫R0

𝛽3𝑧𝜈(𝑑𝑧))

)

𝑑𝑡

+(𝛽1 + 𝜌
𝜎𝑡
𝑆𝑡

)𝑑𝑊1(𝑡) + 𝛽2𝑑𝑊2(𝑡)

+
𝜎𝑡
𝑆𝑡 ∫R0

𝑧(1 + 𝛽3)𝑁̃(𝑑𝑡, 𝑑𝑧) + ∫R0

𝛽3𝑁̃(𝑑𝑡, 𝑑𝑧)
]

□ (5)

1 A contingent claim can broadly be defined as a random variable 𝐻 that signifies the payoff at time 𝑇 from a vendor to a purchaser. In our case the payoff
of a European call option, is 𝐻 = ℎ(𝑆𝑇 ) = (𝑆𝑇 −𝐾)+.
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Fig. 4. Results.
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Remark 1.

• Under measure 𝑄, (𝑆𝑡)0≤𝑡≤𝑇 can be written as

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑡
(

𝑑𝑊̂1(𝑡) + ∫R0

𝑧𝑁̂(𝑑𝑡, 𝑑𝑧)
)

where, 𝑑𝑊̂𝑖 = 𝑑𝑊𝑖 − 𝛽𝑖𝑑𝑡 for 𝑖 = 1, 2 and 𝑁̂(𝑑𝑡, 𝑑𝑧) = 𝑁̃(𝑑𝑡, 𝑑𝑧) − 𝛽3𝜈(𝑑𝑧)𝑑𝑡.
• For convenience, we have considered 𝛽𝑖 = 0 for all 𝑖 = 1, 2, 3 and as such, we shall operate a risk neutral setting while keeping

the usual notation without loss of generality.

4.2. Pricing

Suppose the function 𝐶(𝑡, 𝑆𝑡, 𝑌𝑡) describes the value of the European option with pay-off ℎ(𝑆𝑇 ) = (𝑆𝑇 −𝐾)+, then by the Markov
property we have that

𝐶(𝑡, 𝑆𝑡, 𝑌𝑡) = 𝐸𝑄
[

𝑒−𝑟(𝑇−𝑡)ℎ(𝑆𝑇 )|𝑡
]

. (6)

Assuming that the discounted price is a martingale under an equivalent martingale measure 𝑄 we can obtain the PIDE as shown
in the next proposition.

Proposition 2. Let 𝐶(𝑡, 𝑆𝑡, 𝑌𝑡) denote the price of the European option at time 𝑡 ∈ [0, 𝑇 ] for the model (1)–(2). Then the corresponding
PIDE for the underlying option price is given by

𝑟𝐶 = 𝜕𝑡𝐶 + 𝑆𝑡(𝜇𝑡 + 𝑎𝑡𝜆𝑡)𝜕𝑥𝐶 + 𝜇𝜕𝑦𝐶

+ 1
2
[

(𝜎𝑡 + 𝑏𝑡𝜆𝑡)2𝜕𝑥𝑥𝐶 + 2𝜌(𝜎𝑡 + 𝑏𝑡𝜆𝑡)𝜎𝜕𝑥𝑦𝐶 + 𝜎2𝜕𝑦𝑦𝐶
]

+ ∫R0

[

𝐶(𝑡, 𝑆 + (𝑐1𝜎𝑡 + 𝑐2𝑏𝑡𝜆𝑡)𝑧) − 𝐶(𝑡, 𝑆, 𝑌 )

− 𝜕𝑥𝐶(𝑡, 𝑆, 𝑌 )(𝑐1𝜎𝑡 + 𝑐2𝑏𝑡𝜆𝑡)𝑧
]

𝜈(𝑑𝑧), (7)

with terminal condition 𝐶(𝑇 , 𝑆𝑇 , 𝑌𝑇 ) = ℎ(𝑆𝑇 )

Proof. Suppose that there exists a smooth function 𝐶 ∈ 1,2,2([0, 𝑇 ] × (0,∞) × (0,∞)) such that 𝐶(𝑡, 𝑆𝑡, 𝑌𝑡) represents the price of
the European option at time 𝑡 ∈ [0, 𝑇 ] whose terminal condition is 𝐶(𝑇 , 𝑆𝑇 , 𝑌𝑇 ) = ℎ(𝑆𝑇 ). By the multi-dimensional Itô formula we
obtain

𝑑𝐶 = 𝜕𝑡𝐶𝑑𝑡 + 𝜕𝑥𝐶𝑑𝑆𝑐 + 𝜕𝑦𝐶𝑑𝑌

+ 1
2
[

𝜕𝑥𝑥𝐶𝑑⟨𝑆
𝑐 , 𝑆𝑐⟩ + 2𝜕𝑥𝑦𝐶𝑑⟨𝑆𝑐 , 𝑌 𝑐⟩ + 𝜕𝑦𝑦𝐶𝑑⟨𝑌 𝑐 , 𝑌 𝑐⟩

]

+ ∫R0

[

𝐶(𝑡, 𝑆 + 𝜎𝑡𝑧) − 𝐶(𝑡, 𝑆, 𝑌 ) − 𝜕𝑥𝐶(𝑡, 𝑆, 𝑌 )𝜎𝑡𝑧
]

𝜈(𝑑𝑧)𝑑𝑡

+ ∫R0

[

𝐶(𝑡, 𝑆 + 𝜎𝑡𝑧) − 𝐶(𝑡, 𝑆, 𝑌 )
]

𝑁̃(𝑑𝑡, 𝑑𝑧) (8)

Simplifying this satisfies

𝑑𝐶 =
(

𝜕𝑡𝐶 + 𝑟𝑆𝑡𝜕𝑥𝐶 + 𝜅(𝜃 − 𝑌𝑡)𝜕𝑦𝐶

+ 1
2
[

𝜎2𝑡 𝜕𝑥𝑥𝐶 + 2𝜌𝜉𝜎𝑡
√

𝑌𝑡𝜕𝑥𝑦𝐶 + 𝜉2𝑌𝑡𝜕𝑦𝑦𝐶
]

(9)

+ ∫R0

[

𝐶(𝑡, 𝑆 + 𝜎𝑡𝑧, 𝑌 ) − 𝐶(𝑡, 𝑆, 𝑌 ) − 𝜕𝑥𝐶(𝑡, 𝑆, 𝑌 )𝜎𝑡𝑧
]

𝜈(𝑑𝑧)
)

𝑑𝑡

+ 𝜎𝑡𝜕𝑥𝐶𝑑𝑊1 + 𝜉
√

𝑌𝑡𝜕𝑦𝐶𝑑𝑊2 + ∫R0

[

𝐶(𝑡, 𝑆 + 𝜎𝑡𝑧, 𝑌 ) − 𝐶(𝑡, 𝑆, 𝑌 )
]

𝑁̃(𝑑𝑡, 𝑑𝑧).

Also, the discounted price is a martingale. Hence, the terms in 𝑑𝑡 in the expression for 𝑑(𝑒−𝑟𝑡𝐶(𝑡, 𝑆𝑡, 𝑌𝑡)) are zero. The result
follows. □

4.3. Hedging

L𝑒́vy driven models are incomplete with the exception of Poisson processes and Brownian type processes (see for exam-
ple Schoutens, 2003). As a result, we do not have the classical techniques at our disposal. Tankov and Cont (2003) gives a description
of techniques of hedging like Merton’s approach, super-hedging, utility hedging, and quadratic hedging. However, we shall use the
Mean–Variance Hedging by Malliavin Calculus (MVHMC) as outlined in Benth et al. (2003) (martingale setting) and Föllmer and
Sondermann (1986) (Semi-martingale setting) which is an extension of the Quadratic Hedging strategies and Local Risk Minimizing
(LRM). This technique has found wide use with researchers such as Farnoosh and Bakhshmohammadlou (2019) and El-Khatib (2006).
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Definition 1. A predictable process 𝛹 (𝑡) = (𝜂(𝑡), 𝜉(𝑡)) is called admissible if

E

[ 𝑛
∑

𝑗=1
∫

𝑇

0
𝛹 2
𝑗 (𝑡)(

𝑛
∑

𝑗=𝑖
𝜎2𝑖,𝑗 + ∫R0

𝛾2𝑖,𝑗 (𝑡, 𝑧)𝜈(𝑑𝑧)𝑑𝑡)

]

< ∞.

Let the set of all F-admissible portfolios be denoted by F.
Next we will be using several tools from Malliavin calculus. A key concept for the computation of the hedge using Malliavin

calculus tools is called the General Clark–Ocone–Haussman Formula. It can be found in Solé et al. (2007).

Proposition 3. Let 𝑉𝑡 be a self financing portfolio of a claim 𝐶𝑇 = ℎ(𝑇 , 𝑆𝑇 ) ∈ 𝑇 given by

𝑉𝑡 = 𝜂𝑡𝐴𝑡 + 𝜉𝑡𝑆𝑡. (10)

The minimal variance portfolio (𝜂∗𝑡 , 𝜉
∗
𝑡 ) that minimizes the hedging error

min
𝜉∈F

E
[

(𝑉 𝜉
𝑇 − ℎ(𝑇 , 𝑆𝑇 ))2

]

= E
[

(𝑉 𝜉∗
𝑇 − ℎ(𝑇 , 𝑆𝑇 ))2

]

.

is given by

𝜉∗𝑡 =
𝐸[𝐷(1)

𝑡 ℎ(𝑆𝑇 )|𝑡] + 𝜌𝐸[𝐷
(2)
𝑡 ℎ(𝑆𝑇 )|𝑡] + ∫R0

𝛾(𝑧)𝐸[𝐷(3)
𝑡,𝑧ℎ(𝑆𝑇 )|𝑡]

𝑒−𝑟𝑡𝜎(𝑆𝑡, 𝑌𝑡) + ∫R0
𝑒−𝑟𝑡𝜎(𝑆𝑡, 𝑌𝑡)𝛾2(𝑧)𝜈(𝑑𝑧)

(11)

𝜂∗𝑡 =
𝑉 − 𝜉𝑡𝑆𝑡
𝐴𝑡

(12)

Proof. Let 𝑉 = 𝑒−𝑟𝑡𝑉 be the discounted portfolio satisfying

𝑉𝑇 = 𝑉0 + ∫

𝑇

0
𝜉𝑡𝑒

−𝑟𝑡𝜎𝑡𝑑𝑊1 + ∫

𝑇

0 ∫R0

𝜉𝑡𝑒
−𝑟𝑡𝜎𝑡𝑧𝑁̃(𝑑𝑡, 𝑑𝑧).

where 𝜎𝑡 = 𝑆𝛼𝑡
√

𝑌𝑡 as before. Also, by the Clark–Ocone formula we find that

ℎ(𝑆𝑇 ) = 𝐸[ℎ(𝑆𝑇 )] +
∑

𝑖=1,2
∫

𝑇

0
𝐸[𝐷(𝑖)

𝑡 ℎ(𝑆𝑇 )|𝑡]𝑑𝑊
(𝑖)
𝑡

+ ∫

𝑇

0 ∫R0

𝐸[𝐷(3)
𝑡,𝑧ℎ(𝑆𝑇 )|𝑡]𝑁̃(𝑑𝑡, 𝑑𝑧) (13)

Using the isometry and taking the derivative with respect to 𝜉𝑡 the result follows. □

5. Price sensitivities

As has been agreed in the literature, any financial trading position built on financial instruments has five price sensitivities used
principally for reducing the risk. Price sensitivities, or Greeks, as they are sometimes known, are measures of the responsiveness of
the risk neutral option price to the change of different parameters. The main Greeks are called Delta, Gamma, Vega, Theta, and Rho.
While Delta provides the change of the trading position with respect to the price of the underlying asset under the ceteris paribus
condition, Gamma is the variation of the Delta for a portfolio of options with respect to a marginal change in the underlying asset
price. On the other hand, Vega, Theta, and Rho capture the change of the trading position with regard to an infinitesimal change
in the volatility, or in the time to expiry, or in the risk-free rate respectively.

There are several approaches to the price sensitivities in literature. Classical techniques involve the finite difference approach
which can be considered as a biased procedure and the Monte Carlo method which involves a high number of simulations and
hence has a slow convergence rate according to Davis and Johansson (2006). Another method is pathwise method which requires
a differentiable payoff function and is not good for complicated options like barrier or digital options.

Alternatively, Malliavin approach is especially convenient in calculating the price sensitivities mainly if the financial derivative
pricing problem does not have a closed form solution. That is, the Malliavin calculus allows to transform the differentiation into
a product by a weight and thus deliver an unbiased measure of each price sensitivity. Moreover, it is in general more efficient in
terms of convergence.

Next, we utilize the Malliavin Calculus approach which has been found to reduce the number of computations needed for the
estimates to be made and hence has a much faster convergence rate. It has found wide applications depending on the types of models
to be analyzed. Davis and Johansson (2006) and El-Khatib and Privault (2004) are some examples in literature of application of
Malliavin calculus in the computation of Greeks for processes driven by jumps.

Below we define the n-dimensional stochastic process 𝑋𝑡 in a general setting as follows

𝑑𝑋𝑡 = 𝑏
(

𝑡, 𝑋𝑡−
)

𝑑𝑡 + 𝜎
(

𝑡, 𝑋𝑡−
)

𝑑𝑊𝑡 + ∫R0

𝛾
(

𝑡, 𝑧,𝑋𝑡−
)

𝑁̃(𝑑𝑧, 𝑑𝑡)

𝑋0 = 𝑥
(14)
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where 𝑥 ∈ R𝑛, {𝑊𝑡}𝑡∈[0,𝑇 ] is a d-dimensional Wiener process, 𝑁̃ is the compensated Poisson random measure. We assume that
𝑏 ∶ R × R𝑛 → R𝑛, 𝜎R × R𝑛 → R𝑛 × R𝑑 , and 𝛾 ∶ R × R × R𝑛 → R𝑛 × R are continuously differentiable with bounded derivatives and
satisfy the following linear growth condition:

‖𝑏(𝑡, 𝑥)‖2 + ‖𝜎(𝑡, 𝑥)‖2 + ∫R0

‖𝛾(𝑡, 𝑧, 𝑥)‖2𝜈(𝑑𝑧) ≤ 𝐶
(

1 + ‖𝑥‖2
)

(15)

for each 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ R𝑛, 𝐶 is a positive constant and

‖𝛾(𝑡, 𝑧, 𝑥) − 𝛾(𝑡, 𝑧, 𝑦)‖ ≤ 𝐷|𝜌(𝑧)|‖𝑥 − 𝑦‖, (16)

where 𝐷 is a constant. In the process of computing sensitivities, the so called first variation process 𝑉𝑡 = ∇𝑥𝑋𝑡 will be commonly
seen where 𝑉𝑡 satisfies

𝑑𝑉𝑡 = 𝑏′
(

𝑡, 𝑋𝑡−
)

𝑉𝑡−𝑑𝑡 + 𝜎′𝑖
(

𝑡, 𝑋𝑡−
)

𝑉𝑡−𝑑𝑊
𝑖
𝑖 + ∫R0

𝛾 ′
(

𝑡, 𝑧,𝑋𝑡−
)

𝑉𝑡−𝑁̄(𝑑𝑧, 𝑑𝑡)

𝑉0 = 𝐼
(17)

and prime denotes the derivative with respect to 𝑋 and 𝐼 is the identity matrix.

Remark 2.

• The derivative of 𝑋𝑡 in the Wiener direction is

𝐷(1)
𝑠 𝑋𝑡 = 𝑉𝑡𝑉

−1
𝑠 𝜎

(

𝑋𝑐
𝑠
)

1{𝑠⩽𝑡} (18)

for 𝑠 ≤ 𝑡
• From here onwards, in order to be as general as possible, we will assume that the payoff function is given as ℎ =
ℎ
(

𝑋𝑡1 ,… , 𝑋𝑡𝑚

)

. Hence the price of the claim would be given by

𝑢 = E[ℎ
(

𝑋𝑡1 ,… , 𝑋𝑡𝑚

)

]. (19)

• We will assume that matrix 𝜎 is elliptic. That is, there exists a constant 𝑘 such that for all 𝑦, 𝑥 ∈ R𝑛

𝑦𝑇 𝜎𝑇 (𝑡, 𝑥)𝜎(𝑡, 𝑥)𝑦 ≥ 𝑘|𝑦|2. (20)

5.1. Variations in the SDE

In order to compute the Greeks we need establish several propositions as is described in Petrou (2008) and Davis and Johansson
(2006)

5.1.1. Variation in the drift coefficient
We desire to evaluate the sensitivity of the option to variations in the drift coefficient. Thus for some scalar 𝜖 and some bounded

function 𝜁 we need to consider the perturbed process 𝑋𝜖
𝑡 defined as

𝑑𝑋𝜖
𝑡 =

(

𝑏(𝑡, 𝑋𝜖
𝑡 ) + 𝜖𝜁 (𝑡, 𝑋

𝜖
𝑡 )
)

𝑑𝑡 + 𝜎(𝑡, 𝑋𝜖
𝑡 )𝑑𝑊𝑡 + ∫R0

𝛾
(

𝑡, 𝑧,𝑋𝜖
𝑡−
)

𝑁̃(𝑑𝑧, 𝑑𝑡)

𝑋𝜖
0 = 𝑥.

Proposition 4. Let 𝜎 be a uniformly elliptic matrix and denote 𝑢𝜖(𝑥) as

𝑢𝜖(𝑥) = E[ℎ(𝑋𝜖
𝑇 )].

Then
𝜕𝑢𝜖(𝑥)
𝜕𝜖

|

|

|

|𝜖=0
= E

[

𝜙
(

𝑋𝑇
)

∫

𝑇

0

(

𝜎−1
(

𝑡, 𝑋𝑡−
)

𝜁
(

𝑡, 𝑋𝑡−
))𝑇 𝑑𝑊𝑡

]

(21)

5.1.2. Variation in the initial condition
In the sensitivity analysis of options, we are interested in the effect of the initial condition and this includes delta for example.

First define the following set of square integrable functions:

𝛤 =
{

𝜁 ∈ 𝐿2([0, 𝑇 )) ∶ ∫

𝑡𝑖

0
𝜁 (𝑡)d𝑡 = 1,∀𝑖 = 1,… , 𝑛

}

(22)

Thus we state the following proposition:

Proposition 5. Assume that the diffusion matrix 𝜎 is uniformly elliptic. Then for all 𝜁 ∈ 𝛤

(∇𝑢(𝑥))𝑇 = 𝐸
[

𝜙
(

𝑋𝑡1 ,… , 𝑋𝑡𝑛

)

∫

𝑇

0
𝜁 (𝑡)

(

𝜎−1
(

𝑡, 𝑋𝑡−
)

𝑌𝑡−
)𝑇 𝑑𝑊𝑡

]

(23)
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5.1.3. Variation in the diffusion coefficient
In order to investigate the impact of the diffusion coefficient we consider the following perturbed process

𝑑𝑋𝜖
𝑡 = 𝑏(𝑡, 𝑋𝜖

𝑡 )𝑑𝑡 +
(

𝜎(𝑡, 𝑋𝜖
𝑡− ) + 𝜖𝜁 (𝑡, 𝑋

𝜖
𝑡 )
)

𝑑𝑊𝑡 + ∫R0

𝛾
(

𝑡, 𝑧,𝑋𝜖
𝑡−
)

𝑁̃(𝑑𝑧, 𝑑𝑡)

𝑋𝜖
0 = 𝑥

where 𝜖 is a scalar and 𝜁 is a continuously differentiable function with bounded gradient. Define also the variation process 𝑍𝜖
𝑡 = 𝜕𝑋𝜖𝑡

𝜕𝜖
as follows:

𝑑𝑍𝜖
𝑡 = 𝑏′

(

𝑡, 𝑋𝜖
𝑡−
)

𝑍𝜖
𝑡−𝑑𝑡 + 𝜎

′ (𝑡, 𝑋𝜖
𝑡−
)

𝑍𝜖
𝑡−𝑑𝑊𝑡 + 𝜁 (𝑡, 𝑋𝜖

𝑡 )𝑑𝑊𝑡

+ ∫R0

𝛾 ′
(

𝑡, 𝑧,𝑋𝜖
𝑡−
)

𝑍𝜖
𝑡− 𝜇̃(𝑑𝑧, 𝑑𝑡)

𝑍𝜖
0 = 0

(24)

In this context we need to define the following set

𝛤𝑛 =

{

𝜓 ∈ 𝐿2([0, 𝑇 )) ∶ ∫

𝑡𝑖

𝑡𝑖−1
𝜓(𝑡)𝑑𝑡 = 1,∀𝑖 = 1,… , 𝑛

}

(25)

Proposition 6. Assume that the diffusion matrix 𝜎 is uniformly elliptic, and that for 𝛽𝑡𝑖 = 𝑉𝑡𝑖𝑍𝑡𝑖 , 𝑖 = 1,… , 𝑛 we have 𝜎−1(𝑡, 𝑋𝑡−1 )𝑌𝑡𝛽𝑡 ∈
𝐷𝑜𝑚𝛿(1) for all 𝑡 ∈ [0, 𝑇 ] We denote 𝑢𝜖(𝑥) as

𝑢𝜖(𝑥) = E[ℎ(𝑋𝜖
𝑡 )].

