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A B S T R A C T

Purpose: This study aims to develop a Radiomics-based Supervised Machine-Learning model to predict mortality 
in patients with spontaneous intracerebral hemorrhage (sICH).
Methods: Retrospective analysis of a prospectively collected clinical registry of patients with sICH consecutively 
admitted at a single academic comprehensive stroke center between January-2016 and April-2018. We con-
ducted an in-depth analysis of 105 radiomic features extracted from 105 patients. Following the identification 
and handling of missing values, radiomics values were scaled to 0–1 to train different classifiers. The sample was 
split into 80–20 % training-test and validation cohort in a stratified fashion. Random Forest(RF), K-Nearest 
Neighbor(KNN), and Support Vector Machine(SVM) classifiers were evaluated, along with several feature se-
lection methods and hyperparameter optimization strategies, to classify the binary outcome of mortality or 
survival during hospital admission. A tenfold stratified cross-validation method was used to train the models, and 
average metrics were calculated.
Results: RF, KNN, and SVM, with the "DropOut+SelectKBest" feature selection strategy and no hyperparameter 
optimization, demonstrated the best performances with the least number of radiomic features and the most 
simplified models, achieving a sensitivity range between 0.90 and 0.95 and AUC range from 0.97 to 1 on the 
validation dataset. Regarding the confusion matrix, the SVM model did not predict any false negative test 
(negative predicted value 1).
Conclusion: Radiomics-based Supervised Machine Learning models can predict mortality during admission in 
patients with sICH. SVM with the "DropOut+SelectKBest" feature selection strategy and no hyperparameter 
optimization was the best simplified model to detect mortality during admission in patients with sICH.

1. Introduction

Cerebrovascular disease is the second leading cause of death 
worldwide. After ischemic stroke, spontaneous intracerebral hemor-
rhage (sICH) is the second most common subtype accounting for 
10–20 % of all cases [1,2].

Non-contrast head computed tomography (NCCT) is the first-line 
diagnostic test for the emergency evaluation of acute stroke [3]. Mul-
tiple radiological signs, representing irregularity and/or heterogeneity 
of the hematoma, had been defined on NCCT as predictors of expansion 
or clinical outcome of the patients with sICH [4–10].The limitations of 
these radiological signs include their low inter- and intra-observer 
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agreement with overlapping definitions between them [11]. On the 
other hand, low sensitivity rates have been described in the prognostic 
prediction of these signs (less than 40 % for the functional outcome) 
[12].

The acknowledged limitations of the previously described radiolog-
ical signs highlight the need to develop reproducible quantitative pa-
rameters (biomarkers) able to minimize the subjective component of 
qualitative radiological assessment and improve performance in pre-
dicting the prognosis of patients with sICH.

Radiomics-based machine learning models are a promising solution 
to detect patients with sICH at risk of mortality during admission. This 
study aims to develop different models of machine learning algorithms 
based on radiomics features derived from the NCCT images of sICH 
sufferers and to compare their performance to find the best- 
recommended model to discriminate mortality in patients with sICH.

2. Materials and methods

The manuscript has been structured according to the Checklist for 
Artificial Intelligence in Medical Imaging (CLAIM initiative)[13], and 
the level of evidence of the study is Level 5B[14].

2.1. Study design

Retrospective analysis of a prospectively collected clinical registry of 
patients with sICH consecutively admitted at a single academic 
comprehensive stroke center between January 2016 and April 2018. The 
study aims to develop a screening model to detect patients with sICH 
with a higher mortality risk. The proposed role of the AI algorithm is to 
triage patients based on the mortality risk to decide which patients 
would benefit from a more aggressive treatment plan. The clinical 
outcome to predict is mortality.

The study protocol was approved by the local Clinical Research 
Ethics Committee (registration number HCB/2020/0180) under the 
requirements of Spanish legislation in the field of biomedical research, 
the protection of personal data (15/1999), and the standards of Good 
Clinical Practice, as well as with the 1964 Helsinki Declaration. The data 
were properly coded to ensure data protection and patient traceability if 
needed. Due to the retrospective nature of the study, informed consent 
was not required, but all patients signed informed consent to participate 
in the prospective registry. The data that supports the findings of this 
study are available from the corresponding author, upon reasonable 
request.

