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ABSTRACT

Early detection of breast cancer in mammography screening via deep-learning based computer-aided detection
systems shows promising potential in improving the curability and mortality rates of breast cancer. However,
many clinical centres are restricted in the amount and heterogeneity of available data to train such models
to (i) achieve promising performance and to (ii) generalise well across acquisition protocols and domains. As
sharing data between centres is restricted due to patient privacy concerns, we propose a potential solution:
sharing trained generative models between centres as substitute for real patient data. In this work, we use three
well known mammography datasets to simulate three different centres, where one centre receives the trained
generator of Generative Adversarial Networks (GANs) from the two remaining centres in order to augment
the size and heterogeneity of its training dataset. We evaluate the utility of this approach on mammography
patch classification on the test set of the GAN-receiving centre using two different classification models, (a) a
convolutional neural network and (b) a transformer neural network. Our experiments demonstrate that shared
GANs notably increase the performance of both transformer and convolutional classification models and highlight
this approach as a viable alternative to inter-centre data sharing. Find our code at https://github.com/

zuzaanto/mammo_gans_iwbi2022
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1. INTRODUCTION

With an estimated worldwide incidence rate of 47.8 per 100,000 people in 2020 (both sexes, all ages), breast
cancer is the cancer type with the highest prevalence in the world. It accounts for an estimated 2.22 million new
cases and 684,996 deaths each year.1 Screening mammography (MMG) provides early detection and contributes
to reducing breast cancer mortality.2 However, MMG images are limited by their error rates due to tissue
superposition which could lead to underdiagnosis of significant breast cancers (false negatives) and overdiagnosis
of insignificantly abnormal or healthy cases (false positives).2,3 In this regard, deep learning based computer-
aided detection (CADe) systems have shown great promise in improving and automating the decision making
process of mammograms.2,4 However, deep learning methods are known to require large amounts of training
data to achieve accurate, reliable and robust performance.

Scarcity of expert-annotated medical images often constrains deep learning based methods to be trained
and evaluated on a small dataset coming from a single centre.5 Accordingly, such methods suffer from lack
of generalisation and robustness.6 A solution to this problem is inter-centre data sharing. However, clinical
centres are constrained from sharing sensitive patient data due to technical, legal, and most importantly, ethical
concerns.3,7

Synthetic images generated by Generative Adversarial Networks (GANs)8 have been shown to be of high
perceived visual realism for mammography and to improve downstream tasks including cancer detection, tumour
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segmentation and classification.3 Therefore, in this work, we hypothesize that GANs can overcome the inter-
centre data sharing constraints. After learning the real data distribution, GANs can generate synthetic data with
limited risk of revealing sensitive patient information.3,9 Then, a clinical centre can share a trained generative
model that will act as a proxy for the real patient data.

In this work, we investigate the application of GANs as substitutes for multi-centre real patient data. Using
three well known mammography datasets acquired at different sites from Portugal10,11 and UK,12 we simulate
three different centres, where one centre receives GANs from the two remaining centres to augment the size and
heterogeneity of its training dataset. Figure 1 shows our simulated privacy-preserving data sharing setup using
GANs. We evaluate the performance of a convolutional neural network (CNN)13,14 and a transformer neural
network15 for healthy versus non-healthy tissue classification in a region of interest (ROI) using two training
strategies: 1) using data from only a single centre; and 2) using additional synthetic data from other centres.
We demonstrate through our experiments that augmenting single centre data using GAN generated image ROIs
considerably improves classification performance.

Figure 1. Overview of sharing generative models (e.g., GANs) as substitutes for multi-centre patient data to (i) overcome
data-scarcity in single centres, and (ii) to enhance prediction performance and robustness. The latter is exemplified on
the task of classifying the presence of a lesion in a mammography patch.

2. METHODOLOGY

2.1 Experimental setup

Our methodological framework consists of two parts. First, we utilise a GANs to learn the distribution of the
data from data-providing centres (Centres B, C, etc. in Figure 1). These trained GANs from each centre are then
sent to the main centre (Centre A in Figure 1) for further use. Second, the main centre trains a classification
model that classifies whether a lesion is present in MMG patches.

The training data for the classification model in the main centre is augmented by GAN-generated lesion
patches trained on data from other centres. To maintain class balance between healthy and non-healthy (i.e., has
lesion) labels, we add the same number of healthy patches extracted from existing healthy control MMGs from
centre A. Finally, the performance of the classification model trained only on data from centre A is compared
to the performance of the same classification model trained on the combination of centre A data and synthetic
data from other centres.