Then for all 𝜓 ∈ 𝛤𝑛
𝜕𝑢𝜖(𝑥)
𝜕𝜖

|

|

|

|𝜖=0
= 𝐸

[

𝜙
(

𝑋𝑡1 ,… , 𝑋𝑡𝑛

)

𝛿(1)
(

𝜎−1
(

𝑡, 𝑋𝑡−
)

𝑉𝑡−𝛽𝑡
)

]

(26)

where

𝛽𝑡 =
𝑛
∑

𝑖=1
𝜓(𝑡)

(

𝛽𝑡𝑖 − 𝛽𝑡𝑖−1
)

1{𝑡𝑖≤𝑡<𝑡𝑖} (27)

for 𝑡0 = 0. Moreover, if 𝛽 ∈ D(0) then

𝛿(1)
(

𝜎−1
(

𝑡, 𝑋𝑡−
)

𝑉𝑡−𝛽𝑡
)

=
𝑛
∑

𝑖=1

{

𝛽𝑇𝑡𝑖 ∫

𝑡𝑖

𝑡𝑖−1
𝜓(𝑡)

(

𝜎−1
(

𝑡, 𝑋𝑡−
)

𝑉𝑡−
)𝑇 𝑑𝑊𝑡

− ∫

𝑡𝑖

𝑡𝑖−1
𝜓(𝑡) Tr

((

𝐷(0)
𝑡 𝛽𝑡𝑖

)

𝜎−1
(

𝑡, 𝑋𝑡−
)

𝑉𝑡−
)

𝑑𝑡

−∫

𝑡𝑖

𝑡𝑖−1
𝜓(𝑡)

(

𝜎−1
(

𝑡, 𝑋𝑡−
)

𝑉𝑡−𝛽𝑡𝑖−1
)𝑇

𝑑𝑊𝑡

}

(28)

5.2. Option greeks

For the purposes of the following discussion we shall write the model (1)–(2) in a general form and compute the Greeks.

Proposition 7. Let the model (1)–(2) be given as:

𝑑𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡)𝑑𝑊𝑡 + ∫R0

𝛾
(

𝑡, 𝑧,𝑋𝑡−
)

𝑁̃(𝑑𝑧, 𝑑𝑡) (29)

where 𝑋𝑡 =
[

𝑆𝑡
𝑌𝑡

]

, 𝑏(𝑡, 𝑋𝑡) =
[

𝑟𝑆𝑡
𝜅(𝜃 − 𝑌𝑡)

]

, 𝜎(𝑡, 𝑋𝑡) =

[

√

𝑌𝑡𝑆𝛼𝑡 0
𝜉𝜌
√

𝑌𝑡 𝜉
√

1 − 𝜌2
√

𝑌𝑡

]

and 𝛾
(

𝑡, 𝑧,𝑋𝑡−
)

=
[

𝑧
√

𝑌𝑡−𝑆𝛼𝑡−
0

]

. Then the first

variational process 𝑉 is given by

𝑑𝑉𝑡 = 𝑏′
(

𝑡, 𝑋𝑡−
)

𝑉𝑡−𝑑𝑡 + 𝜎′1
(

𝑡, 𝑋𝑡−
)

𝑉𝑡−𝑑𝑊
(1)
𝑡 + 𝜎′2

(

𝑡, 𝑋𝑡−
)

𝑉𝑡−𝑑𝑊
(2)
𝑡

+ ∫R0

𝛾 ′
(

𝑡, 𝑧,𝑋𝑡−
)

𝑉𝑡− 𝜇̃(𝑑𝑧, 𝑑𝑡)
(30)

where , 𝑏′ =
[

1 0
0 −𝜅

]

, 𝜎′1 =
⎡

⎢

⎢

⎣

𝛼
√

𝑌𝑡𝑆𝛼−1𝑡
𝑆𝛼𝑡

2
√

𝑌 𝑡
0 𝜉𝜌

2
√

𝑌𝑡

⎤

⎥

⎥

⎦

, 𝜎′2 =
⎡

⎢

⎢

⎣

0 0

0 𝜉
√

1−𝜌2

2
√

𝑌𝑡

⎤

⎥

⎥

⎦

, and 𝛾 ′ =
[

𝛼𝑧
√

𝑌𝑡𝑆𝛼−1𝑡
𝑧𝑆𝛼𝑡
2
√

𝑌𝑡
0 0

]

. In particular, we have

𝑑𝑉11(𝑡) = 𝑟𝑉11(𝑡−)𝑑𝑡 + 𝛼
√

𝑌𝑡𝑆
𝛼−1
𝑡 𝑉11(𝑡−)𝑑𝑊

(1)
𝑡

+ 𝛼
√

𝑌𝑡𝑆
𝛼−1
𝑡 ∫R0

𝑧𝑉11(𝑡−)𝑁̃(𝑑𝑡, 𝑑𝑧) (31)
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𝑑𝑉12(𝑡) = 𝑟𝑉12(𝑡−)𝑑𝑡 +

(

𝛼
√

𝑌𝑡𝑆
𝛼−1
𝑡 𝑉11(𝑡−) +

𝑆𝛼𝑡
2
√

𝑌 𝑡
𝑉22(𝑡−)

)

𝑑𝑊 (1)
𝑡

+

(

𝛼
√

𝑌𝑡𝑆
𝛼−1
𝑡 𝑉11(𝑡−) +

𝑆𝛼𝑡
2
√

𝑌 𝑡
𝑉22(𝑡−)

)

∫R0

𝑧𝑁̃(𝑑𝑡, 𝑑𝑧) (32)

𝑑𝑉22(𝑡) = −𝜅𝑉22(𝑡)𝑑𝑡 +
𝜉𝜌

2
√

𝑌𝑡
𝑉22(𝑡)𝑑𝑊

(1)
𝑡 +

𝜉
√

1 − 𝜌2

2
√

𝑌
𝑉22(𝑡)𝑑𝑊

(2)
𝑡 (33)

where 𝑉21 = 0 since 𝑌𝑡 does not depend on 𝑆𝑡, 𝑉11(0) = 1, 𝑉22(0) = 1, and 𝑉12(0) = 0

Proposition 8. As a result the following Greeks are defined:

• Delta:

𝛥 = E

[

𝑒−𝑟𝑇 ℎ(𝑆𝑇 )
1
𝑇

(

∫

𝑇

0

𝑉11(𝑢)
√

𝑌𝑢𝑆𝛼𝑢
𝑑𝑊 (1)

𝑢 −
𝜌

√

1 − 𝜌2 ∫

𝑇

0

𝑉11(𝑢)
√

𝑌𝑢𝑆𝛼𝑢
𝑑𝑊 (2)

𝑢

)]

• Vega(𝑣0):

𝛥 = E
[

𝑒−𝑟𝑇 ℎ(𝑆𝑇 )
1
𝑇

(

∫

𝑇

0

𝑉12(𝑢)
√

𝑌𝑢𝑆𝛼𝑢
𝑑𝑊 (1)

𝑢

+ ∫

𝑇

0

(

𝑉22(𝑢)

𝜉
√

1 − 𝜌2
√

𝑌𝑢
−

𝜌𝑉12(𝑢)
√

1 − 𝜌2
√

𝑌𝑢𝑆𝛼𝑢

)

𝑑𝑊 (2)
𝑢

)]

• Rho:

𝑅ℎ𝑜 = E

[

𝑒−𝑟𝑇 ℎ(𝑆𝑇 )

(

∫

𝑇

0

𝑆1−𝛼
𝑢

√

𝑌𝑢
𝑑𝑊 (1)

𝑢 − ∫

𝑇

0

𝜌
√

1 − 𝜌2
𝑆−𝛼
𝑢

√

𝑌𝑢
𝑑𝑊 (2)

𝑢

)]

Proof. Proof of Delta and Vega(𝑣0):
By the definition of 𝜎 we find that

𝜎−1 =
⎡

⎢

⎢

⎣

1
√

𝑌 𝑆𝛼
0

−𝜌
√

1−𝜌2
√

𝑌 𝑆𝛼
1

𝜉
√

1−𝜌2
√

𝑌 𝑆𝛼

⎤

⎥

⎥

⎦

Thus, post-multiplying by 𝑉 we find that

𝜎−1𝑉 =
⎡

⎢

⎢

⎣

𝑉11
√

𝑌 𝑆𝛼
𝑉12

√

𝑌 𝑆𝛼
−𝜌𝑉11

√

1−𝜌2
√

𝑌 𝑆𝛼
𝑉22

𝜉
√

1−𝜌2
√

𝑌
− 𝜌𝑉12

√

1−𝜌2
√

𝑌 𝑆𝛼

⎤

⎥

⎥

⎦

It then follows that

𝜁 (𝑡)(𝜎−1𝑉 )𝑇 𝑑𝑊 = 𝜁 (𝑡)

⎡

⎢

⎢

⎢

⎣

𝑉11
√

𝑌 𝑆𝛼
𝑑𝑊 (1) − 𝜌𝑉11

√

1−𝜌2
√

𝑌 𝑆𝛼
𝑑𝑊 (2)

𝑉12
√

𝑌 𝑆𝛼
𝑑𝑊 (1) +

(

𝑉22
𝜉
√

1−𝜌2
√

𝑌
− 𝜌𝑉12

√

1−𝜌2
√

𝑌 𝑆𝛼

)

𝑑𝑊 (2)

⎤

⎥

⎥

⎥

⎦

.

Taking 𝜁 = 1
𝑇 and applying Proposition 5 we obtain Delta from the first row and Vega(𝑣0) from the second row and are done.

Proof of Rho:
Letting 𝜁 =

[

𝑥1
0

]

we find that

(

𝜎−1𝜁
)

𝑑𝑊 =
𝑆1−𝛼
𝑢

√

𝑌𝑢
𝑑𝑊 (0) −

𝜌𝑆1−𝛼
√

−𝜌2
𝑑𝑊 (2).

So applying Proposition 6 the result follows. □

6. Numerical computations

Monte-Carlo methods help in the simulation of the asset price and computation of the option price. The asset price and its
volatility are approximated using a Euler–Maruyama scheme where we assumed 𝑇 = 1 and 𝛥𝑡 = 𝑇 ∕1000. The volatility process 𝑌
can have negative values with positive probability if the Feller condition, 2𝜅𝜃 > 𝜉2 is not satisfied. However, as outlined in Lord
et al. (2010), negative values will routinely arise due to the discretization. The full truncation method is known to perform better at
handling this challenge. However, due to the 𝑌 −1∕2 term we have to consider reflection as an alternative in order to avoid division
by zero.
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Table 3
Price and sensitivities.

Value 95% Confidence interval

Lower lim. Upper lim.

Price 102.30283 102.14932 102.45633
Delta 0.60148 0.59407 0.60890
Rho 459.52607 453.55302 465.49912
Vega(𝑣0) 384.28123 371.59014 396.97232

Fig. 5. Option Delta and Vega (𝑉0).

Fig. 6. Option Rho. (a) Malliavin computation against number of trials, (b) Comparison with the Finite Difference method.

5000 computations were obtained with each one requiring 1000 realizations of the underlying asset price. We used a 64-bit,
Intel®CoreTM i7-7600 CPU 2.80 GHz computer with 16 GB RAM running on Windows 10 Pro. Table 3 gives the Monte Carlo price,
Option Delta, rho, and Vega (Sensitivity to initial volatility 𝑣0) and their 95% confidence intervals for maturity 𝑇 = 0.25 and interest
rate 𝑟 = 0.01. Figs. 5(a), 5(b), and 6(b) and describe the sensitivities as the number of trials increase (see Fig. 7).

7. Conclusion

Financial derivatives are very important in modern risk management. Accurate evaluation of these products is subject to the
selected underlying asset price model. In this study we considered a hybrid Heston–CEV model driven by a finite activity Lévy
process. The suggested model offers an asset price prediction model that encompasses two of the most popular asset prices prediction
model the CEV and Heston models and add jumps. We showed empirically and analyzing some statistical properties that the
suggested model has better characteristics in contrast with CEV, Heston, CEV–Heston and Bates models.

Equivalent martingale measures were obtained in order to satisfy the first Fundamental Theorem of Asset Pricing. The price of
the option is determined using Monte Carlo methods for some elasticity values and we realize that the price is higher due to the
added uncertainty from the jump process. Hence, both the price and a confidence interval were provided. Also, we obtained the
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Fig. 7. Comparing Monte Carlo and Malliavin computations of Delta.

Malliavin sensitivities as well as their numerical values. The benefit of this technique is that it is unbiased and it necessitates less
computational time compared to other existing methods. Graphs were provided to illustrate some quantities of interest.

In summary, our model offers a more precise option price in comparison with the Heston or CEV option prices alone. Moreover,
the price sensitivities computed by the Malliavin calculus contribute to enhanced risk management.
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Appendix. Malliavin calculus

We begin by presenting notation as given in Petrou (2008) in a manner that suits our needs:

𝑈 𝑙 =

{

[0, 𝑇 ] when 𝑙 = 1, 2
[0, 𝑇 ] × R when 𝑙 = 3

𝑑𝑄𝑙 =

{

𝑑𝑊𝑖 when 𝑙 = 1, 2
𝑁̃(., .) when 𝑙 = 3
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With slight abuse of notation we are taking that 𝑑𝑄3 = 𝑁̃(., .). Also we have that,

𝑑⟨𝑄𝑙⟩ =

{

𝑑𝜆 when 𝑙 = 1, 2
𝑑𝜆 × 𝑑𝜈 when 𝑙 = 3

where 𝑑𝜆 is the Lebesgue measure. Additionally,

𝐺𝑗1 ,…,𝑗𝑛 =
{

(𝑢𝑗11 ,… , 𝑢𝑗𝑛𝑛 ) ∈ 𝛱𝑛
𝑖=1𝑈𝑗𝑖 ∶ 0 < 𝑡1 < ⋯ < 𝑡𝑛 < 𝑇

}

,

where 𝑗𝑖 = 1, 2, or 3 for 𝑖 = 1, 2,… , 𝑛 and

𝑢𝑙𝑘 =

{

𝑡𝑘 when 𝑙 = 1, 2
(𝑡𝑘, 𝑥) when 𝑙 = 3

Given a deterministic function, 𝑔𝑗1 ,…,𝑗𝑛 ∈ 𝐿2(𝐺𝑗1 ,…,𝑗𝑛 ), in this framework we define the n-fold iterated integral as follows:

𝐽 (𝑗1⋯𝑗𝑛)
𝑛 (𝑔𝑗1 ,…,𝑗𝑛 ) = ∫𝐺𝑗1 ,…,𝑗𝑛

𝑔𝑗1⋅𝑗𝑛 (𝑢
𝑗1
1 ,… , 𝑢𝑗𝑛𝑛 )𝑑𝑄𝑗1 (𝑢

𝑗1
1 ),… , 𝑑𝑄𝑗1 (𝑢

𝑗𝑛
𝑛 ) (A.1)

Theorem 1 (Chaotic Representation Property). Given a random variable 𝐹 ∈ 𝐿2(𝑇 ,P), there exists a unique sequence of {𝑔𝑗1 ,…,𝑗𝑛}
∞
𝑛=0 ⊂

𝐿2(𝐺𝑗1 ,…,𝑗𝑛 ) such that

𝐹 = 𝐸[𝐹 ] +
∞
∑

𝑛=1

∑

𝑗1 ,…,𝑗𝑛=1,2,3
𝐽 (𝑗1 ,…,𝑗𝑛)
𝑛 (𝑔𝑗1 ,…,𝑗𝑛 ). (A.2)

Furthermore, we have the isometry

‖𝐹‖2
𝐿2(𝑃 )

= 𝐸[𝐹 ]2 +
∞
∑

𝑛=1

∑

𝑗1 ,…,𝑗𝑛=0,1
‖𝐽 (𝑗1 ,…,𝑗𝑛)

𝑛 (𝑔𝑗1 ,…,𝑗𝑛 )‖
2
𝐿2(𝐺𝑗1 ,…,𝑗𝑛 )

At this point we would like to introduce the directional derivatives with respect to the two dimensional Wiener process and
the Poisson random measure. We will use the notation 𝐺𝑘𝑗1 ,…,𝑗𝑛

presented in Petrou (2008) which is 𝐺𝑘𝑗1 ,…,𝑗𝑛
with the 𝑘th element

deleted. In particular,

𝐺𝑘𝑗1 ,…,𝑗𝑛
=
{

(𝑢𝑗11 ,… , 𝑢𝑗𝑘−1𝑘−1 , 𝑢
𝑗𝑘+1
𝑘+1 ,… , 𝑢𝑗𝑛𝑛 ) ∈ 𝛱𝑛

𝑖=1𝑈𝑗𝑖 ∶ 0 < 𝑡1 <⋯ < 𝑡𝑛 < 𝑇
}

,

Definition 2 (Directional Derivative). Let 𝑔𝑗1 ,…,𝑗𝑛 ∈ 𝐿2(𝐺𝑗1 ,…,𝑗𝑛 ) and 𝑙 = 1, 2, 3. Then

𝐷(𝑙)
𝑢𝑙
𝐽 (𝑗1 ,…,𝑗𝑛)
𝑛 (𝑔𝑗1 ,…,𝑗𝑛 ) =
∑

𝑗1 ,…,𝑗𝑛=1,2,3
1{𝑗𝑖=𝑙}𝐽

(𝑗1 ,…,𝑗𝑖 ,…,𝑗𝑛)
𝑛−1

(

𝑔𝑗1 ,…,𝑗𝑛 (⋯ , 𝑢𝑙 ,…)1𝐺𝑖𝑗1 ,…,𝑗𝑛
(𝑡)

)

.

is called the derivative of 𝐽 (𝑗1 ,…,𝑗𝑛)
𝑛 (𝑔𝑗1 ,…,𝑗𝑛 ) in the 𝑙th direction.

Remark 3.

