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This study aims to develop a Machine Learning model to assess the risks faced by COVID-19 patients in 
a hospital setting, focusing specifically on predicting the complications leading to Intensive Care Unit 
(ICU) admission or mortality, which are minority classes compared to the majority class of discharged 
patients. We operate within a multiclass framework comprising three distinct classes, and address 
the challenge of dataset imbalance, a common source of model bias. To effectively manage this, we 
introduce the Multi-Thresholding meta-algorithm (MTh), an innovative output-level methodology that 
extends traditional thresholding from binary to multiclass classification. This methodology dynamically 
adjusts class probabilities using misclassification costs, making it highly effective in imbalanced 
datasets. Our approach is further enhanced by integrating the simplicity, transparency, and 
effectiveness of Bayesian networks to create a robust predictive model. Using patient admission data, 
the model accurately identifies key risk and protective factors for COVID-19 outcomes. Our findings 
indicate that certain patient characteristics, such as high Charlson Index and pre-existing conditions, 
significantly influence the risk of ICU admission and mortality. Moreover, we introduce an explanatory 
model that elucidates the interrelationships among these factors, demonstrating the influence of 
therapeutic limits on the overall risk assessment of COVID-19 patients. Overall, our research provides 
a significant contribution to the field of Machine Learning by offering a novel solution for multiclass 
classification in the context of imbalanced datasets. This model not only enhances predictive accuracy 
but also supports critical decision-making processes in healthcare, potentially improving patient 
outcomes and optimizing clinical resource allocation.
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Abbreviations
COVID-19  Coronavirus Disease 2019
ML  Machine Learning
SARS-CoV-2  Severe Acute Respiratory Syndrome Coronavirus 2: responsible for COV-

ID-19
NBR  Non-rebreather mask: a therapeutic limit
NIMV  Non-invasive mechanical ventilation: a therapeutic limit
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ICU  Intensive Care Unit
icu class  Patients requiring ICU admission
exitus class  Patients passing away without ICU care
discharge class  Patients discharged without ICU care
thresholding  A strategy for improving classification algorithms by adjusting thresholds
MTh  Multi-Thresholding meta-algorithm (introduced in this work)
qRT-PCR  Quantitative Reverse Transcription Polymerase Chain Reaction: laboratory 

technique to quantity RNA molecules
SMOTE  Synthetic Minority Over-sampling TEchnique: a popular oversampling 

method in ML
Tomek link  A tool for data preprocessing in ML for classification to reduce noise and 

class overlap
BOSME  Bayesian network-based Over-Sampling MEthod: an oversampling method 

in ML for non-continuous data
BN  Bayesian Network: a white-box ML methodology used for classification
Markov Blanket  In a BN, the Markov Blanket of a node is the set of its parents, children, and 

any other parents of its children
DAG  Directed Acyclic Graph: a finite graph of vertices connected by directed 

edges, without directed cycles. Used to represent the structure of a BN
MAP  Maximum A Posteriori criterion, used to predict a class as the one maximiz-

ing the posterior distribution
Naive Bayes (NB)  A simple BN classifier that assumes independence between features condi-

tioned on the class variable
Augmented Naive Bayes (AN)  An extension of the Naive Bayes classifier that relaxes the independence 

assumption
Tree Augmented Naive (TAN)  A particular case of AN with a tree structure: each feature depends on its 

parent feature and on the class
MLE  Maximum Likelihood Estimation: a statistical method for estimating the 

parameters of a model
NN  Neural Network: a type of ML model inspired by the human brain, consist-

ing of layers of interconnected nodes
SVM  Support Vector Machine: a supervised ML algorithm for classification which 

finds the optimal hyperplane to separate different classes in the feature space
RF  Random Forest: an ensemble learning method obtained from many decision 

trees by the Majority Vote criterion
R  A very popular programming language and free software environment for 

statistical computing
bnlearn  An open-source R package for learning and working with BNs
BIC  Bayesian Information Criterion: used for model selection. Balances good-

ness-of-fit of the model and complexity
gRain  An open-source R package for handling and making predictions with BNs
mlearning  An R package providing tools for building and evaluating ML models
K-fold cross-validation  Model validation technique that divides the dataset into K equally sized 

folds. The model is trained on K − 1 folds and tested on the remaining, 
repeating the process K times, each time with a different test set

Confusion Matrix  Table used to evaluate the performance of a classification model by compar-
ing the predicted and observed classes

N  The total number of instances in the validation set
Cij   Number of observed instances in the validation set belonging to class cj but 

assigned by the classifier to class ci
Accuracy  A performance metric for classification models: the proportion of correctly 

classified instances
Error rate  A performance metric for classification models: the proportion of incorrect-

ly classified instances
BA  Balanced Accuracy: performance metric that accounts for class imbalance 

by averaging the accuracy of each class
TC  Total Cost: performance metric for classification models that quantifies the 

overall cost of misclassification based on a predefined cost matrix, taking 
into account the specific costs of different types of errors

Cost matrix  A matrix used in classification to quantify the costs associated with different 
types of classification errors

α  Parameter: cost of misclassifying a patient whose class is exitus as discharge. 
Half if misclassified as icu

β  Parameter: cost of misclassifying a patient whose class is icu as discharge. 
Half if misclassified as exitus

Shapiro-Wilk  Statistical test used to check normality on the data before applying paramet-
ric statistical tests that require it

Student’s t-test  Statistical test to compare the means of two groups assuming normality. 
Paired if the two groups are related
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Wilcoxon signed-rank test  Non-parametric statistical test to compare the medians of paired observa-
tions. Does not assume normality

p-value  A measure used in statistical hypothesis testing to determine the strength of 
the evidence against the null hypothesis: the probability of observing the test 
statistic or a more extreme value, if the null hypothesis is true

adjusted p-values  A method for controlling the family-wise error rate (FWER) when perform-
ing multiple hypothesis tests

FWER  Family-wise error rate: the probability of making one or more Type I error 
among all the hypotheses tested

Type I error  The incorrect rejection of the null hypothesis when it is actually true
Holm-Bonferroni method  A more powerful alternative to the traditional Bonferroni correction to 

adjust the p-values and control the FWER
Box plot  Graphical representation to summarize the distribution of a sample: median, 

quartiles, and outliers
Heatmap  Graphical representation: individual values are displayed in a matrix format, 

with colors representing magnitudes
Odds  The ratio of the probability of an event occurring to the probability of it not 

occurring
Odds Ratio (OR)  The ratio of the odds of an event occurring in one group compared to anoth-

er group
Priori probability  Probability of an event or outcome occurring before observing any data or 

experimental result
Posteriori probability  Probability of an event or outcome occurring given known information or 

evidence
Sensitivity analysis  A technique to study how the variation in the output of a model can be 

attributed to variations in its inputs

The COVID-19 pandemic, which began in December 20191, has had a profound global impact, resulting in 
millions of cases and fatalities worldwide. Although vaccines have slowed the rate of new infections, ongoing 
concerns about potential new waves and other health crises persist. In this context, advanced predictive models 
have become essential for improving clinical decision-making and patient care, particularly regarding hospital 
admissions for contagious diseases. Accurate risk assessment and timely interventions are crucial due to the 
rapid progression and variable severity of COVID-19. Advanced predictive models are needed to evaluate risks 
and optimize interventions based on individual patient profiles, ultimately improving patient outcomes and 
resource allocation.

