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Abstract  

 

The ability to weigh a reward against the effort required to acquire it is critical for decision-making. 

However, extant experimental paradigms oftentimes confound increased effort demand with 

decreased reward probability, thereby obscuring neural correlates underlying these cognitive 

processes. To resolve this issue, we designed novel tasks that disentangled probability of success – 

and therefore reward probability – from effort demand. In Experiment 1, reward magnitude and 

effort demand were varied while reward probability was kept constant. In Experiment 2, effort 

demand and reward probability were varied while reward magnitude remained fixed. 

Electroencephalogram (EEG) data was recorded to explore how frontal midline theta (FMT; an 

electrophysiological index of mPFC function) and component P3 (an index of incentive salience) 

respond to effort demand, and reward magnitude and probability. We found no evidence that FMT 

tracked effort demands or net value during cue evaluation. At feedback, however, FMT power was 

enhanced for high compared to low effort trials, but not modulated by reward magnitude or 

probability. Conversely, P3 was sensitive to reward magnitude and probability at both cue and 

feedback phases and only integrated expended effort costs at feedback, such that P3 amplitudes 

continued to scale with reward magnitude and probability but were also increased for high 

compared to low effort reward feedback. These findings suggest that, when likelihood of success is 

equal, FMT power does not track net value of prospective effort-based rewards. Instead, expended 

cognitive effort potentiates FMT power and enhances the saliency of rewards at feedback.  
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Significance statement: The way the brain weighs rewards against the effort required to achieve 

them is critical for understanding motivational disorders. Current paradigms confound increased 

effort demand with decreased reward probability, making it difficult to disentangle neural activity 

associated with effort costs from those associated with reward likelihood. Here, we explored the 

temporal dynamics of effort-based reward (via frontal midline theta (FMT) and component P3) while 

participants underwent a novel paradigm that kept probability of reward constant between mental 

effort demand conditions. Our findings suggest that the FMT does not track net value and that 

expended effort enhances, instead of attenuates, the saliency of rewards. 

Key words: Effort; subjective value; effort-based reward; cost / benefit estimation; frontal midline 

theta; motivation 

 

Data availability: The datasets generated and analyzed during this study are available under 

https://osf.io/z5enb/.  

Code availability: Scripts for all analyses are available through https://osf.io/z5enb/. 

  

https://osf.io/z5enb/?view_only=4b68274cb89746529a39011f6aaedd5b
https://osf.io/z5enb/?view_only=4b68274cb89746529a39011f6aaedd5b
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1. Introduction  

Successful goal-directed behavior relies on the tracking of incentive values and their associated 

effort costs (Westbrook & Braver, 2015; Zald & Treadway, 2017). While extensive research has 

focused on developing neurocognitive tasks to measure the brain activity associated with the 

valuation of effort-based rewards, many experimental paradigms a) conflate effort with reward 

probability and/or b) limit analyses to early or late stages of reward processing, thereby limiting the 

interpretability of findings. 

Specifically, the paradigms used to study the neural correlates of rewards requiring cognitive 

effort frequently report poorer performance for high, compared to low, effort tasks (Aridan et al., 

2019; Giustiniani et al., 2015; Grodin et al., 2016; Ma et al., 2014; Umemoto et al., 2022; Wang et 

al., 2017; Westbrook et al., 2019; Yi et al., 2020), potentially confounding increased effort demand 

with reduced reward likelihood. This observation is critical for understanding the contribution of the 

dorsal anterior cingulate cortex (dACC) and surrounding medial prefrontal cortex (mPFC) in effort-

based reward valuation, since the mPFC has been consistently implicated in signaling the subjective 

value of effort-based rewards (Lopez-Gamundi et al., 2021) and reward likelihood and uncertainty 

(Amiez et al., 2006; Monosov, 2017; Silvetti et al., 2013; Vassena, Krebs, et al., 2014). For example, 

activity in the mPFC has been shown to scale with prospective net value (Arulpragasam et al., 2018; 

Chong et al., 2017; Croxson et al., 2009; Massar et al., 2015; Skvortsova et al., 2014)  and upcoming 

effort costs (Chong et al., 2017; Klein-Flügge et al., 2016; Prévost et al., 2010; Vassena, Silvetti, et 

al., 2014), but also signal the discrepancy between expected and actual rewards (Vassena et al., 

2017, 2020). Furthermore, electrophysiological markers of mPFC functioning – specifically 

oscillatory activity frontal midline theta (FMT) and event-related potential feedback-related 

negativity / reward positivity (FRN/RewP) – have been shown to be sensitive to reward probability 

and uncertainty (Bellebaum et al., 2010; Silvetti et al., 2014; Smith et al., 2009; Yu et al., 2011), and 

outcome expectancy (Cavanagh et al., 2012; Hajihosseini & Holroyd, 2013; Mas-Herrero & Marco-

Pallarés, 2014, 2016), but also to features of effort-based decision-making, such as reward incentive 

(Riddle et al., 2022), decision difficulty (Umemoto et al., 2022), and exerted effort (Umemoto et al., 

2022). Therefore, one critical consideration when investigating the neural correlates of effort-based 

reward is controlling for demand-driven differences in reward probability. 

Another important consideration is that the effect of effort may vary throughout the phases of 

reward processing. Specifically, neural activity in the early stages of reward processing (i.e., cue 
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evaluation and decision making) is consistent with the effort discounting hypothesis, which posits 

that effort is a cost that diminishes the value of a reward (Salamone et al., 2009, 2015, 2018; 

Westbrook & Braver, 2015; Zald & Treadway, 2017). In later stages of reward processing (i.e., reward 

delivery), however, the effect of effort is less clear. For example, some functional magnetic 

resonance imaging (fMRI) studies have shown that exerted effort enhances hemodynamic 

responses in reward-related brain regions at the time of reward delivery (Dobryakova et al., 2017; 

Gaillard et al., 2019; Hernandez Lallement et al., 2014; Sullivan-Toole et al., 2019; Zink et al., 2004). 

Conversely, effort has been shown to increase amplitudes of encephalogram (EEG) indices of 

saliency and firing rates of midbrain dopamine neurons during performance feedback and reward 

delivery phases (Ma et al., 2014; Schevernels et al., 2014, 2016; Tanaka et al., 2019, 2021; Umemoto 

et al., 2022; Wang et al., 2017; Yi et al., 2020). Taken together, these findings support what has been 

coined the “paradoxical” effect of effort (Inzlicht et al., 2018a), where effort devalues reward during 

early processing stages but enhances sensitivity to reward at delivery. To date however, studies that 

are well-suited to directly test this hypothesis have either limited analyses to early or late time 

windows (M. Zhang & Zheng, 2022; Zheng et al., 2023) or have lacked adequate control for unequal 

reward rates between effort demand conditions (Ma et al., 2014; Wang et al., 2017; Yi et al., 2020). 

To address this gap, we designed two novel paradigms that rewarded participants based on task 

performance but yielded similar reward rates for low and high levels of cognitive effort demand. 

Specifically, we investigated to what degree manipulations in effort demand, reward magnitude 

(Study 1), and reward probability (Study 2) modulate FMT – putative marker of mPFC activity – at 

both cue evaluation and feedback processing phases. FMT is an EEG oscillatory activity of 4-8 Hz 

that is distributed over fronto-central areas of the scalp and has been linked to a range of cognitive 

control (Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015) and performance feedback 

functions (Doñamayor et al., 2012; Li et al., 2016, 2018; Mas-Herrero & Marco-Pallarés, 2014, 2016). 