• The above Definition 2 inspires the definition of a corresponding space of variables, D𝑙 containing all random variables that
are differentiable in the 𝑙th direction which is given below. The respective derivative of such random variables is given as 𝐷(𝑙)

for any 𝑙 = 1, 2, 3.
• Moreover, the directional derivatives 𝐷𝑙 actually represent the following: 𝐷(1) = 𝐷𝑊1 , 𝐷(2) = 𝐷𝑊2 and 𝐷(3) = 𝐷𝑁

1. Let D𝑙 be the space of all random variables in 𝐿2(𝛺) that are differentiable in the 𝑙th direction, then

D𝑙 =
{

𝐹 ∈ 𝐿2(𝛺), 𝐹 = 𝐸[𝐹 ] +
∞
∑

𝑛=1

∑

𝑗1 ,…,𝑗𝑛=1,2,3
𝐽 (𝑗1 ,…,𝑗𝑛)
𝑛 (𝑔𝑗1 ,…,𝑗𝑛 ) ∶

∞
∑

𝑛=1

∑

𝑗1 ,…,𝑗𝑛=0,1

𝑛
∑

𝑖=1
1{𝑗𝑖=𝑙} ∫𝑈𝑖

‖𝑔𝑗1 ,…,𝑗𝑛‖𝐿2(𝐺𝑗1 ,…,𝑗𝑛 )
𝑑⟨𝑄𝑙⟩(𝑢𝑙) <∞

}

2. Let 𝐹 ∈ D𝑙. Then the derivative in the 𝑙th direction is given as

𝐷(𝑙)
𝑢𝑙
𝐹 =

∞
∑

𝑛=0

∑

𝑗1 ,…,𝑗𝑛=1,2,3

𝑛
∑

𝑖=
1{𝑗𝑖=𝑙}𝐽

(𝑗1 ,…,𝑗𝑖 ,…,𝑗𝑛)
𝑛−1

(

𝑔𝑗1 ,…,𝑗𝑛 (⋯ , 𝑢𝑙 ,…)1𝐺𝑖𝑗1 ,…,𝑗𝑛
(𝑡)

)

.
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Theorem 2 (General Clark–Ocone-Haussman Formula). Let 𝐹 ∈ D(1) ∩ D(2) ∩ D(3) Then,

𝐹 = 𝐸[𝐹 ] + ∫

𝑇

0

∑

𝑖=1,2
𝐸[𝐷(𝑖)

𝑡 𝐹 |𝑡− ]𝑑𝑊
(𝑖)
𝑡 + ∫

𝑇

0 ∫R0

𝐸[𝐷(3)
(𝑡,𝑧)𝐹 |𝑡− ]𝑁̃(𝑑𝑡, 𝑑𝑧) (A.3)

Lastly, it is necessary to formally define the adjoint operator for the derivatives given above known as Skorohod integral as given
in Petrou (2008) in definition 3 and proposition 3.

Definition 3 (The Skorohod Integral). Let 𝛿(𝑙) be the adjoint operator of the directional derivative 𝐷(𝑙) where 𝑙 = 1, 2, 3. The operator
maps 𝐿2(𝛺 × 𝑈𝑙) to 𝐿2(𝛺). The set of processes ℎ ∈ 𝐿2(𝛺 × 𝑈𝑙) such that

|E
[

∫𝑈𝑙
(𝐷(𝑙)

𝑢 )ℎ𝑡𝑑⟨𝑄𝑙⟩
]

| ≤ 𝑐‖𝐹‖ (A.4)

for all 𝐹 ∈ D(𝑙), is the domain of 𝛿(𝑙) and is denoted 𝐷𝑜𝑚𝛿(𝑙). For every ℎ ∈ 𝐷𝑜𝑚𝛿(𝑙) we can define the Skorohod integral in the 𝑙th
direction 𝛿(𝑙)(ℎ) for which

E
[

∫𝑈𝑙
(𝐷(𝑙)

𝑢 )ℎ𝑡𝑑⟨𝑄𝑙⟩
]

= E[𝐹𝛿(𝑙)(ℎ)] (A.5)

Moreover, given ℎ(𝑢) ∈ 𝐿2(𝑈𝑙) and 𝐹 ∈ 𝐿2(𝛺) with chaos expansion (A.2). Then the 𝑙th directional Skorohod integral is

𝛿(𝑙)(𝐹ℎ) = ∫𝑈𝑙
𝐸[𝐹 ]ℎ(𝑢1)𝑑𝑄𝑙(𝑢1) (A.6)

+
∞
∑

𝑛=1

∑

𝑗1 ,…,𝑗𝑛=1,2,3

∞
∑

𝑘=1
∫𝑈𝑗𝑛

⋯∫𝑈𝑗𝑘+1
∫𝑈𝑙 ∫𝑈𝑗𝑘

∫𝑈𝑗1
𝐽 (𝑗1 ,…,𝑗𝑛)
𝑛 (𝑔𝑗1 ,…,𝑗𝑛 )ℎ(𝑢)I𝐺𝑗1 ,…,𝑗𝑛

× I{𝑡𝑘<𝑡<𝑡𝑘+1}𝑑𝑄𝑗1 (𝑢
𝑗1
1 )… 𝑑𝑄𝑗𝑘 (𝑢

𝑗𝑘
𝑘 )𝑑𝑄𝑙(𝑢1)𝑑𝑄𝑗𝑘+1 (𝑢

𝑗𝑘+1
𝑘+1 … 𝑑𝑄𝑗𝑛 (𝑢

𝑗𝑛
𝑛 )) (A.7)

if the infinite sum converges in 𝐿2(𝛺)
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Abstract
Under a two-factor stochastic volatility jump (2FSVJ) model we obtain an exact 
decomposition formula for a plain vanilla option price and a second-order approxi-
mation of this formula, using Itô calculus techniques. The 2FSVJ model is a general-
ization of several models described in the literature such as Heston (Rev Financ Stud 
6(2):327–343, 1993); Bates (Rev Financ Stud 9(1):69–107, 1996); Kou (Manag Sci 
48(8):1086–1101, 2002); Christoffersen et al. (Manag Sci 55(12):1914–1932, 2009) 
models. Thus, the aim of this study is to extend some approximate pricing formu-
las described in the literature, like formulas in Alòs (Finance Stoch 16(3):403–422, 
2012); Merino et al. (Int J Theor Appl Finance 21(08):1850052, 2018); Gulisashvili 
et  al. (J Comput Finance 24(1), 2020), to pricing under the more general 2FSVJ 
model. Moreover, we provide numerical illustrations of our pricing method and its 
accuracy and computational advantage under double exponential and log-normal 
jumps. Numerically, our pricing method performs very well compared to the Fourier 
integral method. The performance is ideal for out-of-the-money options as well as 
for short maturities.
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1  Introduction

In the quest to enhance option pricing models in order to reproduce the volatility 
smile or smirk observed in derivative markets, researchers like Heston (1993) 
and some others, came up with stochastic volatility models to cater this styl-
ized fact. Recall that in a stochastic volatility model, the price process under a 
risk-neutral measure is assumed to depend not on constant volatility as in the 
Black–Scholes model, but on a stochastic volatility described by a second sto-
chastic differential equation driven by a Brownian motion correlated with the 
Brownian motion that drives the price process. Later, in order to improve them, 
jumps following a compound Poisson process were added to the price process, 
as in Bates (1996a, b). Currently, Heston and Bates models (see Heston (1993) 
and Bates (1996a) respectively) are standard models regularly used in the finan-
cial industry. Bates model is the Heston model with the addition of jumps in 
the price process described by a compound Poisson process with normal ampli-
tudes. In Bates (2000), in order to overcome some inconsistencies of Heston and 
Bates models in trying to generate volatility surfaces similar to those observed 
in derivative markets, a second factor was added to the volatility equation, mod-
eling separately the long-term and the short-term volatility evolution. This idea 
was later developed by several authors, see for example Christoffersen et  al. 
(2009) and Andersen and Benzoni (2010).

Certainly, most of previous models, have the advantage of having exact semi-
closed pricing formulas, however, they involve numerical integration which is 
computationally expensive especially when calibrating models. See the recent 
papers Orzechowski (2020), Deng (2020), and Orzechowski (2021) for discus-
sions about the efficiency of different methods to compute approximately these 
formulas. The last two papers cover the 2FSVJ model and in fact, Deng (2020) 
extends the 2FSVJ model including jumps in the volatility equations.

In general, the need for fast option pricing has driven, during the last years, 
the research of closed approximate formulas. A different line in this direction is 
the one started by Alòs (2012), who derived an exact decomposition of an option 
price in terms of volatility and correlation in the case of the Heston model, that 
can be well approximated by an easy-to-manage closed approximate formula. 
In this approach, the problem is not how to do fast numerical integration in the 
price closed formula but to obtain another type of approximate formula based 
on a Taylor type decomposition. This point of view is not only interesting since 
the computational finance point of view, but also since an intrinsic point of view 
that shows the impact of correlation and volatility of volatility in option pricing.

The ideas in Alòs (2012) were exploited in Alòs et  al. (2015) to develop an 
alternative method to fast calibration of the Heston model on the basis of a mar-
ket price surface. This approximate formula for the Heston model was improved 
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in terms of accuracy in Gulisashvili et al. (2020). Moreover, the same ideas were 
extended beyond Heston model in several papers. In Merino and Vives (2015) 
the decomposition formula was extended to a general stochastic volatility models 
without jumps, in Merino and Vives (2017), stochastic local volatility and spot-
dependent models were considered, and in Merino et al. (2018) the case of Bates 
model was treated. Recently, in Merino et  al. (2021), similar results for rough 
Volterra stochastic volatility models have been obtained.

It is important too to comment on the advantages of this line of research 
with alternative methodologies in relation to accuracy and computational effi-
ciency in pricing derivatives. In Alòs (2012), results are compared with another 
approximate formula developed by E. Benhamou, E. Gobet and M. Miri based 
on Malliavin calculus techniques, see Benhamou et al. (2010) and the references 
therein. In Alòs et al. (2015), accuracy and computational efficiency is compared 
with results in Forde et al. (2011) based on a an alternative closed form approxi-
mate formula. In Merino et al. (2018), one of the main references for the present 
paper, the accuracy and computational efficiency of the obtained approximate 
formula for Bates model is compared with transform pricing methods based on 
a  semi-closed pricing formula. Concretely, the new formula is compared with 
the Fourier transform based pricing formula used in Baustian et  al. (2017), 
resulting in a three times faster method with similar accuracy. As a summary, 
approximate formulas based on the mentioned decomposition formula, beyond 
its advantages in terms of computational efficiency, allow to understand the key 
terms contributing to the option fair value and to infer parametric approxima-
tions to the implied volatility surface.

In the present paper, in line with the mentioned previous papers, the goal is 
to obtain a decomposition formula and a closed approximate option pricing for-
mula for a two-factor Heston–Kou 2FSVJ model, as described in Bates (2000) 
and Christoffersen et al. (2009). Our study brings some innovations to the exist-
ing and mentioned literature on three fronts. Firstly, we consider a two-factor 
model which to the best of our knowledge has not been studied in the context 
of the mentioned decomposition formula. Secondly, we get a second-order for-
mula like in the case of Gulisashvili et al. (2020) while most research in this line 
obtains first-order formulae only. Lastly, in addition to log-normal jumps, double 
exponential jumps as in Kou (2002) and Gulisashvili and Vives (2012) are con-
sidered, and in this sense, this is a generalization of Merino et al. (2018). Our 
results are compared with the Fourier integral method obtaining faster results.

The rest of the paper is divided as follows: in Sect. 2 we introduce the model and 
outline some key concepts and assumptions. In Sect. 3 the generic decomposition for-
mula is obtained. In Sect. 4 we derive the first and second-order approximate formulae. 
Section 5 describes the numerical experiments and results while Sect. 6 outlines the 
conclusions of our research.



	 Y. El‑Khatib et al.

1 3

    3   Page 4 of 28

2 � The model

Assume we have an asset S ∶= {St, t ∈ [0, T]} described by the SDE

under a risk-neutral probability measure, where (Bi,t)t∈[0,T] and (Wi,t)t∈[0,T] are mutu-
ally independent Wiener processes for i = 1, 2 . The i.i.d. jumps (Zi)i∈ℕ have a known 
distribution and are independent of the Poisson process Nt and the Wiener processes.

In order to compute the decomposition formula we need a version of the vari-
ance processes suitable for our computations. We use an alternative adapted spec-
ification that is suitable for Itô calculus, that is, the expected future average vari-
ance defined as

where �t denotes the conditional expectation with respect to the complete natural 
filtration generated by the five processes involved in the model.

The following lemma will be useful in the remainder of the paper.

Lemma 1  The process Vi,t satisfies the differential form

where

is a martingale. In particular,

(1)

dSt

St−
= (r − k�)dt +

�
Y1,t

�
�1dW1,t +

√
1 − �1dB1,t

�

+
�

Y2,t

�
�2dW2,t +

√
1 − �2dB2,t

�
+ d

Nt�

i=1

(eZi − 1)

(2)dY1,t = �1(�1 − Y1,t)dt + �1

√
Y1,tdW1,t

(3)dY2,t = �2(�2 − Y2,t)dt + �2

√
Y2,tdW2,t

Vi,t =
1

T − t ∫
T

t

�t[Yi,s]ds for i = 1, 2,

dVi,t =
1

T − t

(
dMi,t + (Vi,t − Yi,t)dt

)
for i = 1, 2,

Mi,t = ∫
T

0

�t[Yi,s]ds for i = 1, 2

(4)dMi,t = �i�i(t)
√

Yi,tdWi,t for i = 1, 2
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where

Proof  Integrating (2) and (3) on [t, s] and taking conditional expectations yields:

and

Transforming the second expression via an integrating factor we get the following 
differential equation:

Integrating and multiplying by e−�is reveals that

Integrating the above on [t, T] yields

Now, from the definition of Vi,t

where

Then, the differential form of Vi,t follows.
In relation with the expression of dMi,t , note that using (5) we have

�i(t) = ∫
T

t

e−�i(s−t)ds =
1

�i

(
1 − e−�i(T−t)

)
.

Yi,s = Yi,t + �i ∫
s

t

(�i − Yi,u)du + �i ∫
s

t

√
Yi,udWi,u

�t

[
Yi,s

]
= Yi,t + �i ∫

s

t

(�i − �t

[
Yi,u

]
)du.

d
(
e�is�t

[
Yi,s

])
= �i�ie

�isds.

�t

[
Yi,s

]
= �i +

(
Yi,t − �i

)
e−�i(s−t).

(5)∫
T

t

�t

[
Yi,s

]
ds = �i(T − t) +

1

�i

(
Yi,t − �i

)(
1 − e−�i(T−t)

)
.

dVi,t =
1

T − t
[Vi,tdt + d ∫

T

t

�t

[
Yi,s

]
ds]

d ∫
T

t

�t

[
Yi,s

]
ds =

[
−�i −

(
Yi,t − �i

)
e−�i(T−t)

]
dt +

1

�i

(
1 − e−�i(T−t)

)
dYi,t

=
[
−�i −

(
Yi,t − �i

)
e−�i(T−t)

]
dt

+
1

�i

(
1 − e−�i(T−t)

)(
�i(�i − Yi,t)dt + �i

√
Yi,tdWi,t

)

= − Yi,tdt +
�i

�1

(
1 − e−�i(T−t)

)√
Yi,tdWi,t.



	 Y. El‑Khatib et al.

1 3

    3   Page 6 of 28

and

Substituting the expression of dYi,t , the differential form of Mi,t, (4), follows. 	�  ◻

Remark 1  Recall that in the two-factor Black–Scholes model, we transform the dif-
fusion term as follows:

where

and

Thus, taking the above remark into account and letting Xt = ln(St) we have

where

and

The process Yt has an expected future average variance whose differential form

can easily be derived since it is a linear combination of independent processes. Here,

Mi,t = ∫
t

0

Yi,sds + �i(T − t) +
(
Yi,t − �i

)
�i(t)

dMi,t = Yi,tdt − �idt + �i(t)dYi,t +
(
Yi,t − �i

)
� �
i
(t)dt

= �i�i(t)(Yi,t − �i)dt + �i(t)dYi,t

�1dW1,t + �2dW2,t = ‖�‖dW̃t

‖�‖ =

�
�2
1
+ �2

2

dW̃t =
1

‖�‖
�
�1dW1,t + �2dW2,t

�
.

(6)dXt = (r − k� −
1

2
Yt)dt +

√
YtdW̃t + d

Nt∑

i=1

Zi

dW̃t =
1

�
Yt

��
Y1,t

�
�1dW1,t +

√
1 − �1dB1,t

�
+
�

Y2,t

�
�2dW2,t +

√
1 − �2dB2,t

��

Yt = Y1,t + Y2,t.

dVt =
1

T − t

(
dMt + (Vt − Yt)dt

)

Vt =
1

T − t ∫
T

t

�t[Ys]ds
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and

3 � Decomposition formula

Having defined the terms and processes related to the volatility, we recall some nota-
tion according to the Black–Scholes formula. Let B(t,  x,  y) be the Black–Scholes 
function that gives the acclaimed plain vanilla Black–Scholes option price with vari-
ance y, log price x, and maturity T:

where N is the standard normal cumulative distribution function and

Recall that LyB(t, x, y) = 0 where Ly is the Black–Scholes operator

We begin by obtaining a generic decomposition formula which is instrumental 
throughout our discussion. It will be particularly useful in deriving the approximate 
versions of the decomposition formula as discussed in the “Appendix”.

Lemma 2  Let

be the continuous part of Xt , and let the function

satisfy

Suppose that Gt is a continuous semi-martingale adapted to the complete natural 
filtration generated by W1,t and W2,t. Then, the following generic decomposition for-
mula holds:

Mt = ∫
T

0

�t[Ys]ds.

B(t, x, y) = exN(d+) − e−r(T−t)KN(d−)

d+ =
x − ln(K) + (r + y∕2)(T − t)

√
y(T − t)

,

d− = d+ −
√
y(T − t).

Ly = −r + �t +
(
r − k� −

y

2

)
�x +

y

2
�2
x
.

X̂t = X0 + ∫
t

0

(
r − k� −

1

2
Yt

)
dt + ∫

t

0

√
YtdW̃t

A ∈ C1,2,2([0, T] ×ℝ × [0,∞))

(7)�yA(t, x, y) =
1

2
(T − t)(�2

x
− �x)A(t, x, y).
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where Λ = �x , Γ ∶= �2
xx
− �x.

Proof  Refer to Theorem 3.1 in Merino et al. (2018). 	�  ◻

Remark 2  Note that in the Lemma 2 function A is a generic function. Moreover, 
condition (7), which is satisfied by the Black–Scholes function, is used only to sim-
plify terms in the decomposition. The proof is based on the Itô formula. Therefore, 
the methodology used in this paper is completely general. Properties of the Black–
Scholes function and of any concrete stochastic volatility model can be useful to 
obtain some simplifications, but the ideas behind the decomposition formula, are 
general and can be developed for any stochastic volatility model and any function.

Corollary 1  Assuming that A(t, x, y) = B(t, x, y) and G ≡ 1 in Lemma 2, we have

Remark 3  Though this formula can be written similarly to the one derived by Merino 
et al. (2018), it is different due to the two driving stochastic volatility terms

�t

[
e−r(T−t)A(T , X̂T ,VT )GT

]
= A(t, X̂t,Vt)Gt

+ �t

[

∫
T

t

e−r(s−t)A(s, X̂s,Vs)dGs

]

+
1

8

2∑

i=1

�t

[

∫
T

t

e−r(s−t)GsΓ
2A(s, X̂s,Vs)d[Mi,Mi]s

]

+
1

2

2∑

i=1

�i�t

[

∫
T

t

e−r(s−t)Gs

√
Yi,sΛΓA(s, X̂s,Vs)d[Wi,Mi]s

]

+

2∑

i=1

�i�t

[

∫
T

t

e−r(s−t)
√

Yi,sΛA(s, X̂s,Vs)d[Wi,G]s

]

+
1

2

2∑

i=1

�t

[

∫
T

t

e−r(s−t)ΓA(s, X̂s,Vs)d[Mi,G]s

]
,

P(t) = B(t, X̂t,Vt)

+

2∑

i=1

1

8
�t

[

∫
T

t

e−r(s−t)Γ2B(s, X̂s,Vs)d[Mi,Mi]s

]
(I.i)

+

2∑

i=1

�i
2
�t

[

∫
T

t

e−r(s−t)
√

Yi,sΛΓB(s, X̂s,Vs)d[Wi,Mi]s

]
(II.i)

d[W̃,M]t =
1

√
Yt

(
�1

√
Y1,td[W1,M1]t + �2

√
Y2,td[W2,M2]t

)

d[M,M]t = d[M1,M1]t + d[M2,M2]t
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Hence, our decomposition formula can be resolved into five terms instead of three 
terms.

In Merton (1976) and Merino et al. (2018) the treatment of a jump model prob-
lem is reduced to a treatment of a continuous case problem by conditioning on 
the number of jumps. Assuming that we observe k jumps in the time period [t, T] 
we have

where Lk =
∑k

i=1
Zi.