In our experiments, we use INbreast10 and BCDR11 mammography datasets and an additional pretrained
GAN trained on the OPTIMAM dataset.12 INbreast consists of digital MMGs from 115 patients, totalling 410
images. A total number of lesions is 3028 (including 116 masses), which corresponds to the number of INbreast
patches in our experiments that include both benign and malignant masses and calcifications. The BCDR dataset
consists of both digital and film-scanned MMG images from 1010 patients, totalling 1493 lesions (including 639
masses). The pretrained GAN was trained on 2215 masses extracted from the OPTIMAM dataset.
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In particular, we gathered experimental results for testing on data from centre A (represented by the INbreast
dataset) after training on data from (i) centre A (INbreast), (ii) centre A (INbreast) and centre B (BCDR), (iii)
centre A (INbreast) and synthetic data from centre B (BCDR) and/or centre C (OPTIMAM). We conducted
these experiments (i to iii) for two scenarios. First, the scenario where 100% of the centre A (INbreast) training
data is used for training. And secondly, the setting where centre A is experiencing data scarcity with its internal
training data set randomly reduced by 50%. Also we separately conduct each experiment for tumour masses
specifically, and for breast lesions (calcifications, masses, etc.) in general. As shared generative model of centre B,
we train both a Deep Convolutional Generative Adversarial Network (DCGAN)16 and a Wasserstein GAN with
Gradient Penalty (WGAN-GP),17 while for centre C we reuse a pretrained DCGAN from Alyafi et al18,19 via the
medigan model sharing library20†. We train, evaluate, and report results for two different classification models
in centre A, namely (a) a convolutional neural network (CNN) and (b) a Swin transformer neural network.21

The classification performance is evaluated using the accuracy, F1-score, area under receiver operating char-
acteristic curve (AUROC), and area under precision-recall curve (AUPRC) metrics. To further increase the
informative value of our results, we run all experiments three times with a different random seed in each run and
report the resulting mean and standard deviation of each metric.

All classification experiments were run on a machine equipped with NVIDIA GTX 1070 8GB GPU, using
the PyTorch library.22 Our GANs were trained on a NVIDIA RTX 2080 Super 8GB GPU, also using PyTorch.

2.2 Mammogram Patch Extraction

Healthy patches are extracted from INbreast MMGs of healthy breasts that have no annotation that indicates
the presence of a lesion. We generate a number of bounding boxes randomly defined within an entirely healthy
breast image, ensuring that these patches never contain more than 40% of background pixels.

Non-healthy patches are crops containing both malignant and benign lesions of any breast imaging-reporting
and data system (BI-RADS) score and of any lesion type present in the datasets including masses, calcifications,
microcalcifications, and architectural distortions. We use the lesions contour information specified in the original
datasets10,11 and create a bounding box enclosing it. Then, we create a square patch around that bounding
box, ensuring a margin of 60 pixel in each direction from the lesion bounding box. If the margin extends beyond
the mammogram’s border, a translation is performed to the patch to ensure it is fully within the mammogram’s
limits.

After specifying the patch bounding boxes, we use the same pre-processing routine at training time for both
healthy and non-healthy patches to ensure that class-specific pre-processing artefacts are not introduced that
would otherwise be easily distinguishable by the classifier. Each patch, defined by its bounding boxes, is first
zoomed and then translated by normally random amounts. In doing so, we offset the patch from its original
bounding box, which would otherwise always be close to the centre of the patch, and as a strategy of data
augmentation. Finally, each patch is resized to 128x128 pixels using inter-area interpolation, whereby image
ratios are maintained.

2.3 Generative Adversarial Networks as Data Substitute

GANs8 are a type of generative model and are composed of the discriminator (D) and the generator network (G)
that compete against each other in a two-player zero-sum game defined by the value function shown in equation 1.

min
G

max
D

V (D,G) = min
G

max
D

[Ex∼Pdata
[log(D(x))] + Ez∼Pz

[log(1−D(G(z)))]] (1)

2.3.1 DCGAN Generator Trained on BCDR Data

We adopt a DCGAN16 with some adjustments suggested in18 such as one-sided label smoothing in range [0.8,
1.1], and a discriminator with a kernel size 6 instead of 4. We train our DCGAN to learn the distribution of
the training data consisting of 128x128 pixel grayscale mammogram patches. The DCGAN learns a mapping
between a vector containing 100 numerical values to a mammogram patch containing a breast lesion. The GAN
training data is augmented by random (p=0.5) horizontal and (p=0.5) vertical flipping and uses a batch size

†https://medigan.readthedocs.io/
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of 16. Depending on the classification objective of our experiments the GAN is either trained on patches of all
lesion types, or specifically on patches containing a mass.

