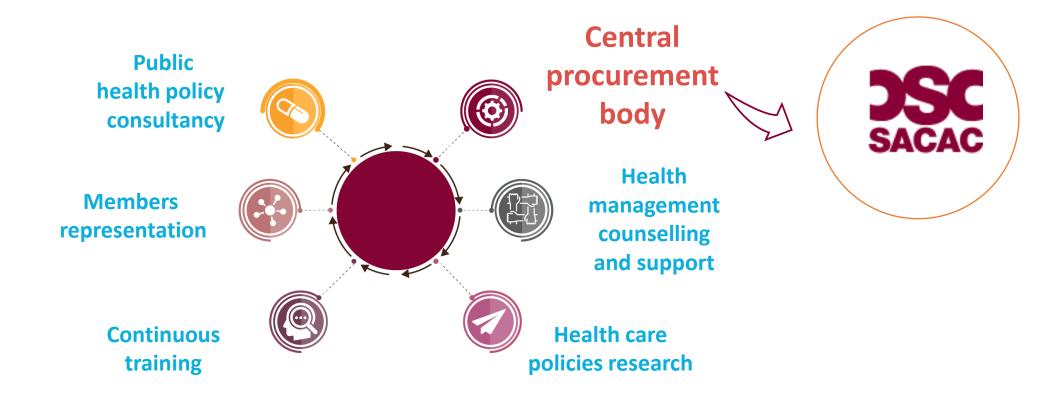


Incorporació de la política de sostenibilitat en la gestió del medicament: Consideracions ambientals en els processos de compra pública

#### Consorci de Salut i Social de Catalunya


The Consorci de Salut i Social de Catalunya (CSC) is a local public entity with an associative base, founded in 1983 and composed of organizations providing healthcare and social services.

All CSC members are public entities and/or non-profit private organizations.





### **Consorci de Salut i Social de Catalunya Services**





#### **Tender volume**

Activity (2023)

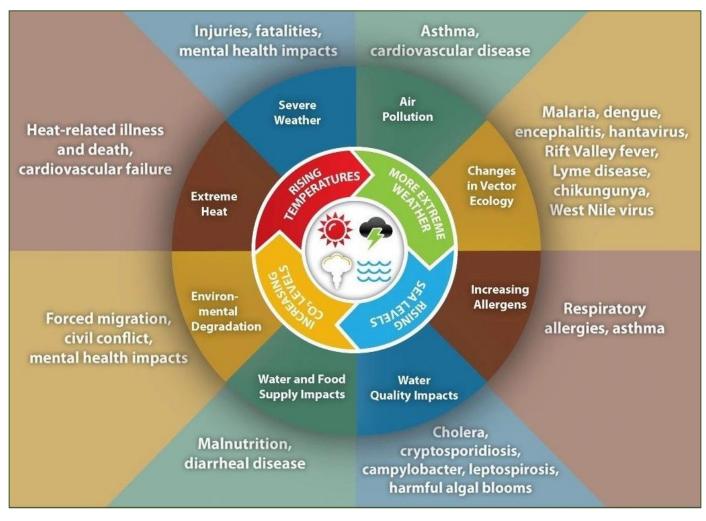


**54** 

expedients tramitats com a central de contractació per un volum total de 1.497.691.207,66 euros