From now on we will write for simplicity Ds ∶= Xt + X̂s − X̂t for any s ≥ t. 
Note that Dt = Xt. Define moreover

Thus, it follows that we can set

where in general, for any positive �,

and then,

is the probability of observing k jumps in [t, T].
This enables us to deal with our problem in a continuous setting. Following 

that, we obtain the decomposition of the 2FSVJ model.
Applying Lemma 2 recursively to A = Hk and G ≡ 1 we obtain the following 

corollary:

XT = X̂T +

NT∑

i=1

Zi = Xt + X̂T − X̂t + Lk

Hk(s,Ds,Vs) = �Lk

[
B(s,Ds + Lk,Vs)

]

P(t) = �t

[
e−r(T−t)B(T ,XT ,VT )

]

=

∞∑

k=0

pk(�(T − t))�t

[
e−r(T−t)B(T , X̂T +

NT∑

i=1

Zi,VT )|
|||NT − Nt = k

]

=

∞∑

k=0

pk(�(T − t))�t

[
e−r(T−t)�Lk

[B(T ,DT + Lk,VT )]
]

=

∞∑

k=0

pk(�(T − t))�t

[
e−r(T−t)Hk(T ,DT ,VT )

]

pk(�) ∶= e−�
�k

k!
,

pk(�(T − t)) = e−�(T−t)
�k(T − t)k

k!
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Corollary 2  The price of the plain vanilla European call option is given as

4 � Approximate formulae

In the study of decomposition formulas, it has been found that formulas like (8) 
are not easy to compute in their present form. But they allow building closed-form 
approximation formulas that are computationally tractable.

The idea is to freeze the integrands in formula (8), to compute the difference 
between the original and the frozen approximate formulas, and decompose this error 
formula in a series of decreasing terms. Adding to the approximate formula terms of 
the error formula up to a certain order allows us to obtain good approximations; see 
Gulisashvili et al. (2020).

Freezing the integrands of the formula in Corollary 2 gives

where �(T − t) denotes an error term that has to be estimated.
From now on we will denote

and

(8)

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+
1

8

2∑

i=1

∞∑

k=0

pk(�(T − t))�t

[

∫
T

t

e−r(s−t)Γ2Hk(s,Ds,Vs)d[Mi,Mi]s

]

+

2∑

i=1

�i
2

∞∑

k=0

pk(�(T − t))�t

[

∫
T

t

e−r(s−t)
√

Yi,sΛΓHk(s,Ds,Vs)d[Wi,Mi]s

]

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+

2∑

i=1

∞∑

k=0

pk(�(T − t))Γ2Hk(t,Xt,Vt)�t

[
1

8 ∫
T

t

d[Mi,Mi]s

]

+

2∑

i=1

∞∑

k=0

pk(�(T − t))ΛΓHk(t,Xt,Vt)�t

[
�i

2 ∫
T

t

√
Yi,sd[Wi,Mi]s

]
+ �(T − t)

Ri,t =
1

8
�t

[

∫
T

t

d[Mi,Mi]s

]
,

Ui,t =
�i

2
�

[

∫
T

t

√
Yi,sd[Wi,Mi]s

]
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Using this notation, the first naive version of the approximate formula is given by

Before giving precise approximate formulas, we recall two lemmas:

Lemma 3  (Alòs 2012) For any n ≥ 0 and 0 ≤ t ≤ T , there exists a constant C(n) 
such that

Lemma 4  (Alòs et al. 2015) The following relations hold:: 

1.	

2.	

3.	

4.	

5.	

6.	

Qi,t = �i�

[

∫
T

t

√
Yi,sd[Wi,Ui]s

]
.

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(R1,t + R2,t)Γ
2Hk(t,Xt,Vt)Ri,t

+

∞∑

k=0

pk(�(T − t))(U1,t + U2,t)ΛΓHk(t,Xt,Vt) + �(T − t)

ΛnΓB(t, x, y) ≤ C(n)

(
√
y(T − t))n+1

.

�i(t) ≤ 1

�i
.

�
T

t

�t

[
Yi,s

]
ds ≥ Yi,t�i(t).

�
T

t

�t

[
Yi,s

]
ds ≥ �i�i

2
�2

i
(t).

Ri,t =
�2
i

8 ∫
T

t

�t[Yi,u]�
2
i
(u)du.

Ui,t =
�i�i

2 ∫
T

t

�i(u)�t

[
Yi,u

]
du.

Qi,t =
�2
i
�2
i

2 ∫
T

t

�t

[
Yi,u

](

∫
T

u

e−�i(z−u)�i(z)dz

)
du.
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7.	

8.	

9.	

Following Gulisashvili et  al. (2020) we derive higher order approximations by 
applying the generic decomposition formula in Lemma 2 for appropriate choices of 
A(t,Xt,Vt) and Gt as follows. Under this approach, it is necessary to evaluate the 
respective error bounds.

Proposition 1  We have the following approximate formula:

where

where C(�1, �2, �1, �2) is a constant that depends only on parameters �i and �i and 
� = max{�1, �2}.

dRi,t =
�3
i

8

(

∫
T

t

e−�i(z−t)�i(z)
2dz

)√
Yi,tdWi,t −

�2
i

8
�2

i
(t)Yi,tdt

dUi,t =
�i�

2

i

2

(

∫
T

t

e−�i(z−t)�i(z)dz

)√
Yi,tdWi,t −

�i�i

2
�i(t)Yi,tdt

dQi,t =
�2
i
�3
i

2 ∫
T

t

[
e−�i(u−t)

(

∫
T

u

e−�i(z−u)�i(z)dz

)
du

]√
Yi,tdWi,t

−
�2
i
�2
i

2

(

∫
T

t

e−�i(z−t)�i(z)dz

)
Yi,tdt

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(R1,t + R2,t)Γ
2Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(U1,t + U2,t)ΛΓHk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(U1,t + U2,t)
2Λ2Γ2Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(Q1,t + Q2,t)Λ
2ΓHk(t,Xt,Vt)

+ �(T − t)

|�(T − t)| ≤ (
1

r
∧ (T − t))C(�1, �2, �1, �2)�

3
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Proof  See the “Appendix”. 	�  ◻

Remark 4  Note that this approximated option price is the Black–Scholes price plus 
appropriate correction terms. It is worth mentioning that this formula provides 
significant generality within the framework of the 2FSVJ model. Furthermore, it 
encompasses and extends the formulas presented in the references cited, namely 
Heston (1993), Bates (1996a). Christoffersen et al. (2009), Merino et al. (2018), as 
well as some of the results obtained in Gulisashvili et al. (2020), which can be con-
sidered specific instances of our more comprehensive formula.

While the above approximate formula is second-order one, we can obtain the 
first-order version as it is given in the following corollary.

Corollary 3  We have the following approximate formula:

where

where C(�1, �2, �1, �2) is a constant that depends only on �1, �2, �1, �2.

Proof  See the “Appendix”. 	�  ◻

Remark 5 

1.	 Expanding the scope of the approximate options pricing formula to include other 
types of options, such as barrier or American options, presents great potential. 
However, it is important to note that the decomposition results are derived from 

P(t) =

∞∑

k=0

pk(�(T − t))Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(R1,t + R2,t)Γ
2Hk(t,Xt,Vt)

+

∞∑

k=0

pk(�(T − t))(U1,t + U2,t)ΛΓHk(t,Xt,Vt)

+ �(T − t)

|�(T − t)| ≤(1
r
∧ (T − t))C(�1, �2, �1, �2)

×

2∑

i=1

{
2∑

j=1

[
�2
i
�2
j
+ �2

i
�j|�j|

]
+ |�i|�3i + �4

i

+

2∑

j=1

[
|�i|�i�2j + |�i||�j|�i�j

]

+ |�i|2�2i + |�i|�3i
}
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the Black–Scholes formula, which is specifically applicable to European options. 
Therefore, extending these decomposition formulae to include additional option 
types requires extensive investigation and comprehensive studies to establish 
a robust framework. Such explorations have the potential to open up new ave-
nues for research and provide valuable insights into the pricing and analysis of a 
broader range of option types.

2.	 Incorporating real-data examples would not only enhance the credibility of the 
research but also offer valuable contributions to the field. Nevertheless, there are 
numerous challenges that contribute to the difficulty in obtaining real market data 
examples for the application of option pricing formulas, such as our decomposi-
tion formula. The challenges include limited availability, market complexity, and 
potential deviations from model assumptions, such as risk-neutral assumptions. 
It is worth noting that the lack of real-data examples presents an opportunity for 
new directions of future research to explore and provide valuable insights into 
the practical application and performance of the formula using real market data.

5 � Numerical computations

Though our focus is on a class of Heston–Kou like models with two factors, this 
model is general enough to cover other jump structures studied in the literature. 
Thus, from henceforth we shall assume that jumps are defined by the Compound 
Poisson process

where Zi is a double exponential random variable whose distribution is given by

where 𝜂1 > 1 , 𝜂2 > 0 , p, q ∈ (0, 1) such that p + q = 1 . Assuming that k jumps are 
recorded then the convolution of the law of k jumps is

where

Jt =

Nt∑

i=1

(
eZi − 1

)

f (u) = p𝜂1e
−𝜂1u11{u≥0} + q𝜂2e

−𝜂2|u|11{u<0}

f ∗(k)(u) = e−𝜂1u
k∑

j=1

Pk,j𝜂
j

1

1

(j − 1)!
uj−111{u≥0}

+ e𝜂2u
k∑

j=1

Qk,j𝜂
j

2

1

(j − 1)!
(−u)j−111{u<0}

Pk,j =

k−1∑

i=j

(
k − j − 1

i − j

)(
k

i

)(
�1

�1 + �2

)i−j(
�2

�1 + �2

)k−i

piqk−i
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for all 1 ≤ j ≤ k − 1 , and

for all 1 ≤ j ≤ k − 1 with Pk,k = pk and Qk,k = qk . See Kou (2002) and Gulisashvili 
and Vives (2012).

Consequently,

Then, we want to compute

And this is equal to

where

with

and

Qk,j =

k−1∑

i=j

(
k − j − 1

i − j

)(
k

i

)(
�1

�1 + �2

)k−i(
�2

�1 + �2

)i−j

pk−iqi

Hk(t,Dt,Vt)

= �Lk

[
B(t,Dt + Lk,Vt)

]

= �
∞

−∞

B(t,Dt + u,Vt)f
∗(k)(u)du

=

∞

�
−∞

B(t,Dt + u,Vt)

(
k∑

j=1

Pk,j

𝜂
j

1
uj−1

(j − 1)!
e−𝜂1u11{u≥0} +

k∑

j=1

Qk,j

𝜂
j

2
(−u)j−1

(j − 1)!
e𝜂2u11{u<0}

)
du.

∞∑

k=1

pk(�(T − t))Hk(t,Dt,Vt).

(9)∫
∞

−∞

B(t,Dt + u,Vt)K(u)du

K(u) =

∞∑

j=1

1

(j − 1)!
(𝜂

j

1
𝛼ju

j−1e−𝜂1y11{u≥0} + 𝜂
j

2
𝛽j(−u)

j−1e𝜂2y11{u<0})

�j =

∞∑

k=j

Pk,jpk(�(T − t))

�j =

∞∑

k=j

Qk,jpk(�(T − t)).
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To compute the integral (9) we truncate it at ±30.5. Additionally, we consider that 
there are a total of 150 jumps. We are assured that the approximation converges well 
since several terms converge to zero very fast.

Besides the double-exponential jumps, we also consider the case where (Zi) are 
i.i.d. normal random variables with mean �J and standard deviation �J . In this case, 
see Merino et al. (2018),

where the modified risk-free rate r∗ = r − �(e�J+
�2
J

2 − 1) + k
�J+

�2
J

2

(T−t)
 is used.

Hk(t,Dt,Vt) = B

(
t,Dt,Vt + k

�2

J

(T − t)

)

Table 1   Model parameters
S0 = 100.0 Y1,0 = 0.1625 Y2,0 = 0.08683 �1 = 9 �

J
= −.240

K = 100 �1 = 1.967 �2 = 8.451 p = 0.5 �J = .318

r = 0.01 �1 = 0.17819 �2 = 0.05267025 �2 = 5

� = 0.079 �1 = 0.245 �2 = 0.205 q = 0.5

�1 = −0.865 �2 = −0.997

Fig. 1   Pricing error against strike price under double exponential jumps

Fig. 2   Option pricing error against strike price under log-normal jumps
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The parameters used in our computations are obtained from Pacati et al. (2018) 
who consider a similar model with log-normal jumps. Unless otherwise stated, the 
parameters used are given in Table 1.

Fig. 3   Pricing error against underlying price under double exponential jumps

Fig. 4   Option pricing error against underlying price under log-normal jumps

Fig. 5   Second order pricing error against strike price for various maturities under log-normal jumps
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Comparing the first-order and the second-order decomposition methods to the 
Fourier integral method based on Gil-Pelaez (1951) and we find that the decompo-
sition methods perform very well in relation to the Fourier integral method under 
both the log-normal and double exponential jumps. See Figs.  1,  2,  3 and 4. Take 
note that the error is so small that the three option price plots for the Fourier integral 
(green), the first-order decomposition (blue), and the second-order decomposition 
(orange) cannot be distinguished by the naked eye. The first-order approximation 
indicates that the method performs well under out-of-the-money conditions. Moreo-
ver, we analyze the impact of time to maturity on the method performance in Figs. 5 
and 6. Finally, in Figs. 7 and 8 we show the impact of the vol-of-vol in the pricing 
error for different strike prices and different jump regimes. Generally, our method 
behaves well for short-dated options. In addition, we find that the method is faster 
and more accurate for log-normal jumps as compared to double exponential jumps.

Additionally, to investigate the computational performance of our method we 
computed option prices for five different strikes and measured the average time 
taken. This experiment was repeated 1000 times and the results in Table 2 show 

Fig. 6   Second order pricing error against strike price for various maturities under double exponential 
jumps

Fig. 7   Pricing error against Vol. of vol. �1 for S0 = 100 under Double Exponential jumps
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that the decomposition is at least 20% faster than the Fourier integral method 
under log-normal jumps.

6 � Conclusion

This paper investigates the valuation of European options under an enhanced model for 
the underlying asset prices. We consider a two-factor stochastic volatility jump (2FSVJ) 
model that includes stochastic volatility and jumps. A decomposition formula for the 
option price and first-order and second-order approximate formulae via Itô calculus 
techniques are obtained. Moreover, several numerical computations and illustrations 
are carried out, and they suggest that our method under double exponential and log-
normal jumps offers computational gains. The results of this paper generalize the exist-
ing work in the literature in relation to the decomposition formula and its applications. 
As in the other cases cited in the introduction, the given approximate pricing formula is 
fast to compute and accurate enough.

Appendix 1: First order approximation

We consider the formula in Corollary 2:

and apply the generic formula in Lemma 2 for appropriate choices of A and G.

P(t) =

∞∑

k=0

pk(�(T − t))
(
Hk(t,Xt,Vt) + I.1 + I.2 + II.1 + II.2

)

Fig. 8   Pricing error against Vol. of vol. �1 for S0 = 100 under Log-Normal jumps

Table 2   Computational speed 
comparison in seconds

Log-normal jumps Double exp. jumps

Fourier time 0.195 0.156
Decomp time 0.152 27.623
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Term I.i

Consider

Let A = Γ2Hk and Gt = Ri,t. Then we have

Term II.i

Consider

Let A = ΛΓHk and Gt = Ui,t. Then we have

I.i =
1

8
�t

[

∫
T

t

e−r(s−t)Γ2Hk(s,Ds,Vs)d[Mi,Mi]s

]
.
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+
1

8
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�t

[

∫
T

t

e−r(s−t)Ri,sΓ
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+
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2
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√
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We look now at the error of approximating each term I.i and II.i.

Error of Term I.i

Let be ait =
√
Vit(T − t) for i = 1, 2 and at =

√
Vt(T − t). It is clear that

This fact will come in handy for the calculations below.
We have

and

(10)max(a1t, a2t) ≤ at.
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Hence, we have

and

which simplifies to

Applying Lemma 4 again we find that
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and using the fact that

it follows that

where C(�1, �2, �1, �2) is a constant that depends only on �1, �2, �1, �2.

Error of Term II.i
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Then,
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and hence we have

and

Lastly,

|II.i − ΛΓHk(t,Xt,Vt)Ui,t|

≤ 1

16

2∑
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T
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a
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+
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a
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+
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a
4

s

)
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�
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√
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a
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a
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Appendix 2: Second order approximation

The terms

and

are of order 2 and need to be expanded further to obtain a higher order of precision. 
Following similarly as before we find that:

The fact that Qi,t has a term �2
i
 , dMj,t a term �j and dQi,t a term �3

i
 guarantees that

is of order �3 where � ∶= max{�1, �2}.

On the other hand,

|II.i − ΛΓHk(t,Xt,Vt)Ui,t|

≤ C(�1, �2, �1, �2)
(
1

r
∧ (T − t)

){ 2∑
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|�i|�i�2j +
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|�i||�j|�i�j + |�i|2�2i + |�i|�3i

}
.
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√
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√
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+
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2
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∫
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.

|II.i.4 − Λ2ΓHk(t,Xt,Vt)Qi,t|
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Note that from the independence of W1 and W2 , d[Ml,UiUj]s is equal to U2,sd[M1,U1]s 
if l = 1 and equal to U1,sd[M2,U2]s if l = 2 and similarly for d[Wl,UiUj]s.

As before, here Ui has a coefficient �i , dUi coefficient �2
i
, and dMi a coefficient 

�i. Therefore, all terms are of order �3 where � ∶= max{�1, �2}.
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Abstract

Let the log returns of an asset Xt = log(St) be defined on a risk neutral filtered probability
space (Ω,F , (Ft)t∈[0,T ],P) for some 0 < T < ∞. Assume that Xt is a stochastic volatility jump-
diffusion model with infinite activity jumps. In this paper, we obtain an Alós-type decomposition
of the plain vanilla option price under a jump-diffusion model with stochastic volatility and infinite
activity jumps via two approaches. Firstly,... we obtain a closed-form approximate option price
formula. The obtained formula is compared with some previous results available in the literature. In
the infinite activity but finite variation case jumps of absolute size smaller than a given threshold ε
are approximated by their mean while larger jumps are modelled by a suitable compound Poisson
process. A general decomposition is derived as well as a corresponding approximate version. Lastly,
numerical approximations of option prices for some examples of Tempered Stable jump processes
are obtained. In particular, for the Variance Gamma one, where the approximate price performs well
at the money.

Keywords: Lévy processes, Stochastic volatility, Option Price Decomposition, Tempered Stable,

Variance Gamma

AMS Codes: 68Q25, 68R10, 68U05

1 Introduction

It is well-known that stochastic volatility jump-diffusion models, under a risk-neutral measure, are

useful to reasonably describe the plain vanilla option price surface observed in derivative markets. See

for example Gatheral (2011) for general information about stochastic volatility models with and without

jumps, and for its utility in market modeling.

*Corresponding author, email: josep.vives@ub.edu.
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The most famous stochastic volatility jump-diffusion model is Bates model, see Bates (1996), that

adds finite activity jumps to the price in the celebrated Heston model, see Heston (1993). This class of

models can be widely enlarged if we consider not only finite activity jumps but infinite activity ones,

considering for the jump part, a pure jump Lévy process. In this sense, this paper has to be considered an

extension of Merino et al. (2018) and a different treatment of the problem considered in Jafari and Vives

(2013) (see also the survey Vives (2016)).

In modelling prices with jumps two main approaches are considered in the literature. One is to

consider jumps diffusion models, like the Bates model, where the price is essentially modelled by a

diffusion process and punctuated by jumps at random intervals that represent rare events like crashes.

Alternatively, we have the so-called infinite activity models, that describe prices by pure jump Lévy

processes with an infinite number of jumps on every interval. The fact that price processes are observed

on a discrete grid makes it impossible to discard any of these two options and therefore, to choose

between the two options is a question of modeling convenience. See Cont and Tankov (2003), Chapter

4, for a detailed explanation of these ideas.

Results given in Asmussen and Rosiński (2001) show that under weak hypotheses, infinite activity

models can be well approximated by jump-diffusion models, approximating small jumps by a Brownian

motion. This seems to reinforce the jump-diffusion modelling option. But the results given in Asmussen

and Rosiński (2001) are not completely general. For instance, in the case of tempered stable models of

a low stability index (near zero) the approximation is not good enough. See Cont and Tankov (2003),

Chapter 4, for more details. This fact implies that to obtain formulas for approximate pricing under

Lévy models with infinite activity but finite variation jumps is interesting, because these models cannot

be approximated, or are poorly approximated, by jump-diffusion models. This justifies the utility of the

extension of Merino et al. (2018) to infinite activity but finite variation Lévy models.