We train our DCGAN on the BCDR dataset for 3000 epochs to generate synthetic patches similar to the real
patches. After each epoch, we visually assessed the fidelity of the mammogram patches generated from a set
of fixed noise vectors. During training we noticed an increase in fidelity, but also a decrease in diversity of the
generated patches: The similarity of some of the generated lesions indicated the occurrence of mode collapse, the
state where the generator has learned to repeatedly generate a limited subset of samples to fool the discriminator.
Interestingly, the same fixed noise vector input created varying lesion shapes and textures in different training
iterations indicating a high diversity across iterations and epochs.

Observing this behaviour two measures were taken. Firstly, to maximise diversity, we store the weights of
our DCGAN during training on each 50th epoch starting in epoch 500. After training, we generate mammogram
patches using the stored weights (epoch 500 to 3000) to generate the synthetic dataset. Secondly, we explore
further GAN alternatives less prone to mode collapse and, based on our DCGAN network architecture, implement
Wasserstein GAN with Gradient Penalty (WGAN-GP).17

2.3.2 WGAN-GP Generator Trained on BCDR Data

To overcome mode collapse in DCGAN and to increase training stability, we follow the approach of23 of sub-
stituting DCGAN’s binary cross-entropy loss with a Wasserstein distance based loss function. We apply the
Wasserstein with gradient penalty17 loss function to the setup described in 2.3.1. Equation 2 displays the
WGAN-GP loss function with penalty coefficient λ (set to 10 in our experiments) and distribution Px̂ sam-
pling uniformly along straight lines between pairs of points from the generator distribution Pg, and the data
distribution Pdata.

L = Ex̃∼Pg [D (x̃)] − Ex∼Pdata
[D (x)] + λ Ex̂∼Px̂

[
(∥∇x̂D (x̂)∥2 − 1)

2
]

(2)

The discriminator (alias critic) is updated 5 times per generator update. Further, we remove the batch normal-
ization layers from the DCGAN discriminator, as WGAN-GP penalizes the norm of the discriminator’s gradient
per input sample rather than per batch. Both gradient penalty (WGAN-GP) 17 and weight clipping (WGAN)24

enforce a 1-Lipschitz constraint while the former additionally avoids model capacity underuse, which motivates
our choice of WGAN-GP. We train WGAN-GP for 10000 epochs on mammogram patches that contain masses
and for 2700 epochs on mammogram patches that contain any type of lesion. In both cases, due to high image
diversity upon visual assessment, only the checkpoint from the last epoch was used to generate the synthetic
images for our subsequent classification experiments.

2.3.3 DCGAN Generator Pretrained on OPTIMAM Data

Furthermore, we use the DCGAN published by Alyafi et al18,19 from the medigan20 library pre-trained on 2215
mass patches from the OPTIMAM dataset to generate an additional dataset of synthetic mammogram patches
containing masses. Figure 2 illustrates manually selected synthetic images generated by Alyafi et al’s DCGAN,
and our BCDR-trained DCGAN (2.3.1) and WGAN-GP (2.3.2). As opposed to our GANs, Alyafi et al’s DCGAN
only generates patches containing a mass and is not trained on other types of lesions.

2.4 Classification Models

All experiments with the classifiers are validated and tested on INbreast10 data that have been split previously
into training (approx. 70%), validation (approx. 15%) and testing (approx. 15%) subsets. We ensure that
(1) all images from a single patient are always in only one of the subsets, (2) healthy and non-healthy patches
are always present in similar amounts, and (3) the distributions of breast density values in each of the subsets
are as similar as possible. Dataset splits are performed separately, once for the experiments where we classify
any type of lesion (masses, calcifications, etc) and once for the experiments where we classify exclusively the
lesion type “mass”. In the cases when the patches with lesions stem from two GANs, we add half the patches
from each GAN. Additionally, for all types of augmentations, we add as many healthy patches from INbreast
as needed to maintain the class balance between healthy and non-healthy training data. Overall, we extract
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Figure 2. Left column: synthetic patches generated from BCDR (using our DCGAN). Middle column: synthetic patches
generated from BCDR (using our WGAN-GP). Right column: synthetic patches generated from OPTIMAM (using the
pretrained DCGAN of Alyafi et al18,19).