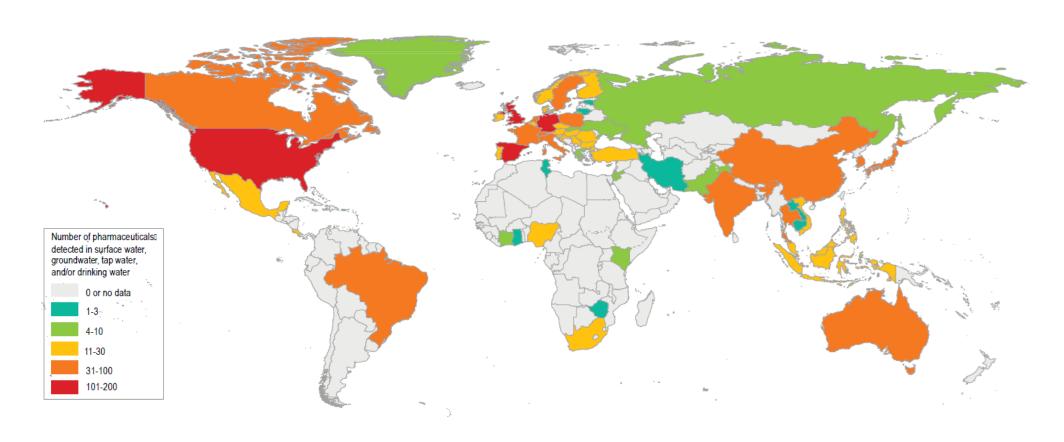


Activity (2024)



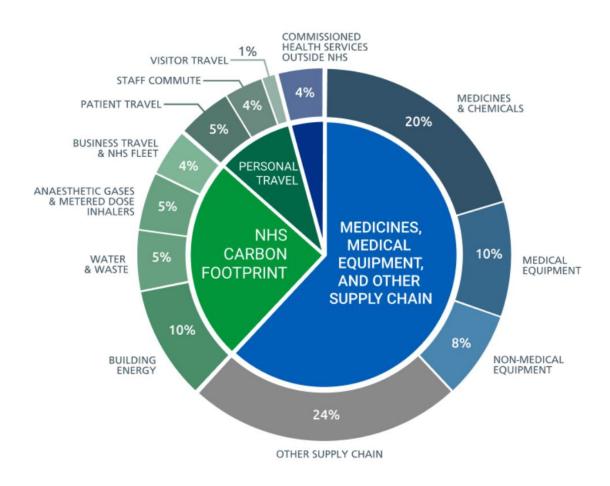






#### **Impact of Climate Change on Human Health**

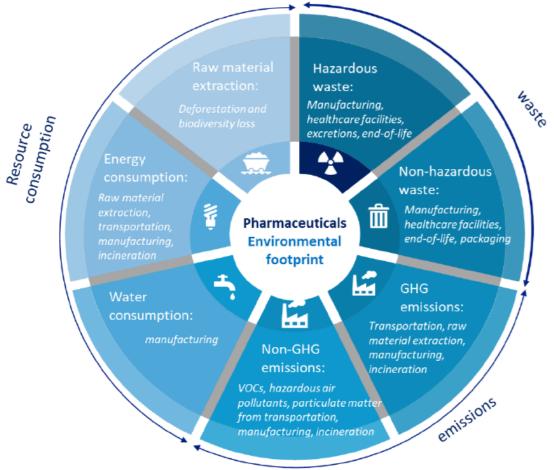
Climate change impacts a wide range of health outcomes.






### Pharmaceuticals detected in surface water, groundwater or drinking water globally






### Sources of carbon emissions by proportion of NHS Carbon Footprint





### Pharmaceutical product's life cycle and environmental footprint



Environmental impacts of medicines arise throughout their entire life cycle.

The pharmaceutical industry has a key role in reducing these impacts in early production phases