Generated in the mPFC (Mas-Herrero & Marco-Pallarés, 2016), FMT has been hypothesized to 

reflect effortful control in goal-directed behavior (Cavanagh & Frank, 2014; Holroyd & Umemoto, 

2016), improve behavioral performance via phase-amplitude coupling (Verguts, 2017), track task-

relevant features (Hajihosseini & Holroyd, 2013), and correlate with trial-by-trial behavioral 

adjustments (Cavanagh & Shackman, 2015).  Taken together, FMT is a candidate EEG signature for 

the allocation of control in effort-based reward. We hypothesized that if the mPFC tracks the 

motivational value of effort-based rewards, FMT activity would reflect an integrated effort and 

reward signal at both cue and feedback.  
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In parallel, we were interested in exploring the effect of effort on an established index of 

incentive salience: the P3 event-related potential (ERP; Glazer et al., 2018). This component is well-

suited to test the effectiveness of our manipulations, as P3 amplitudes have been shown to be 

modulated by reward magnitude and probability at cue and feedback (Giustiniani et al., 2020; 

Hajcak et al., 2005, 2007; Pfabigan et al., 2014; Vignapiano et al., 2016). Furthermore, P3 amplitudes 

have been shown to be sensitive to effort demands during both anticipatory and consummatory 

phases of reward processing (Ma et al., 2014; Schevernels et al., 2014; Wang et al., 2017; M. Zhang 

& Zheng, 2022; Zheng et al., 2023), which suggests that the influence of effort on reward saliency 

can be effectively tracked through this component. Thus, if our manipulations were effective, we 

expected P3 to be enhanced for high magnitude and low probability rewards, and that these effects 

would be attenuated by prospective effort demands at the cue evaluation stage but enhanced by 

exerted effort at the time of reward delivery. 

2. Methods 

2.1. Study 1 

2.1.1 Participants 

Previous studies that have used similar repeated-measures EEG designs to explore effort-based 

reward have reported relatively small effect sizes in earlier (i.e. cue evaluation and reward 

anticipation) compared to later stages of reward processing (i.e. reward outcome) (M. Zhang & 

Zheng, 2022; Y. Zhang et al., 2017; Zheng et al., 2023). Consequently, sensitivity analyses yielded 

that a sample size of N=27 would be required to detect a conservative effect size of 𝜂𝑝
2= 0.06 with 

80% statistical power. Subjects were excluded for current psychiatric diagnosis, color blindness, and 

lack of fluency in Spanish. 33 healthy adults (20 female, age: M= 27.24, SD=5.45) participated in the 

study. One subject was removed for low cue identification rate (<50%) in the catch questions and 

three subjects were removed for excessive motion artifacts, leaving a final sample of N=28. 

2.1.2 Procedures  

Upon arrival, participants reviewed and provided informed consent. Next, participants 

completed a series of self-report demographic and COVID-19 health questionnaires and then the 

Effort Valuation Task (see below). After the task, participants completed an end of session 

questionnaire (described below) before debriefing. All participants received a baseline payment of 

20€ for participation, and additional earnings from the Effort Valuation Task, ranging from 5€ to 
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15€. This study was conducted in accordance with the ethical guidelines from the Declaration of 

Helsinki and was approved by the University of Barcelona ethics board. 

2.1.2.2. Effort Valuation Task. The current Effort Valuation Task comprised of a variant of the 

reward effortful task used in Croxson et al. (2009), modified to use an effort component from 

Botvinick et al. (2009). The task was administered using PsychoPy software version 2 (Peirce et al., 

2019). Subjects were seated approximately 50 cm away from the computer monitor and responded 

using a standard keyboard and mouse. 

The schematic of the task is shown in Figure 1a. First, a cue signaling the prospective effort and 

reward of the upcoming trial was presented for 1.5 seconds. The shape of the cue (circle or square, 

counterbalanced across participants) indicated the effort requirement (low vs high) and the number 

of lines indicated the magnitude of reward on offer, with 1 line indicating low reward (5 points) and 

5 lines indicating high reward (25 points). 

In half of the trials, reward/effort cues were followed by an asterisk (1200 - 1500 ms, with 100 

ms steps) and then aborted. As has been done in previous paradigms (Klein-Flügge et al., 2016; 

Kurniawan et al., 2013) we included abort trials in order to have sufficient power (i.e. enough trials) 

to analyze effects in the cue phase without making the task too tiring or excessively long. In the 

other half of the trials, cues were followed by a fixation cross (randomized time of presentation 

between 1200 and 1500 ms, with 100 ms steps) and then an effort exertion phase, which lasted 8 

seconds. During the effort exertion phase, subjects viewed a series of numbers presented one at a 

time on the screen. Numbers ranged from one to nine, excluding five. If the number was blue, 

subjects were instructed to use the arrow keys to indicate if the number was even or odd. If the 

number was yellow, subjects were instructed to indicate whether the number was higher or lower 

than 5. In low effort trials, all judgments were of the same type. In the high effort trials, number 

color/judgment type alternated, requiring effortful cognitive set switches. Task set switching has 

been shown to be cognitively demanding (e.g., increased reaction time and reduced accuracy) and 

induce preference for tasks with less set switching (Kool et al., 2010). Furthermore, this same task 

has been widely used to manipulate cognitive effort in other paradigms (Botvinick et al., 2009; 

Croxson et al., 2009; Kool et al., 2010; Lopez-Gamundi & Wardle, 2018; Reddy et al., 2015). 

Participants were instructed to answer as quickly and as accurately as possible within the 8-second 

time frame. Immediately after the effort phase, another fixation cross appeared for 2000 to 2500 

ms (steps of 100 ms), followed by a reward/performance feedback for 1000 ms. If participants 
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correctly completed the task, a 5 or 25 was presented on the screen, matching the reward offer for 

the trial. If participants made more than 2 errors during the task or did not meet the calibrated 

decision threshold (see Training and Calibration for more detail), an X was presented indicating that 

the trial was not successful, and no points were being awarded. Another fixation cross marked the 

end of the trial. Intertrial intervals (ITIs) ranged from 2 to 3 seconds (with steps of 200 ms). 

 

Figure 1. Schematic of tasks. A) Schematic of Effort Valuation Task used in Study 1. Note that cues with one line indicate 
low reward on offer (5 points) while cues with five lines indicate high reward on offer (25 points). Note that in half of trials, 
cues were followed by asterisks, indicating that that trial would be aborted. In the other half of trials, cues were followed 
by fixation crosses and effort exertion. B) Schematic of the Probabilistic Effort Valuation Task used in Study 2. Note that 
cues with one line indicate that the trial has high probability of success (less responses are required). Cues with five lines 
indicate low probability of success (more responses are required). Note that half of trials were immediately aborted after 
cue presentation. 
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To ensure that participants attended to the reward/effort cue, four abort trials in each block 

were followed by an identification question. Participants had to use the keypad to recall the 

meaning of the cue that had been presented at the beginning of the aborted trial; for example, if 

the cue was a circle with 1 line in it, the participant had to select the option that read “easy task 

worth 5 points”. Participants were instructed that compensation depended partially on how 

accurate they answered these identification questions. Identification questions were self-paced and 

no feedback was provided until the break screen. Abort trials ended with the same fixation cross 

and ITI. 

There were five blocks with 80 trials (40 effort, 36 abort, and 4 abort followed by an 

identification question) per block, totaling to 400 trials. Reward and effort conditions were 

intermixed and evenly distributed between effort/abort trials, so that in each block there were 10 

effort trials and 10 abort trials for each of the 4 following cues: high reward/high effort, high 

reward/low effort, low reward/high effort and low reward/low effort. Trials were presented in 

pseudo-random order, such that there were no more than 2 consecutive no-effort trials. Participants 

were probed for fatigue, cue liking, and task difficulty (see Self-Report) after calibration, as well as 

halfway through and at the end of each block, making for 11 ratings total. After these questions, 

participants were given a self-paced break and provided with feedback about their cumulative 

points and their identification accuracy. Participants were able to earn up to 3000 points and were 

informed that 1000 points were equivalent to 5€, 2000 points to 10€, and 3000 points to 15€. 

Self-Report Task Ratings. During the Effort Valuation Task, participants were probed, via 11-

point Likert scales, for cue liking, task difficulty, and subjective experience of fatigue at baseline, as 

well as two times during each block. Participants were instructed to rate to which degree they liked 

the 4 reward/effort cues (0= did not like at all, 5= indifferent, 10= liked very much), how tired they 

felt (0=not tired at all and 10=very tired), and how difficult the High Effort and Low Effort tasks were 

(0=not difficult at all and 10=very difficult). Ratings for each block were composed of the average of 

the two block ratings. 