1374 (70 in mass classification) real patches for each class from INbreast for training. Then, 1200 additional
synthetic patches, either all lesions or only masses and either from one or from two centres are added to the
training as augmentation. In cases of augmentation with real BCDR data we extract patches from both digital
and film-scanned BCDR mammograms and add 1148 patches for lesion classification and 500 patches for mass
classification to the class “non-healthy”.

2.4.1 Convolutional Classification Model

As a baseline classification model, we implement a CNN, consisting of four convolutional followed by two fully-
connected layers, with ReLU25 activation functions. After each convolutional layer and after the first fully-
connected layer, batch normalization26 is performed. Also, dropout27 is applied between the two fully-connected
layers to introduce regularization during training and reduce the risk of overfitting. Finally, the network’s output
is passed through a softmax function followed by a logarithm. Our loss function is defined as cross-entropy. For
training the network, we first initialize the weights randomly after setting a random seed. Then, we use stochastic
gradient descent optimization of the loss function with the learning rate of 0.001 and momentum of 0.9. To obtain
the best model, after each epoch, we perform validation on a separate subset of data, and only save the model
if it achieves superior AUPRC score as compared to the saved models from previous epochs. The upper limit of
epochs is set to 100.

2.4.2 Swin Transformer Classification Model

For further corroboration of our results, we run the same experiments using Swin Transformer21 as classification
model. This increases the generalisability of approach by comparing two considerably different methodological
frameworks that showed state-of-the-art performances in vision tasks. Due to heavy exploitation of self-attention
mechanisms, Transformers consider relations between all pair-wise local regions in the image. Accordingly, they
do not assume that related features are close to each other in the image and eliminate such inductive bias that
is present in CNNs.

Swin Transformers are an extension of hierarchical vision transformers, which implements shifted windows
mechanism as a way to limit self-attention computation to non-overlapping local windows, while allowing for
cross-window connection. In our experiments, we used the original Swin Transformer setup as in Liu et al.21

Therefore, we resized all the input patches by resampling with respect to pixel area relation to 224 × 224 and
stacked them to obtain a three channel input.

3. RESULTS

Tables 1 and 2 summarise our experimental results. Each experiment yields insights into different combinations
of datasets, along three dimensions: First, we use different data augmentations for the training set, namely
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synthetic patches only from BCDR generated either with a WGAN-GP or a DCGAN, synthetic patches only
from OPTIMAM (DCGAN), synthetic patches from both BCDR and OPTIMAM where for BCDR we used
either a DCGAN or a WGAN-GP, or real patches from BCDR. Including real patches from BCDR serves as
an expected upper bound for the experiments with synthetic patches. Second, we train the classifier once with
the entire INbreast training set and once with only 50% thereof. Third, we either include all lesion-types in the
non-healthy class or masses only.

Table 1. Results for classification of all lesion types including masses, calcifications, etc, using CNN (top) and Swin
Transformer (bottom). The left-most column refers to the source of data added to the INbreast training set. “Both (a)”
means augmenting with synthetic patches from both BCDR (WGAN-GP) and OPTIMAM (DCGAN), while “Both (b)”
means BCDR (DCGAN) and OPTIMAM (DCGAN). All classifiers are tested on the INbreast testset. The best results
per column are presented in bold font. Results are shown as mean(std).

100% of the INbreast training data 50% of the INbreast training data

Augmentation Accuracy F1 AUROC AUPRC Accuracy F1 AUROC AUPRC

C
N
N

None 0.942(.005) 0.693(.020) 0.955(.007) 0.880(.014) 0.933(.010) 0.661(.035) 0.960(.004) 0.878(.013)

BCDR (WGAN-GP) 0.938(.005) 0.673(.012) 0.957(.004) 0.839(.047) 0.929(.048) 0.669(.130) 0.953(.003) 0.863(.015)

BCDR (DCGAN) 0.936(.030) 0.685(.099) 0.966(.001) 0.887(.006) 0.926(.034) 0.652(.110) 0.960(.005) 0.874(.006)

OPTIMAM (DCGAN) 0.945(.005) 0.701(.014) 0.961(.007) 0.871(.010) 0.945(.002) 0.703(.004) 0.963(.003) 0.879(.007)

Both (a) 0.943(.010) 0.701(.039) 0.965(.004) 0.863(.014) 0.947(.020) 0.718(.075) 0.965(.005) 0.886(.014)