Our study addresses these needs by introducing a novel Machine Learning (ML) methodology to construct 
predictive models specifically for COVID-19 patients for assessing ICU admission and death risks for COVID-19 
patients admitted to the hospital. This model, which is a classifier, categorizes data points into predefined classes 
(icu, exitus and discharge) based on features such as demographics, vital signs, symptoms, comorbidities, and 
previous treatments available at hospital admission. The focus is on assessing the impact of therapeutic limits 
on ICU admission and death risks. To achieve this, we use a dataset comprising 3,362 SARS-CoV-2 infected 
patients admitted to hospitals in the south metropolitan area of Barcelona (Catalonia, Spain) between March 
and April 20202. This dataset includes information on therapeutic limits, such as Non-Rebreather Mask (NRB) 
and Non-Invasive Mechanical Ventilation (NIMV). Therapeutic limits reflect critical decisions about the extent 
of medical interventions for COVID-19 patients based on factors such as age, physical activity, weight loss, 
and fatigue, which determine a patient’s frailty level3. This inclusion allows to introduce ML methodology to 
address the impact of therapeutic limits on risk assessment for COVID-19 patients, which is a critical aspect of 
predictive modelling in healthcare. We evaluate the impact of therapeutic limits by dividing the patient cohort 
into two subsets: those with assigned therapeutic limits (NRB or NIMV) and those without, and constructing 
the ML predictive models for each data subset. Moreover, since the original number of variables is very high, we 
implement a feature selection process to manage the complexity of our large-scale dataset.

A key challenge in predictive modelling for COVID-19 is class imbalance within the dataset. For instance, 
the classes icu (10%), exitus (17%), and discharge (73%) are significantly imbalanced, which is exacerbated when 
partitioning the dataset based on therapeutic limits, as detailed in Table 1. This imbalance can lead to model bias, 
where the classifier performs better on majority classes and poorly on minority classes. Some researchers have 
addressed multiclass imbalance by merging minority classes4, but this approach prevent for separate analysis of 
these classes.

To address this issue, our study employs a cost-sensitive classification approach. Traditional evaluation 
metrics like accuracy can be misleading in such scenarios, known as the accuracy’s paradox. Focusing solely on 

discharge exitus icu Total

Therapeutic limit   796 (60.58%)      483 (36.76%)     35 (2.66%)        1314

No-therapeutic limit 1657 (80.91%) 79 (3.86%)   312 (15.23%)      2048

Whole dataset 2453 (72.96%) 562 (16.72%)   347 (10.32%)      3362

Table 1. Distribution of the “event” output variable within each data subset and across the entire dataset.
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minimizing the error rate (or maximizing accuracy) during classifier learning and validation is not appropriate, 
as it assumes equal severity in classification errors, which does not make sense in this scenario. Our approach 
assigns different weights to classification errors based on their consequences, improving model performance on 
imbalanced datasets.

Cost-sensitive classification methods can be implemented at three levels: data, algorithm, and output. Data-
level methods encompass techniques such as oversampling, relabelling, and instance weighting, before training 
a cost-insensitive classification algorithm. However, these methods have several drawbacks: time-consuming 
and computationally expensive; risk of overfitting, particularly with oversampling; inefficient handling of 
class overlap, which can result in poor discrimination between classes; and lack of adaptability to changes in 
class distributions or the introduction of new data inputs. Algorithm-level methods involve modifying the 
original learning algorithm to account for misclassification costs. Despite their potential, they also face several 
challenges: increased algorithm complexity in modifying it; limited flexibility, as this modifications are specific 
to each algorithm, reducing their general applicability; difficulties in fine-tuning to balance misclassification 
costs effectively.

In contrast, output-level techniques function as wrappers or meta-algorithms, improving classification 
algorithms by adjusting thresholds –a process commonly referred to as thresholding. These techniques focus 
on post-processing the classifier’s output to transform any cost-insensitive probabilistic classifier into a cost-
sensitive one without altering the underlying algorithm. The advantages of these methods include: simplicity 
and flexibility, allowing they to be applied to any probabilistic classifier without requiring changes to the data 
or the underlying algorithm, thereby reducing the risk of overfitting; easy dynamic adaptation to variations 
in misclassification costs; transparency and interpretability, which are crucial in many fields, particularly in 
healthcare; scalability and computational efficiency, as they do not require extensive preprocessing or algorithm 
modifications.

Traditional thresholding methods, typically used for binary classification, fall short in multiclass scenarios. 
Overall, while thresholding can be a powerful tool for cost-sensitive classification, its application in multiclass 
scenarios is fraught with challenges that require careful consideration and often bespoke solutions. Some of 
these challenges are:

• Each class requires its own specific threshold based on the misclassification costs associated with it, but han-
dling multiple thresholds at the same time is more complex. In addition, with more thresholds to tune, there 
is a greater risk of overfitting.

• Determine the appropriate thresholds for each class to minimize the overall misclassification cost is intricate, 
as it involves balancing the trade-offs between different misclassification error rates and costs.

• The threshold for one class can affect the performance of the other classes due to the inter-class dependencies, 
thus complicating the optimization process.

• Evaluating the performance is more complex due tot the variety of possible misclassifications. This requires 
more sophisticated evaluation metrics and analysis to accurately measure the impact of thresholding.

• Finding the optimal thresholds for each class can be computationally expensive.
• Interpreting the results of a thresholding approach in a multiclass setting can be challenging, making diffi-

cult for practitioners to understand and trust the model’s predictions, especially in critical applications like 
healthcare.Our study introduces the Multi-Thresholding meta-algorithm (MTh), which dynamically adjusts 
label probabilities based on factors derived from the probability distribution and misclassification costs. Any 
instance is then classified with the label having the highest adjusted probability (following the MAP criterion), 
offering a more nuanced approach to handling minority classes without merging them. Figure 1 schematically 
illustrates this process. See Section 3.5 for detailed information on MTh and Algorithm 1 for pseudocode. 
Additionally, we discuss some key properties in Appendix D.

The MTh meta-algorithm enjoy the benefits of the output-level techniques, and in particular integrates with 
any probabilistic classifier, such as Naive Bayes (NB) or Support Vector Machines (SVM). In our experiments, 

Fig. 1. Scheme illustrating the three levels (data, algorithm and output) at which the cost-sensitive approach 
can be applied in classification.
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we consider integrating MTh with various state-of-the-art models, including Neural Networks (NN), Support 
Vector Machine (SVM), and Random Forest (RF). This represents a significant advancement over traditional 
methods by extending thresholding from binary to multiclass classification settings.

On the other hand MTh does not suffer from the disadvantages of traditional thresholding methods when 
applied to multiclass classification that we have just discussed as it avoids the need to determine thresholds, 
which is the intrinsic source of the method’s issues. Furthermore, in this context, the evaluation metric naturally 
associated with the cost-sensitive approach, Total Cost (TC), is perfectly appropriate and useful.

Our study also constructs different types of Bayesian Networks (BN) as explanatory or white-box models 
to elucidate variable interdependencies and the rationale behind risk assessments. We explore how these 
dependencies differ between patients with and without therapeutic limits, aiming to enhance more informed 
patient care decisions. It is worth noting that both the predictive and the explanatory models for the 
subpopulations of patients with and without therapeutic limits may, and indeed do, exhibit differences.

In summary, the key contributions of our research are as follows:

• Novelty of the MTh meta-algorithm: We introduce the MTh meta-algorithm, which extends traditional 
thresholding from binary to multiclass classification. MTh fills a critical gap in output-level methodologies 
for multiclass scenarios by employing a cost-sensitive approach to handle imbalanced datasets (see Figure 
1). Unlike conventional algorithms that rely on static or less flexible thresholds, MTh dynamically adapts to 
different data subsets and scenarios, leading to more precise and finely-tuned predictions.

• Resolution of traditional thresholding issues: MTh circumvents the common issues associated with tradition-
al thresholding methods applied to multiclass classification, such as the complex task of setting appropriate 
thresholds. By eliminating the need for these thresholds, MTh effectively addresses these challenges and uti-
lizes the Total Cost metric, which aligns naturally with cost-sensitive classification. This approach is particu-
larly well-suited for evaluating and optimizing predictions in imbalanced datasets.

• Application and impact: Our model effectively assesses ICU admission and death risks for COVID-19 pa-
tients, taking into account therapeutic limits. This capability provides valuable insights that enhance clinical 
decision-making and resource allocation, potentially improving patient outcomes.

• Integration and adaptability: The MTh meta-algorithm can be seamlessly integrated with any probabilistic 
classifier, including state-of-the-art models. This compatibility represents a significant advancement over tra-
ditional methods that may lack such flexibility, thereby enhancing the overall predictive modelling capabil-
ities.