2.2. Data

The analyzed data was obtained from a prospectively collected 
clinical registry of patients with sICH consecutively admitted at a single 
academic comprehensive stroke center, adequate for the resolution of 
the clinical question. This dataset has been used previously to detect 
poor clinical outcomes (3–6 modified Rankin Scale) at hospital 
discharge with a sensitivity rate in the validation cohort of 0.897 
(0778–1;95 %IC), mainly probably due to the imbalanced sample (85 % 
poor clinical outcomes), therefore due to a high pretest probability[15].

The main inclusion criteria for this retrospective analysis were 
consecutive patients older than 18 years old and NCCT acquisition 
within the first 24 hours after symptom onset (focal neurological deficits 
such as hemiparesis/hemiplegia, aphasia, facial paralysis, etc…). 
Exclusion criteria were ICH secondary to cranioencephalic traumatism, 
arteriovenous malformation, brain tumor, primary intraventricular 
hemorrhage, cerebral venous thrombosis, or hemorrhagic trans-
formation of an acute ischemic stroke. We also excluded patients for 
whom clinical information or radiomic features were not available.

Demographics (age, sex), toxic habits (alcohol, smoking), cerebro-
vascular risk factors (hypertension, dyslipidemia, diabetes mellitus, 
atrial fibrillation, ischemic heart disease), medical history of previous 

stroke and concomitant therapies (antiplatelet or anticoagulant drug 
treatment) were prospectively collected.

On admission, glycemia (mmol/l) and initial neurological assess-
ment were recorded using the "National Institutes of Health Stroke 
Scale" (NIHSS)[16]. Functional outcome was quantified using the 
Modified Rankin Scale (mRS) score at discharge, including mortality 
rate[17].

A sequential NCCT was performed on two Multislice CT scanners 
(Somatom Definition Flash and Somatom Sensation 64, Siemens 
Healthcare, Erlangen, Germany). Axial sequential images were per-
formed parallel to the orbitomeatal line from the skull base to the vertex 
using standard parameters (140 kV, 230 mAs, and 5-mm slice thickness). 
No resampling or other image preprocessing was done.

The qualitative interpretation was made in a blinded fashion to 
clinical information by a neuroradiologist, with more than 10 years of 
experience. The qualitative assessment included an evaluation of hem-
orrhage location (basal ganglia, lobar, brainstem, and cerebellum), 
presence of intraventricular hemorrhage, and hematoma volume. The 
volume of the hematoma was calculated according to the validated 
AxBxC/2 method [18]. Finally, the interpretation of the Hematoma 
Maturity Score (HMS) [10] was made by consensus between two expe-
rienced radiologists (both with over 10 years of experience in acute 
brain NCCT in the emergency setting), without access to clinical 
information.

DICOM (Digital imaging and communications in medicine) files were 
transferred to an external computing station for processing. A single 
neuroradiologist (10 years’ experience) segmented the hematoma using 
the “Segment Editor” module of 3DSlicer software version 4.10.2[19]. 
Contours of all hematomas were manually drawn slice by slice and 
three-dimensional volumes of interest (VOIs) were extracted from each 
sICH.

From the "Radiomics" module of the 3DSlicer Software, a total of 105 
features of each of the VOIs were automatically obtained. Features were 
related to intensity (19 features), shape (10 features), and texture (76 
features). 3DSlicer “Radiomics” module is based on the pyRadiomics 
library [20], which meets the “Image Biomarker Standardization 
Initiative” (IBSI) standard [21].

In this quantitative analysis, we used radiomic features to train the 
models and predict patient mortality with sICH. There were no missing 
values. No outlier elimination strategy was performed given the low 
number of instances to carry out the training. Instead, radiomics features 
were scaled from 0 to 1 as a normalization process to mitigate the 
possible effects of outliers or extreme values. Mortality during hospital 
admission was determined as the target variable, with a relatively 
balanced sample (mortality rate 33,3 %).

All data preprocessing, analysis, and visualization were performed 
on the Google Cloud computing service “Google Colab” (colab.research. 
google.com) using Python 3.0 programming language (Python Software 
Foundation; http://www.python.org). For the statistical analysis 
involved in machine learning and classification, Python packages Scikit- 
learn 1.0.2 (Scikit-learn: Machine Learning in Python; https://scikit- 
learn.org) and Seaborn 0.11.2 (Seaborn: statistical data visualization; 
https://seaborn.pydata.org) were used.