### Circular economy opportunities available to the pharmaceutical industry



|                                    | RAW MATERIALS                                                                                                                                           | DRUG PRODUCT                                                                                                                                  | DEVICES                                                                                                                                                                       | PACKAGING                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Raw Material                    | Non-Hazardous Materials                                                                                                                                 | Non-Hazardous Materials                                                                                                                       | Avoid the use of substances<br>within the device that<br>negatively affect the re-<br>use and recycling of the<br>materials     Certified, Renewable or<br>Recycled Materials | Avoid the use of substances<br>within the packaging that<br>negatively affect the re-<br>use and recycling of the<br>materials     Certified, Renewable or<br>Recycled Materials |
| 2. Design                          | Biodegradable     Green Chemistry Principles     Use approved schemes e.g., Palm Oil                                                                    | Biodegradable     Green Chemistry Principles     Dosage optimisation     Maximise Shelf Life                                                  | Reusable or refillable Use less different materials Maximise life of the device Build LCA/DFE into Design Process                                                             | Optimise Packaging Size     Use less different materials     Design to minimise secondary & tertiary packaging     Design for recyclability                                      |
| 3. Production                      | Green energy at production facilities Minimize carbon footprint of production Maximise mass production efficiency. Secondary raw materials              | Green energy at production facilities Minimize carbon footprint of production Maximise API vs raw material efficiency. Minimise API emissions | Suppliers to meet sustainability criteria     Minimise environmental footprint of production     Local sourcing of parts                                                      | Suppliers to meet<br>sustainability criteria     Minimize environmental<br>footprint of production     Local sources of packaging<br>materials                                   |
| 4. Distribution                    | Apply Green Logistics     Minimize carbon footprint of distributor(s)     Manufacture at point of use                                                   | Apply Green Logistics     Minimize carbon footprint of distributor(s)     Manufacture at point of use                                         | Apply Green Logistics     Minimize carbon footprint of distributor(s)                                                                                                         | Local Sourcing     Apply Green Logistics     Carbon footprint of distributor(s)     Reduce use of passive shipper boxes for cold chain                                           |
| 5. Consumption, use, reuse, repair | Recirculation of solvents     Reuse of catalysts                                                                                                        | Dosage & Pack size<br>optimization     'Personalised' medicines     Promote Patient<br>Compliance (particularly for<br>Chronic conditions)    | Offer repair options     Minimise waste generated over treatment period                                                                                                       | Maximise efficiency on<br>packaging lines     Reuse transport packaging                                                                                                          |
| 6. Collection                      | Incineration of Drug<br>product waste     Education of Patient                                                                                          | Incineration of Drug<br>product waste     Take Back Schemes     Education of Patient                                                          | Segregate waste at source<br>to optimise recycling     Take Back Schemes                                                                                                      | Segregate waste at source<br>to optimise recycling     Consider Take Back<br>Schemes                                                                                             |
| 7. Recycling                       | Solvent reuse     Re-use of water for primary rinses     Re-use of bi-products and waste streams for other purposes     Recycling of metals (e.g. PGMs) | Develop certified unused<br>drug recycling programs                                                                                           | Clear recyclability signs on<br>packaging     Recycle device materials                                                                                                        | Clear recyclability labelling<br>on packaging     Recycle packaging materials                                                                                                    |



## FIP STATEMENT OF POLICY Environmental sustainability within pharmacy



### FIP STATEMENT OF POLICY Environmental sustainability within pharmacy

#### Background

Both the practice of pharmacy and medicines themselves have negative impacts on the environment through greenhouse gas (GHG) emissions and pollution which contribute to climate change and ecological damage, both of which threaten human health. Given the role of pharmacy professionals in supporting health, these issues present the profession with ongoing challenges and an imperative to address environmental sustainability.

Environmental sustainability in pharmacy involves -

- mitigation measures which include the reduction of pharmaceutical pollution and contributions to climate change and,
- pollution and contributions to climate change and,
  adaptation measures that support the health of people and communities
  impacted by climate change and ecological crises, now and in the future.
  The optimal use of medicines in disease prevention and treatment can
  mitigate the environmental footprint of healthcare, by avoiding
  unnecessary, ineffective, or more carbon-intensive treatments and
  procedures. Moreover, secure, and equitable access to medicines and to
  pharmacy services must be prioritised as part of any effort to improve
  environmental sustainability.

Through equitable and environmentally sustainable practice, pharmacy professionals can support planetary health (the health of human civilisation and the natural systems on which it depends).