• Addressing class imbalance: By employing a cost-sensitive classification approach, our research tackles the 
issue of class imbalance, which is crucial for accurate risk prediction. This is reflected in the application of the 
MTh meta-algorithm for multiclass classification and the use of the Total Cost (TC) metric, both of which 
account for misclassification costs effectively.These contribution collectively advance predictive modelling in 
healthcare, offering valuable tools for managing patient risks and optimizing interventions.

The paper is structured as follows: Section 2 reviews related research. Section 3 details the materials and methods, 
including the dataset and preprocessing in Sections 3.1 and 3.2, respectively. Section 3.3 introduces Bayesian 
Networks used in our models. Section 3.4 covers validation and evaluation metrics. Section 3.5 presents the 
MTh meta-algorithm and its implementation, discussed further in Section 3.6. Results are presented in Section 
4, followed by practical examples in Section 5. The paper concludes with final remarks in Section 6. Appendices 
A), B and C provide additional tables and figures, and Appendix D offers theoretical justification for the MTh 
meta-algorithm.

Literature review
In this section, we provide a concise overview of relevant research related to the present study, covering various 
aspects of the topic. Overall, the intersection of COVID-19 research and ML techniques highlights a growing 
trend towards using advanced computational methods to enhance predictive capabilities and improve patient 
outcomes. This integrated approach underscores the evolving landscape of medical research, where traditional 
statistical methods and modern ML techniques complement each other to address complex health challenges.

Numerous research studies have explored COVID-19 using various statistical and ML methodologies to 
understand and predict different aspects of the disease. Early studies primarily focused on epidemiological 
aspects and potential risk factors. For instance, research has examined significant associations such as the link 
between blood type and disease severity5, and the connection between myocardial injury and disease prognosis 
among hospitalized patients6. Some studies have gone further by constructing statistical models to predict 
disease risk. For example7, uses a multivariate logistic regression model to predict the risk of death within 30 
days for COVID-19 patients in emergency rooms. Similarly8, used Cox regression analyses to identify factors 
associated with mortality in hospitalized COVID-19 patients, marking a significant advancement in pinpointing 
clinical and laboratory predictors of death.

The advent of ML has led to the development of advanced predictive models that go beyond traditional 
statistical approaches. ML techniques have enhanced various aspects of medical research and practice, becoming 
crucial in predicting patient outcomes and improving diagnostic accuracy in medicine. For instance, ML 
models have streamlined data analysis in intensive care units (ICUs), aiding in sepsis prediction and improving 
patient care allocation9. Other applications include predicting survival in heart failure patients based on serum 
creatinine and ejection fraction10. We are interested in the integration of ML into COVID-19 research for 
medical diagnostic. For example, deep convolutional neural networks have been used to detect COVID-19 from 
chest X-ray images11, and more recently deep learning has been applied to identifying COVID-19 patients from 
computed tomography scans12. Given their reputation as effective classification algorithms in various fields and 
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their white-box nature, which differentiates them from other state-of-the-art supervised ML techniques like 
neural networks, we focus on Bayesian Networks (BNs).

BNs represent probabilistic relationships among variables, combining principles from graph theory, probability 
theory, computer science, and statistics13. They are versatile models of supervised learning that transparently 
illustrate the relationships between variables involved in a phenomenon, enabling both effective predictions 
and the generation of valuable knowledge. BNs have proved effective in various fields, including document 
classification, image processing, spam filters, speech recognition, robotics, semantic search, and operational risk 
assessment14. They have even found application in criminal profiling, such as identifying forest arsonists15or 
multi-victim homicides16. In the medical field, BNs have been successfully used to predict outcomes in areas 
such as pancreatic cancer17and ICU patients18,19. During the COVID-19 pandemic, BNs demonstrated their 
utility in predicting infection likelihood and disease severity using mobile applications powered by Bluetooth 
technology20. They have also been applied to predict COVID-19 outcomes based on symptoms21, assess 
infection risk by ethnicity or religion22, and predict qRT-PCR results23. Furthermore, BNs have contributed to 
predicting COVID-19 pneumonia outcomes from chest computed tomography scans evaluated by independent 
radiologists24.

While many techniques exist for handling binary classification problems, there is a lack of satisfactory 
solutions for multiclass classification in imbalanced datasets, both within and outside the context of cost-
sensitive learning. Cost-sensitive learning, in general, addresses the challenge of classification when different 
misclassification costs are involved, which is a common scenario in medical datasets. Some works have 
considered this issue, by assigning weights to training examples, which is not very effective, for example, if 
some classes have significant overlap in the feature space. For instance25, introduces a method for multiclass 
classification within this framework that employs an iterative scheme for example weighting combined with a 
binary classification algorithm. Meanwhile26, discusses the rescaling approach, which aims to rebalance classes 
according to their costs by assigning weights to the training examples based on their class. Although this method 
proves to be effective in the binary case, it often falls short in the multiclass setting. In such situations, the authors 
recommend decomposing the multiclass classification problem into a series of two-class problems to achieve 
better results.

Handling imbalanced medical data in the field of cost-sensitive classification is a rapidly evolving research 
area in ML27,28. At the data-level, SMOTE (Synthetic Minority Over-sampling TEchnique)29have become a widely 
adopted oversampling method in medical diagnostics. Innovations include combining SMOTE with Tomek 
links to balance medical data30, integrating SMOTE with edited nearest neighbor31, and applying SMOTE along 
with modified particle swarm optimization32. Alternative oversampling methods, such as BOSME (Bayesian 
network-based Over-Sampling MEthod), address SMOTE’s limitations by accommodating non-continuous 
data33.

Algorithm-level approaches for cost-sensitive classification, which involve modifying classification algorithms 
themselves, are less common but ther are some notable exceptions. These include cost-sensitive decision trees 
integrating game theory principles34, incorporating feature ranking capabilities into a cost sensitive ensemble 
for classifying chronic kidney disease35, and cost-sensitive variants of XGBoost applied to datasets related to 
breast cancer detection36. Additionally37, provides a comprehensive list of cost-sensitive learning algorithms that 
modify loss functions to prioritize minority classes.

Finally, output-level adjustments, such as various binary thresholding methods, have been explored to improve 
cost-sensitive classification performance. Examples include MetaCost(38), which employs bagging in decision 
trees to generate accurate probability estimates, CostSensitiveClassifier (39), Cost-sensitive Naive Bayes40, and 
Empirical Thresholding(28), which focuses on improving probability estimate calibration.

Materials and methods
Dataset overview
The dataset utilized in this study was generously provided by the Bellvitge Biomedical Research Institute 
(IDIBELL). Due to the retrospective nature of this study and the use of anonymized data, informed consent 
was waived as authorized by the Ethics Committee of Bellvitge University Hospital. This committee ensures 
compliance with national data protection legislation, including Spain’s Ley Orgánica 3/2018, de 5 de diciembre, de 
Protección de Datos Personales y garantía de los derechos digitales (LOPDGDD) (BOE number 294, December 
6, 2018, pages 119788 to 119857), and the European Union’s General Data Protection Regulation (Regulation 
EU 2016/679). The methodologies employed for data processing in this study, aimed at scientific research and 
statistical analysis, fully adhere to these regulations, ensuring the legality and protection of patient data.

The dataset encompasses a cohort of 3,362 patients admitted to five hospitals or hospital consortia in the 
southern metropolitan area of Barcelona (Catalonia, Spain) with confirmed SARS-CoV-2 infection. These 
healthcare institutions include the Consorci Sanitari de l’Alt Penedès i Garraf (402 cases), Consorci Sanitari 
Integral (895 cases), Parc Sanitari Sant Joan de Déu (538 cases), Hospital de Viladecans (404 cases), and Hospital 
Universitari de Bellvitge (1,123 cases). The patients were admitted between March 1, 2020, and April 30, 2020.