In Alòs (2006), a decomposition of the vanilla call option price formula in the Heston model is

obtained using Malliavin calculus techniques, extending the well-known Hull and White formula of

option pricing under uncorrelated stochastic volatility models. Recall that the Hull and White price

formula for a call option with strike price K, time to maturity T and under a market of fixed interest rate

r is given by

P (t) = Et[B(t,Xt, Yt)] (1.1)

where X denotes the log-price process, Y the variance process and Yt the average of future variances

defined as

2



Yt = 1
T − t

∫ T

t
Ysds (1.2)

and function B is given by

B(t, x, y) = exΦ(d+) −Ke−r(T −t)Φ(d−) (1.3)

with

d± = x− logK + r(T − t)√
y(T − t)

±
√
y(T − t)

2 , (1.4)

where Φ is the cumulative probability function of the standard normal law. Recall that Et stands for the

conditional expectation with respect to a given filtration at time t.

The so-called Alós formula in Alòs (2006), based on Malliavin calculus, was extended in Jafari and

Vives (2013) to jump-diffusion models with infinite activity jumps, both in the price and in the volatility.

See also the survey Vives (2016).

In Alòs (2012), a similar decomposition is obtained, but from a point of view different from the Hull

and White one. In this case, the first term is written in terms of the adapted projection of the average of

the future variances and, because of the fact that only non-anticipating processes are involved, only Itô

calculus techniques are required.

For a log-price process given by

Xt = x+ rt− 1
2

∫ t

0
Ysds+

∫ t

0

√
Ys(ρdWs +

√
1 − ρ2W̃s), (1.5)

with W and W̃ two independent Brownian motions, the formula is

P (t) = B(t,Xt, Vt) (1.6)

+ 1
8Et

[ ∫ T

t
e−r(s−t)(∂2

x − ∂x)2B(s,Xs, Vs)d[M,M ]s
]

+ ρ

2Et

[ ∫ T

t
e−r(s−t)(∂2

x − ∂x)∂xB(s,Xs, Vs)d[M,W ]s
]

where ρ is the correlation parameter, W is the Brownian motion driving the variance process,

Vt = Et[Y t] = 1
T − t

∫ T

t
Et[Ys]ds (1.7)

and M is the martingale
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Mt :=
∫ T

0
Et(Ys)ds.

Recall that [·, ·]t stands for the quadratic covariation and ∂x is the partial derivative with respect to the

second variable of B. For convenience, from now on, for any function F differentiable enough, we will

write ΛF := ∂xF and ΓF := (∂xx − ∂x)F. Moreover, in relation with function B defined above we

recall that

ΓB(t, x, y) = exϕ(d+)√
y(T − t)

= Ke−r(T −t)ϕ(d−)√
y(T − t)

.

Formula (1.6) has been extended in different directions during recent years, but in particular, in

Merino et al. (2018), it has been extended to stochastic volatility models with finite activity jumps, like

for example, the Bates model. Recently, on the line opened by Alòs (2012), a theoretical formula for the

fractional Heston model with infinite activity jumps has been given in Lagunas-Merino and Ortiz-Latorre

(2020). In Arai (2021) and Arai (2022), a detailed analysis of pricing under the Barndorff-Nielsen and

Shephard (BNS) model is studied. Also, in El-Khatib et al. (2024) a two-factor model with double

exponential jumps is considered.

The present paper aims to extend the results in Merino et al. (2018) to infinite activity jumps, follow-

ing the treatment in Alòs (2012). Jafari and Vives (2013) and Vives (2016) analysed a similar problem

under the point of view of Alòs (2006) based on Malliavin-Skorohod calculus. Concretely, we have two

purposes: to obtain a general decomposition formula and a useful approximating formula for the call

option price.

The paper is structured as follows: Section 2 presents our stochastic volatility Lévy model with in-

finite activity but finite variation jumps. The main contribution lies in Section 3, where an approximate

decomposition formula for the option price within our model is derived. This formula replaces the in-

finite activity Lévy process with a compound Poisson process and a suitable approximation for small

jumps. In Section 4, we conduct numerical simulations to assess the performance of the approximate de-

composition. The results indicate favourable performance at the money and less favourable performance

out of the money. Finally, in Section 5, we conclude the paper by offering remarks on future directions

for research.
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2 The Model

Let {Xt, t ∈ [0, T ]} be the log price process defined on a filtered probability space (Ω,F ,F,P)

where P is a market chosen risk-neutral probability. Xt is defined as:

Xt = x+ rt− 1
2

∫ t

0
Ysds+

∫ t

0

√
YsdZs + Jt, (2.8)

where Zt = ρWt +
√

1 − ρ2W̃t, withW and W̃ two independent Brownian motions, and J is an infinite

activity pure jump Lévy process with Lévy triplet (γ0, 0, ν) independent of W and W̃ . The variance

process Y is assumed to be a square-integrable stochastic process adapted to the completed natural

filtration generated by W and J.

We assume that our probability space is the product of the canonical spaces ofW , W̃ and J such that

Ω = ΩW × ΩW̃ × ΩJ ,

F = FW × FW̃ × FJ ,

Ft = FW
t × FW̃

t × FJ
t ,

P = PW × PW̃ × PJ .

Hence, the filtration F = (Ft)t∈[0,T ] is assumed to be the completed natural filtration generated by

W , W̃ and J. Due to the well-known Lévy-Itô decomposition, we can write

Jt = γ0t+
∫ t

0

∫
|y|>1

yN(ds, dy) + lim
ε↓0

∫ t

0

∫
ε<|y|≤1

yÑ(ds, dy)

where N is the Poisson measure, ν is the Lévy measure and Ñ(ds, dy) = N(ds, dy) − ν(dy)ds is the

compensated Poisson measure. The limit is a.s. and uniformly convergent on compacts.

Consider the following constants for i ≥ 0, provided they exist

ci =
∞∑

k=i

∫
R

yk

k
ν(dy).

Note that,

c0 =
∫

R
eyν(dy), c1 =

∫
R
(ey − 1)ν(dy), and c2 =

∫
R
(ey − 1 − y)ν(dy).

In order for e−rteXt to be a martingale, we require that
∫

|y|>1 e
yν(dy) < ∞ and

γ0 = −
∫

R
(ey − 1 − y1|y|>1)ν(dy),
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see Cont and Tankov (2003), Section 3.9. This ensures that ν has moments of any order k ≥ 2 and it

follows that Jt can be written as

Jt =
∫ t

0

∫
R
yÑ(ds, dy) − c2t. (2.9)

Therefore, without loss of generality, our model can be written as

Xt = x+ (r − c2)t− 1
2

∫ t

0
Ysds+

∫ t

0

√
YsdZs +

∫ t

0

∫
R
yÑ(ds, dy). (2.10)

For convenience, sometimes we will write Xt = Xc
t +Xd

t where

Xc
t := x+ (r − c2)t− 1

2

∫ t

0
Ysds+

∫ t

0

√
YsdZs

and

Xd
t :=

∫ t

0

∫
R
yÑ(ds, dy).

Further, if we assume that
∫

R |y|ν(dy) < ∞, in other words, if ν has first-order moment, the process

has infinite activity but finite variation and c1 is finite. Naturally, we can express c2 in terms of c1 as

c2 = c1 −
∫

R yν(dy) and then,∫ t

0

∫
R
yÑ(ds, dy) − c2t =

∫ t

0

∫
R
yN(ds, dy) − c1t.

Therefore, it follows that Jt can be written as

Jt =
∫ t

0

∫
R
yN(ds, dy) − c1t. (2.11)

and our model can be written as

Xt = x+ (r − c1)t− 1
2

∫ t

0
Ysds+

∫ t

0

√
YsdZs +

∫ t

0

∫
R
yN(ds, dy). (2.12)

The following results will be useful in the remaining of the paper.

Denote by ϕ the standard Gaussian kernel ϕ(x) = 1√
2π
e− x2

2 . Consider the orthonormal Hermite

polynomials defined by

Hn(x) := (−1)n

√
n!

e
x2
2

√
2πϕ(n)(x), n ≥ 0.

Recall that

6



∫
R
Hn(x)Hm(x)ϕ(x)dx = 11{n=m},

Hn(x) =
√
n!

[ n
2 ]∑

k=0

(−1)kxn−2k

k!(n− 2k)!2k
(2.13)

and

Hn(x+ y) =
n∑

k=0

√
n!
k!

xn−k

(n− k)!Hk(y). (2.14)

We have the following lemma.

Lemma 2.1. Let X be a normal random variable with mean µ and variance σ2. We have

E(Hn(X)) =
[ n

2 ]∑
j=0

√
n!

(n− 2j)!2jj!µ
n−2j(σ2 − 1)j .

Proof: Note first of all the we can write X = µ+ Y where Y is a centered normal random variable

with variance σ2. It is well-known that if n is odd we have E(Y n) = 0 and if n = 2p we have

E(Y 2p) = (2p)!
p!2p

σ2p.

Then, from formula (2.14) we have

E(Hn(X)) = E(Hn(µ+ Y )) =
n∑

m=0

√
n!
m!

µn−m

(n−m)!E(Hm(Y )). (2.15)

From (2.13) we have

E(Hm(Y )) =
√
m!

[ m
2 ]∑

k=0

(−1)kE(Y m−2k)
k!(m− 2k)!2k

.

Note that if m is odd, all powers m− 2k are odd and then E(Hm(Y )) vanishes.

On the contrary, if m = 2p we have
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E(H2p(Y )) =
√

(2p)!
p∑

k=0

(−1)kE(Y 2p−2k)
k!(2p− 2k)!2k

=
√

(2p)!
p∑

k=0

(−1)k(2p− 2k)!σ2p−2k

k!(p− k)!2p−k(2p− 2k)!2k

=
√

(2p)!
p∑

k=0

(−1)kσ2p−2k

k!(p− k)!2p

=
√

(2p)!
2pp!

p∑
k=0

(
p

k

)
(−1)kσ2p−2k

=
√

(2p)!
2pp! (σ2 − 1)p

Applying this to (2.15) we finish the proof.

We are interested in estimate ΛnΓBS(t,Xt−, Vt). Note that from the definition of Hermite polyno-

mials we have

ΛnΓBS(t, x, y) = Ke−r(T −t)√
y(T − t)

ϕ(n)(d−(t, x, y))

= Ke−r(T −t)√
y(T − t)

(−1)n
√
n!ϕ(d−(t, x, y))Hn(d−(t, x, y)).

On other hand, note that, conditionally we know all the trajectory of variance process V and jump

process J , that is, conditionally to the σ−algebra Gt := Ft ∨ FW,J
T we have that d−(t,Xt−, Vt) is a

normal random variable with a certain mean that we call µd
t and variance

(1 − ρ2) 1
Vt(T − t)

∫ t

0
Ysds.

Then, it is possible to compute E[ΛnΓBS(t,Xt−, Vt)|Gt].

Lemma 2.2. For any n ≥ 0 we have the estimate

|ΛnΓBS(t, x, y)| ≤ Cn

(
√
y(T − t))n+1

where Cn is a generic constant that depends only on n.

Proof: See Alòs (2012).

3 Decomposition Formula

Recall the call option price under the classical Black-Scholes model is given by B(t,Xt, Yt) where

B is the function in (1.3)-(1.4). Recall also the Black-Scholes operator
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Ly := ∂t + 1
2y∂

2
x + (r − y

2)∂x − r (3.16)

which satisfies LyB(t, x, y) = 0.

The goal of this section is to extend formula (1.6) to process X given in (2.10).

In relation to martingale M recall we have

Mt =
∫ T

0
Et[Ys]ds =

∫ t

0
Ysds+ (T − t)Vt. (3.17)

and then,

dVt = 1
T − t

(dMt + (Vt − Yt)dt). (3.18)

Recall also that V is a process with continuous trajectories.

Let us denote

∆xF (s,Xs, Vs) := F (s,Xs + x, Vs) − F (s,Xs, Vs),

∆xxF (s,Xs, Vs) := F (s,Xs + x, Vs) − F (s,Xs, Vs) − x∂xF (s,Xs, Vs, )

and

∆F (s,Xs, Vs) := F (s,Xs + x, Vs) − F (s,Xs, Vs) − (ex − 1)∂xF (s,Xs, Vs).

We have the following general decomposition formula:

Theorem 3.1. Let F ∈ C1,∞,2([0, T ]×R×R),Gt a continuous and square integrable stochastic process
adapted to the filtration generated by W and J. Assume F satisfies

LyF (t, x, y) = 0

and

∂yF (t, x, y) = T − t

2 ΓF (t, x, y).

Then, we have the following decomposition:
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Et

[
e−r(T −t)F (T,XT , VT )GT

]
(3.19)

= F (t,Xt, Vt)Gt

+ Et

∫ T

t
e−r(s−t)F (s,Xs−, Vs)dGs

+ ρ

2Et

∫ T

t
e−r(s−t)√YsΓΛF (s,Xs−, Vs)Gsd [W,M ]s

+ 1
8Et

∫ T

t
e−r(s−t)Γ2F (s,Xs−, Vs)Gsd [M,M ]s

+ ρEt

∫ T

t
e−r(s−t)√YsΛF (s,Xs−, Vs)d [W,G]s

+ 1
2Et

∫ T

t
e−r(s−t)ΓF (s,Xs− , Vs)d[M,G]s

+ Et

∫ T

t

∫
R
e−r(s−t)∆F (s,Xs−, Vs)Gsν(dx)ds. (3.20)

Proof: See Appendix A.

For the particular case of the Black-Scholes function B(t, x, y) we have the following result

Corollary 3.1.

P (t) = B(t,Xt, Vt) (3.21)

+ 1
8Et

∫ T

t
e−r(s−t)Γ2B(s,Xs, Vs)d[M,M ]s

+ ρ

2Et

∫ T

t
e−r(s−t)ΛΓB(s,Xs, Vs)

√
Ysd[W,M ]s

+ Et

∫ T

t

∫
R
e−r(s−t)∆B(s,Xs−, Vs)ν(dx)ds.

Proof: The result follows from (3.19), choosing F (s, x, y) = B(s, x, y) and G ≡ 1.

Remark 3.1.

1. Formula (3.21) is the extension to the jump case of the pricing formula in Alòs (2012).

2. Formula (3.21) is the adapted version of formula 3 in page 13 of Vives (2016).

3. In the case V is constant, the so-called exponential Lévy case, we have

P (t) = B(t,Xt, Vt) + Et

∫ T

t

∫
R
e−r(s−t)∆B(s,Xs−, Vs)ν(dx)ds.

4. In the case of ν is the Lévy measure associated to a Poisson compound process with normal jumps,
formula (3.21) is a version of the formula in Merino et al. (2018) for Bates model.

5. Changing ν(dx)ds by ν(ds, dx) for a certain measure ν on [0, T ] × R under suitable conditions
we can extend formula (3.21) to the additive case.
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4 Decomposition formula by approximating the Lévy process

Though the results obtained in the above section are interesting, obtaining a computationally conve-

nient version of (3.21) is not easy. Thus, in this section an alternative derivation that involves approxi-

mating the Lévy model by a compound Poisson process is formulated.

Following Cont and Tankov (2003) and Asmussen and Rosiński (2001) we can obtain a reasonable

approximation of J in three different ways depending on our error tolerance and the underlying char-

acteristics of the Lévy distribution. Firstly, one could ignore all jumps smaller than a given threshold

ε > 0. However, that would introduce a large error which we would like to control. Secondly, one could

replace the jumps of absolute size smaller than ε > 0 by their expectation. Lastly, for a particular class

of Levy processes, a scaled Wiener process is added for extra precision. Please refer to Asmussen and

Rosiński (2001) for a complete discussion of the topic. Precisely, in the finite variation case, the process

in equation (2.11) is approximated by:

Jε(t) =
∫ t

0

∫
R
y1|y|>εN(ds, dy) −K(ε)t. (4.22)

where

K(ε) =
∫

R
(ey − 1 − y1|y|<ε)ν(dy) (4.23)

and ∫ t

0

∫
R
y1|y|>εN(ds, dy)

is a compound Poisson process with Lévy measure νε(dy) = 1|y|>εν(dy), jump intensity λε =
∫

R ν
ε(dy),

and jump size distribution Qε(y) = νε(dy)
λε . Further scrutiny of the term K(ε), it shows that it is equal to

K(ε) = c1 −m(ε)

where m(ε) =
∫

|y|≤ε yν(dy).

Note that we have

Rε
t := Jt − Jε

t =
∫ t

0

∫
R
y11|y|≤εÑ(ds, dy).

Then,

E(|Rε
t |2) =

∫ t

0

∫
|y|≤ε

y2ν(dy)ds = σ2(ε)t

where
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σ2(ε) =
∫

|y|≤ε
y2ν(dy).

Define

Xε
t = x+ rt− 1

2

∫ t

0
Ysds+

∫ t

0

√
YsdZs + Jε

t . (4.24)

Upon employing these approximations a question arises: what impact will these approximations have

on the computation of option prices? Cont and Tankov (2003) quantify the error as follows:

Lemma 4.3. Let f(x) be a real valued differentiable function such that |f ′(x)| < C for some constant
C and suppose the Lévy process (2.8) is approximated by (4.24). Then

|E[f(Xt)] − E[f(Xε
t )]| < Cσ(ε)

√
T . (4.25)

Under the Lévy approximation (4.22) our model (2.12) takes the form

Xε
t = x+ (r −K(ε))t− 1

2

∫ t

0
Ysds+

∫ t

0

√
YsdZs +

nt∑
i=1

zi (4.26)

where Lnt =
∑nt

i=1 zi is a compound Poisson process with intensity λε and jump size distribution Qε. In

this context, let the Black-Scholes operator be

Ly := ∂t + 1
2y∂

2
x + (r −K(ε) − y

2)∂x − r (4.27)

Consequently, we are then able to obtain a general version of the generic decomposition formula

derived by Merino et al. (2018).

4.1 Decomposition Formula

Assume Xε is defined as in (4.26). For the variance, assume the equation of the Heston model, that

is,

dYt = κ(θ − Yt)dt+ ξ
√
YtdWt

where κ, θ and ξ are positive constants.

Theorem 4.2. Let X̃ε
t := Xε

t − Lnt be the continuous part of the return process Xε
t given in (4.26).

Then, the decomposition formula of a vanilla option price based on X̃ε
t is given by

Et

[
e−rTB(T, X̃ε

T , VT )
]

= B(t, X̃ε
t , Vt) (4.28)

+ 1
8Et

[ ∫ T

t
e−r(u−t)Γ2B(u, X̃ε

u, Vu)d[M,M ]u
]

+ ρ

2Et

[ ∫ T

t
e−r(u−t)√Yt ΛΓB(u, X̃ε

u, Vu)d[W,M ]u
]
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Proof: Refer to Appendix B

4.2 Approximate Formula

It is noted that though the decomposition formulae in this manuscript look similar to the ones ob-

tained in Alòs (2012) and many more, a new computational approach is required as a result of the

approximation approach defined in Asmussen and Rosiński (2001). Recall that our return process Xε,

defined in (4.26), is the sum of the continuous version and a compound Poisson process. That is to say,

Xε
t = X̃ε

t +
nt∑

i=0
zi.

where nt is a Poisson process as discussed before. Assume that k jumps are recorded in the interval [t, T ]

then similar to the treatment in El-Khatib et al. (2024)

Xε
T = DT + Lk.

whereDT = Xε
t + X̃ε

T − X̃ε
t and Lk =

∑k
i=0 zi then the conditional Black-Scholes option price is given

as

P ε(t) = Et

[
e−r(T −t)B(T,Xε

T , VT )
]

(4.29)

=
∞∑

k=0
pε

kEt

[
e−r(T −t)B(T, X̃ε

T +
nT∑
i=1

Zi, VT )|
∣∣∣nT − nt = k

]
. (4.30)

where pε
k = P (nT = k). Setting Ds := Xε

t + X̃ε
s − X̃ε

t for any s ≥ t and defining ELk
[•] = E

[
• |Lnt =

k∑
i=0

zi

]
we have the following by the integrability of the Black-Scholes function,

P ε(t) =
∞∑

k=0
pε

kEt

[
e−r(T −t)ELk

[B(T,DT + Lk, VT )]
]

(4.31)

=
∞∑

k=0
pε

kEt

[
e−r(T −t)Hk(T,DT , VT )

]
(4.32)

where

Hk(T,Xε
T , VT ) = ELk

[
B(T, X̃ε

T + Lk, VT )
]
. (4.33)

Finally the decomposition formula for our process Xε is given by the following corollary:

Corollary 4.2. We have the decomposition
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P ε(t) =
∞∑

k=0
pε

kHk(t, X̃ε
t , Vt) (4.34)

+ 1
8

∞∑
n=0

pε
kEt

[ ∫ T

t
e−r(u−t)Γ2Hk(u,Du, Vu)d[M,M ]u

]
+ ρ

2

∞∑
k=0

pε
kEt

[ ∫ T

t
e−r(u−t)√YuΛΓHk(u,Du, Vu)d[W,M ]u

]
Proof: Applying Theorem 4.2 to Hk for each k in N yields the result.