Climate change poses diverse, immediate, and long-term threats to human health. Global health systems have a significant climate impact and medicines account for a significant portion of health system-related GHG emissions in every country. Pharmaceutical pollution causes damage to the environment and ecosystem degradation with downstream impacts on patient care e.g., antimicrobial pollution causing antimicrobial resistance (AMR). Pharmacists, as medicines experts, are wellpositioned and ethically responsible to mitigate climate and pollution risks to health throughout the pharmaceutical supply chain and across the spectrum of medication management.

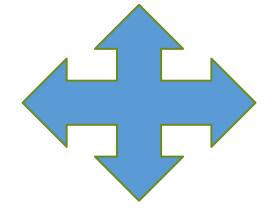
In addition, the pharmacy profession must address climate adaptation to allow for the sustainability of pharmacy services in changing environments; these roles include disaster preparedness and support of patients laready experiencing or at highest risk of the impacts of climate change on health, due to co-morbidities or social or geographical factors.

Fédération Internationale Pharmaceutique

International Pharmaceutica Federation

**DSC** 

International Pharmaceutical Federation. Title: FIP statement of policy on Environmental sustainability with pharmacy. 2023.


Available at: www.fip.org/publications

#### **Climate Mitigation Within Pharmacy**

Medication Use (Anaesthetic Gases + Inhalers)

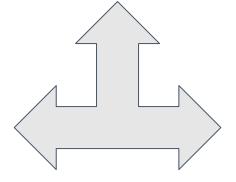
Plus advocacy....

Supply Chain



Building/Materials & Energy

Operations Processes (within pharmacies) AND reducing plastic




#### **Climate Adaptation Within Hospital Pharmacy**

Disaster plans

Plus advocacy....

Supply Chain Protection



Subject matter impact education



### Thinking about criteria - FIP starting point for mitigation

#### Hospital pharmacy professionals should:

- 1. Where possible, collaborate with the healthcare team, in multidisciplinary committees where applicable, to raise awareness of the **environmental classifications of medicines** and other products (e.g., high power disinfectants, medical devices and dressings) in their practices;
- 2. Work with healthcare teams and patients to optimise respiratory care for patients and review inhaler prescribing guidelines to promote lower carbon alternatives (e.g., dry powder inhalers);
- 3. Work with anaesthesiology teams to optimise care within **anaesthesia** (e.g., reducing desflurane use to <5% of total hospital use or eliminating it altogether and reducing piped nitrous oxide and mixed nitrous oxide wastage);
- 4. Within distribution and dispensing processes, consider reviewing the transfer process of medicines from admission onwards to reduce unnecessary waste;
- 5. Consider reusable cytotoxic waste bins in aseptic units and sharps bins in pharmacies to reduce carbon impacts in pharmaceutical waste management processes;
- 6. **Closely manage drug inventories** with ward-based clinicians and revise standard operating procedures in pharmacy to prevent overstocking and wastage from drugs expiring;
- 7. Limit the use of single-use medical devices wherever possible



### Thinking about criteria - FIP starting point for adaptation

#### Hospital pharmacy professionals should:

- 1. Regularly update hospital pharmacy disaster plans for emergencies and provide regular training or drills to hospital pharmacists on new disaster plan procedures relevant to worsening natural disasters and extreme weather events
- 2. Provide extended medication monitoring of at-risk patients on wards during heat waves;
- 3. Ensure minima and maxima of inventory management can manage unexpected medicine shortage challenges related to worsening natural disasters and extreme weather events;
- 4. Consider appropriate stock management within pharmacies and wards during heat waves as raised temperatures may accelerate medicines degradation.



#### **Some preliminary reflections**

Public procurement begins in the evaluation and selection processes of medicines and healthcare products



### Can HTA and procurement accelerate the pace towards net zero of healthcare organizations?

Progressing towards decarbonizing the healthcare sector and the pharmaceutical industry is gaining momentum

Should environment effects be considered in HTA or reimbursement process?

What are the practical hurdles?

What are the unintended consequences?