For each patient, we compiled a comprehensive set of characteristics, including demographic variables, 
comorbidities, and treatments administered since hospital admission. Initially, we dealt with a total of 1,012 
variables (1,007 features and 5 output variables) distributed across 10 different files, which required extensive 
cleaning and preprocessing. This lead to a “large-scale” classification challenge due to the significant number of 
features, which can pose computational hurdles. To address this complexity, we applied a specific feature selection 
approach during the preprocessing phase (see Section 3.2 for more details). Regarding the output variables, 
we merged several into a single output variable called event. This variable signifies the patient’s outcome and 
encompasses the values of discharge/icu/exitus, indicating whether the patient was discharged from the hospital 
without entering the ICU, admitted to the ICU, or passed away in the hospital without ICU admission.
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Of noteworthy significance is the development of two distinct predictive models: one for patients with 
therapeutic limits and another for those without. This segregation is prompted by the expected differences in 
behaviour between these two patients subgroups, primarily due to their unique characteristics. One notable 
difference is the variation in the minority class labels for the output variable event. Among patients with 
therapeutic limits, the minority class label is icu (accounting for 2.66%), while for the remaining patients, it 
is exitus (representing 3.86%), as depicted in Table 1. A primary objective of this study is to compare these 
two patient populations, identifying distinctions both in terms of primary risk factors and their corresponding 
predictive models.

Preprocessing
First, we adopted an expert-driven preprocessing approach to refine the dataset by eliminating redundant 
and irrelevant variables. Specifically, we excluded variables related to post-admission patient health status and 
information recorded before admission, as these were deemed nonessential for our research by medical experts. 
To streamline the dataset’s efficiency and information content, we also merge related variables.

To facilitate the use of standard Bayesian Networks, it is imperative for all variables in the model to be of 
the factor type, which encompasses binary, categorical or discrete variables with a finite number of possible 
values. Consequently, we discretized continuous variables c-reactive protein, d-dimer, lactate, and lymphocytes 
into intervals based on the equal-frequency criterion, with slight adjustments to create more memorable or 
rounded intervals, provided these adjustments do not significantly imbalance them. This adjustment method 
maintains the integrity of the data distribution while making the intervals more intuitive and user-friendly. 
However, for variables age and O2 saturation, we determined categories based on domain expertise, following 
the guidelines provided by medical specialists to ensure the most relevant information was captured. Specifically, 
for O2 saturation, which is a percentage, the categorization is as follows: < 90 as “hypoxia”, [90, 95) as “low”, and 
≥ 95 as “normal”. The values of the discrete variable Charlson index41, which can take a finite but large number 
of possible values, were grouped into 5 categories using a binning method. The criterion for this binning was to 
ensure that the frequencies among the categories are relatively balanced. This approach helps to maintain a more 
even distribution across the categories, facilitating more robust analysis and interpretation.

Addressing missing data was another crucial aspect. Some variables within our dataset contained missing 
values, typically due to specific data unavailability for various reasons determined by the hospital’s medical team. 
In response, we opted to remove certain variables with a substantial amount of missing data. For the remaining 
variables, instead of opting for imputation, we introduced a dummy category labeled “unknown” to account for 
missing values.

Considering the aforementioned points, after the initial feature selection phase, we streamline the number 
of input variables designated for constructing the predictive model. This not only reduces computational 
complexity but can also improve model performance in some cases. Traditional statistical-based feature 
selection methods involve assessing the relationship between each input variable and the output, selecting 
variables with the strongest associations. However, these methods rely on choosing an appropriate statistical 
measure to quantify the strength of these relationships, which can be challenging for any given dataset. Instead, 
we adopted the approach detailed in42, which centers around the concept of the Markov blanket in a Bayesian 
Network. This approach has demonstrated remarkable efficiency in handling high-dimensional data, enabling 
the development of a sparse classifier that employs only a subset of the most informative features. This effectively 
reduces the problem’s complexity and can lead to improved performance in both training and prediction, making 
it particularly advantageous for large-scale datasets. For a comprehensive breakdown of the characteristic set 
following this preprocessing, specific to each of the two data subsets (patients with and without therapeutic 
limits), please see Appendix A.

Bayesian networks: a supervised ML tool
Bayesian Networks are probabilistic models that represent the relationships among variables influencing a 
particular phenomenon. For a given set of random variables, a Bayesian Network models their joint probability 
distribution. The graphical component of this model is a directed acyclic graph (DAG), where the nodes 
represent the random variables, and the directed arcs connecting these nodes indicate conditional dependencies 
(not necessarily causal) governed by the Markov condition. According to the Markov condition, each node in the 
DAG is independent of all other nodes that are not its descendants, given its parent nodes.

Bayesian inference involves updating the probabilities within the network based on observed evidence. This 
process requires calculating posterior probabilities using both the evidence and the prior probabilities. For 
predicting a query variable –in our case, the output variable “event”–, we employ the Maximum A Posteriori 
(MAP) criterion. This criterion selects the most probable instantiation of the event, with the corresponding 
probability termed the confidence level of the prediction.

In constructing both explanatory and predictive models for the variable event, we explore three types of 
Bayesian Networks: Naive Bayes, Augmented Naive Bayes and Tree Augmented Naive43. 

 1.  Naive Bayes (NB): This is the simplest for of a Bayesian Network, assuming that all features are conditionally 
independent of each other given the value of the class variable “event”. Although this independence assump-
tion may not always be valid, Naive Bayes has demonstrated good predictive performance in many scenarios. 
The DAG structure in NB is fixed, with directed edges originating from the class variable and pointing to 
each feature. Since the structure is predefined, no algorithm is required to learn it; however, the parameters 
are learned from the data using Maximum Likelihood Estimation (MLE). For that, we use the function bn.fit 
from the R package bnlearn(44).
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 2.  Augmented Naive Bayes (AN): This variant allows for additional directed edges between features, enabling 
both the structure (directed edges) and parameters to be learned from the data. The structure is determined 
using the function hc from the R package bnlearn, which implements a hill-climbing algorithm constrained 
by a whitelist that enforces directed edges from the class variable to the features. The Bayesian Information 
Criterion (BIC) score function is used to guide the structure learning process.

 3.  Tree Augmented Naive (TAN): TAN belongs to the One-Dependence Estimators (ODEs) family of models. 
It retains the simplicity of Naive Bayes while allowing for one additional dependency per feature. In TAN, 
in addition to the directed edges from the class variable to the features, each feature can also have a directed 
edge from at most one other feature. The TAN structure is learned using the tree.bayes function from the 
R package bnlearn, with parameters consistently estimated using the MLE method.For Bayesian inference 
with these Bayesian Networks, we use the R package gRain45. Figure 2 provides examples of DAGs corre-
sponding to these three types, illustrating a class variable C and five features, X1, . . . , X5.

Validation and performance evaluation
To conduct the validation process and compare the different models, we employ a standard K-fold cross-validation 
with K = 10. This approach ensures that the entire dataset is used for both training and validation across all K 
iterations. The primary objective of cross-validation is to assess the model’s ability to make predictions on new, 
unseen cases, thereby helping to detect issues such as overfitting. In this process, the dataset is randomly divided 
into K roughly equal-sized folds. In each iteration, one fold is set aside for validation while the remaining folds 
are used to train the model. Upon completing the process, we generate K confusion matrices for each classifier, 
from which we can compute the relevant performance metrics.