Training and Calibration. Before beginning the Effort Valuation task, the participants were 

instructed on the different cue types, trial types, effort task rules, and compensation scheme. Next, 

participants completed a series of practice trials in blocks for each of the three trial types (e.g. low 

effort with all blue numbers, low effort with all yellow numbers, and high effort). Participants were 

told that they needed to correctly complete a minimum of 5 trials before they could move on to the 
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real task. Although effort phases for practice trials were locked to 8 seconds, the cue and feedback 

presentation were self-paced in order to ensure that subjects understood the meaning of the 

presented stimuli.  

 Practice trials with greater than or equal to 85% accuracy (i.e. ≥85% correct choices within 

the 8-second time window) were considered successful and participants needed to correctly 

complete at least 5 practice trials of each effort type before moving on to the real task. Data from 

the practice trials was used to set the initial difficulty of high and low effort tasks. The number of 

correct decisions for each successful practice trial was stored in an array specific to each of the trial 

types. The number of correct decisions required to successfully complete a trial (“decision 

thresholds”) for each trial type were then calculated by taking correct number of decisions above 

the lower 20th percentile. This method effectively fixed success rates of low and hard effort trials 

to 80%, making it equally probable to obtain reward under both levels of effort demands and 

minimizing the effect of probability discounting. These arrays were continuously updated during the 

task so that decision thresholds were recalculated for each trial based on performance on the 

previous 5 trials of that same trial type. Thus, decision thresholds decreased and increased based 

on poor or improved performance, respectively, on recent trials. This allowed our task to mitigate 

the effects of fatigue, which could diminish performance and reduce probability of reward, and 

learning of the effort task, which would improve performance and thereby increase (differentially) 

the probability of reward. 

End of Session Questionnaire. At the end of the experiment, participants completed a 6-item 

survey to help us assess their understanding of the paradigm. Specifically, participants had to 

identify which cue signaled a 5- or 25-point offer and which cue signaled an upcoming high or low 

effort trial. We also asked participants to rate their perceived accuracy (from 0% to 100%) on the 

low and high effort tasks, separately.  

 

2.1.2 Electroencephalographic activity recording and preprocessing 

EEG data was continuously recorded from 33 standard scalp sites (Fp1/2, Fz, F3/4, F7/8, FCz 

(reference), FC1/2, FC5/6, FT9/10, Cz, C3/4, T7/8, CP1/2, CP5/6, Pz, P3/4, P7/8, O1/2, L/R Mastoids, 

ground at Fpz electrode) using  active electrodes mounted on an ActiCap (Brain Products ©). EEG 

signal was amplified using BrainAmp amplifier, with a continuous sampling at a rate of 250 Hz, with 
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a 0.01 Hz high-pass filter and 50 Hz notch filter. Eye movements were recorded with an electrode at 

the infraorbital ridge of the right eye. All electrode impedances were kept below 10kΩ. 

EEG data were preprocessed and analyzed in MATLAB© using EEGLAB toolbox (Delorme & 

Makeig, 2004). EEG signals were first re-referenced to the average activity of the two mastoids (L/R). 

The EEG data were bandpass filtered between 0.01 Hz to 45 Hz. To analyze activity associated with 

cue and feedback phases, the signals were epoched from −2000 to 2000 ms relative to cue and 

feedback onset, respectively, with the activity from −200 to 0 ms serving as the baseline. All epoched 

data were screened manually for artifacts (e.g., spikes, channel-jumps, and non-biological signals). 

Independent components analysis (ICA) was then applied to the data and components reflecting 

motion artifacts (i.e. blinks/eye movement) were removed.  

Finally, data were visually inspected again and remaining artifacts were removed. Analyses were 

then conducted on the remaining N=28 subjects (17 female, age: M= 27.89, SD=5.20) with viable 

EEG data. Due to unequal reward rates in Block 1 (see Behavioral results), analyses were conducted 

with Block 1 trials removed, resulting in an average of 299.25 trials (SD=10.99) for the cue phase 

and 117.79 trials (SD=9.45) for the feedback phase.  

 

2.2. Study 2 

2.2.1 Participants 

Results from Study 1 suggested that a sample size of N=27 was adequate for detecting medium 

effect sizes in cue and feedback. However, to ensure that our final sample size was large enough, 

we recruited 37 healthy adults (20 female, age: M= 24.00, SD=5.77) to participate in Study 2. Two 

subjects were excluded due to low accuracy (<30%) on the catch identification trials and 3 

participants were excluded for excessive motion artifacts, leaving a final sample of N=32. 

2.2.2 Procedures 

The behavioral paradigm and procedures for were similar to Study 1 except for the differences 

noted below.  

2.2.2.1. Probabilistic Effort Evaluation Task. The paradigm was very similar to the task used in 

Study 1, but with a few key differences (see Figure 1b). First, instead of manipulating reward 

magnitude, we directly manipulated probability of success. Thus, potential rewards were fixed to 15 
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points per effort trial, but effort trials either had a high or low probability of success. Probability of 

success was manipulated by setting the decision threshold higher for low probability trials and lower 

for high probability trials. Specifically, decision thresholds for High Probability trials were set as in 

Study 1 (by taking correct number of decisions above the lower 20th percentile from the past 5 

trials), while decision thresholds for Low Probability trials were to the number of correct decisions 

above the 60th percentile. This effectively locked probability to success to above 80% on High 

Probability trials and below 60% on Low Probability trials. 

 Second, we simplified the design of the task in the following ways. First, we set the Low 

Effort task to only one decision type (greater than/less than 5). This was done to simplify instructions 

and save time on the initial training/calibration. We selected the greater than/less than 5 decision 

rule because this task was rated as less difficult than the even/odd task, thereby allowing us to 

maximize the difference between low and high effort demand. Second, since FMT is hypothesized 

to signal the need to implement control (Cavanagh & Frank, 2014), it is possible that FMT activity in 

Study 1 was locked to the pre-effort fixation cross instead of the reward/effort cue since the pre-

effort fixation was deterministic of future effort. To address this concern, we removed the pre-effort 

fixation cross from the task in Study 2. Instead, we extended the cue presentation to 2 seconds, 

which was then either followed by the corresponding effort exertion phase (effort trials) or the next 

trial (abort trials). Third, we shortened the pre-feedback ISI to 1000 to 1500 ms (steps of 100ms). All 

other trial and block structures remained the same as in Study 1. Fourth, we simplified the 

identification questions by asking participants to identify which cue image (as opposed to the 

meaning of the cue) was presented in the previous trial. 

Self-Report Task Ratings. As in Study 1, participants were probed, via 11-point Likert scales, for 

cue liking and subjective experience of fatigue at baseline, as well as two times during each block. 

However, because we expected that probability of success would impact difficulty ratings, we 

decided to probe participants regarding how much effort was required to complete each task (0=No 

Effort, 10=Extreme Effort). Further, although participants were explicitly told which cues would 

signal high vs low probability of success, we also asked participants to rate how likely (0-100%) they 

were to correctly complete each task. As in Study 1, participants were asked for their ratings after 

the initial practice phase and twice during each block. 

Training and Calibration. In Study 1 we saw that the calibration mechanism took longer than 

expected in stabilizing probability rates. In order to avoid tossing out the first trials, we extended 
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the practice sessions so that participants had to correctly complete a minimum of at least 15 (as 

opposed to 5) trials of each effort type. We also interweaved the one-color and two-color tasks (as 

opposed to practicing in blocks) to better simulate the real task. Initial decision thresholds were 

based on the last five correct trials. 

End of Session Questionnaire. At the end of the experiment, participants completed a 2-item 

survey to help us assess their understanding of cues and their effort demand contingencies. 

Specifically, participants had to identify which cue signaled an upcoming high or low effort trial.  