Both (b) 0.945(.017) 0.704(.065) 0.959(.005) 0.871(.013) 0.945(.013) 0.706(.044) 0.964(.007) 0.886(.013)

Real BCDR 0.924(.001) 0.633(.001) 0.958(.001) 0.851(.003) 0.938(.007) 0.680(.028) 0.965(.002) 0.884(.016)

S
w
in

T
ra
n
sf
or
m
er

None 0.914(.065) 0.634(.161) 0.951(.004) 0.859(.010) 0.949(.040) 0.734(.138) 0.933(.004) 0.860(.006)

BCDR (WGAN-GP) 0.912(.082) 0.647(.186) 0.952(.001) 0.864(.002) 0.974(.005) 0.824(.027) 0.937(.015) 0.860(.006)

BCDR (DCGAN) 0.974(.002) 0.826(.009) 0.955(.004) 0.874(.005) 0.959(.030) 0.880(.066) 0.958(.007) 0.916(.067)

OPTIMAM (DCGAN) 0.946(.038) 0.724(.120) 0.957(.002) 0.870(.002) 0.927(.043) 0.667(.150) 0.953(.016) 0.871(.029)

Both (a) 0.922(.040) 0.637(.112) 0.940(.019) 0.852(.022) 0.940(.029) 0.692(.104) 0.957(.006) 0.872(.010)

Both (b) 0.969(.002) 0.804(.008) 0.957(.004) 0.876(.009) 0.965(.011) 0.783(.050) 0.956(.002) 0.877(.008)

Real BCDR 0.942(.033) 0.713(.132) 0.962(.003) 0.897(.001) 0.854(.001) 0.500(.002) 0.952(.002) 0.873(.001)

Table 2. Results for classification of tumour masses using CNN (top) and Swin Transformer (bottom). The left-most
column refers to the source of data added to the INbreast training set. “Both (a)” means augmenting with synthetic
patches from both BCDR (WGAN-GP) and OPTIMAM (DCGAN), while “Both (b)” means BCDR (DCGAN) and
OPTIMAM (DCGAN). All classifiers are tested on the INbreast testset. The best results per column are presented in
bold font. Results are shown as mean(std).

100% of the INbreast training data 50% of the INbreast training data

Augmentation Accuracy F1 AUROC AUPRC Accuracy F1 AUROC AUPRC

C
N
N

None 0.895(.019) 0.935(.015) 0.962(.010) 0.992(.002) 0.897(.013) 0.938(.009) 0.955(.016) 0.991(.003)

BCDR (WGAN-GP) 0.943(.023) 0.966(.014) 0.973(.010) 0.995(.002) 0.872(.013) 0.919(.008) 0.962(.009) 0.992(.002)

BCDR (DCGAN) 0.910(.016) 0.944(.010) 0.976(.005) 0.995(.001) 0.904(.020) 0.941(.014) 0.968(.014) 0.993(.003)

OPTIMAM (DCGAN) 0.876(.072) 0.919(.051) 0.971(.010) 0.994(.002) 0.925(.033) 0.954(.022) 0.968(.008) 0.993(.002)

Both (a) 0.908(.062) 0.942(.043) 0.970(.007) 0.994(.002) 0.933(.020) 0.960(.012) 0.946(.026) 0.983(.011)

Both (b) 0.925(.019) 0.954(.012) 0.975(.001) 0.995(.000) 0.933(.024) 0.959(.015) 0.967(.009) 0.993(.002)

Real BCDR 0.912(.011) 0.946(.006) 0.968(.004) 0.994(.001) 0.885(.024) 0.931(.014) 0.935(.012) 0.987(.002)

S
w
in

T
ra
n
sf
or
m
er

None 0.834(.019) 0.891(.014) 0.928(.015) 0.986(.003) 0.784(.010) 0.860(.003) 0.877(.015) 0.976(.003)

BCDR (WGAN-GP) 0.950(.041) 0.969(.025) 0.978(.011) 0.996(.002) 0.933(.020) 0.959(.013) 0.973(.003) 0.995(.000)

BCDR (DCGAN) 0.876(.053) 0.920(.038) 0.959(.029) 0.992(.006) 0.922(.010) 0.953(.006) 0.968(.006) 0.994(.001)

OPTIMAM (DCGAN) 0.941(.020) 0.964(.013) 0.975(.008) 0.995(.002) 0.920(.018) 0.952(.012) 0.963(.013) 0.993(.003)