2.3. Ground truth

The target of the study was to evaluate whether supervised learning 
classifiers based on the radiomic features of the NCCT were able to 
predict mortality during hospital admission in patients with sICH. The 
main limitation regarding the target variable definition was that the 
sample may not fit the whole population of sICH patients, since those 
who died before reaching the comprehensive stroke center were not 
included in the dataset. This limitation or bias does not invalidate the 
study since the model will be used on a population similar to the one that 
has been trained.

The proposed role of the AI algorithm is to triage patients with a 
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mortality risk, which may benefit from more aggressive treatment reg-
imens, such as intensive blood pressure reduction, early surgery 
approach in lobar sICH, or minimally invasive surgery in deep sICH.

2.4. Data partitions

The appropriateness of the sample size was tested by the reference 
value of Rajput et al., i.e., they regarded sample size of a dataset as 
adequate when the dataset meets both two criteria (i) prediction accu-
racy > 80 % and (ii) Cohen’s d > 0.5 [22]. A stratified random 
patient-level split of the dataset was performed, allocating 80 % for 
cross-validation (training/test) and 20 % for a held-out validation set, 
maintaining the same mortality rate across all subsets.

2.5. Model

Radiomics features were scaled from 0 to 1 as a normalization pro-
cess to ensure the correct performance of the classifiers. Different feature 
selection and hyperparameter optimization strategies were performed in 
the training/test dataset.

Considering the large number of radiomics features and the high 
correlation between them, we chose several feature selection methods, 
which are described below: 

• “DropOut” Feature Selection: In this method, we removed features 
with Pearson`s correlation between them greater than 0.6 in absolute 
terms, so we reduced from 105 to 67 radiomics features for 
modeling.

• “DropOut + SelectKBest” Feature Selection: In this method, we first 
remove the same features as in the previous method, and then we 
select the 10 features that have the highest association with mortality 
in a univariate analysis using “SelectKBest” from the Sklearn library 
(ANOVA F-value).

• “DropOut + L1” Feature Selection: In this method, we first remove 
the same features as in the previous method, and then we perform a 
feature selection based on the Lasso regularization using “Select-
FromModel” from the Sklearn library. This process does not perform 
any additional feature selection, so we do not train the classifier with 
this model.

• “DropOut + L2” Feature Selection: In this method, we first remove 
the same features as in the previous method, and then we perform a 
feature selection based on the Ridge regularization using “Select-
FromModel” from the Sklearn library. From this process, 27 features 
were selected and used to train the classifiers.

Radiomic features were selected for modeling with supervised 
learning algorithms such as Random Forest (RF), K-Nearest Neighbors 
(KNN), and Support Vector Machines (SVM) because they show high 
performances in the medical literature[23–25].

2.6. Training and evaluation

Regarding the hyperparameters of these supervised learning algo-
rithms, we trained the models with different hyperparameter optimi-
zation strategies as follows: 

• With no hyperparameter optimization.
• Hyperparameter optimization by grid search using “GridSearchCV” 

from the Sklearn library.
• Hyperparameter optimization by randomized search using “Ran-

domizedSearchCV” from the Sklearn library.

Supervised learning algorithms were trained with the “cross_val_-
score” function from the Sklearn library in the training/test dataset. 
From this process, the mean values over 10 training/test iterations were 
obtained for Accuracy, Recall/Sensitivity, Precision, and F1 score.

Once training was completed, predictions were made with trained 
algorithms in the validation dataset. Accuracy, Recall/Sensitivity, Pre-
cision, and F1 score were obtained, as well as ROC curve (Receiver 
Operating Characteristic curve) and AUC (Areas Under the Curve) 
values of the algorithms and confusion matrix with the best perfor-
mances. As a screening method, we established the sensitivity, false 
negative, and negative predictive values (NPV) as the most important 
metrics to measure the modeĺs performance, and therefore to select the 
best model in validation dataset.