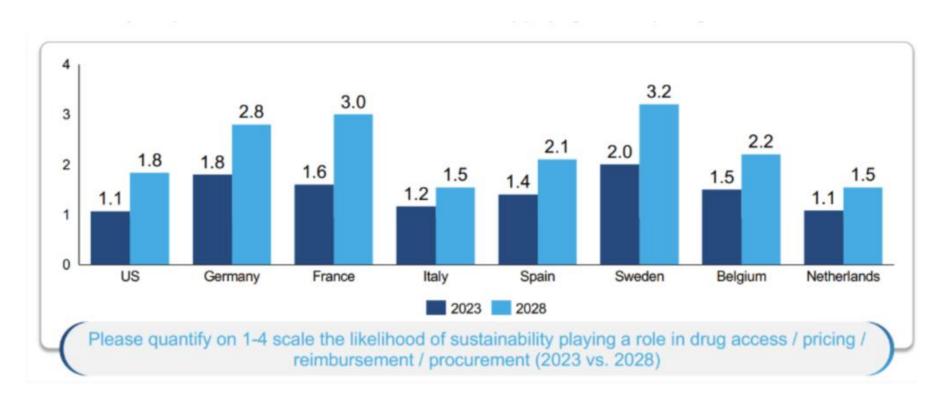
How much health gain are we willing to pay for a reduction in environmental impact?



## Is the new EU Health Technology Assessment considering environmental sustainability?

REGULATION (EU) 2021/2282 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL
of 15 December 2021
on health technology assessment and amending Directive 2011/24/EU
(Text with EEA relevance)

HTA can cover both clinical and non-clinical aspects of a health technology, depending on the healthcare system. The Union's co-funded joint actions on HTA (EUnetHTA Joint Actions) have identified nine domains by reference to which health technologies are assessed. Of these nine domains, four are clinical and five are non-clinical. The four clinical domains of assessment concern


- (1) the identification of a health problem and current health technology,
- (2) the examination of the technical characteristics of the health technology under assessment, (3) its relative safety, and its (4) relative clinical effectiveness.

The five non-clinical assessment domains concern

- (1) cost and (2) economic evaluation of a health technology, and its
- (3) ethical, (4) organisational, (5) social and legal aspects.



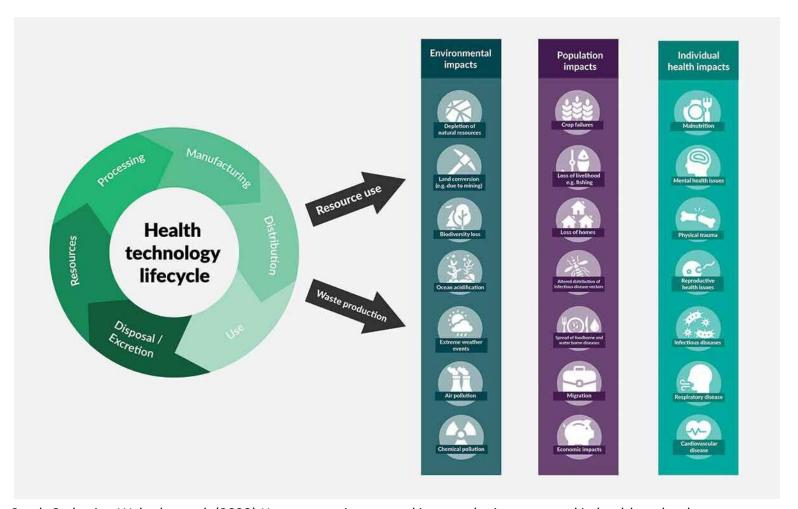
# Payer expectations on the likelihood of sustainability playing a role in pricing and reimbursement





Note: figures represent the average score assigned by experts.

Source: BCG research.