In the literature, it has been found that the last two terms in Corollary (4.2) are not easy to evaluate

as highlighted in Gulisashvili et al. (2020) and Alòs (2012) among others. As a result, they have derived

further simplifications. So, similarly, we obtain a computationally suitable form of the decomposition.

For that reason, we introduce the following terms that will be important in error computation:

Lemma 4.4. The following relations are defined:

1.
∫ T

t Et [Ys] ds ≥ Ytφ(t)

2.
∫ T

t Et [Ys] ds ≥ θκ
2 φ

2(t)

3. Rt = ξ2

8
∫ T

s E[Yu]φ2(u)du

4. Ut = ρξ
2
∫ T

s φ(u)E [Yu] du

5. dRt = ξ3

8

( ∫ T
t e−κ(z−t)φ(z)2dz

)√
YtdWt − ξ2

8 φ
2(t)Ytdt

6. dUt = ρξ2

2

( ∫ T
t e−κ(z−t)φ(z)dz

)√
YtdWt − ρξ

2 φ(t)Ytdt

By definition of the remainder or error term Rε
t we have that Xt = Xε

t + Rε
t . Clearly, lim

ε→0
Rε

t = 0

since lim
ε→0

Xε
t = Xt. Moreover, Xε

t and Rε
t are independent. Thus, the following corollary holds:

Corollary 4.3 (Approximate Formula). The approximate decomposition formula is given as

P ε(t) =
∞∑

k=0
pε

kHk(t, X̃ε
t , Vt)

+
∞∑

n=0
pε

kΓ2Hk(t, X̃ε
t , Vt)Rt

+
∞∑

k=0
pε

kΛΓHk(t, X̃ε
t , Vt)Ut

+
∞∑

k=0
pε

kΩk (4.35)
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where Rt = 1
8Et

[ ∫ T
t d[M,M ]s

]
, Ut = ρ

2Et

[ ∫ T
t

√
Yud[W,M ]u

]
and the error term is defined as:

Ωk = 1
8Et

[ ∫ T

t
e−r(u−t)RuΓ4Hk(u,Du, Vu)d[M,M ]u

]
+ ρ

2Et

[ ∫ T

t
e−r(u−t)Ru

√
YuΛΓ3Hk(u, X̃ε

u, Vu)d[W,M ]u
]

+ ρEt

[ ∫ T

t
e−r(u−t)√YuΛΓ2Hk(u, X̃ε

u, Vu)d[W,R]u
]

+ 1
2Et

[ ∫ T

t
e−r(u−t)Γ3Hk(u, X̃ε

u, Vu)d[M,R]u
]

+ 1
8Et

[ ∫ T

t
e−r(u−t)UuΛΓ3Hk(u,Du, Vu)d[M,M ]u

]
+ ρ

2Et

[ ∫ T

t
e−r(u−t)Uu

√
YuΛ2Γ2Hk(u, X̃ε

u, Vu)d[W,M ]u
]

+ ρEt

[ ∫ T

t
e−r(u−t)√YuΛ2ΓHk(u, X̃ε

u, Vu)d[W,U ]u
]

+ 1
2Et

[ ∫ T

t
e−r(u−t)ΛΓ2Hk(u, X̃ε

u, Vu)d[M,U ]u
]

which is bounded above by E(κ, θ, ρ, ξ, r, T, ε) where

E(κ, θ, ρ, ξ, r, T, ε) = ξ2
(
ξ2 + |ρ|ξ

)(1
r

∧ (T − t)
)

G1(κ, θ)

+ |ρ|ξ
(
ξ2 + |ρ|ξ

)(1
r

∧ (T − t)
)

G2(κ, θ)

Proof: Refer to Appendix C.

Remark 4.2. Strictly speaking the price P ε obtained in Corollary 4.2 is an ε-approximation to the actual
price. Denote approximative formula as P̃ ε(t) then we have

P̃ ε(t) := P ε(t) −
∞∑

k=0
pε

kΩk.

The approximation error obtained above pertains to approximating the ε-price P ε(t) by the approx-
imate decomposition formula. The actual approximation error of estimating the option price P (t) is
given as

∣∣∣P (t) − P̃ ε(t)
∣∣∣ =

∣∣∣P (t) − P ε(t) + P ε(t) − P̃ ε(t)
∣∣∣

≤ Cσ(ε)
√
T + |E(κ, θ, ρ, ξ, r, T, ε)|

Clearly, the above formula performs better for small ε and short maturity options.
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5 Numerical Results

Since we are using the approximation in Asmussen and Rosiński (2001) the problem of obtaining the

price is converted into the one of computing

Hk(T,Xε
T , VT ) = ELk

[
B(T, X̃ε

T + Lk, VT )
]

(5.36)

=
∫

R
B(T, X̃ε

T + y, VT )f∗k(y)dy (5.37)

where f∗k is the convolution of the jump density. Alternatively, Monte-Carlo methods can be employed

if f∗k is not available. Here we choose the second option and obtain Figures (1) and (2). Following the

details in Cont and Tankov (2003), Asmussen and Rosiński (2001), Schoutens (2003), Asmussen and

Glynn (2007) and the references therein, we analyze a special case of Tempered Stable Lévy processes

and obtain numerical results. We consider a modification of the stable process where for some func-

tion L(y), which varies slowly to zero; we have ν(dy) = L(y)
|y|1+α . In particular, L(y) = eλy leads to

exponential tempering, thus

ν(y) = C+e
−λ+y

y1+α+
1y>0 + C−e

λ−y

|y|1+α−
1y<0

where C±, λ± > 0 and 0 ≤ α± < 2.

The following are special cases found in the literature and widely used in Quantitative Finance.

1. The CGMY model when C+ = C− = C and α± = Y > 0

2. The variance Gamma (VG) model when α± = 0, and C±, λ± > 0. It’s characteristic exponent is

κ(s) = C+Γ(−Y )[(M − s)Y −MY ] + C−[(G− s)Y −GY ]

The following terms are defined for a general Tempered Stable Lévy processes:

Table 1: Tempered Staple Lévy processes Terms

0 < α± < 2

c1 C+Γ(−α+)[(λ+ − 1)α+ − λ
α+
+ ] + C−Γ(−α−)[(λ− − 1)α− − λ

α−
− ]

λ(ε) C+λ
α+
+ Γ(−α+, λ+ε) + C−λ

α−
− Γ(−α−, λ−ε)

m(ε) C+λ
α+
+ γ(−α+, λ+ε) + C−λ

α−
− γ(−α−, λ−ε)

σ2(ε) C+λ
α+−2
+ γ(2 − α+, λ+ε) + C−λ

α−−2
− γ(2 − α−, λ−ε)

Here, γ(x, z) =
∫ z

0 t
x−1e−xdt and Γ(x, z) =

∫∞
z tx−1e−xdt are the lower and upper incomplete

gamma functions respectively. In the special case when α = 0, we get the Variance Gamma process and

the following terms are defined:
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Table 2: Variance Gamma Terms

α = 0

c1
1

ν∗ log
(
1 − θ∗ν∗ − σ∗2ν∗

2

)
λ(ε) C [E1(εM) + E1(εG)]
m(ε) C

G [e−εG − 1] + C
M

[
1 − e−Mε

]
σ∗2(ε) C

[
e−Mε

M

(
ε+ 1

M

)
+ e−εG

G

(
ε+ 1

G

)]

where

C = 1/ν∗, G = 1√
(θ∗ν∗)2

4 + σ∗2ν∗

2 − θ∗ν∗

2

, M = 1√
(θ∗ν∗)2

4 + σ∗2ν∗

2 + θ∗ν∗

2

,

and E1(z) =
∫∞

z
e−t

t dt is known as the exponential integral. We have added a superscript * for clarity

only. See Madan et al. (1998) for a treatise on the Variance Gamma process and its parameters. For
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Figure 1: Absolute Relative error of Option price against ε when S0 = 100 and time to maturity T = 0.25 for
various strike prices K.

the following parameters under the Variance Gamma Levy process: S0 = 100.0 r = 0.01, T = 0.25,

Y0 = 0.1625, κ = 1.967, θ = 0.17819, ξ = 0.245, ρ = −0.865, σ∗ = 0.1213, θ∗ = −0.1436, and

ν∗ = 0.1686 we use Monte Carlo methods to compute equation (5.37).

Analysing the approximation error against ε, we find that the error does not follow a linear pattern.

In Figure 1 for ε between 0.025 and 0.04 the lowest approximation errors are obtained. As a result, in

computing the option prices in Figure 2 we used ε = 0.035. Clearly, time to maturity has a bearing

on model performance. It performs better for short-dated options compared to options with a longer

duration. Moreover, in Figure 1 we observe that the method performs well in the in-the-money (ITM) and
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at-the-money (ATM) conditions. The accuracy under out-of-the-money (OTM) conditions is marginally

worse.
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Figure 2: Option price Absolute Relative error for ε = 0.035 when S0 = 100 and K = 100 for various time to
maturity T .

6 Conclusion

A decomposition formula and an approximate version were derived. The numerical computations

indicate that the error under an infinite activity and finite variation Lévy process is much higher than

in the compound Poisson case because of the decomposition error as well as the compound Poisson

approximation to the Lévy model. Moreover, the computational time in our case is higher since we have

to use Monte Carlo methods to compute (5.37). Future research may include speed improvement and

infinite activity plus infinite variation Lévy models among many other possibilities.

A Proof of Theorem 3.1

Applying the suitable Itô formula to e−rsF (s,Xs, Vs)Gt between t and T , see Cont and Tankov

(2003) (page 280) or Applebaum (2009) (page 255), we have
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e−rTF (T,XT , VT )GT

= e−rtF (t,Xt, Vt)Gt

+
∫ T

t
e−rs[∂sF (s,Xs, Vs) − rF (s,Xs, Vs)]Gsds

+
∫ T

t
e−rs(r − c2 − Ys

2 )∂xF (s,Xs, Vs)Gsds

+
∫ T

t
e−rsYs

2 ∂xxF (s,Xs, Vs)Gsds

+
∫ T

t
e−rs∂xF (s,Xs, Vs)

√
YsGsdZs

+
∫ T

t
e−rs

∫
R
∂xF (s,Xs−, Vs)GsyÑ(ds, dy)

+
∫ T

t
e−rs∂yF (s,Xs, Vs) 1

T − s
GsdMs

+
∫ T

t
e−rs∂yF (s,Xs, Vs) 1

T − s
(Vs − Ys)Gsds

+
∫ T

t
e−rsF (s,Xs−, Vs)dGs

+
∫ T

t
e−rs 1

2∂yyF (s,Xs, Vs) 1
(T − s)2Gsd[M,M ]s

+
∫ T

t
e−rs∂xyF (s,Xs, Vs)ρ

√
Ys

1
T − s

Gsd[W,M ]s

+
∫ T

t
e−rs∂xF (s,Xs−, Vs)d[Xc, G]s

+
∫ T

t
e−rs∂yF (s,Xs−, Vs)d[V,G]s

+
∫ T

t
e−rs

∫
R

∆xxF (s,Xs−, Vs)GsÑ(ds, dx)

+
∫ T

t
e−rs

∫
R

∆xxF (s,Xs−, Vs)Gsν(dx)ds

Writing things in terms of operator Ly and using the fact that G is adapted only to the filtration

generated by W and J we have

19



e−rTF (T,XT , VT )GT

= e−rtGtF (t,Xt, Vt)

+
∫ T

t
e−rsF (s,Xs, Vs)dGs

+
∫ T

t
e−rs

(
LyF (s,Xs, Vs) + 1

2 (Ys − Vs)
(
∂2

x − ∂x

)
F (s,Xs, Vs)

)
Gsds

+
∫ T

t
e−rs

(
Vs − Ys

T − s
∂yF (s,Xs, Vs) − c2∂xF (s,Xs, Vs)

)
Gsds

+
∫ T

t
e−rs

√
Ys∂xF (s,Xs, Vs)GsdZs

+
∫ T

t
e−rs

∫
R
∂xF (s,Xs−, Vs)GsyÑ(ds, dy)

+
∫ T

t
e−rs Gs

T − s
∂yF (s,Xs, Vs)dMs

+ 1
2

∫ T

t
e−rs∂yyF (s,Xs, Vs) 1

(T − s)2Gsd[M,M ]s

+
∫ T

t
e−rs∂xyF (s,Xs, Vs)ρ

√
Ys

1
T − s

Gsd[W,M ]s

+ ρ

∫ T

t
e−rs

√
Ys∂xF (s,Xs−, Vs)d[W,G]s

+
∫ T

t
e−rs 1

T − s
∂yF (s,Xs−, Vs)d[M,G]s

+
∫ T

t

∫
R
e−rs∆xxF (s,Xs−, Vs)GsÑ(ds, dx)

+
∫ T

t

∫
R
e−rs∆xxF (s,Xs−, Vs)Gsν(dx)ds.

Taking expectations, multiplying by ert and using that

c2 =
∫

R
(ey − 1 − y)ν(dy)

we obtain
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Et[e−r(T −t)F (T,XT , VT )GT ]

= GtF (t,Xt, Vt)

+ Et

∫ T

t
e−r(s−t)F (s,Xs, Vs)dGs

+ Et

∫ T

t
e−r(s−t)

(
LyF (s,Xs, Vs) + 1

2 (Ys − Vs)
(
∂2

x − ∂x

)
F (s,Xs, Vs)

)
Gsds

+ Et

∫ T

t
e−r(s−t)Vs − Ys

T − s
∂yF (s,Xs, Vs)Gsds

+ 1
2

∫ T

t
e−rs∂yyF (s,Xs, Vs) 1

(T − s)2Gsd[M,M ]s

+
∫ T

t
e−rs∂xyF (s,Xs, Vs)ρ

√
Ys

1
T − s

Gsd[W,M ]s

+ ρEt

∫ T

t
e−r(s−t)√Ys∂xF (s,Xs−, Vs)d[W,G]s

+ Et

∫ T

t
e−r(s−t) 1

T − s
∂yF (s,Xs−, Vs)d[M,G]s

+ Et

∫ T

t

∫
R
e−r(s−t)∆F (s,Xs−, Vs)Gsν(dx)ds.

Now, applying the hypotheses on F we finish the proof obtaining

Et[e−r(T −t)F (T,XT , VT )GT ]

= GtF (t,Xt, Vt)

+ Et

∫ T

t
e−r(s−t)F (s,Xs, Vs)dGs

+ 1
8

∫ T

t
e−rsΓ2F (s,Xs, Vs)Gsd[M,M ]s

+ ρ

2

∫ T

t
e−rsΛΓF (s,Xs, Vs)

√
YsGsd[W,M ]s

+ ρEt

∫ T

t
e−r(s−t)√Ys∂xF (s,Xs−, Vs)d[W,G]s

+ 1
2Et

∫ T

t
e−r(s−t)ΓF (s,Xs−, Vs)d[M,G]s

+ Et

∫ T

t

∫
R
e−r(s−t)∆F (s,Xs−, Vs)Gsν(dx)ds.

B Proof of Theorem 4.2

We first present a generic formula as follows: Let Gt be a continuous semi-martingale w.r.t Ft, let

A(t, x, y) be a C1,2,2([0, T ] × R+ × R+) function and let Vt and Mt be as defined before. Suppose X̃ε
t
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is the continuous part of Xε
t then

Et

[
e−r(T −t)A(T, X̃ε

T , VT )GT

]
= A(t, X̃ε

t , Vt)Gt

+ Et

[ ∫ T

t
e−r(u−t)GuLvA(u, X̃ε

u, Vu)du
]

+ Et

[ ∫ T

t
e−r(u−t)A(u, X̃ε

u, Vu)dGu

]
+ Et

[ ∫ T

t

e−r(u−t)

T − u
(Vu − Yu)Gu∂yA(u, X̃ε

u, Vu)du
]

+ 1
2Et

[ ∫ T

t
e−r(u−t)(Yu − Vu)(∂xx − ∂x)A(u, X̃ε

u, Vu)Gudu
]

+ 1
2Et

[ ∫ T

t

e−r(u−t)

(T − u)2Gu∂
2
yA(u, X̃ε

u, Vu)d[M,M ]u
]

+ ρEt

[ ∫ T

t

e−r(u−t)

T − u

√
Yu∂

2
xyA(u, X̃ε

u, Vu)Gud[W,M ]u
]

+
√

1 − ρ2Et

[ ∫ T

t

e−r(u−t)

T − u

√
Yu∂

2
xyA(u, X̃ε

u, Vu)Gud[W̃ ,M ]u
]

+ Et

[ ∫ T

t

e−r(u−t)

T − u
∂yA(u, X̃ε

u, Vu)d[M,G]u
]

+ ρEt

[ ∫ T

t
e−r(u−t)√Yu∂xA(u, X̃ε

u, Vu)d[W,G]u
]

+
√

1 − ρ2Et

[ ∫ T

0
e−r(u−t)√Yu∂xA(u, X̃ε

u, Vu)d[W̃ ,G]u
]

Assuming that A satisfies

∂yA(t, x, y) = T − t

2 (∂2
x − ∂x)A(t, x, y)

then the above equation gives:

Et

[
e−rTA(T, X̃ε

T , VT )GT

]
= A(t, X̃ε

t , Vt)Gt (B.38)

+ Et

[ ∫ T

t
e−r(u−t)A(u, X̃ε

u, Vu)dGu

]
+ 1

8Et

[ ∫ T

t
e−r(u−t)Gu(∂2

x − ∂x)2A(u, X̃ε
u, Vu)d[M,M ]u

]
+ ρ

2Et

[ ∫ T

t
e−r(u−t)√Yu∂x(∂2

x − ∂x)A(u, X̃ε
u, Vu)Gud[W,M ]u

]
+

√
1 − ρ2Et

[ ∫ T

t
e−r(u−t)√Yu∂x(∂2

x − ∂x)A(u, X̃ε
u, Vu)Gud[W̃ ,M ]u

]
+ 1

2Et

[ ∫ T

t
e−r(u−t)(∂2

x − ∂x)A(u, X̃ε
u, Vu)d[M,G]u

]
+ ρEt

[ ∫ T

t
e−r(u−t)√Yu∂xA(u, X̃ε

u, Vu)d[W,G]u
]

+
√

1 − ρ2Et

[ ∫ T

0
e−r(u−t)√Yu∂xA(u, X̃ε

u, Vu)d[W̃ ,G]u
]

Letting A = B and taking G = 1 yields the result.
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C Proof of Corollary 4.3

C.1 Approximation terms

Let (4.28) be given as

P0 = BS(0, X̃0, V0) + (I) + (II)

where the last two terms are further decomposed by applying equation B.38 for appropriate expressions

of A and G as follows:

Term (I)

Letting A = Γ2Hk(t, X̃ε
t , Vt) and Gt = Rt = 1

8Et

[ ∫ T
t d[M,M ]u

]
, then we obtain

I = e−rtΓ2Hk(t, X̃ε
t , Vt)Rt

+ 1
8Et

[ ∫ T

t
e−r(u−t)RuΓ4Hk(u,Du, Vu)d[M,M ]u

]
+ ρ

2Et

[ ∫ T

t
e−r(u−t)Ru

√
YuΛΓ3Hk(u,Du, Vu)d[W,M ]u

]
+ ρEt

[ ∫ T

t
e−r(u−t)√YuΛΓ2Hk(u,Du, Vu)d[W,R]u

]
+ 1

2Et

[ ∫ T

t
e−r(u−t)Γ3Hk(u,Du, Vu)d[M,R]u

]
C.1.1 Term (II)

Letting A = ΛΓHk(u, X̃ε
u, Vu) and Gt = Ut = ρ

2Et

[ ∫ T
t

√
Yud[W,M ]u

]
, then we obtain

II = ΛΓHk(t, X̃ε
t , Vt)Ut

+ 1
8Et

[ ∫ T

t
e−r(u−t)UuΛΓ3Hk(u,Du, Vu)d[M,M ]u

]
+ ρ

2Et

[ ∫ T

t
e−r(u−t)Uu

√
YuΛ2Γ2Hk(u,Du, Vu)d[W,M ]u

]
+ ρEt

[ ∫ T

t
e−r(u−t)√YuΛ2ΓHk(u,Du, Vu)d[W,U ]u

]
+ 1

2Et

[ ∫ T

t
e−r(u−t)ΛΓ2Hk(u,Du, Vu)d[M,U ]u

]
Compiling the terms that remain unused from the above three sections Ω1,k is obtained.