 

2.2.3 Electroencephalographic activity recording and preprocessing 

EEG data was continuously recorded from 32 standard scalp sites (Fp1/2, Fz (reference), F3/4, 

F7/8, FC1/2, FC5/6, FT9/10, Cz, C3/4, T7/8, CP1/2, CP5/6, Pz, P3/4, P7/8, O1/2, L/R Mastoids, ground 

at Fpz) using active electrodes mounted on an ActiCap (Brain Products ©). EEG signal was amplified 

using BrainAmp amplifier, with a continuous sampling at a rate of 500 Hz, with a 0.01 Hz high-pass 

filter and 50 Hz notch filter. Eye movements were recorded with an electrode at the infraorbital 

ridge of the right eye. As in Study 1, all electrode impedances were kept below 10kΩ. 

EEG data were preprocessed and analyzed in MATLAB © using EEGLAB toolbox (Delorme & 

Makeig, 2004). EEG signals were first re-referenced to the average activity of the two mastoids (L/R). 

The EEG data were bandwith filtered with a bandpass of 0.01 Hz to 45 Hz. To analyze activity 

associated with cue and feedback phases, the signals were epoched from −2000 to 2000 ms relative 

to cue and feedback onset, respectively. All epoched data were screened manually for artifacts (e.g., 

spikes, channel-jumps, and non-biological signals). Independent components analysis (ICA) was then 

applied to the data and components reflecting motion artifacts (i.e. blinks/eye movement) were 

removed.  

Finally, data were again visually inspected and remaining artifacts were removed. Three subjects 

were removed for excessive motion artifacts. Analyses were performed on the remaining N=32 

subjects (28 female, age: M= 23.93, SD=5.24) with an average of 354.47 trials (SD=33.99) for the cue 

phase and 130.16 trials (SD=10.37) for the feedback phase.  
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2.3. Data Analysis 

2.3.1. Event-Related Potentials 

EEG data was again low-pass filtered at 20 Hz offline. Components in the cue phase and 

feedback phase were studied by epoching data time-locked to 200 ms before and 1000 ms after cue 

and feedback onset, respectively. Time windows and electrode sites for ERP components for each 

phase were selected by exploring waveforms and topographic maps across all conditions for each 

study separately. Cue-P3 was defined as the average amplitude from 350 and 500 ms after cue onset 

for Study 1 and 450 to 550ms after cue onset for Study 2. In Study 1, FB-P3 was defined as the mean 

activity between 300 and 400 ms following feedback onset, and 350 to 450ms in Study 2. 

2.3.2. Time Frequency Analysis 

Time-frequency analysis was performed per trial in 4 second epochs for cue and feedback 

phases (2 sec before cue/feedback through 2 sec after). In order to find the induced time-frequency 

activity, we convoluted single-trial activity using a complex Mortlet wavelet from 1 Hz to 40 Hz using 

1Hz steps. We then computed the mean change in power with respect to baseline for each phase, 

defined as the 400 to 200ms before cue or feedback onset. To compare different conditions, trials 

associated with a specific Reward/Effort condition were averaged for each participant before 

performing a grand average. The mean increase/decrease in power for each condition was 

computed at Fz, Cz and Pz. Based on previous studies implicating theta in both effortful control 

(Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015), we specifically focused on theta (4-8 Hz) in 

time windows where the effect of our manipulations appeared maximal (100 to 400 ms after cue 

and 200 to 550ms after feedback onset for both experiments). 

2.3.3. Statistical Analysis 

2.3.3.1. Behavioral Data. The novelty of the Effort Valuation and Probabilistic Effort Valuation 

tasks were that effort demands were continuously calibrated so that effort could be fully 

disassociated from reward probability. Thus, it was important for us to confirm that participants had 

similar success rates between high and low effort trials across the task. Thus, we used linear mixed-

effects models (LMM) with Block, Effort, Reward (Study 1)/Probability (Study 2), and their 

interactions as fixed effects, Subject as a random effect, and trial success as the outcome to test if 

our calibration mechanism effectively locked success rates throughout the tasks. For our task to be 

valid, we also needed to confirm that high effort trials were more cognitively demanding than low 

effort trials. Since response times have been shown to increase as a function of task difficulty 
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(Dodonov & Dodonova, 2012; Wong et al., 2017), we used the number of decisions made per trial 

and the average speed of decisions as behavioral proxies of cognitive demand. The same fixed and 

random effects structure was used to fit two LMMs to the number of decisions made per trial and 

average speed of decision. Although we expected self-report fatigue to increase with time on task, 

we designed our calibration mechanism to adjust for declines in reward probability due to fatigue-

related diminished performance. Thus, we first fit an LMM with self-report fatigue ratings at the 

dependent variable, Block as a fixed effect and subject as a random effect to see how fatigue 

changed throughout the task. We also used another LMM, with fatigue ratings, Block, and their 

interactions as fixed effects, subject as random effects, to predict block-wise mean trial accuracy. 

With respect to self-report ratings, we expected that effort, reward probability, and time on 

task would affect appetitive responses to the cues (cue-liking) and subjective experience of task 

difficulty/effort. Again, we used two LMMs, with Block, Effort, Reward (Study 1)/Probability (Study 

2), and their interactions as fixed effects and Subject as a random effect, to explore if self-report 

cue-liking and task difficulty/effort were modulated by our experimental manipulations. In the case 

of Study 2, we were interested in seeing how our probability manipulation impacted participants’ 

perceived probability of successfully completing a trial. Thus, we first fit an LMM with the same fixed 

and random effects structure to the self-report probability of success data.  

2.3.3.2. EEG Data. To study the effect of reward magnitude and probability and effort demands 

on midline ERP amplitudes and theta power, we conducted separate repeated-measures ANOVA 

with Effort (high and low), Reward Magnitude (high and low; Study 1) or Probability (high and low; 

Study 2) and Sensor (Fz, Cz, and Pz) as within-participant factors and time-locked ERP components 

and theta power as dependent measures. The Greenhouse-Geisser correction was applied in cases 

where the sphericity assumption was violated. Paired sample t-tests with Tukey HSD corrections for 

multiple comparisons were used to explore significant effects post-hoc. In the case where normality 

assumptions were violated, Wilcoxon signed rank tests were used. 

 Due to the limited research on the role of FMT in effort-based reward processing, we 

deemed it important to quantify null effects in cases where we failed to detect a significant effect 

of our manipulations on theta power. Since a “non-significant” p-value (p>.05) alone does not 

meaningfully support a null effect (Gelman & Stern, 2012), we employed Bayesian approaches which 

are better suited to quantify the amount of evidence in favor of the null hypotheses that Effort and 

Reward Magnitude/Probability do not have effects on theta power at cue. Specifically, we first 
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replicated our original Frequentist analyses using Bayesian rmANOVA in JASPv0.17.1. In our case, 

we expected to replicate our original findings (described in the Results section) such that theta 

power during the cue phase would be best predicted by a model with only Sensor as a predictor. 

Bayes Factors (BFs) are computed to compare the probability of an alternative model relative to the 

probability of the null model. Inclusion Bayes factor (BFincl), which contrasts the performance of a 

model with a given predictor against the performance of all models that exclude that predictor, 

were used to quantify the importance of a given predictor. Finally, we conducted Bayesian paired-

sample t-tests to quantify the relative strength of evidence in favor of the simple null hypotheses 

(H0) that 1) Effort and 2) Reward Magnitude/Probability do not have an effect on theta power at 

cue. A BF01>3 (or BF10<1/3) is interpreted as moderate evidence in support of the null hypothesis 

(Wagenmakers et al., 2011). 

3. Results 

3.1. Study 1 

3.1.1. Behavioral and Self-Report Data 

The primary aim of our paradigm was to experimentally isolate effort demand from reward 

probability. Thus, we had to first confirm that the likelihood of successfully completing the task, and 

therefore obtaining the reward, was equivalent for high and low effort trials throughout the task. 