Both (a) 0.933(.018) 0.959(.012) 0.973(.012) 0.995(.002) 0.933(.010) 0.959(.007) 0.972(.002) 0.994(.000)

Both (b) 0.914(.032) 0.947(.021) 0.972(.016) 0.995(.003) 0.935(.010) 0.960(.006) 0.970(.001) 0.994(.000)

Real BCDR 0.841(.010) 0.907(.006) 0.929(.007) 0.987(.001) 0.799(.006) 0.862(.004) 0.890(.006) 0.979(.001)

Most importantly, all experiments with synthetic patches exhibit an improved performance of the classifier
compared to using only INbreast. For example, when training a Swin Transformer on 50% of available INbreast
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training data and all lesion types, the classifier reaches an F1-score of 0.734. However, when adding synthetic
patches from a DCGAN trained on BCDR and the same number of healthy samples from INbreast, the classifier
reaches an F1-score of 0.880. Therefore, providing the classifier with synthetic data from another dataset improves
its F1-score by 0.146 in this case. This effect tends to be strongest in the low-data regime, i.e. 50% of training
data and only masses, and is particularly pronounced in the Swin Transformer.

4. DISCUSSION

In this work, we tested the hypothesis that sharing generative models instead of private patient data across
centres is a beneficial alternative. We showed this empirically by comparing classification model performance
when trained on synthetic data sampled from the shared generative models.

The results show that additional synthetic training data improves the performance of both classification
models, where the improvement for the Swin Transformer is more pronounced than for the CNN. This is due to the
larger number of trainable parameters in Swin Transformers (28M) compared to our CNN (1.1M). Additionally,
since transformers do not possess inductive biases as CNNs, they require more training data to learn internal
relations within the image. Therefore, the Swin Transformer is strongly benefiting from additional training data
provided by the generators. In line with this argument the performance increase is most notable in the low-data
regime, namely, where the training data is reduced by 50% and where only masses are used, as opposed to all
lesion types.

Observing that adding the same number of synthetic patches from multiple sources, i.e. 50% BCDR and
50% OPTIMAM, does rarely improve upon adding 100% of a single-source (either BCDR or OPTIMAM). We
hypothesize that as we increase the variation with multi-sources while leaving the dataset size constant, the
classifier might have to learn/overcome additional domain shifts28 and variation. For instance, OPTIMAM
mass patches contain less background than BCDR mass patches while also being based on different acquistion
protocols.

Furthermore, we note that the results often worsen when adding the real BCDR patches as compared to
adding synthetic (BCDR) patches for both all lesions and only masses experiments. We suppose part of the
performance decay stems from a domain-shift between BCDR and INbreast that could translate less into the
GAN-generated BCDR synthetic data. We leave further investigation into this aspect to future work and point
out that Garrucho et al28 describe a considerable distribution-shift between BCDR and other mammography
datasets, such as INbreast, in image contrast and intensity, as well as in the distribution of lesions, in terms of
their size and aspect ratio.

As our results show promising potential of utilising GANs for privacy-preserving data sharing strategies, we
also note that our proposed approach depends heavily on the willingness of centres to train and share generative
models of their private datasets. In this context, we highlight the need for additional privacy preserving measures
and thorough investigation as to how the shared generative model can leak private patient information (i) in
general and (ii) when subjected to training data reconstruction attacks. One counter-measure against leakage
of private information that we leave for future work is applying differential privacy29 to GAN training, which
provides a privacy guarantee for the GAN training data.3 Before sharing a model, it is to be assessed whether
private attributes such as particular patient-identifying anatomical or pathological features can be extracted from
the shared model’s parameters or predictions. For instance, model inversion attacks have shown to successfully
reveal identifying imaging features from the training data.

To further validate the benefits of inter-centre generative model sharing, we recommend future work to test
prediction performance improvement on full mammograms apart from patches and on further datasets across
(imaging and non-imaging) modalities, organs, and standardised clinical tasks6 with universal classification
objectives (e.g., benign/malignant apart from healthy/non-healthy classification). We further propose future
work to explore the effect of initialisation of classification models with pretrained weights alongside the effect of
traditional preprocessing and data augmentation techniques, such as histogram and intensity scale normalization
techniques.28 Apart from classification, validation on further downstream tasks such as object detection, semantic
segmentation, and domain-adaptation can reveal further insights into the advantages and limitations of generative
model sharing. Lastly, further recommendations can be derived from the evaluation and comparison of additional
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types of GANs and generative models in diverse settings with varying patient data resource constraints between
centres.
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