## Main criteria and 'other' considerations used internationally to prioritise new health technologies

| PRINCIPLES OF ALLOCATIVE JUSTICE              | CRITERIA                                                                                                |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Need                                          | General Severity of the condition Availability of alternatives                                          |
| Appropriateness                               | Efficacy and safety Effectiveness                                                                       |
| Clinical benefits                             | General Effect on mortality (life saving) Effect on longevity Effect on health-related quality -of-life |
| Efficiency                                    | Cost -effectiveness /benefit<br>Budgetary impact<br>Cost                                                |
| Equality                                      | General<br>Accessibility to the service<br>Affordability to the individual                              |
| Solidarity                                    |                                                                                                         |
| Other ethical or social values                | Autonomy Public health value Impact on future generations                                               |
| OTHER CONSIDERATIONS                          |                                                                                                         |
| Quality of the clinical and economic evidence |                                                                                                         |
| Other considerations not elsewhere classified | Strategic issues consistency with previous decisions and precedents                                     |



Multi-Criteria decision analysis in healthcare its usefulness and limitations for decision making, 2018, Fundación Weber. DOI: 10.37666/L5-2018

## **Environmental impacts and human health impacts of health technologies across their lifecycle.**





Sarah Catherine Walpole, et al. (2023) How can environmental impacts be incorporated in health technology assessment, and how impactful would this be?, Expert Review of Pharmacoeconomics & Outcomes Research, 23:9, 975-980,

## **Environmental impact assessment in health technology assessment: challenges**

There are important questions of analytical scope (boundaries) depending on the approach they take:

- •domains of environmental impacts considered (including species and ecosystems considered) and weighting of impacts relative to each other in analyses;
- analytical perspective (e.g., health system or societal, national or global), which costs and outcomes across which areas (e.g., health sector, wider society, other nations, environment) are included and how (and how much) they are valued
- •time horizon over which impacts are measured, forecast, or discounted (e.g., are impacts on future generations included, and if so, how are they weighted against impacts affecting current populations?);
- •parts of a technology's lifecycle to which impacts relate (production, distribution, use, or disposal) and whether both "direct" and "indirect" impacts should be included (e.g., indirect impacts that arise at the use stage include the downstream environmental consequences of the technology's impact on the disease course and subsequent healthcare resource utilization.



### How might HTA take account of environmental sustainability in pricing pharmaceuticals?

Environmental impact thresholds

Incentives of sustainable practices

Public engagement and transparency

Collaboration with environmental experts

Continuous monitoring and reporting

Incorporate environmental impact assessment

Quantify environmental costs and benefits

Cost-effectiveness analysis with Environ. Impact

Sustainability adjusted QALY (SA-QALY)

Discount rates and time horizons



## Leading industry actions for environmental sustainability

- ✓ Green supply chain
- ✓ Energy efficiency
- √ Waste reduction
- ✓ Water conservation
- ✓ Product innovation



#### **Environmental impact assessment**



#### **Product information**

22/06/2023 Rydapt - EMEA/H/C/004095 - II/0029



Rydapt: EPAR - Product Information (PDF/692.44 KB)

First published: 25/10/2017 Last updated: 26/07/2023

#### Environmental risk assessment (ERA)

ERA studies have shown that midostaurin has the potential to be persistent, bioaccumulative and toxic to the environment.



#### **Environmental impact assessment**



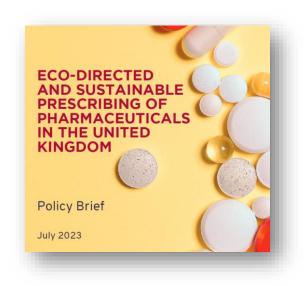
#### REvalMed SNS

Comisión Permanente de Farmacia

INFORME DE POSICIONAMIENTO TERAPÉUTICO PT 125-2023/V1/05042023

Informe de Posicionamiento Terapéutico de tepotinib (Tepmetko®) en cáncer de pulmón no microcítico avanzado con mutaciones que conducen a la omisión del exón 14 del gen MET

Fecha de publicación: 05/04/2023


"The environmental impact assessment has shown that tepotinib has the potential to be highly persistent and toxic to the environment."