LMM revealed significant Reward Magnitude (b=0.19, p<0.000) and Effort and Block interaction (b=-

2.05, p=0.008; see Supplementary Table 1). As can be seen in Figure 2a, this interaction effect was 

driven by differential success rates in high vs low effort trials in Block 1.  After exploring cumulative 

success rates in each subject, we concluded that the calibration mechanism created similar reward 

rates between high and low effort trials starting in Block 2. Thus, we decided to repeat the analysis 

excluding trials from Block 1. This LMM yielded non-significant effects of Effort (b= -0.18, p=0.883), 

Block (b=0.00, p=1.00), and Effort and Block interaction (b= 0.39, p=0.715), suggesting that reward 

rates were quantitatively similar between high effort (M=78.25%, SD=5.77) and low effort 

(M=78.44%, SD=5.04) trials. Therefore, trials from the first block were excluded from all remaining 

EEG analyses (see Study 1 Methods). Further, a significant positive effect of Reward Magnitude was 

found (b= 0.22, p<0.000), such that participants were overall slightly more accurate on high reward 

trials (M=80.6%, SD=9.3%) than low reward (M=76.1%, SD=9.6%) trials. All other Effort, Reward 

Magnitude, and Block interaction effects were non-significant (all p-values >0.3; see Supplementary 

Table 1). 
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Behavioral indices also indicate that our effort manipulation was effective. For example, if high 

effort trials were truly more difficult, we would expect that participants would make less 

judgements in the 8-second time window in high compared to low effort trials. As expected, LMMs 

revealed that participants were able to make less decisions (b=-2.84, p<0.000), and decide less 

quickly (b=0.30, p<0.000) in high effort vs low effort trials (see Figure 2b and 2c; Supplementary 

Tables 2 and 3). Furthermore, a significant effect of Block suggests that participants were able to 

make more decisions (b=0.35, p<0.000) in later blocks. Similarly, reaction times for decisions 

decreased with more time on task (Block: b=-0.05, p=<0.000), however this drop was more steep 

for high compared to low effort trials (BlockXEffort: b=-0.03, p=0.015). These data suggest that 

although probability of success remained relatively fixed in Blocks 2 to 5, participants improved with 

practice. 
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Figure 2. Effort Valuation Task adequately manipulates mental effort demands and disassociates it from reward 
probability. A) Mean percentage of successful trials between high and low effort trials across the task. Success rates for 
low effort trials are significantly lower in Block 1 than those for high effort trials, but become statistically equivalent in later 
blocks. B) Average number of decisions made in the 8-second time window for high and low effort trials. C) Average 
response time (in seconds) for each decision made in the high vs low effort cue set-switching tasks. D) Subjective reports 
of difficulty for the 2 color (high effort) and 1 color (low effort) task; larger values indicate increased self-report difficulty 
ratings. Please note that in Study 1, participants were not asked to consider potential reward magnitude when giving 
difficulty ratings. E) Effect of reward and effort on subjective ratings of cue liking; higher values indicate higher appetitive 
responses to cue. Error bars represent the standard error of the mean. F) Self-report ratings of fatigue at each block; larger 
values indicate increased self-report fatigue ratings. 

 

In addition to behavioral indices, participants also rated the high effort task as more difficult 

than the low effort task (b=3.31, p= 0.163). Further, both high and low effort tasks were rated as 
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less difficult as time went on (b=-0.218, p<0.000), presumably due to practice effects 

(Supplementary Table 4). Conversely, we were concerned that despite practice-related 

improvements in the task, participants would perform worse in later trials due to fatigue. The 

calibration method, however, was designed to mitigate the effect of fatigue on effort performance, 

so that reward probability would not be dependent on current fatigue state. LMMs revealed that 

although participants reported increased fatigue with time on task (b=0.73, p<0.000), there was no 

relationship between fatigue ratings and average block accuracy (b=-0.002, p=0.707; Supplementary 

Table 5). Thus, taken together, these findings suggest that our paradigm successfully manipulated 

effort demand while keeping reward probability constant throughout the task.  

As shown in Figure 2e, participants also reported liking cues for high reward trials more than 

low reward trials (b=0.12, p<0.000) and low effort cues significantly more than high effort cues (b=-

0.79, p<0.000; Supplementary Table 1). Moreover, we detected a significant interaction between 

Reward Magnitude and Block (b=0.01, p=0.003), indicating that high reward cues are liked more as 

the task progresses, while liking for low reward cues diminishes with time (see Figure E). 

In the end of session questionnaire, 100% of participants correctly identified which cues signaled 

5-point, 25-point, low effort, and high effort trials. Overall, participants reported having higher 

success rates on low (M=75.62%, SD=9.11) compared to high effort trials (M=66.72%, SD=10.46). 

Wilcoxon signed-rank tests revealed that participants reported being more accurate on low vs high 

effort trials (Z= -3.13, p= 0.002, r=0.58), despite the fact that real accuracy rates were not different 

between these conditions.  

3.1.2. Cue Evaluation Phase 

Repeated measures ANOVA revealed a significant effect of sensor at cue (F(1.38, 37.18)=19.82, 

p<0.000), such that theta was maximal at Fz. However, contrary to our hypothesis, we found no 

effect of either Reward (F(1, 27)=1.85, p=0.185, 𝜂𝑝
2 =0.0) or Effort (F(1, 27)=3.15, p=0.087, 𝜂𝑝

2=0.10) 

on cue theta (see Figure 3a and Supplementary Table 8). Bayesian rmANOVAs and pairwise t-tests 

were then used to quantify the evidence in favor of these null effects. Specifically, our findings were 

replicated by model comparison of Bayesian rmANOVAs, which identified that the data was best 

predicted by a model with Sensor as the sole predictor variable. Averaging across all models there 

is strong evidence in favor of including Sensor (BFincl=16396.45) and weak evidence of including 

Effort, Reward Magnitude, and their interactions (all BFincl<0.494; Supplementary Table 7). 

Nevertheless, Bayesian pairwise t-tests revealed only anecdotal evidence in favor of a null effect of 



Theta Dynamics in Effort-Based Reward 

20 
 

Effort (BF01= 0.34) and Reward Magnitude (BF01= 2.17). Thus, while FMT was generally present and 

no effect of Effort or Reward Magnitude were detected, we cannot conclusively deduce that FMT 

power was not modulated by our task features during the cue evaluation phase. 

 

Figure 3. FMT during cue evaluation and feedback phases of the Effort Valuation Task. A) Time course (in milliseconds) 
of theta power (μV2) during cue presentation. Shaded regions about the lines represent 95% confidence intervals while the 
shaded panel represents the time window selected for analysis. Inset shows the topographic distribution of theta power 
across all cues 100 to 400ms after cue onset. B) Time course (in milliseconds) of theta power (μV2) during correct feedback. 
Shaded regions about the lines represent 95% confidence intervals while the shaded panel represents the time window 
selected for analysis. Insets show the topographic distribution of theta power 200 to 300ms after correct feedback onset. 
HR=High Reward, LR=Low Reward, HE=High Effort, LE=Low Effort, HE-LE= Difference between High Effort and Low Effort 
conditions. 
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ERP data, however, suggests that P3 signals reward magnitude of upcoming trial. Specifically, 

repeated-measures ANOVA detected a significant effect of Reward (F(1, 27)= 43.47, p<0.000, 

𝜂𝑝
2=0.62), such that cue-P3 amplitudes were significantly larger for High Reward (M= 4.78, SD=2.34) 

compared to Low Reward cues (M=3.40, SD=1.87). We also detected significant effects of Sensor 

(F(1.30, 35.06)= 112.85, p<0.000, 𝜂𝑝
2=0.81), and a significant Reward and Sensor interaction (F(1.32, 

35.58)= 18.92, p<0.000, 𝜂𝑝
2=0.41; Supplementary Table 9). As shown in Figure 4a, post-hoc pairwise 

t-tests indicate that cue-P3 amplitudes were significantly larger for High compared to Low Reward 

cues in parietal and central midline sensors (Cz: t(28)= 5.44, p<0.000, p-adj.<0.001; Pz: t(28)=6.36, 

p<0.000, p-adj.<0.001), but that this difference decreased as it approached frontal Fz (t(28)=4.14, 

p<0.001, p-adj.=0.11) Notably, no effect of Effort (F(1,27)=0.24, p=0.63, 𝜂𝑝
2=0.01) or effort-related 

interactions (EffortXReward: F(1, 27)=0.22, p=0.65, ηp2=0.01, EffortXSensor: F(1.46, 39.49)=0.12, 

p=0.82, 𝜂𝑝
2=0.01) were detected, suggesting that expected effort did not enhance cue-related 

salience. 