We denote the class labels as {c1, . . . , cr} and represent a general confusion matrix from the validation 
procedure as (Cij)i,j=1,...,r. Here, Cij indicates the number of instances in the validation dataset that truly belong 
to class cj but are predicted by the classifier as class ci. The total number of instances in the validation dataset 
is given by N =

∑r
i=1

∑r
j=1Cij. While binary classification (r = 2) is most common, our class variable event 

comprises r = 3 categories (discharge/exitus/icu), so we focus on the multiclass scenario.
In cost-insensitive classification, evaluation metrics do not account for the varying importance of different 

classification errors. The most common metric is accuracy, calculated as the proportion of correctly classified 
instances (i.e., accuracy =

∑r
i=1Cii/N). The error rate is the complement of accuracy, defined as the proportion 

of misclassified instances, i.e., error rate = 1− accuracy.
In classification tasks, particularly those involving imbalanced datasets, traditional accuracy may not be an 

adequate measure of model performance due to the risk of bias toward the majority class, a situation known 
as the accuracy paradox. Relying solely on accuracy (or error rate) can lead to selecting a poorly performing 
model. To address this issue, Balanced Accuracy (BA) is introduced. BA provides a more balanced evaluation by 
considering the performance across all classes equally, regardless of their proportions in the dataset. It is defined 
as the average of the true positive rates (TPR) for each class, offering a more comprehensive view of the model’s 
ability to correctly classify instances from each class. This metric is particularly useful in cases where some 
classes are significantly underrepresented, ensuring that the model’s performance is not overly influenced by the 
majority class. Mathematically, BA is expressed as:

 
BA =

1

r

r∑
j=1

Cjj

nj

where nj =

r∑
i=1

Cij  is the total number of cases belonging to class cj.

While BA provides a valuable metric by considering all classes equally, it does not account for the different 
consequences of misclassification errors. In many real-world applications, the cost associated with different 
types of errors varies significantly. This is particularly true in our case, where misclassifying a critically ill 
patient as stable could have far more severe implications than the reverse error. To address this, we introduce 
a cost-sensitive metric, Total Cost (TC), which incorporates the specific costs associated with different types of 

Figure 2. Left: Naive Bayes (NB). Center: Augmented Naive (AN). Right: Tree Augmented Naive (TAN).

 

Scientific Reports |        (2024) 14:28453 8| https://doi.org/10.1038/s41598-024-77386-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


misclassification. Using a predefined cost matrix, TC quantifies the overall cost of errors made by the classifier, 
reflecting the practical importance of each type of misclassification. This approach aligns the model evaluation 
with real-world priorities and consequences. Mathematically, TC is calculated by summing the products of the 
number of misclassifications and their corresponding costs.

The cost of classifying a patient into class ci when they actually belong to class cj is denoted as mij, where 
mjj = 0 signifies no error and no cost. The Total Cost (TC) is then calculated as:

 
TC =

1

N

r∑
i,j=1

Cij mij .

Here, (mij)
r
i,j=1 represents the cost matrix. In our study, medical experts assigned a minimum cost of 1 for 

misclassifying a patient that actually belong to discharge as icu or exitus. The maximum cost, set to α = 10, 
corresponds to the most critical error of misclassifying exitus as discharge, with a lesser but still significant cost 
for misclassifying as icu. The cost of misclassifying a patient who should be in the ICU is β = 8 when incorrectly 
classified as discharge, and half that when classified as exitus. Thus, the cost matrix is defined with α = 10 and 
β = 8 in equation (1).

 

 (1)

We assume the same cost matrix for both patient subsets, with and without therapeutic limits, though specific 
cost matrices could be defined for each subset if necessary. The Total Cost is calculated as follows:

 
TC =

1

N

(
C12 α + C13 β + C21 + C23

β

2
+ C31 + C32

α

2

)
.

In the experimental phase, we perform a parameter sweep for α and β. We systematically vary these parameters 
to observe their impact on the predictive models using both the TC and the BA metrics. The parameters ranges 
are chosen to include α = 10 and β = 8, with the constraint that β must be less than α. Specifically, α ranges 
from 2 to 20, and β ranges from 2 to α, with both parameters being integers.

When α = β = 2, the costs of misclassifying a patient as exitus when the true class is icu, and vice versa, is set 
to 1. The same as for misclassifying a discharged patient as exitus or icu. This scenario reflects a situation where 
all errors are treated as equally impactful, except for misclassifications involving discharge when the true class is 
exitus or icu, which are assigned double the cost due to their greater impact.

The constraint β ≤ α highlights that the most critical misclassification errors are those where the true 
condition exitus but the patient is classified otherwise. We employ a grid search approach to explore the 190 
possible pairs (α, β). This analysis helps us understand the sensitivity of our results to these parameters, identify 
trends or patterns, and evaluate how these parameters influence model performance.

Thresholding: an indirect cost-sensitive meta-learning approach
As previously mentioned, our dataset is imbalanced, with two minority classes (icu and exitus) and one majority 
class (discharge). This highlights the need for a specific approach. We use a cost-sensitive learning approach, 
the thresholding method, which we term the Multi-Thresholding meta-algorithm (MTh). This is an indirect 
cost-sensitive approach that acts as a wrapper, transforming any cost-insensitive probabilistic classifier into a 
cost-sensitive one. This transformation is achieved by post-processing the classifier’s output, which includes the 
probability distribution assigned to the classes. MTh involves adjusting this probability distribution based on the 
expected costs associated with misclassification, ensuring that the class with the highest adjusted probability is 
selected. These expected costs are calculated using the cost matrix described in equation (1), derived from expert 
knowledge. For an overview of the algorithm, refer to Algorithm 1 below.

In our specific application, if a classifier assigns a probability distribution p = (p1, p2, p3) to the class labels c1
:discharge, c2:exitus, and c3:icu, the adjusted probabilities are calculated by dividing pi by ωi. Here, ωi represents 
the expected cost associated with misclassifying an instance when assigning it label ci. The expected costs are 
calculated as follows:

 

ω1 = m12 p2 +m13 p3 = α p2 + β p3,

ω2 = m21 p1 +m23 p3 = p1 +
β

2
p3,

ω3 = m31 p1 +m32 p2 = p1 +
α

2
p2 .

The adjusted probabilities are then computed as: p̃1 =
p1
ω1

, p̃2 =
p2
ω2

, p̃3 =
p3
ω3

.

Strictly speaking, we should normalize these adjusted probabilities by dividing each p̃i by the sum of all of them 
to ensure they form a probability distribution. However, this step is unnecessary for our purpose, as we only 
need to identify the class that maximizes the adjusted probabilities. To simplify, we refer to p̃i as “probabilities”, 
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although they are technically not. Notably, as the cost associated with misclassifying a label increases, the 
adjusted probability for that label decreases, making it less likely to be selected as the final prediction. This 
clearly illustrates the implementation of a cost-sensitive classification algorithm. While the results in Section 4 
depend on the specific values in the cost matrix (1), the algorithm’s procedure remains consistent regardless of 
these values. Appendix D further elaborates on and proves some properties of this algorithm.

Algorithm 1. The Multi-Thresholding meta-algorithm, MTh

When the MTh meta-algorithm is not applied, meaning we take ωi = 1 for all i, the adjusted probabilities p̃i 
become identical to the original probabilities pi. In this case, the classification follows the standard Maximum 
A Posteriori (MAP) criterion for multi-class classification. Thus, comparing the use of MTh with not using it 
is effectively a comparison between the MTh and the MAP criterion, the latter being the reference standard for 
multi-class classification.

Implementation of the experimental phase
All computational aspects of model implementation were conducted using the R programming language46. For 
each of the two data subsets –one for patients with therapeutic limits and the other for patients without such 
limits– we constructed three types of Bayesian Networks as predictive (and explanatory) models: Naive Bayes 
(NB), Augmented Naive (AN) and Tree Augmented Naive (TAN), both with and without applying the MTh meta-
algorithm.

Additionally, to provide a comprehensive comparison and assess how our proposed approach compares with 
other state-of-the-art predictive models, we included three advances ML models: Neural Network (NN), Support 
Vector Machine (SVM), and Random Forest (RF), the latter being constructed as an ensemble of 100 decision 
trees. We constructed these models using the mlNnet, mlSvm and mlRforest functions from the R package 
mlearning.(Authors: Ph. Grosjean & K. Denis. https://doi.org/10.32614/CRAN.package.mlearning).