3. Results

3.1. Data

One hundred and five patients met the inclusion and exclusion 
criteria and were included in the analysis, the patient’s flowchart was 
shown in Fig. 1. The patient́s demographic and clinical data are sum-
marized in Table 1. Functional outcome and qualitative radiological 
features are summarized in Tables 1 and 2 respectively. The correlation 
matrix of all radiomic parameters is visualized in a heat map showing a 
high positive and negative correlation between multiple features 
(Fig. 2). The dataset was stratified (random split) in training/test and 
validation samples with an 8:2 ratio, so the training/test dataset was 
composed of 84 patients, and the validation dataset was composed of 21 
patients.

3.2. Model performance

Mean values over 10 iterations in training/test dataset were obtained 
for Accuracy, Recall/Sensitivity, Precision, and F1 score are shown in 
Table 3. Next, we evaluated the supervised learning models already 
trained over the validation dataset, as shown in Table 4.

“DropOut” and “DropOut + SelectKBest” were the feature selections 
with the best performances on the validation dataset, with a sensitivity 
range between 0.90 and 0.95. No performance improvement with the 
hyperparameter optimization strategies compared to no optimization 
strategy. Considering that the "DropOut + SelectKBest" strategy selected 
10 features and has similar results as the "DropOut" strategy with 67 
features, we performed the ROC curve and the confusion matrix with the 
strategy with the fewest number of variables to simplify the model as 
much as possible. In the same direction, we performed the ROC curve 
and the confusion matrix with the no hyperparameter-optimized models 
to select the most simplified models.

Therefore, the ROC curve and confusion matrix were performed with 
the 3 trained models (RF, KNN, SVM) with the “DropOut + SelectKBest” 
feature selection strategy and with no hyperparameter optimization on 
the validation cohort. Fig. 3 shows areas under the curve ranging from 
0.97 to 1 with the 3 trained models on the validation cohort.

Table 5 showed a confusion matrix with 2 false negative predictions 
in the RF and the KNN models (NPV 0.88) and no false negative pre-
diction in the SVM model (NPV 1) on the validation cohort.

4. Discussion

In our study, we evaluated different radiomic-based supervised 
learning models to predict mortality during admission in patients with 
sICH. RF, KNN, and SVM, with "DropOut + SelectKBest" feature selec-
tion strategy without hyperparameter optimization demonstrated the 
best performances with the least number of radiomic features. These 
methods achieved a sensitivity range between 0.90 and 0.95 and an AUC 
range from 0.97 to 1 on the validation dataset. Regarding the confusion 
matrix, the SVM model did not predict any false negative test (NPV 1), 
compared to the RF and the KNN models which predicted 2 false 
negative tests (NPV 0.88).

The intended use of the classifiers is to serve as a screening tool, 
facilitating the identification of patients with sICH at high mortality risk 
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during hospital admission to decide on more aggressive treatment 
planning. For that purpose, the proposed models should have a high 
sensitivity rate with as few false negatives as possible. In this context, the 
goal of this study was to create a model based on radiomic features that 
eventually could serve to triage patients with sICH at high mortality risk 
during hospital admission. This goal has been achieved with the results 
of this study in this cohort, but these results may not be generalized due 
to the absent of external validation, which is the main limitation of this 
study. So, the generalization of the classifiers is uncertain and therefore 
further evaluation of the topic in prospective multicenter cohorts is 
warranted

To our knowledge, this is the first study of radiomic-based supervised 
learning algorithms, in which the main objective is to predict mortality 
during admission in patients with sICH. There are 2 similar studies, in 
which they build CT radiomic-based supervised learning algorithms to 
predict poor clinical outcomes (3–6 modified Rankin Scale) at discharge
[15] and at 6 months[26].

The previous study of our group by Serrano et al.[15], that predicts 
poor clinical outcomes at discharge, was training with the same dataset 
as this study. The sensitivity rate in the validation cohort was 0.897 
(0778–1;95 %IC), but these results were mainly due to the imbalanced 
sample (85 % poor clinical outcomes), hence a high pretest probability, 
so maybe a CT radiomic-based supervised learning algorithms is not 
useful to predict poor clinical outcome at discharge.

On the other hand, Xu et al. [26] develop a study with CT 
radiomic-based supervised learning algorithms to predict poor clinical 
outcomes at 6 months, with a balanced sample (67.8 % poor clinical 
outcomes) and excellent results in sensitivity (>90 %) and AUC (0.92) in 
validation cohort. So, those results, in combination with our results, 
show that CT radiomic-based supervised learning algorithms can predict 
mortality at discharge and poor clinical outcomes at 6 months in pa-
tients with sICH.