C.2 Error Computation

In computing the error bounds below, we primarily rely on Lemma 2.2 as shown below.
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C.2.1 Error of Term (I)

Using the definitions in Lemma 4.4 the error for the first term is bounded as follows:

|I − Γ2Hk(t, X̃ε
t , Vt)Rt|

≤ 1
8Et

[ ∫ T

t
e−r(u−t) ξ

2

8

(∫ T

u
Et[Ys]ψ(s)2ds

)
Γ4Hk(u,Du, Vu)ξ2Yuψ(u)2du

]
+ρ

2Et

[ ∫ T

t
e−r(u−t) ξ

2

8

(∫ T

u
Et[Ys]ψ(s)2ds

)√
YuΛΓ3Hk(u, X̃ε

u, Vu)ξ
√
Yuψ(u)du

]
+ρEt

[ ∫ T

t
e−r(u−t)√YuΛΓ2Hk(u,Du, Vu)ξ

3

8

(∫ T

u
e−κ(s−t)ψ(s)2ds

)√
Yudu

]
+1

2Et

[ ∫ T

t
e−r(u−t)Γ3Hk(u,Du, Vu)ξ

4

8 ψ(u)
(∫ T

u
e−κ(s−t)ψ(s)2ds

)
Yudu

]
Rearranging and using the fact that ψ(t) is a decreasing function we have

|I − Γ2Hk(t, X̃ε
t , Vt)Rt|

≤ ξ4

64Et

[ ∫ T

t
e−r(u−t)ψ(u)4Yu

∫ T

u
Et[Ys]ds(∂6

x − 3∂5
x + 3∂4

x − ∂3
x)ΓHk(u,Du, Vu)du

]
+ξ3|ρ|

16 Et

[ ∫ T

t
e−r(u−t)ψ(u)3Yu

∫ T

u
Et[Ys]ds(∂5

x − 2∂4
x + ∂3

x)ΓHk(u,Du, Vu)du
]

+ξ3|ρ|
8 Et

[ ∫ T

t
e−r(u−t)Yuψ(u)3(∂3

x − ∂2
x)ΓHk(u,Du, Vu)du

]
+ ξ4

16Et

[ ∫ T

t
e−r(u−t)ψ(u)4Yu(∂4

x − 2∂3
x + ∂2

x)ΓHk(u,Du, Vu)du
]

Employing Lemma 2.2

|I − Γ2Hk(t, X̃ε
t , Vt)Rt|

≤ ξ4

64Et

[ ∫ T

t
e−r(u−t)ψ(u)3a4

u( C
a7

u

+ 3C
a6

u

+ 3C
a5

u

+ C

a4
u

)du
]

+ξ3|ρ|
16 Et

[ ∫ T

t
e−r(u−t)ψ(u)2a4

u( C
a6

u

+ 2C
a5

u

+ C

a4
u

)du
]

+ξ3|ρ|
8 Et

[ ∫ T

t
e−r(u−t)ψ(u)2a2

u( C
a4

u

+ C

a3
u

)du
]

+ ξ4

16Et

[ ∫ T

t
e−r(u−t)ψ(u)3a2

u( C
a5

u

+ 2C
a4

u

+ C

a3
u

)du
]
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|I − Γ2Hk(t, X̃ε
t , Vt)Rt|

≤ ξ4

64CEt

[ ∫ T

t
e−r(u−t)ψ(u)3( 1

a3
u

+ 3
a2

u

+ 3
au

+ 1)du
]

+ξ3|ρ|
16 CEt

[ ∫ T

t
e−r(u−t)ψ(u)2( 1

a2
u

+ 2
au

+ 1)du
]

+ξ3|ρ|
8 CEt

[ ∫ T

t
e−r(u−t)ψ(u)2( 1

a2
u

+ 1
au

)du
]

+ ξ4

16CEt

[ ∫ T

t
e−r(u−t)ψ(u)3( 1

a3
u

+ 2
a2

u

+ 1
au

)du
]

It follows that:

|I − Γ2Hk(t, X̃ε
t , Vt)Rt|

≤ ξ4

64CEt

[ ∫ T

t
e−r(u−t)ψ(u)3(

( 2
κθψ(u)2

)3/2
+ 3

( 2
κθψ(u)2

)
+ 3

( 2
κθψ(u)2

)1/2
+ 1)du

]
+ ξ3

16CEt

[ ∫ T

t
e−r(u−t)ψ(u)2(

( 2
κθψ(u)2

)
+ 2

( 2
κθψ(u)2

)1/2
+ 1)du

]
+ξ3ρ

8 CEt

[ ∫ T

t
e−r(u−t)ψ(u)2(

( 2
κθψ(u)2

)
+
( 2
κθψ(u)2

)1/2
)du

]
+ ξ4

16CEt

[ ∫ T

t
e−r(u−t)ψ(u)3(

( 2
κθψ(u)2

)3/2
+ 2

( 2
κθψ(u)2

)
+
( 2
κθψ(u)2

)1/2
)du

]
Simplifying we have that:

|I − Γ2Hk(t, X̃ε
t , Vt)Rt|

≤ ξ4

64C
∫ T

t
e−r(u−t)

[ ( 2
κθ

)3/2
+ 6ψ(u)

κθ
+ 3

( 2
κθ

)1/2
ψ(u)2 + ψ(u)3

]
du

+ξ3|ρ|
16 C

∫ T

t
e−r(u−t)

[ 2
κθ

+ 2
( 2
κθ

)1/2
ψ(u) + ψ(u)2

]
du

+ξ3|ρ|
8 C

∫ T

t
e−r(u−t)

[ ( 2
κθ

)
+
( 2
κθ

)1/2
ψ(u)

]
du

+ ξ4

16C
∫ T

t
e−r(u−t)

[ ( 2
κθ

)3/2
+ 2

( 2
κθ

)
ψ(u) +

( 2
κθ

)1/2
ψ(u)2

]
du

Using the upper bound of ψ we have

|I − Γ2Hk(t, X̃ε
t , Vt)Rt|

≤ ξ4

64C
[ ( 2

κθ

)3/2
+ 6
κ2θ

+ 3
( 2
κ5θ

)1/2
+ 1
κ3

] ∫ T

t
e−r(u−t)du

+ξ3|ρ|
16 C

[ 2
κθ

+ 2
( 2
κ3θ

)1/2
+ 1
κ2

] ∫ T

t
e−r(u−t)du

+ξ3|ρ|
8 C

[ 2
κθ

+
( 2
κ3θ

)1/2 ] ∫ T

t
e−r(u−t)du

+ ξ4

16C
[
(
( 2
κθ

)3/2
+ 2

( 2
κ2θ

)
+
( 2
κ5θ

)1/2
)
] ∫ T

t
e−r(u−t)du
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Lastly, using the fact that
∫ T

t
e−r(u−t)du ≤ 1

r
∧ (T − t) we have that

|I − Γ2Hk(t, X̃ε
t , Vt)Rt| ≤ ξ2

(
ξ2 + |ρ|ξ

)(1
r

∧ (T − t)
)

E1(κ, θ) (C.39)

where E1 is a positive function

C.2.2 Error of Term II

The following proof follows a similar outline as above∣∣∣II − e−rtΛΓHk(t, X̃ε
t , Vt)Ut

∣∣∣
≤ 1

8Et

[ ∫ T

t
e−r(u−t) ρξ

2

(∫ T

u
Et(Ys)ψ(s)ds

)
ΛΓ3Hk(u,Du, Vu)ξ2Yuψ(u)2du

]
+ |ρ|

2 Et

[ ∫ T

t
e−r(u−t) ρξ

2

(∫ T

u
Et(Ys)ψ(s)ds

)√
YuΛ2Γ2Hk(u,Du, Vu)ξ

√
Yuψ(u)du

]
+|ρ|Et

[ ∫ T

t
e−r(u−t)√YuΛ2ΓHk(u,Du, Vu)ρξ

2

2

(∫ T

u
e−κ(s−t)ψ(s)ds

)√
Yudu

]
+1

2Et

[ ∫ T

t
e−r(u−t)ΛΓ2Hk(u,Du, Vu)ρξ

3

2 Yuψ(u)
(∫ T

u
e−κ(s−t)ψ(s)ds

)
du
]

Using the fact that ψ(t) is a decreasing function and grouping terms we find that∣∣∣II − e−rtΛΓHk(t, X̃ε
t , Vt)Ut

∣∣∣
≤ |ρ|ξ3

16 Et

[ ∫ T

t
e−r(u−t)Yuψ(u)3

(∫ T

u
Et(Ys)ds

)
(∂5

x − 2∂4
x + ∂3

x)ΓHk(u,Du, Vu)du
]

+ |ρ|2ξ2

4 Et

[ ∫ T

t
e−r(u−t)Yuψ(u)2

(∫ T

u
Et(Ys)ds

)
(∂4

x − ∂3
x)ΓHk(u,Du, Vu)ξdu

]
+ |ρ|2ξ2

2 Et

[ ∫ T

t
e−r(u−t)Yuψ(u)2∂2

xΓHk(u,Du, Vu)du
]

+ |ρ|ξ3

4 Et

[ ∫ T

t
e−r(u−t)Yuψ(u)3(∂3

x − ∂2
x)ΓHk(u,Du, Vu)Yudu

]
Employing Lemma 2.2 ∣∣∣II − e−rtΛΓHk(t, X̃ε

t , Vt)Ut

∣∣∣
≤ |ρ|ξ3

16 Et

[ ∫ T

t
e−r(u−t)ψ(u)2a4

u( C
a6

u

+ 2C
a5

u

+ C

a4
u

)
]

+ |ρ|2ξ2

4 CEt

[ ∫ T

t
e−r(u−t)ψ(u)a4

u( C
a5

u

+ C

a4
u

)du
]

+ |ρ|2ξ2

2 CEt

[ ∫ T

t
e−r(u−t)ψ(u)a2

u

C

a3
u

du
]

+ |ρ|ξ3

4 CEt

[ ∫ T

t
e−r(u−t)ψ(u)2a2

u( C
a4

u

+ C

a3
u

)du
]
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Simplifying and using
1
at

≤
( 2
κθψ(t)2

)1/2

∣∣∣II − e−rtΛΓHk(t, X̃ε
t , Vt)Ut

∣∣∣
≤ |ρ|ξ3

16 C

∫ T

t
e−r(u−t)ψ(u)2

[ ( 2
κθψ(u)2

)
+ 2

( 2
κθψ(u)2

)1/2
+ 1

]
du

+ |ρ|2ξ2

4 C

∫ T

t
e−r(u−t)ψ(u)

[ ( 2
κθψ(u)2

)1/2
+ 1

]
du

+ |ρ|2ξ2

2 C

∫ T

t
e−r(u−t)ψ(u)

[ 2
κθψ(u)2

]1/2
du

+ |ρ|ξ3

4 C

∫ T

t
e−r(u−t)ψ(u)2

[ ( 2
κθψ(u)2

)
+
( 2
κθψ(u)2

)1/2 ]
du

Which leads us to find that

∣∣∣II − e−rtΛΓHk(t, X̃ε
t , Vt)Ut

∣∣∣
≤ |ρ|ξ3

16 C

∫ T

t
e−r(u−t)

[ ( 2
κθ

)
+ 2

(
2ψ(u)2

κθ

)1/2

+ ψ(u)2
]
du

+ρ2ξ2

4 C

∫ T

t
e−r(u−t)

[ ( 2
κθ

)1/2
+ ψ(u)

]
du

+ |ρ|2ξ2

2 C

∫ T

t
e−r(u−t)

[ 2
κθ

]1/2
du

+ |ρ|ξ3

4 C

∫ T

t
e−r(u−t)

[ ( 2
κθ

)
+
(

2ψ(u)2

κθ

)1/2 ]
du

And finally, we find that

∣∣∣II − e−rtΛΓHk(t, X̃ε
t , Vt)Ut

∣∣∣ ≤ |ρ|ξ
(
ξ2 + |ρ|ξ

)(1
r

∧ (T − t)
)

E2(κ, θ) (C.40)
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7. Conclusion

7.1. Concluding Remarks

We set out to contribute to the derivatives pricing pipeline in three directions.
Firstly, to propose and analyse alternative price models. Secondly, to provide
alternative options pricing methods, and lastly to compute option price sen-
sitivities.

7.1.1. Alternative Price Models

We study several alternative price models like the Hybrid Heston-CEV jump
model (HCEVJ) and its special cases. Our findings showed that this model in-
herited key properties from theHeston andCEVmodels like stochastic volatil-
ity, leverage effect, volatility clustering, and volatility smile. It is worth men-
tioning that the Hybrid models preserved the negative correlation between
the returns and volatility. Additionally, the elasticity parameter was found to
affect the volatility smile adding to the model’s flexibility. Due to the nature
of the HCEVJ models Monte Carlo methods were used to price the options.
However, a decomposition method was used as well for a specific sub-case.

Besides the above, we also analysed a two-factor stochastic volatility model
with finite activity jumps (2FSVJ) and a stochastic volatility Lévy model. How-
ever, we did not discuss their advantages over traditional or well-established
models.
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7.1.2. Option Pricing Methods

Option price decomposition methods are significantly fast and easy to un-
derstand for those familiar with the Black-Scholes-Merton (BSM) model. The
decomposition approximates the option price as the sum of the BSMmodel
price with appropriate corrections. This method requires that the approxi-
mation errors be quantified. As such we obtained several decomposition for-
mulas for the 2FSVJ and the finite activity Heston-Lévy model. The approx-
imation errors were found to be small for in-the-money and at-the-money
options as well as for short-dated options.

The jump structure has a direct bearing on the computation speed. In the
case of the 2FSVJ model, the decomposition model was significantly faster
than the Fourier integral method when log-normal jumps were employed
due to the simplicity of the pricing formula. On the other hand, double ex-
ponential jumps require several integrals to be numerically computed thus,
the decomposition is slower. The same applies to the infinite activity case.
Overall, novel approaches to the European pricing models were introduced
fulfilling our second objective.

7.1.3. Option Greeks

In this area, a marginal contribution was made. We computed some first-
order Greeks using the Malliavin calculus and Monte Carlo techniques. It is
nowawell-known fact thatMalliavin Calculus significantly improves the com-
putation of sensitivities on two fronts: speed and convergence. This is partic-
ularly truewhen the options pricingmethod of choice isMonteCarlo as in the
HCEVJmodel. Computational speed and accuracy are significantly improved
by employing Malliavin Calculus.

7.2. Future Research

The ideas inpapers three and four canbeextended in severalways. One could
use the decomposition formulae to compute the implied volatility estimates
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and possibly estimate the Greeks. This may provide faster estimates whose
errors can be quantified.

In the case of the Infinite activity Lévy model, several improvements can be
made. Our research followed two paths that resulted in two alternative Gen-
eral decomposition formulae. In the first direction, we obtained the following
exact formula:

P (t) = B(t,Xt, Vt) (7.1)

+
1

8
Et
∫ T

t

e−r(s−t)Γ2B(s,Xs, Vs)d[M,M ]s

+
ρ

2
Et
∫ T

t

e−r(s−t)ΛΓB(s,Xs, Vs)
√
Ysd[W,M ]s

+ Et
∫ T

t

∫
R
e−r(s−t)∆B(s,Xs−, Vs)ν(dx)ds.

However, deriving a computational version of equation (7.1) is still an open
problem because of the term in blue.

To circumvent this problem, Lévy approximation methods were employed,
in the finite activity case, which required Monte Carlo methods to compute
the option prices. However, this approach may be improved by deriving the
convolution of the jump density. It remains to be seen if this approach will
improve the computational time and or the accuracy. Our study led us to
compute adecomposition formula for the finite activity case only. The infinite
variation case is still an open problem.

7.2.1. Decomposition Formula: Infinite Variation Case

Moving on to the infinite variation case the return process is approximated
as:

Xε
t = x+ (r −K(ε))t− 1

2

∫ t

0

Ysds+

∫ t

0

√
YsdZs + σ(ε)W̃t +

nt∑
i=1

zi (7.2)

where K(ε) is now given as

K(ε) = c2 −m(ε).

We find that the decomposition formula has an extra term as follows:



7.2. Future Research 121

Theorem 7.2.1. Let X̃ε
t := Xε

t −Lnt be the continuous part of the return process
Xε
t given in (7.2) and supposeGt is a continuous semi-martingale w.r.tFt and

let A(t, x, y) be a C1,∞,2([0, T ]×R+ ×R+) function then, the generic decomposi-
tion formula is

Et
[
e−rTA(T, X̃ε

T , VT )GT

]
= A(t, X̃ε

t , Vt)Gt (7.3)

+ Et
[ ∫ T

t

e−r(u−t)A(u, X̃ε
u, Vu)dGu

]
+

1

8
Et
[ ∫ T

t

e−r(u−t)GuΓ
2A(u, X̃ε

u, Vu)d[M,M ]u

]
+

1

2
σ2(ε)Et

[ ∫ T

t

e−r(u−t)
√
YuΛ

2A(u, X̃ε
u, Vu)Gudu

]
+

ρ

2
Et
[ ∫ T

t

e−r(u−t)
√
YuΛΓA(u, X̃

ε
u, Vu)Gud[W,M ]u

]
+

√
1− ρ2Et

[ ∫ T

t

e−r(u−t)
√
YuΛΓA(u, X̃

ε
u, Vu)Gud[W̃ ,M ]u

]
+

1

2
Et
[ ∫ T

t

e−r(u−t)ΓA(u, X̃ε
u, Vu)d[M,G]u

]
+ ρEt

[ ∫ T

t

e−r(u−t)
√
YuΛA(u, X̃

ε
u, Vu)d[W,G]u

]
+

√
1− ρ2Et

[ ∫ T

t

e−r(u−t)
√
YuΛA(u, X̃

ε
u, Vu)d[W̃ ,G]u

]
.

Letting A = B and taking G = 1 then the decomposition formula of a vanilla
option price based on X̃ε

t is given by

Et
[
e−rTB(T, X̃ε

T , VT )
]

= B(t, X̃ε
t , Vt) (7.4)

+
1

8
Et
[ ∫ T

t

e−r(u−t)Γ2B(u, X̃ε
u, Vu)d[M,M ]u

]
+

ρ

2
Et
[ ∫ T

t

e−r(u−t)
√
Yt ΛΓB(u, X̃ε

u, Vu)d[W,M ]u

]
+

1

2
σ2(ε)Et

[ ∫ T

t

e−r(u−t)Λ2B(u, X̃ε
u, Vu)du

]
Proof. Similar to the proof for Theorem 4.2 in Chapter 6.
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The new term in (7.4) presents some difficulties in obtaining a computation-
ally suitable version as seen below. Using the same arguments as in Section
4.2 of Chapter 6 we have the following:

Corollary 7.2.2. We have the decomposition

P ε(t) =
∞∑
k=0

pεkHk(t, X̃
ε
t , Vt) (7.5)

+
1

8

∞∑
n=0

pεkEt
[ ∫ T

t

e−r(u−t)Γ2Hk(u,Du, Vu)d[M,M ]u

]

+
ρ

2

∞∑
k=0

pεkEt
[ ∫ T

t

e−r(u−t)
√
YuΛΓHk(u,Du, Vu)d[W,M ]u

]

+
1

2
σ2(ε)

∞∑
k=0

pεkEt
[ ∫ T

t

e−r(u−t)Λ2Hk(u, X̃
ε
u, Vu)du

]

Proof. Applying Theorem 7.2.1 to Hk for each k in N yields the result.