Our primary objective was to experimentally validate the use of the MTh meta-algorithm for multi-class 
classification with imbalanced data. Once this validation was achieved, we focused on selecting the model with 
the best predictive performance from those tested. The comparison between models (using the MTh meta-
algorithm) was structured as follows: First, we evaluated the three Bayesian Network models against each other, 
and separately compared the other three ML models among themselves. After identifying the best-performing 
model within each group, we then compared these “winning” models to determine the overall best performer. 
This comparison was conducted separately for each subpopulation –patients with and without therapeutic 
limits– and for each performance metric used: Total Cost (TC) and Balanced Accuracy (BA).

Although we also included the Balanced Accuracy metric, our main reference is the TC metric, which is 
specifically designed to account for the varying weights assigned to classification errors, making it particularly 
suited to our cost-sensitive approach. The BA metric, while valuable for its balanced evaluation of class 
performance, does not account for the different consequences of misclassification errors. Therefore, while 
the TC metric aligns with our cost-sensitive methodology, BA provides a complementary view to ensure a 
comprehensive evaluation of model performance in handling imbalanced data.

The K-fold cross-validation procedure, with K set to 10, resulted in each model producing 10 confusion 
matrices. This provided a sample of 10 values for both the TC metric and the BA metric (as detailed in Section 
3.4). To compare the models, we conducted appropriate statistical hypothesis tests. Initially, we used the Shapiro-
Wilk47test to assess data normality. Based on the results, we applied either the paired Student’s t-test48or the 
Wilcoxon signed-rank test49 to compare pairs of samples, depending on whether the data could be assumed to 
follow a normal distribution. To account for multiple comparisons between models, we adjusted p-values using 
the Holm-Bonferroni method (We opted for paired tests with adjusted p-values over ANOVA with multiple 
comparisons due to the  nature of our context. Paired tests are specifically designed for comparing paired 
samples, which aligns with  the cross-validation setup. Furthermore, paired tests offer clear and interpretable 
results for pairwise model  comparisons, simplifying the process of identifying superior-performing models. 
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As usual, throughout the paper superscripts • indicates statistical significance at 10%, ∗ at 5%, ∗∗ at 1% and 
∗∗∗ at 0.1%, for all  p-values). When applying p-value adjustments using the Holm-Bonferroni method in 
the context of multiple model comparisons, a significant challenge arises as the number of models increases. 
The Holm-Bonferroni method controls the family-wise error rate, thereby reducing the likelihood of Type I 
errors (false positives) during multiple hypothesis testing. However, as the number of comparisons grows, the 
adjustment becomes increasingly conservative, making it harder to detect statistically significant differences 
between models and raising the risk of Type II errors (false negatives), where genuinely significant differences 
are overlooked. To address this issue, we divided the six models into two groups. We first compared models 
within each group, identified the best-performing model in each, and then compared the “winners” against 
each other. This approach reduces the number of comparisons at each stage, thus mitigating the risk of overly 
conservative p-value adjustments and enhancing our ability to detect meaningful differences between models.

In the following section, we will present the validation results and perform a comparative analysis of the 
different models.

Results
The explanatory model
Among the six models we compared, only the three types of Bayesian Networks (BN) –Naive Bayes (NB), 
Augmented Naive (AN), and Tree Augmented Naive (TAN)– can be considered explanatory models. Bayesian 
Networks are categorized as “white-box” models, meaning their internal processes are transparent and 
interpretable. In contrast to “black-box” models such as Neural Networks, Support Vector Machines, and 
Random Forests, which may offer high predictive power but lack interpretability, BNs allow us to understand 
and explain how the predictions are generated. The probabilistic relationships between variables in these 
networks can be visualized and interpreted, making them particularly valuable in contexts where insight into 
the decision-making process is as important as the predictions themselves. This interpretability is a significant 
advantage in applications where understanding the reasoning behind a model’s prediction is crucial, such as in 
medical decision-making or other high-stakes domains.

We use the R46 package bnlearn and its strength.plot function to visualize the Bayesian network structures, 
represented by the Directed Acyclic Graphs (DAGs) in Figures 6 and 7 in Appendix B. These DAGs illustrate 
the conditional independence relationships entailed by the AN and TAN models for the “therapeutic limit” data 
subset, similar to Figures 8 and 9 for the “no-therapeutic limit” data subset.

In these plots, the thickness of directed arcs reflects the strength of the dependencies they represent, with 
thicker lines indicating stronger relationships. To quantify the strength of each arc (or feature) while keeping the 
rest of the network structure fixed, we use the arc.strength function, which provides a p-value associated with 
the conditional independence test for removing the arc from the network. Smaller p-values indicate stronger 
relationships.

Tables 11 and 12 in Appendix B present the most influential features for predicting event, considering only 
p-values less than 0.05. Notably, among the two demographic features for the “no-therepeutic limit” patients, 
age shows a significantly stronger influence on predicting the output variable event. As expected, the limit type is 
highly influential for the “therapeutic limit” patients. Additionally, only three symptoms –confusional syndrome, 
dyspnoea and rhinorrhea– are influential for both data subsets. The only comorbidity that holds influence across 
both data subsets is dementia. Furthermore, only two previous treatments, acetylsalicylic acid and statins, play a 
notable role in risk prediction for both data subsets.

The predictive model: Thresholding vs no-thresholding
In the validation procedure, we conducted a comprehensive comparison of the Total Cost (TC) and Balanced 
Accuracy (BA) metrics across all classifiers (the three types of Bayesian Networks, NN, SVM and RF) both 
with and without the application of the thresholding meta-algorithm MTh. This comparison encompasses every 
integer value of α ranging from 2 to 20 and each integer value of β ranging from 2 to α, resulting in a total of 
190 distinct comparisons.

Table 2 below summarizes the number of comparisons that significantly favour predictive models utilizing 
the MTh meta-algorithm (first multi-row) versus those without it (second multi-row) out of the total of 190 
possible comparisons. Notably, an overall advantage is observed in favour of using the MTh meta-algorithm. 
We observe a similar pattern across the two data subsets with the TC metric, but a markedly different pattern 
when the BA metric is used. The majority of statistically significant results support the superiority of MTh with 
the TC metric, except in a few cases with small values of α and β. When considering the BA metric, the results 
are favourables to MTh for the data subset of patients without therapeutic limits. In the subset of patients with 
therapeutic limits, there are fewer statistically significant results. Some of these support the MTh meta-algorithm, 
corresponding to low values of α and high values of β (β ≤ α), while those that oppose its use correspond to 
high values of α and low values of β.

The experimental results strongly support the use of the MTh meta-algorithm when TC is used as performance 
metric, both for patients with and without therapeutic limits. When the BA metric is considered, the same trend 
is observed for the non-therapeutic limit data subset. However, for the “therapeutic limit” subset with the BA 
metric, the results are more balanced between favouring and opposing MTh.

Figure 3 illustrates the differences in the mean metric values between using and not using the MTh meta-
algorithm (positive values favour MTh) across all predictive models, considering both patient groups. For 
simplicity in representing these differences in a line graph, we have reduced the parameter set by fixing α = 10 
and β = 8, as an example.

Based on these findings, we decided to adopt the use of the MTh meta-algorithm across both patient subsets 
and all predictive models. This experimental validation confirms the effectiveness of the MTh meta-algorithm, 
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Figure 3. Bar plots illustrating the increase in the mean of the TC and BA metrics when applying the MTh 
meta-algorithm versus not using it, across the predictive models and the data subsets of patients with and 
without therapeutic limits. The plots are generated with parameters set to α = 10 and β = 8. Positive values 
indicate that the MTh meta-algorithm improves both metrics.

 

TC metric BA metric

Therapeutic limit No-therapeutic limit Therapeutic limit No-therapeutic limit

Favour MTh

NB 187 NB 171 NB 190

AN 190 AN 155 AN 29 AN 190

TAN 190 TAN 143 TAN 15 TAN 178

NN 189 NN 188 NN 190

SVM 190 SVM 190 SVM 4 SVM 190

RF 189 RF 158 RF 8 RF 185

Against MTh

NB 35

AN 14

TAN 14

NN 50

RF 12 RF 7

Table 2. Number of comparisons, out of 190 possible, favouring predictive models with or without the MTh 
meta-algorithm, based on the TC and BA metrics. Comparisons are conducted with α = 2, . . . , 20 and 
β = 2, . . . , α, and results are distinguished for the two data subsets: patients with and without therapeutic 
limits.
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particularly when using the TC metric, and also for the patients without therapeutic limits. In the following 
subsection, we will identify the preferred predictive model for each data subset and metric.