#### Others:

- Anesthetic gases (desflurane)
- Inhalers with propellants.
- Recycled and recyclable polyester clothing



### Implementation in clinical settings of HTA and sustainable procurement.



Proposed to make to change prescribing practices holistic and environmentally sustainable :

- Non-pharmacologic interventions
- Evidence-based prescribing and medicine optimization
- Eco-informed prescribing during patient consultation (Environmental profiles of drugs)
- Patient-centred and shared decision making



## Our experience in introducing environmental criteria in drug tenders



#### The regulation that initiated the process

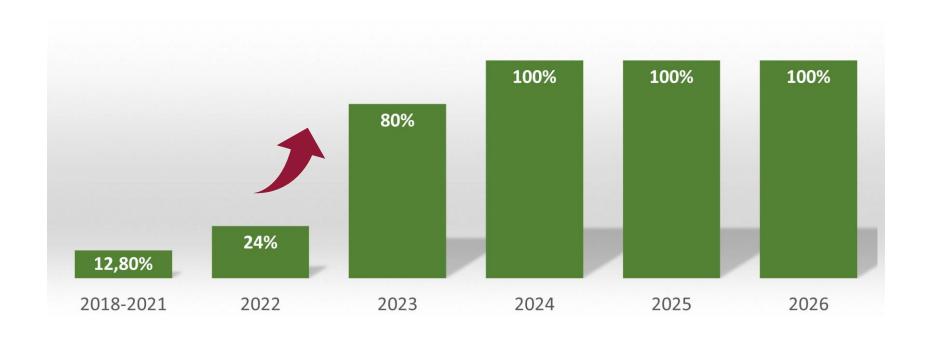


✓ The new public procurement law

Ley 9/2017, de 8 de noviembre, de Contratos del Sector Público, por la que se transponen al ordenamiento jurídico español las Directivas del Parlamento Europeo y del Consejo 2014/23/UE y 2014/24/UE, de 26 de febrero de 2014.

- √ Social clauses
- ✓ Environmental clauses

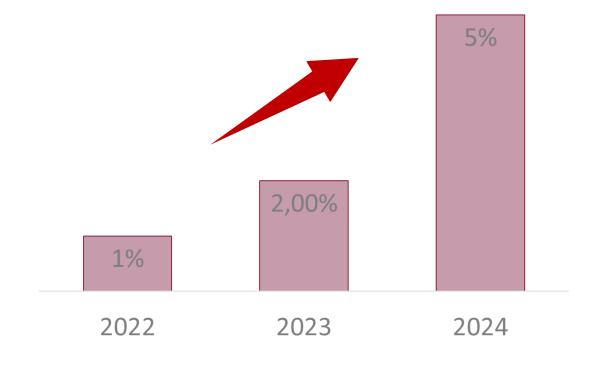
The public procurement contracts law emphasizes the instrumental dimension of public procurement for the development of an economy based on sustainable growth, environmental respect, and social responsibility




#### **Institutional commitments of CSC**

- ✓ Commitment of CSC to Social Responsibility and Sustainable Development Goals (2019)
- ✓ Leadership in Social and Environmental Responsibility (Corporate Social Responsibility Manager)
- ✓ Member of the global network Global Green and Healthy Hospitals
  (GGHH)
- ✓ Distinction as a responsible organization for hiring vulnerable individuals
- ✓ Responsible Label Distinction
- ✓ Adherence to the Time Pact
- ✓ Publication of a Sustainability Guide for the Health and Social Sector

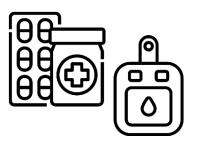



## Tenders with environmental criteria at CSC (forecast)





### Weighting of environmental criteria in framework agreements


Average of weighting of <a href="mailto:explicit">explicit</a> environmental criteria at CSC (forecast)



At CSC, we are going to work to give increasing importance to explicit environmental criteria as added value for medicines and healthcare products.