3.1.3. Feedback Phase 

In contrast to the cue evaluation phase, both FMT and P3 tracked expended effort at feedback 

(see Supplementary Tables 10 and 11). Specifically, repeated-measures ANOVA revealed a 

significant effect of Sensor (F(1.20, 32.35)=9.22, p=0.003, 𝜂𝑝
2=0.26) and an Effort and Sensor 

interaction (F(1.73, 46.83)=6.18, p=0.006, 𝜂𝑝
2=0.19) on FMT, such that theta power was significantly 

enhanced for rewards after high compared to low effort at Fz (Z=-2.90, p=0.004, p-adj.=0.046, 

r=0.55), but not Cz (Z=-2.42, p= 0.016, p-adj.=0.68,  r=0.46) or Pz (Z= -0.91, p=0.362, p-adj.=0.99, 

r=0.17). Figure 3b illustrates the effect of effort on theta power at Fz. 

Repeated-measures ANOVA also revealed a significant effect of Effort (F(1,27)= 31.95, p<0.000, 

𝜂𝑝
2=0.54) and Reward (F(1,27)= 43.94, p<0.000, 𝜂𝑝

2=0.62) on fb-P3. As seen in Figure 4b, P3 

amplitudes were larger after receiving positive feedback for High (M=13.16, SD=5.13) vs Low Effort 

(M=10.49, SD=4.00) and for High (M=13.10, SD=4.84) vs Low Reward (M=10.55, SD=4.23). We also 

detected significant effects of Sensor (F(1.26,33.99)= 35.81, p<0.000, 𝜂𝑝
2=0.57) and a significant 

Reward and Sensor interaction (F(1.26,34.10)= 9.95, p<0.000, 𝜂𝑝
2=0.27). Post-hoc paired t-tests 

revealed that although fb-P3 amplitudes were enhanced for high vs low rewards across all midline 

sensors, this difference was maximal at Pz (t(27)=8.18, p<0.000, p-adj.<0.001). Finally, we also 

detected a significant effect three-way interaction between Effort, Reward and Sensor (F(1.37, 

36.88) = 5.269, p=0.018, 𝜂𝑝
2=0.16), however post-hoc 2x2 repeated measures ANOVAs for each 
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sensor did not yield any significant effect of Effort and Reward (all p-values>0.4), thus we concluded 

that this interaction was driven by slight differences in the magnitude – but not direction – of 

reward- and effort-related effects in each sensor. 

 

Figure 4. P3 during cue evaluation and feedback phases of the Effort Valuation task. A) Time course of grand averages 
of P3 amplitudes from sensor Fz in each of the four conditions during the cue evaluation phase. B) Time course of grand 
averages of P3 amplitudes from sensor Fz in each of the four conditions during the feedback phase. Cue and feedback onset 
occurred at 0 ms. Shaded regions about the line reflect 95% confidence intervals using between-subjects standard error. 
Gray shaded regions in the ERP plots indicate the time window used for analysis. Topographic plots reflect the difference 
in grand averages between conditions in said time regions. HR=High Reward, LR=Low Reward, HE=High Effort, LE=Low 
Effort, HR-LR= Difference between High Reward and Low Reward conditions, HE-LE= Difference between High Effort and 
Low Effort conditions. 

 

3.2. Study 2 

3.2.1. Behavioral and Self-Report Data  

As in Study 1, we were interested in making sure that success rates were similar between high 

and low effort trials. In Study 2 however, we also needed to make sure that success rates were 

significantly higher for high compared to low probability trials. LMM revealed no significant effect 

of Effort (b=0.16, p=0.869) or Effort and Block interaction (b= -0.30, p=0.658) on success rates 
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(Supplementary Table 1). As shown in Figure 5a, we found a significant positive effect of Probability 

(b=36.28, p<0.000), such that, on average, participants correctly completed 86.8% (SD=7.2%) of high 

probability trials and 50.5% (SD=11.1%) of the low probability trials. Thus, we concluded that 1) the 

extended practice phase stabilized reward probabilities early in the Probabilistic Effort Valuation 

Task, thus eliminating the need to exclude trials from the EEG analyses, and 2) that success rates 

were substantially different between low and high probability trials, regardless of effort type. 

We also detected a significant effect of effort type on number of decisions and response time, 

so that participants in Study 2 made more decisions (b=-3.43, p<0.000) and decided more quickly 

(b=0.27, p<0.000) in low compared to high effort trials (Figures 5b and c; Supplementary Tables 2 

and 3). LMMs also revealed significant Block effects such that participants chose more quickly (b=-

0.03, p<0.000) and made more decisions in the 8-second time window (b=0.27, p<0.000) across trial 

types as the task went on. However, there was a significant effect of Probability (b=-0.13, p=0.04) 

on number of decisions, such that lower probability of succeeding actually invigorated effortful 

responding instead of diminishing it.  

The high effort task was also rated as more difficult than the low effort task (b=2.42, p<0.000; 

see Figure 5d and Supplementary Table 4). Probability of success also impacted subjective ratings 

of difficulty, such that low probability tasks were rated as more difficult than high probability tasks 

(b=-1.53, p=<0.000). We also detected a significant Probability and Block interaction (b= -0.23, 

p=0.001), such that high and low probability trials were rated as equally difficult at baseline (before 

participants experienced the differential success rates), but low probability trials were reported as 

increasingly effortful throughout the task. We were also interested in knowing if participants were 

accurately perceiving their probability of success. As expected, participants also reported feeling 

more likely to succeed in high vs low probability trials (b= 1.45, p<0.000), but only after the baseline 

period as there were no differences in success probability during the calibration (see Figure 5e). 

Despite having equal success rates across both levels of effort, LMM revealed that participants 

reported feeling less likely to successfully complete high effort trials than low effort trials (b=-1.43, 

p<0.000; see Supplementary Table 7). Subjective ratings of probability of success also significantly 

decreased with time on task (b=-0.18, p<0.000). This decrease was steeper for low probability 

(b=0.28, p<0.000) and low effort trials (b=0.12, p=0.011). 

As in Study 1, participants reported feeling more fatigued with time on task (b=0.69, p<0.000; 

see Figure 5f and Supplementary Table 5), but no relationship between fatigue ratings and average 
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block accuracy was detected (b=-0.004, p=0.06). Thus, taken together, these findings suggest that 

our paradigm successfully manipulated effort demand while keeping reward probability constant 

throughout the task.  

 

Figure 5. Probabilistic Effort Valuation Task adequately manipulates mental effort, but probability of success modulates 
subjective ratings of difficulty and liking. A) Mean percentage of successful trials between high and low probability trials 
across the task. B) Average number of decisions made in the 8-second time window for the different trial types across the 
task. Participants made more decisions in the high vs low effort trials, and slightly more decisions in low vs high probability 
trials. C) Effect of effort on average response time (in seconds) for each decision made in the different trial types. D) Effect 
of effort and probability of success on subjective reports of task difficulty; larger values indicate increased self-report 
difficulty. E) Effect of effort and probability of success on subjective estimates of the percentage of trials (based on each 
EffortXProbability condition) that were successfully completed in a given block. F) Average self-report ratings of fatigue at 
each block; larger values indicate increased self-report ratings of fatigue. G) Effect of probability and effort on subjective 
ratings of cue liking; higher values indicate higher appetitive responses to cue. Error bars represent the standard error of 
the mean. 
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However, unlike Study 1, cue liking ratings in Study 2 generally decreased with time on task (b=-

0.16, p=0.000; see Supplementary Table 6). Probability of successfully completing the task also 

modulated cue liking, so that high probability cues were generally liked more than low probability 

cues (b=1.61, p=.137). We also detected a significant Probability and Block interaction (b=0.34, 

p<0.000). Figure 5f illustrates how, despite being explicitly told which cues indicated lower vs higher 

probabilities of success before baseline measurement, participants initially based cue liking on effort 

demands alone. With more time on task however, liking for cues indicating lower success ratings 

began to decline. Finally, 100% of participants correctly identified which cues were associated with 

high and low effort trials in the end of session questionnaire. 