The predictive model: choosing the best
Using the thresholding meta-algorithm MTh, we compared the mean (or median) values of the two metrics –Total 
Cost (TC) and Balanced Accuracy (BA)– across different predictive models, including three types of Bayesian 
Networks (NB, AN and TAN) and three state-of-the-art models (NN, SVM and RF), for each parameter pair 
(α, β) where α = 2, . . . , 20 and β = 2, . . . , α. We used adjusted p-values for multiple comparisons, applying 
the Holm-Bonferroni method to ensure statistical rigor.

Table 3 displays the number of (α, β) pairs, out of the 190 possible, for which significant differences were 
found between models. This table highlights which model’s mean (or median) is significantly higher (>) for each 
pair of models concerning the TC and BA metrics. Specifically, for each metric, it shows:

• The comparison among the three Bayesian Network classifiers (NB, AN, TAN) in the first multi-row.
• The comparison among the state-of-the-art models (NN, SVM, RF) in the second multi-row.
• A comparison between the best models from the two groups. They are NB and RF, respectively, with the TC 

metric, and with the BA metric for the “no-therapeutic limit” data subset. For the “therapeutic limit” data sub-
set and the BA metric, NB is compared with SVM instead of RF. The results indicate a consistent advantage for 
NB over RF in the first case. Conversely, SVM shows slightly better performance for patients with therapeutic 
limits when using the BA metric.

Figure 4 presents box plots illustrating the distribution of TC values for α = 20 and β = 20, providing a 
representative example of overall trends. These plots display results for the three models from both the “therapeutic 
limit” and the “no-therapeutic limit” data subsets, with the MTh meta-algorithm applied. Lower median TC 
values indicate better predictive performance, and the box plots visually confirm the superior performance of 
NB compared to the other models when α = β = 20, as previously observed in Table 3. Similarly, higher median 
values indicate better predictive performance for the BA metric. The box plots corroborate the clear advantage 
of NB for patients without therapeutic limits and highlight the slight edge of SVM for patients with therapeutic 
limits, as previously noted in Table 3.

That is, after a rigorous model comparison, Naive Bayes (NB) consistently emerges as the preferred predictive 
model when evaluated with the Total Cost (TC) metric, and is particularly favoured for patients without 
therapeutic limits when using the Balanced Accuracy (BA) metric. Conversely, while Support Vector Machine 
(SVM) shows some preference as the predictive model for patients with therapeutic limits, this preference is less 
pronounced.

Figure 5 includes heatmaps that show how different combinations of parameters affect the mean metric 
values for the selected predictive model NB across both data subsets and both metrics, except for the data subset 
of patients with therapeutic limits and BA metric, for which the chosen model is SVM). The heatmaps depict 
the mean metric value as a function of α = 2, . . . , 20 and β = 2, . . . , α, with values derived from K = 10 

TC metric Therapeutic limit No-therapeutic limit

NB vs. AN vs. TAN

AN > NB 187 162

TAN > NB 180 190

TAN > AN 1 131

NN vs. SVM vs. RF

RF > NN 4

RF > SVM 10

SVM > RF 117

NB vs. RF RF > NB 9 190

BA metric

NB vs. AN vs. TAN AN < NB 124

TAN < NB 187

TAN < AN 67

NN vs. SVM vs. RF NN < 
SVM 163

NN < RF 14 9

SVM < RF 6

RF < SVM 23

NB vs. SVM (limit) NB < SVM 36

NB vs. RF (no 
limit) RF < NB 190

Table 3. Number of pairs (α, β), out of the total 190 possible pairs, where one predictive model exhibits a 
significantly higher (>) mean (or median) metric compared to another, using the MTh meta-algorithm. The 
metrics considered are TC and BA. Only statistically significant results are reported; cells left blank indicate no 
significant difference.
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measurements per (α, β) pair during cross-validation. As anticipated, higher values of α or β generally result 
in increased mean TC values. Additionally, the mean TC values are consistently higher for the model applied to 
patients without therapeutic limits, reflecting diminished performance. Conversely, when using the BA metric, 
this trend becomes less predictable and more variable, specially for the patients without therapeutic limit.

Case studies in risk assessment using the predictive model
In this section, we illustrate the capabilities of our predictive model with specific examples. Consider a 
COVID-19 patient admitted to the hospital with a therapeutic limit. The initial (a priori) risk estimates are as 
follows: exitus : 36.76%, icu : 2.66%, and discharge: 60.58%. We will now evaluate the updated (a posteriori) 
risk predictions based on the patient’s specific characteristics using our selected predictive model. To measure 
the association between a patient’s characteristic (factor) and the risks predicted by the model, we use the Odds 
Ratio (OR). The OR is a statistical measure that quantifies the strength and direction of the association between 
two events. An OR greater than 1 suggests a positive association, while an OR less than 1 indicates a negative 
association. An OR of 1 means there is no association between the two events. In this context, the OR quantifies 
how a specific factor influences the odds of a particular a risk outcome. It expresses how much greater the odds 
are for one category of the factor compared to another.

Example 1 In Table 5, we have recorded some a posteriori probabilities for the patient in Example 1, whose 
characteristics are detailed in Table 4. These probabilities are provided for various pairs of α and β values. We 
assume that the patient has a therapeutic limit, although the specific limit is unknown. As observed, increasing 
α with a fixed β, or decreasing β with a fixed α, results in a decrease in the a posteriori probability of discharge, 
while the probabilities of exitus and icu increase. The probability of icu is the highest, and the confidence level 
(highest probability) is highlighted in bold.

How does the specific type of therapeutic limit affect the a posteriori probabilities we have obtained? Table 6 
shows the results for the two possible therapeutic limits, highlighting the differences: when the therapeutic 
limit is NRB (non-rebreather mask), the probability assigned to icu remains very low across the entire range of 
parameter values. In contrast, when the therapeutic limit is NIMV (non-invasive mechanical ventilation), this 
probability increases up to 20% (when α = β = 20).

Figure 4. Box plots illustrating the TC and BA values obtained through cross-validation using the MTh 
meta-algorithm for both data subsets, with α = β = 20. Lower TC values indicate better performance, whereas 
higher BA values reflect better predictive behaviour.
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Demographic Age: 50-65

Vital signs
Charlson Index: 1

O2 saturation: low

Symptoms
asthenia: yes

dyspnoea: yes

Blood test

c-reactive protein: 100-150

d-dimer: 300-500

lactate: 250-350

 Previous treat.
immunosuppressants: yes

statins: yes

Table 4. Patient characteristics for Example 1: Case with a therapeutic limit.

 

Figure 5. Heatmaps depicting the mean TC and BA values as functions of α = 2, . . . , 20 and β = 2, . . . , α for 
the best models, with the MTh meta-algorithm. The median values are shown in white, with lower values in 
blue and higher values ir red.
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Table 6 reveals a striking contrast in the estimated a posteriori risks of exitus and icu depending on the type 
of therapeutic limit. When the limit is NRB, the probabilities of exitus closely resemble those when the limit type 
is unknown, with the probability of discharge increasing at the expense of the icu probability, which remains 
notably low. Interestingly, in this scenario, the icu probability is even lower than that of exitus, which differs from 
the situation when the limit type is unknown. Conversely, with NIMV, the estimated a posteriori risk of exitus is 
low, while the risk of icu significantly increases at the expense of the discharge probability. This underscores the 
substantial impact of the therapeutic limit type on the model’s risk predictions.

The heatmaps in Appendix C display the a posteriori risks of exitus and icu for this example. These heatmaps 
not only provide the magnitude of these probabilities through colour scales, which may vary from one heatmap 
to another, but also reveal discernible trends. They illustrate how the risks change as we increase the values of 
α, and for each α, as we increase β. Importantly, this trend analysis depends on the specific type of therapeutic 
limit. Examining these heatmaps allows us to gain insights into how risk probabilities are affected by different 
parameter combinations and how these variations rely on the particular scenario at hand.