### Criteria design - areas focused on environmental sustainability



**Products** 



**Environment** 



Supply chain







**People** 



Corporate responsibility



### **Current enviromental criteria in our Framework Agreements**

- ✓ Recyclable devices or packaging / reduced impact.
- ✓ Use of substances with lower environmental impact.
- ✓ Efficient use of energy and water in the production process, as well as waste reduction.
- ✓ Commitment to reducing carbon footprint (carbon neutrality).
- ✓ Data on carbon footprint and environmental toxicity.



#### Dialogue and consensus on strategy among buyers

#### **Examples:**



Under the Big Buyers Working Together (BBWT) Project, several Communities of Practice (CoPs) have been created on the Public Buyers Community platform





An alliance of public and non-profit group procurement organisations (GPOs) specialised in the health & care sector which aims to pool expertise, leverage performance and provide its members with a strategic position in the European market.



#### Dialogue with suppliers and prior market consultations

- ✓ Certifications
- ✓ Social and environmental value
- ✓ Innovation in sustainability
- ✓ Collaboration in projects to reduce environmental impact
- ✓ Innovative procurement
- ✓ Adoption of innovation contributing to environmental sustainability



### **Other European experiences**



### NHS England: Incorporating Social Value Model themes into procurement

NHS England's stated policy objective is to meet its Net Zero carbon targets while achieving its wider Social Value priorities. Procurement of NHS Goods and Services can play its part in achieving these policy objectives.

| Social Value                                                                 | NHS priority areas                                                                                                                                    | Example opportunity areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model theme                                                                  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fighting<br>climate<br>change (must<br>be included<br>in all<br>procurement) | <ul> <li>Reduce emissions</li> <li>Reduce air pollution</li> <li>Promote circular economy principles</li> <li>Reduce consumption and waste</li> </ul> | <ul> <li>Demonstrate reduced greenhouse gas emissions</li> <li>Initiatives to reduce environmental impact with the redesign of the product or service</li> <li>Source materials from and manufacture products within the UK (or relevant region) to reduce carbon emissions and improve supply chain transparency</li> <li>Delivery optimisation and use of low/zero carbon vehicles</li> <li>Reduce single use plastics, packaging and increase recyclability of products</li> <li>Support environmental protection and improvement through the delivery of the contract</li> <li>Biodiversity initiatives developed or supported in the local area</li> </ul> |



NHS England. Applying net zero and social value in the procurement of NHS goods and services. 2022. Available at: https://www.england.nhs.uk/greenernhs/wp-content/uploads/sites/51/2022/03/B1030-applying-net-zero-and-social-value-nhs-goods-and-services.pdf

## **Environmental impact as art of procurement decision-making: Norway**

Norwegian Hospital Procurement Trust (Sykehusinnkøp HF) introduced criteria to reduce the environmental impact of pharmaceutical products in 2019.

First applied to antibiotics, with environmental requirements weighted at 30%. New environmental requirements that contribute to less development of resistance in connection with antibiotic production shall be used in all joint Nordic procurements of antibiotics, as well as local procurements for Norway, Denmark, Iceland and Finland.

Main domains in the criteria for pharmaceutical procurement

| Price                                    | 25,00 % |
|------------------------------------------|---------|
| Ease of use, packaging and product range | 35,00 % |
| Security of supply: Stock                | 7,00 %  |
| Security of supply: Countries            | 3,00 %  |
| Environment: Organizational              | 20,00 % |
| Environment: Product                     | 10,00 % |



#### **Key Takeaways**

Reducing the environmental impacts of drugs requires collaboration among diverse stakeholders, including manufacturers, healthcare providers, and patients.

International cooperation among procurers is essential for the standardization of environmental criteria.

A market dialogue in implementing environmental criteria is encouraged to identify major gaps in environmental information on medicines and to establish achievable, specific environmental objectives.



www.consorci.org



©CSC\_Consorci