There are 2 other studies, similar to these previous ones, in which 
they build models to detect the expansion of sICH with radiomic bio-
markers, which is one of the reasons why patients have poor clinical 
outcomes. In the first previous study, Shen and Cols. achieved an AUC of 
0.92 in the training dataset and, sensitivity, specificity, and precision in 

Fig. 1. Flowchart of the patient selection.

Table 1 
Demographic and clinical data of the patients.

Patients (n ¼ 105)

Age, Mean (SD) 74 (13,3)
Sex (Male), n (%) 59 (56,2)
Alcohol, n (%) 7 (6,7)
Tobacco, n (%) 7 (6,7)
Hypertension, n (%) 66 (62,9)
Dyslipidemia, n (%) 41 (39)
Diabetes Mellitus, n (%) 23 (21,9)
Atrial Fibrillation, n (%) 22 (21)
Ischemic cardiopathy, n (%) 8 (7,6)
Previous stroke, n (%) 14 (13,3)
Anticoagulants, n (%) 25 (23,8)
Antiplatelets, n (%) 26 (24,8)
Antiplatelets and/or Anticoagulants, n (%) 50 (47,6)
Glycemia – mmol/l, Mean (SD) 155 (60,8)
NIHSS, Mean (SD) 14,7 (10,3)
mRS at discharge, n (%) 0 4 (3,8)

1 5 (4,8)
2 7 (6,7)
3 18 (17,1)
4 20 (19)
5 16 (15,2)
6 35 (33,3)

Mortality during hospital admission, n (%) 35 (33,3)

SD, Standard Deviation; NIHSS, National Institutes of Health Stroke Scale, mRS, 
Modified Ranking Scale

Table 2 
Qualitative radiological features of the sICH of the patients.

Patients (n ¼ 105)

Location of sICH Lobar, n (%) 47 (44,8)
Deep, n (%) 47 (44,8)
Cerebellum, n (%) 8 (7,6)
Brainstem, n (%) 3 (2,9)

Ventricular extension, n (%) 47 (44,8)
Hematoma maturity score, n (%) 87 (82,9)
Hematoma mean volume - ml (SD) 37,9 (49,64)

sICH, Spontaneous intracerebral hemorrhage; SD, Standard Deviation
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the validation dataset of 0.86, 0.85, and 0.85 respectively. [27] On the 
other hand, Song and Cols. achieved an AUC between 0.728 and 0.829 
for the detection of sICH expansion in the validation cohort. In this latter 
study, model performance did not improve substantially adding 
clinical-radiological variables to the classifiers.[23] These two previ-
ously published papers aimed to detect sICH expansion, but sICH pa-
tients without expansion are also at risk of mortality during admission.

The clinical outcome in sICH patients is not only due to the expansion 
of the hematoma but may also be due to edema produced in the sur-
rounding brain parenchyma. For this reason, we believe that clinical 
outcome should be the prognostic imaging goal and not just hematoma 
expansion. Radiomic features related to ICH irregularity and heteroge-
neity may be important for predicting hematoma expansion and edema 
in the surrounding brain parenchyma. We hypothesize that ICH irreg-
ularity causes greater insult to the adjacent parenchyma, which could 
lead to an increased risk of edema in the adjacent parenchyma.

The main strength of this study was the use of a well characterized 
prospective cohort of consecutive sICH subjects admitted in a Compre-
hensive Stroke Center. Nevertheless, this study has several limitations. A 
limitation of the study is the small sample, especially for the validation 

set. However, the main limitation is the lack of external cohort valida-
tion, so the generalization of the classifiers is uncertain and therefore 
further evaluation of the topic in prospective multicenter cohorts is 
warranted. If the performance of the classifiers in the external validation 
cohort is lower than that obtained in the internal validation cohort, 
clinical-demographic data or additional radiological signs could be 
added to the models.

5. Conclusions

Radiomics-based Supervised Machine Learning models can predict 
mortality during admission in patients with spontaneous intracerebral 
hemorrhage in our cohort. Generalization of the classifiers is uncertain 
and therefore further evaluation of the topic in prospective multicenter 
cohorts is warranted.
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Fig. 2. Heatmap correlation matrix of the sICH́s radiomics features.
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Table 3 
Mean values over 10 iterations as results of the algorithm’s training on the training/test dataset.