3.2.2. Cue Evaluation Phase 

ERP and oscillatory patterns in Study 2 are qualitatively similar to those in Study 1. With respect 

to cue-related theta, repeated measures ANOVA detected a significant effect of sensor at F(1.35, 

41.85)=24.85, p<0.000, 𝜂𝑝
2=0.42), but again no effects related to Effort (F(1, 31)= 0.007, p=0.933, 

𝜂𝑝
2<0.00), Probability (F(1, 31)=0.68, p=0.417, ηp2=0.02), or their interactions (Supplementary Table 

12). Figure 6a shows cue-related theta power activation. Bayesian methods were again used to 

quantify the evidence in favor of these null effects. Bayesian rmANOVA confirmed that the data best 

supports a model with only a main effect of Sensor (BF10= 38828.24). Averaging across all models 

there is strong evidence in favor of including Sensor (BFincl= 413136.71) and weak evidence of 

including Effort, Reward Magnitude, and their interactions (all BFincl<0.169). Bayesian pairwise t-

tests revealed strong evidence in favor of a null effect of Effort (BF01= 12.35) and moderate evidence 

in favor of a null effect of Probability (BF01= 5.13). Thus, we conclude that although FMT was 

generally present during the cue evaluation phase, it was not modulated by our task manipulations. 

 Cue-P3 however showed a significant effect of Probability (F(1, 30)= 17.40, p=0.001, 𝜂𝑝
2=0.37), 

such that cue-P3 amplitudes were significantly greater for Low Probability (M=2.47, SD=2.67) 

compared to High Probability cues (M=1.82, SD=2.26; see Figure 7a and Supplementary Table 13). 

We also detected significant effects of Sensor (F(1.23, 36.78)= 136.51, p<0.000, 𝜂𝑝
2=0.82), and  a 

significant Probability and Sensor interaction (F(1.27, 38.21)= 11.81, p<0.001, 𝜂𝑝
2=0.28). Post-hoc 

Wilcoxon signed-rank tests and pairwise t-tests indicated that cue-P3 amplitudes were significantly 

larger for Low compared to High Probability cues in Pz (Pz: Z= -4.31,  p<0.000, p-adj.<0.001, r=0.76), 

but that this difference diminished in more frontal sensors (Fz: t(31)=-2.51, p=0.017, p-adj.=0.73; Cz: 
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Z= -3.12,  p=0.002, p-adj.=0.053, r=0.55). Cue-P3 was not modulated by Effort (F(1,30)=0.44, p=0.51, 

ηp2=0.01) or effort-related interactions (EffortXProbability: F(1, 30)=0.02, p=0.90, 𝜂𝑝
2<0.00, 

EffortXSensor: F(1.22, 36.63)=0.12, p=0.79, 𝜂𝑝
2=0.28), replicating previous results from Study 1. 

 

Figure 6. FMT during cue evaluation and feedback phases of the Probabilistic Effort Valuation Task. A) Time course (in 
milliseconds) of theta power (μV2) during cue presentation. Shaded regions about the lines represent 95% confidence 
intervals while the shaded panel represents the time window selected for analysis. Inset shows the topographic distribution 
of theta power across all cues 100 to 400ms after cue onset. B) Time course (in milliseconds) of theta power (μV2) during 
correct feedback. Shaded regions about the lines represent 95% confidence intervals while the shaded panel represents the 
time window selected for analysis. Insets show the topographic distribution of theta power 200 to 300ms after correct 
feedback onset. HP=High Probability, LP=Low Probability, HE=High Effort, LE=Low Effort, HE-LE= Difference between High 
Effort and Low Effort conditions. 
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3.2.3. Feedback Phase 

In Study 2, repeated measures ANOVA revealed a main effect of Sensor (F(1, 31)=11.59, 

p=0.001, 𝜂𝑝
2=0.27) and Effort in FMT (F(1, 31)=11.594, p=0.003, 𝜂𝑝

2=0.272), such that FMT was 

significantly more enhanced across all electrodes for rewards received after exerting High 

(M=228.03, SD=194.66) compared to Low Effort (M=159.65, SD=156.45). Figure 6b displays the 

effect of effort on FMT power at feedback (see Supplementary Table 14).  

 

Figure 7. P3 during cue evaluation and feedback phases of the Probabilistic Effort Valuation task. A) Time course of 
grand averages of P3 amplitudes from sensor Fz in each of the four conditions during the cue evaluation phase. B) Time 
course of grand averages of P3 amplitudes from sensor Fz in each of the four conditions during the feedback phase. Cue 
and feedback onset occurred at 0 ms. Shaded regions about the line reflect 95% confidence intervals using between-
subjects standard error. Gray shaded regions in the ERP plots indicate the time window used for analysis. Topographic plots 
reflect the difference in grand averages between conditions in said time regions. HP=High Probability, LR=Low Probability, 
HE=High Effort, LE=Low Effort, LP-HP= Difference between Low Probability and High Probability conditions, HE-LE= 
Difference between High Effort and Low Effort conditions. 

 

Similarly, repeated-measures ANOVA detected a significant main effect of Effort (F(1, 31)=73.96, 

p<0.000, 𝜂𝑝
2=0.71), such that fb-P3 amplitudes were significantly greater for rewards after 

completing High Effort (M=10.89, SD=4.30) compared to a Low Effort trials (M=8. 31, SD=4.25; see 
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Figure 7b and Supplementary Table 15). The data also revealed a significant main effect of 

Probability (F(1, 31)=4.78, p=0.036, 𝜂𝑝
2=0.13) and Sensor (F(1.37, 42.33)=8.95, p<0.000, 𝜂𝑝

2=0.22). 

Fb-P3 amplitudes were larger when receiving rewards from Low Probability (M=8. 92, SD=4.49) 

compared to High Probability trials (M=9.59, SD=4.62).   

4. Discussion  

Most goal-directed behavior is mentally costly. While previous studies have elucidated the 

neural correlates and temporal dynamics of effort-based reward valuation, many relied on 

paradigms that did not control for unequal reward probabilities between effort conditions and 

focused their analyses on either early or late phases of reward processing. The current studies aimed 

to explore the role of the temporal dynamics of effort-based reward in the absence of probability 

discounting. To this end, we explored the response patterns of EEG indices of cognitive control and 

reward processing in the mPFC (FMT) and of incentive salience (P3). Across two studies, we were 

able to show that our novel paradigm experimentally isolated effort demands from reward 

probability. EEG data revealed that FMT power was generally enhanced during cue evaluation but 

did not selectively track upcoming effort demands, reward magnitude or reward probability. At 

feedback, however, FMT power was sensitive to expended effort, but did not track other reward 

features. By contrast, during cue presentation, P3 was sensitive to reward magnitude and reward 

probability, but not effort. At feedback however, P3 amplitudes scaled positively with effort 

demands, suggesting that expended effort demands increased the salience of reward, but only 

during the consummatory phase. These findings suggest that when reward probabilities are equal 

between high and low effort conditions, the mPFC does not track net value of prospective effort-

based rewards and that expended effort enhances, instead of discounts, the salience of reward at 

feedback. 