Estimating the error for the second and third terms gives the following ex-
pressions

|I − Γ2Hk(t, X̃
ε
t , Vt)Rt| ≤ ξ2 (ξ2 + |ρ|ξ)

(
1
r
∧ (T − t)

)
E1(κ, θ)

+1
2
σ2(ε)Et

[ ∫ T
t
e−r(u−t)

√
YuΛ

2Γ2Hk(t, X̃
ε
t , Vt)Rudu

]
(7.6)∣∣∣II − e−rtΛΓHk(t, X̃

ε
t , Vt)Ut

∣∣∣ ≤ |ρ|ξ (ξ2 + |ρ|ξ)
(
1
r
∧ (T − t)

)
E2(κ, θ)

+1
2
σ2(ε)Et

[ ∫ T
t
e−r(u−t)

√
YuΛ

3ΓHk(t, X̃
ε
t , Vt)Uudu

]
. (7.7)

Gathering the blue terms fromCorollary 7.2.2 and equations (7.6) and (7.7) we
get the following:

σ2(ε)

2

∞∑
k=0

pεkEt
[ ∫ T

t
e−r(u−t)

(
Λ2Hk(u, X̃

ε
u, Vu) +

√
YuΛ

2Γ2Hk(t, X̃
ε
t , Vt)Ru

+
√
YuΛ

3ΓHk(t, X̃
ε
t , Vt)Uu

)
du
]

whoseupperbounds couldnotbeobtainedusing themethods in thismanuscript.



A. Derivatives of the
Black-Scholes Formulae

Let BS(t, x, y) be the Black-Scholes formula defined in (1.5)-(1.6). Also, let the
following operators be defined Λ = ∂x and Γ = ∂xx − ∂x. Then the following
derivatives of BS(t, x, y)with respect to x are defined:

ΛBS(t, x, y) = exN(d+), (A.1)

ΛΓBS(t, x, y) =
exp(x− d2+

2
)

y(T − t)
√
2π

(√
y(T − t)− d+

)
, (A.2)

Γ2BS(t, x, y) =
exp(x− d2+

2
)

(y(T − t))3/2
√
2π

(
d2+ −

√
y(T − t)d+ − 1

)
, (A.3)

Λ2ΓBS(t, x, y) =
exp(x− d2+

2
)

(y(T − t))3/2
√
2π

(
d2+ − 2y(T − t)d+ + y(T − t)− 1

)
, (A.4)

ΛΓ2BS(t, x, y) =
exp(x− d2+

2
)

(y(T − t))2
√
2π

(
− d2+ +

√
y(T − t)d2+ + (3− y(T − t))d+

− 2
√
y(T − t)

)
,and (A.5)

Λ2Γ2BS(t, x, y) =
exp(x− d2+

2
)

(y(T − t))5/2
√
2π

(
d4+ − 3

√
y(T − t)d3+ + 3(y(T − t)− 3)d2+

+ (9− y(T − t))
√
y(T − t)d+ + 3− 3y(T − t)

)
. (A.6)

The following derivatives were obtained with the aid of Lee et al. 2010

Let B̃S(t, x, y) be the Black-Scholes formula defined in (1.3)-(1.4). Also, let the
following operators be defined Λ = S∂S and Γ = S2∂SS . Then the following
derivatives of B̃S(t, S, y)with respect to S are defined
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ΓB̃S(t, S, y) =
S

σ
√
2πτ

e−d
2
+/2, (A.7)

ΛΓB̃S(t, S, y) =
S

σ
√
2πτ

(
1− d+√

σ2τ

)
e−d

2
+/2,and (A.8)

Γ2B̃S(t, S, y) =
S

σ
√
2πτ

(
d2+
σ2τ

− d+√
σ2τ

+
1

σ2τ

)
e−d

2
+/2 (A.9)



B. Derivation of Useful Processes
Lemma B.0.1. The following relations are defined in the Heston case:

1. Let φi(t) =
∫ T

t

e−κi(u−t)du be defined for i = 1, 2. Then if κ1 < κ2 it follows

that φ1(t) > φ2(t).

2.
∫ T
t
Et [Ys] ds ≥ Ytφ(t)

3.
∫ T
t
Et [Ys] ds ≥ θκ

2
φ2(t)

4. Ct = 1
2
Et
∫ T
t
Yudu = 1

2

(
θ(T − t) + (Yt − θ)φ(t)

)
,

5. dCt = −Yt
2
dt+ ξ

2
φ(t)

√
YtdWt,

6. The future average variance is defined as Vt = 1
T−t

∫ T
t
Et[Ys]ds thus, dVt =

Vt−Yt
T−t dt+

ξ
T−t

√
YtdWt

7. Mt =
∫ T
0
Et[Ys]ds = ξ

∫ T
0
φ(s)

√
YsdWs

8. Rt =
ξ2

8

∫ T
s
E[Yu]φ2(u)du

9. Ut = ρξ
2

∫ T
s
φ(u)E [Yi,u] du

10. Qt =
ρ2ξ2

2

∫ T
t
E [Yu]

( ∫ T
u
e−κ(z−u)φ(z)dz

)
du

11. dRt =
ξ3

8

( ∫ T
t
e−κ(z−t)φ(z)2dz

)√
YtdWt − ξ2

8
φ2(t)Ytdt

12. dUt = ρξ2

2

( ∫ T
t
e−κ(z−t)φ(z)dz

)√
YtdWt − ρξ

2
φ(t)Ytdt

13. dQt =
ρ2ξ3

2

∫ T
t

[
e−κ(u−t)

( ∫ T
u
e−κ(z−u)φ(z)dz

)
du
]√

YtdWt

−ρ2ξ2

2

( ∫ T
t
e−κ(z−t)φ(z)dz

)
Ytdt.

The following sections prove the results in Lemma B.0.1. Results 2 and 3 are
proved in Alòs et al. 2015.
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B.1. Future Average Variance processes

Let the variance process Yt satisfy the following stochastic differential equa-
tion:

dYt = κ(θ − Yt)dt+ ξ
√
YtdWt. (B.1)

Integrating (B.1) on [t, s] and taking the expectation conditioned on Yt yields:

Ys = Yt + κ

∫ s

t

(θ − Yu)du+ ξ

∫ s

t

√
YudWu,

Et [Ys] = Yt + κ

∫ s

t

(θ − Et [Yu])du.

Transforming the second expression via an integrating factor we get the fol-
lowing differential equation:

d(eκsEt [Ys]) = κθeκsds.

Integrating and dividing by eκs reveals that:

Et [Ys] = e−κ(s−t)Yt + θ
(
1− e−κ(s−t)

)
.

Integrating the above on [t, T ] yields

∫ T

t

Et [Ys] ds = θ(T − t) + (Yt − θ)φ(t). (B.2)

where φ(t) =
∫ T

t

e−κ(u−t)du =
1

κ

(
1− e−κ(T−t)

)
and proving result number 4. Now,

from the definition of Vt

dVt =
Vt

T − t
dt+

1

T − t
d

∫ T

t

Et [Ys] ds
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where

d

∫ T

t

Et [Ys] ds =
[
−θ − (Yt − θ) e−κ(T−t)

]
dt+

1

κ

(
1− e−κ(T−t)

)
dYt

d

∫ T

t

Et [Ys] ds =
[
−θ − (Yt − θ) e−κ(T−t)

]
dt

+
1

κ

(
1− e−κ(T−t)

) (
κ(θ − Yt)dt+ ξ

√
YtdWt

)
d

∫ T

t

Et [Ys] ds = −Ytdt+
ξ

κ

(
1− e−κ(T−t)

)√
YtdWt

then with φ(t) = 1
κ
(1− e−κ(T−t)) then 5 and 6 are verified.

B.1.1. Derivation of Utand dUt

This section proves 9 and 12 in Lemma B.0.1. Starting with the definition we
have that

Ut =
ρ

2
Et

[∫ T

t

√
Ysd[W,M ]s

]

=
ρ

2
Et

[∫ T

t

ξYsψ(s)ds

]

=
ρξ

2

∫ T

t

Et[Ys]φ(s)ds

=
ρξ

2

∫ T

t

[θ + (Yt − θ)e−κ(s−t)]φ(s)ds

=
ρξ

2κ

∫ T

t

[θ + (Yt − θ)e−κ(s−t)](1− e−κ(T−s))ds

=
ρξ

2κ

[
θ

∫ T

t

1− e−κ(T−s)ds+ (Yt − θ)

∫ T

t

e−κ(s−t) − e−κ(T−t)ds

]

=
ρξ

2κ

[
θ(T − t− φ(t)) + (Yt − θ)(φ(t)− (T − t)e−κ(T−t)

]

=
ρξ

2κ

[
θ(T − t− φ(t)) + (Yt − θ)(φ(t)− (T − t)e−κ(T−t)

]
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Ut can be written alternatively as:

Ut =
ρξ

2

[
θ

∫ T

t

φ(s)ds+ (Yt − θ)

∫ T

t

e−κ(s−t)φ(s)ds
]
.

Thus,

dUt =
ρξ

2

[(
− θφ(t) + (Yt − θ)

(
κ

∫ T

t

e−κ(s−t)φ(s)ds− φ(t)
))
dt

+
(∫ T

t

e−κ(s−t)φ(s)ds
)
dYt

]
=

ρξ

2

[(
− θφ(t) + (Yt − θ)

(
κ

∫ T

t

e−κ(s−t)φ(s)ds− φ(t)
))
dt

+
(∫ T

t

e−κ(s−t)φ(s)ds
)(
κ(θ − Yt)dt+ ξ

√
YtdWt

)]
=

ρξ

2

[(
− θφ(t)− (Yt − θ)φ(t)

)
dt+ ξ

(∫ T

t

e−κ(s−t)φ(s)ds
)√

YtdWt

]
.

Simplifying gives that:

dUt =
ρξ2

2

(∫ T

t

e−κ(s−t)φ(s)ds
)√

YtdWt −
ρξ

2
Ytφ(t)dt.

B.1.2. Derivation ofRt and dRt

In like manner to the above, we prove 8 and 11 in Lemma B.0.1 as follows:

Rt =
1

8
Et
[ ∫ T

t

d[M,M ]s

]
=

1

8
Et
[ ∫ T

t

ξ2Ysφ(s)
2ds
]

=
ξ2

8

[ ∫ T

t

Et[Ys]
1

κ2
(1− e−κ(T−s))ds

]
=

ξ2

8

[ ∫ T

t

Et[Ys]
1

κ2
(1− e−κ(T−s))2ds

]
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Rt =
ξ2

8κ2

[ ∫ T

t

[θ + (Yt − θ)e−κ(s−t)](1− 2e−κ(T−s) + e−2κ(T−s))ds
]

=
ξ2

8κ2

[
θ

∫ T

t

(1− 2e−κ(T−s) + e−2κ(T−s))ds

+ (Yt − θ)

∫ T

t

(e−κ(s−t) − 2e−κ(T−t) + e−2κT+2κs−κs+κt))ds

]

=
ξ2

8κ2

[
θ(T − t− 2φ(t) + φ2(t) + (Yt − θ)(φ(t)− 2(T − t)e−κ(T−t) + e−κ(T−t)φ(t))

]

where φ2(t) =
1
2κ
(1 − e−2κ(T−t)) Rt has a convenient representation given as fol-

lows:

Rt =
ξ2

8

[
θ

∫ T

t

φ2(s)ds+ (Yt − θ)

∫ T

t

e−κ(s−t)φ2(s)ds
]
.

Thus,

dRt =
ξ2

8

[(
− θφ(t) + (Yt − θ)

(
κ

∫ T

t

e−κ(s−t)φ(s)ds− φ(t)
))
dt

+
(∫ T

t

e−κ(s−t)φ2(s)ds
)(
κ(θ − Yt)dt+ ξ

√
YtdWt

)]
=

ξ2

8

[(
− θφ2(t)− (Yt − θ)φ2(t)

)
dt+ ξ

(∫ T

t

e−κ(s−t)φ2(s)ds
)√

YtdWt

]
Thus:

dRt =
ξ3

8

(∫ T

t

e−κ(s−t)φ2(s)ds
)√

YtdWt −
ξ2

8
Ytφ(t)dt

B.1.3. Derivation ofQt and dQt

To prove 10 and 13 in Lemma B.0.1 recall that

Qt =
ρ

2
Et

[∫ T

t

√
Ysd[W,U ]s

]

=
ρξ2

2

∫ T

t

Et[Ys]
(∫ T

s

e−κ(z−s)φ(z)dz
)
ds

Then

Qt =
ρξ2

2

[
θ

∫ T

t

(∫ T

s

e−κ(z−s)φ(z)dz
)
ds+ (Yt − θ)

∫ T

t

e−κ(s−t)
(∫ T

s

e−κ(z−s)φ(z)dz
)
ds
]
.
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Now,

dQt =
ρξ2

2

[(
− θ

∫ T

t

e−κ(z−t)φ(z)dz

+ (Yt − θ)
(
κ

∫ T

t

e−κ(s−t)
(∫ T

s

e−κ(z−s)φ(z)dz
)
ds−

∫ T

t

e−κ(s−t)φ(s)ds
))
dt

+

∫ T

t

e−κ(s−t)
(∫ T

s

e−κ(z−s)φ(z)dz
)
ds
(
κ(θ − Yt)dt+ ξ

√
YtdWt

)]
=

ρξ2

2

[(
− θ

∫ T

t

e−κ(z−t)φ(z)dz

− (Yt − θ)

∫ T

t

e−κ(s−t)φ(s)ds
))
dt

+ ξ
√
Yt

(∫ T

t

e−κ(s−t)
∫ T

s

e−κ(z−s)φ(z)dzds
)
dWt

]
Simplifying gives that:

dQt =
ρξ3

2

√
Yt

(∫ T

t

e−κ(s−t)
∫ T

s

e−κ(z−s)φ(z)dzds

)
dWt −

ρξ2

2
Yt

(∫ T

t

e−κ(s−t)φ(s)ds
)
dt



C. Characteristic Functions and
Options Pricing.

The characteristic function-based pricingmethod used in this thesis is based
on the note by Gil-Pelaez 1951 who based their results on the work by Lévy
1925. Heston 1993 was one of its early adopters in the field of financial mathe-
matics. Since then, many variations have arisen. Ng 2005 gives an extensive
treatise to this and other methods in options pricing and we will give some
of their results here without proof.

C.1. Gil-Pelaez Results

Proposition C.1.1 (Gil-Pelaez 1951). Let F (x) be the cumulative distribution of
some random variable X . Furthermore, let

ϕ(u) =

∫ ∞

−∞
eiuxdF (x)

be the associated characteristic function. Then we have

1

2

(
F (x) + F (x−)

)
=

1

2
+ lim

δ↓0,T↑∞

∫ T

δ

eiuxϕ(−u)− e−iuxϕ(u)

2πiu
du.

A more convenient representation of the integrand is required for a smooth
implementation of the above proposition.

Lemma C.1.2. We have the equality

eiuxϕ(−u)− e−iuxϕ(u)

2πiu
= − 1

π
R
(e−iux

iu
ϕ(u)

)
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where for z ∈ C, R(z) is real part of z.

As a result of the above lemma the Gil-Palaez formula can be written as:

1

2

(
F (x) + F (x−)

)
=

1

2
+

1

π

∫ ∞

0

R
(e−iux

iu
ϕ(u)

)
du.

The cumulative distribution functions we deal with in this thesis are always
continuous. Thus, Gil-Palaez’s formula simplifies to:

F (x) =
1

2
+

1

π

∫ ∞

0

R
(e−iux

iu
ϕ(u)

)
du. (C.1)

This leads us to the computation of option prices as follows:

PropositionC.1.3. LetP be the risk-neutral priceof the contingent claim h(T ) =

(ST −K)+ and Q is the risk neutral measure. Then

P (T,K) = S0Π1 −Ke−rTΠ2,

where

Π1 =
1

2
+

1

π

∫ ∞

0

R
(ϕT (u− i)eiu logK

iuϕT (u)

)
,

and

Π2 =
1

2
+

1

π

∫ ∞

0

R
(
ϕT (u)

eiu logK

iu

)
,

in which ϕT (u) = E
[
eiulogST

]
, ST is the stock price at time T , and expectations

are taken with respect to Q.

C.2. Characteristic Functions

To complete the discussion on options pricing using the characteristic func-
tion we give the characteristic functions for the stochastic models studied in
this report.

C.2.1. Stochastic Volatility Models

Below are some characteristic functions used in the preceding chapters.
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Heston Model

This is the characteristic function as described in Albrecher et al. 2007.

ϕHest(u) = exp(riut+ A(u, t) + B(u, t)v0)where (C.2)

A(u, t) =
κθ

ξ2

(
(c(u)− d(u))t− 2

log(1− g(u)e−d(u)t)

1− g

)
(C.3)

B(u, t) =
(c(u)− d(u))

ξ2
(1− e−d(u)t)

1− g(u)e−d(u)t
(C.4)

c(u) = κ− iρξu (C.5)

d(u) =
√
c(u)2 + ξ2(iu+ u2) (C.6)

Bates Model

The Bates characteristic function is obtained according to Albrecher et al.
2007 and Pacati et al. 2018.

ϕBates(u) = exp((r − λµJ)iut+ λt(ϕJ(u)− 1) + A(u, t) + B(u, t)v0) (C.7)

where A(u, t) and B(u, t) are defined above and ϕJ(u) is the characteristic func-
tion of the jump amplitudes and µj = ϕJ(−i)− 1 is the mean jump size.

Heston Multi-factor Model with jumps

ϕ2FSV J(u) = exp((r − λµJ)iut+ λt(ϕJ(u)− 1) +
2∑
i=1

(Ai(u, t) + Bi(u, t)vi,0))(C.8)

where (Ai(u, t) and Bi(u, t) are defined as in the Heston case above for i = 1, 2

with the appropriately indexed parameters. ϕJ(u) and µJ are as defined in the
Bates case.

Heston-Lévy Model

TheHeston-Lévymodel in Chapter 6 incorporates an independent infinite ac-
tivity Lévy process into the Heston model. Its characteristic function is given
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as follows:

ϕHL(u) = ϕHest(u)ϕLévy(u) (C.9)

where ϕHest(u) is the Heston characteristic function and ϕLévy(u) is the charac-
teristic function of the Lévy part.

C.2.2. Lévy Processes

In Chapter 6 the general tempered stable process is used to enhance the
Hestonmodel. It is a six-parameter infinite activity process that encapsulates
several special cases like the CGMY and Variance gamma processes. We give
the characteristic functions of some of the special cases below. See Küchler
and Tappe 2013 and Cont and Tankov 2004 Sec. 4.5:

Proposition C.2.1. Let (Xt)t≥0 be a generalised tempered stable process. In

the general case α± 6∈ {0, 1} its characteristic exponent ψ(u) = 1

t
logE[eiuXt ] is

ψ(u) = iuγc + φ(u,C+, α+, λ+) + φ(−u,C−, α−, λ−), (C.10)

where φ(u,C, α, λ) = CλαΓ(−α)
[(

1− iu

λ

)α
− 1 +

iuα

λ

]
. If α± = 1,

ψ(u) = iu(γc + C+ − C−) + φ(u,C+, α+, λ+) + φ(−u,C−, α−, λ−), (C.11)

where φ(u,C, α, λ) = C(λ− iu) log
(
1− iu

λ

)
, and if α± = 0,

ψ(u) = iuγc + φ(u,C+, α+, λ+) + φ(−u,C−, α−, λ−), (C.12)

where φ(u,C, α, λ) = −C
(iu
λ

+ log
(
1− iu

λ

))
.
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