Accuracy Recall/Sensitivity Precision F1 Score

DropOut RF No Optimization 0.753 0.433 0.717 0.387
GridSearchCV 0.764 0.4 0.633 0.497
RandomizedSearchCV 0.751 0.417 0.483 0.487

KNN No Optimization 0.728 0.5 0.708 0.566
GridSearchCV 0.728 0.5 0.708 0.566
RandomizedSearchCV 0.728 0.5 0.708 0.566

SVM No Optimization 0.726 0.283 0.65 0.38
GridSearchCV 0.726 0.283 0.65 0.38
RandomizedSearchCV 0.726 0.283 0.65 0.38

DropOut + SelectKBest RF No Optimization 0.753 0.567 0.757 0.567
GridSearchCV 0.741 0.499 0.757 0.603
RandomizedSearchCV 0.764 0.533 0.793 0.628

KNN No Optimization 0.751 0.499 0.733 0.567
GridSearchCV 0.751 0.499 0.733 0.567
RandomizedSearchCV 0.751 0.499 0.733 0.567

SVM No Optimization 0.715 0.5 0.576 0.492
GridSearchCV 0.715 0.5 0.576 0.492
RandomizedSearchCV 0.715 0.5 0.576 0.492

DropOut + L2 RF No Optimization 0.764 0.4 0.683 0.420
GridSearchCV 0.729 0.25 0.567 0.397
RandomizedSearchCV 0.717 0.4 0.817 0.437

KNN No Optimization 0.772 0.467 0.833 0.587
GridSearchCV 0.772 0.467 0.833 0.587
RandomizedSearchCV 0.772 0.467 0.833 0.587

SVM No Optimization 0.761 0.533 0.8 0.598
GridSearchCV 0.761 0.533 0.8 0.598
RandomizedSearchCV 0.761 0.533 0.8 0.598

RF, Random Forest; KNN, K-Nearest Neighbors; SVM, Support Vector Machines

Table 4 
Evaluation results of the trained models on the validation dataset.

Accuracy Recall/Sensitivity Precision F1 Score

DropOut RF No Optimization 0.95 0.95 0.96 0.95
GridSearchCV 0.95 0.95 0.96 0.95
RandomizedSearchCV 0.95 0.95 0.96 0.95

KNN No Optimization 0.90 0.90 0.92 0.90
GridSearchCV 0.90 0.90 0.92 0.90
RandomizedSearchCV 0.90 0.90 0.92 0.90

SVM No Optimization 0.90 0.90 0.92 0.90
GridSearchCV 0.90 0.90 0.92 0.90
RandomizedSearchCV 0.90 0.90 0.92 0.90

DropOut + SelectKBest RF No Optimization 0.90 0.90 0.92 0.90
GridSearchCV 0.90 0.90 0.92 0.90
RandomizedSearchCV 0.90 0.90 0.92 0.90

KNN No Optimization 0.90 0.90 0.92 0.90
GridSearchCV 0.90 0.90 0.92 0.90
RandomizedSearchCV 0.90 0.90 0.92 0.90

SVM No Optimization 0.95 0.95 0.96 0.95
GridSearchCV 0.95 0.95 0.96 0.95
RandomizedSearchCV 0.95 0.95 0.96 0.95

DropOut + L2 RF No Optimization 0.81 0.81 0.81 0.80
GridSearchCV 0.81 0.81 0.81 0.80
RandomizedSearchCV 0.81 0.81 0.81 0.80

KNN No Optimization 0.81 0.81 0.85 0.78
GridSearchCV 0.81 0.81 0.85 0.78
RandomizedSearchCV 0.81 0.81 0.85 0.78

SVM No Optimization 0.86 0.86 0.86 0.85
GridSearchCV 0.86 0.86 0.86 0.85
RandomizedSearchCV 0.86 0.86 0.86 0.85

RF, Random Forest; KNN, K-Nearest Neighbors; SVM, Support Vector Machines
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Confusion matrix of models with "DropOut + SelectKBest" feature selection 
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Ground Truth 0 14 0 14 0 13 1
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