 Although the mPFC has been repeatedly implicated in the signaling of effort-based rewards, 

we did not find any relationship between mPFC function – putatively measured by FMT – and 

prospective effort demands during the cue evaluation phase. One plausible explanation for this is 

that the mPFC is only recruited when the environment requires a comparison between more than 

one option. Previous studies have observed that BOLD in the mPFC/ACC scales positively with effort 

demands and negatively with the subjective value of effort-based rewards (Chong et al., 2017; Klein-

Flügge et al., 2016; Massar et al., 2015; Prévost et al., 2010; Skvortsova et al., 2014). However, these 

studies used paradigms that required participants to decide between two effort-based rewards, 
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making it difficult to disentangle whether the ACC was signaling net value or exerting cognitive 

control to facilitate decision-making and action selection. Notably, studies that have experimentally 

isolated decision difficulty have shown that mPFC/ACC activity scales positively with decision 

difficulty and single offer net value (Westbrook et al., 2019), but not effort demand (Hogan et al., 

2019) or foraging value (Shenhav et al., 2014). Similarly, increased phasic FMT was associated with 

greater probability of selecting the high-effort choice in physical effort-based reward task, but only 

in difficult decision trials (Umemoto et al., 2022). The two studies that used paradigms without 

choice reported mixed results: only one reported that ACC activity scaled with net value (Croxson et 

al., 2009) and neither detected a relationship between ACC BOLD and prospective effort (Croxson 

et al., 2009; Stoppel et al., 2011). In our studies, FMT was enhanced during cue evaluation, but was 

not sensitive to net value or any of the features of prospective effortful reward. The absence of a 

net value signal in cue-FMT, however, cannot be attributed to a lack of saliency in our effort or 

reward manipulations. In fact, across both of our studies, increased effort demands attenuated self-

report cue liking, suggesting that prospective effort was indeed integrated into estimates of 

subjective value. Nevertheless, in the absence of alternative options and the need for action 

selection, FMT did not signal subjective value. Thus, our findings indirectly lend support to a growing 

body of evidence that suggests that the mPFC/ACC tracks cognitive control requirements of 

weighing options (Kolling et al., 2016) or guiding action selection (Holroyd & McClure, 2015) rather 

than net value per se. 

At feedback, however, FMT selectively tracked expended effort, but not reward magnitude or 

probability. Our findings are at odds with previous studies that have shown that FRN/RewP – ERPs 

which are also produced in the ACC (Holroyd & Umemoto, 2016; Walsh & Anderson, 2012)  – are 

sensitive to reward magnitude and that this effect is potentiated by effort expenditure (Bogdanov 

et al., 2022; Wang et al., 2017; Yi et al., 2020). However, it is unclear to what degree FRN/RewP 

findings are generalizable to FMT activity, since reward magnitude and expectancy have been shown 

to affect FRN/RewP and FMT differently (Paul et al., 2020), which suggests they track partially 

separable neurocognitive processes. Conversely, our present results are consistent with previous 

findings that report augmented BOLD activity in the ACC for increased attentional and cognitive 

effort demands, but not integrated net value, at reward feedback (Hernandez Lallement et al., 2014; 

Stoppel et al., 2011). Our findings are also in line with proposals that the mPFC/dACC responds 

selectively to the value of events that are specifically relevant to the allocation of control (Shenhav 

et al., 2013). In our paradigm, the difficulty of the effort demands was continuously calibrated 
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through the task. Because reward magnitude and probability of successful outcome were fixed, 

feedback was only informative about the degree to which previously expended effortful control 

adequately met the effort demand for that specific trial. Thus, FMT power in positive feedback could 

feasibly reflect performance monitoring or action value updating, both functions that have been 

previously attributed to theta band oscillations generated in the ACC (Luft, 2014; Ullsperger et al., 

2014). Alternatively, self-report ratings in Study 2 suggest that despite equal reward probabilities 

across effort conditions, participants generally perceived having a higher probability of success on 

low compared to high effort trials. Since FMT has been shown to index unsigned prediction errors 

and unexpected outcomes (Cavanagh et al., 2012; Mas-Herrero & Marco-Pallarés, 2014; Rawls et 

al., 2020), one possible explanation for enhanced FMT at high effort feedback could be that rewards 

obtained through more effort are perceived as less likely and therefore unexpected. However, if this 

were the case, we would expect theta power to have been potentiated for reward feedback in low 

probability trials as well. To conclusively test the role of theta in prediction error and performance 

monitoring, future experiments should use paradigms that manipulate reward likelihood 

independently of success rate and designs that are adequately powered to analyze responses to 

unsuccessful trials. 

Our findings also show that FMT signals are distinct and separable from signals of incentive 

salience (cue-P3). Unlike FMT, cue-P3 amplitudes were sensitive to prospective reward magnitude 

and probability. This is in line with a vast literature showing a robust relationship between cue-P3 

and cued incentives and event likelihood, leading some to propose that cue-P3 reflects motivated 

attention towards salient stimuli (see Glazer et al., 2018 for an extensive review). From this 

perspective, we can conclude that more motivational salience is attributed to high magnitude and 

low probability rewards, but when reward rate does not vary as a function of effort demand, this 

salience signal was not modulated as a function of prospective effort. At feedback, however, 

increased effort demand enhanced P3 responses for positive outcomes, suggesting that expended 

effort increased the incentive salience of received rewards. These findings are in line with a growing 

body of work that suggests that exerted effort amplifies reward saliency signals in human (Ma et al., 

2014; Schevernels et al., 2014, 2016; Wang et al., 2017; M. Zhang & Zheng, 2022) and non-human 

primates (Tanaka et al., 2019) and provide further support to the perspective that more value is 

assigned to rewards that are earned through higher effort costs (for a full review see Inzlicht et al., 

2018). Furthermore, unlike previous studies, the tasks used in the current experiments equalized 

performance outcomes and reward likelihood between effort conditions. Therefore, we can 
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conclude that effort-related differences in fb-P3 were driven primarily by expended effort and not 

by other factors, such as reward expectancy or likelihood, which modulate P3 amplitudes (Hajcak et 

al., 2005, 2007; Wu & Zhou, 2009).  

Despite the strengths of our paradigm, there were some limitations to the design. As stated 

earlier, analyses were limited to successful trials due to the relatively high success rate (achieved via 

the calibration), thus we could not explore the role of FMT in tracking performance in the context 

of failure or non-reward. Second, the mPFC is a highly heterogenous region that has been linked to 

a variety of cognitive control and outcome-processing functions (Clithero & Rangel, 2014; 

Domenech & Koechlin, 2015; Vassena et al., 2017). Although the high temporal resolution of EEG 

was useful for the purposes of our study, combined fMRI-EEG or magnetoencephalography would 

be well-suited for exploring how the specific subregions of the mPFC contribute to effort-based 

reward processing.  

In summary, in two studies we showed that in the absence of alternative options/choice and 

different reward probability rates, the FMT did not track features of prospective effort-based 

reward. Instead, FMT power was only enhanced for successful high effort outcomes, which suggests 

that the mPFC plays a more general performance-monitoring role as opposed to tracking pure 

cognitive control demands or integrated net value representations. Further, we showed that P3 

amplitudes were sensitive to reward magnitude and probability, but not effort, during cue 

evaluation and that effort enhanced P3 amplitudes to reward at feedback, again suggesting that 

effort increased the incentive salience of a reward. Understanding how effort-based reward is 

processed is crucial for understanding psychopathological conditions marked by altered reward 

motivation, such as Parkinson’s disease (Chong et al., 2015; McGuigan et al., 2019), depression 

(Hammar et al., 2011; Treadway et al., 2012), schizophrenia (Barch et al., 2014; Cooper et al., 2019), 

substance use disorders (Leventhal et al., 2008), and attention-deficit/hyperactivity disorder 

(Egeland et al., 2010). However, these states of amotivation can be caused by deficits in one or 

several components of effort-based reward processing, such as reduced salience of prospective and 

obtained rewards, dysfunctional weighing of prospective cognitive control demands, misallocation 

of control, and/or deficits in performance monitoring. Thus, novel paradigms are needed to reduce 

the influence of confounds when investigating the key processing stages effort-based reward. This 

study paves the way towards that goal.
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