By focusing on regions with higher (red) or lower (blue) outcome values, we can closely examine the 
heatmaps and draw inferences about which combinations of parameters lead to better or worse outcomes. This 
allows us to perform a sensitivity analysis using the heatmaps as a valuable tool to understand how changes in 
parameters impact risk assessments for COVID-19 patients. For instance, in Figure 10, we observe that the color 
bands corresponding to the NRB therapeutic limit are nearly vertical for the risk of death. This suggests that the 
risk is sensitive to the value of α, increasing as α increases, while remaining relatively stable concerning β. In 
contrast, the nearly horizontal color bands, such as those for the NIMV therapeutic limit in ICU admission risk, 
indicate sensitivity to the value of β, with the risk increasing as β increases but showing robustness with respect 
to α. These observations align with the cost matrix expression in (1), providing valuable insights into how the 
predicted risks behave based on the specific therapeutic limit type.

Next, we calculate the estimated Odds Ratios (OR) based on the probabilities assigned by the model for 
the patient in Example 1. (We can estimate the OR values from the provided probabilities, but without sample 
sizes or additional information, meaningful confidence intervals for the OR cannot be calculated). We consider 
the type of therapeutic limit as factor that could be associated with the risk of death or ICU admission. Table 7 
presents the computed OR values for icu and exitus for a patient corresponding to Example 1. These OR values 
are calculated when the therapeutic limit is NIMV compared to NRB. For example, with α = β = 2, the OR in 

favor of icu is calculated as follows: 
0.0292/(1− 0.0292)

0.0012/(1− 0.0012)
= 25.03516 ≈ 25.035 .

Probabilities Example 1

Therapeutic limit

Limit type: NIMV Limit type: NRB

α β discharge exitus icu discharge exitus icu

a posteriori

2 2 96.61% 0.47% 2.92% 99.50% 0.37% 0.12%

10 2 94.99% 0.75% 4.26% 98.11% 1.46% 0.42%

10 5 91.51% 1.12% 7.37% 97.97% 1.57% 0.46%

10 10 86.40% 1.50% 12.10% 97.73% 1.74% 0.53%

20 2 93.28% 1.08% 5.64% 96.52% 2.79% 0.70%

20 10 85.65% 1.72% 12.63% 96.22% 2.99% 0.79%

20 20 78.01% 1.99% 20.00% 95.88% 3.22% 0.90%

Table 6. A posteriori probabilities for the patient in Example 1 based on the known type of therapeutic limit.

 

Probabilities Example 1

Therapeutic limit

Limit type: unknown

discharge exitus icu

a priori → 60.58% 36.76%    2.66%

α β discharge exitus icu

a posteriori

2 2 98.78% 0.48% 0.74%

10 2 97.12% 1.21% 1.67%

10 5 96.25% 1.51% 2.24%

10 10 94.90% 1.93% 3.17%

20 2 95.36% 2.09% 2.55%

20 10 93.51% 2.65% 3.84%

20 20 91.50% 3.11% 5.39%

Table 5. A priori and a posteriori probabilities for the patient in Example 1. Limit type unknown.
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In Table 7, when OR > 1, it indicates that the NIMV therapeutic limit is a risk factor compared to NRB. This 
is true for ICU admission risk across all values of α and β. However, it only applies to the risk of death when 
α = β = 2. For the other tested parameter values, NIMV serves as a protective factor against NRB for the risk 
of death.

Clinically, this can be explained as follows. When a patient is placed on NRB, it indicates they can receive 
oxygen support but are not on mechanical ventilation. This implies that the patient’s initial condition is more 
fragile, and a proactive decision is made to avoid escalating treatment, including ICU admission and ventilation 
techniques. Such patients are at a higher risk if subjected to intensive care and ventilation maneuvers, which 
could potentially increase their mortality rate. Consequently, they have a lower likelihood of ICU admission, 
which, unfortunately, also entails higher mortality rates. On the other hand, NIMV implies that if the patient’s 
respiratory distress has reached a point where mechanical support is necessary, they are typically provided 
with non-invasive ventilation within the ICU, with an emphasis on avoiding more invasive treatments. Patients 
with no therapeutic limit may undergo invasive mechanical ventilation (intubation in the ICU) if necessary. 
Therefore, the concept of a NIMB therapeutic limit reflects a deliberate approach to critical care, balancing life-
saving interventions and minimizing invasiveness.

The results in Table 7 align with clinical intuition and offer valuable quantification of these trends. This 
quantification is essential and serves various purposes. While healthcare professionals may have a general 
understanding of how different factors affect patient outcomes, quantifying these effects provides an objective, 
evidence-based assessment. It enables healthcare providers to make more informed decisions about the level 
of care and interventions required for specific patients. Resource allocation is particularly crucial in healthcare 
settings, especially during a pandemic. Understanding how various factors impact patient outcomes aids in 
the efficient distribution of resources. In summary, quantifying the influence of therapeutic factors such as the 
type of therapeutic limit (NRB and NIMV) on patient outcomes, as demonstrated in Table 7, is fundamental 
for evidence-based medicine. It enhances the precision of clinical decision-making, resource allocation, risk 
communication, healthcare research, and overall healthcare system management, ultimately resulting in 
improved patient care.

Example 2 Now, let us consider a patient with the same attributes as the one in Example 1 but with a Charlson 
Index of 4− 5. Clinically, a higher Charlson score indicates an increased risk of adverse outcomes. The resulting 
a posteriori probabilities for this patient are detailed in Table 8.

Using the values in Table 8, we can calculate Odds Ratios (OR) similar to our approach in Example 1. It is 
particularly insightful to assess the “Charlson Index effect”. This involves understanding how a higher Charlson 
Index (as in Example 2) versus a lower one (as in Example 1) influences the patient’s risks, keeping all other 
attributes constant. Evaluating the impact of the Charlson Index on death and ICU admission risk assessments 
helps healthcare professionals make informed decisions about treatment and care strategies. It also assists in the 
efficient allocation of resources, especially in the context of COVID-19 patient care.

This outcomes are consistent with those in Table 6 and align with our qualitative expectations. However, the 
true value of the model lies in its ability to quantify these expectations. Notably, for high α values, the model 
assigns the exitus category to the patient in Example 2, even when the therapeutic limit is of type NRB (or when 

Therapeutic limit

Limit type: unknown Limit type: NIMV Limit type: NRB

α β disch. exitus icu disch. exitus icu disch. exitus icu

2 2 83.88% 15.45% 0.67% 90.88% 7.74% 1.38% 79.59% 20.23% 0.18%

10 2 52.57% 46.38% 1.05% 71.02% 26.16% 2.88% 44.17% 55.58% 0.25%

10 5 52.75% 46.18% 1.07% 70.86% 26.16% 2.98% 44.24% 55.51% 0.25%

10 10 53.03% 45.86% 1.11% 70.60% 26.15% 3.25% 44.35% 55.40% 0.25%

20 2 35.97% 63.13% 0.90% 56.35% 40.70% 2.95% 28.40% 71.40% 0.20%

20 10 36.90% 62.18% 0.94% 57.65% 39.09% 3.26% 28.65% 71.15% 0.20%

20 20 37.98% 61.03% 0.99% 58.88% 37.48% 3.64% 28.96% 70.84% 0.20%

Table 8. A posteriori probabilities for the patient in Example 2 based on the known type of therapeutic limit.

 

Patient Example 1 α = 2 α = 10 α = 20
OR NIMV w.r.t. NRB β = 2 β = 2 β = 5 β = 10 β = 2 β = 10 β = 20

icu 25.035 10.550 17.217 25.835 8.479 18.154 27.528

exitus 1.272 0.510 0.710 0.860 0.380 0.568 0.610

Table 7. OR for ICU admission risk (1st row) and death risk (2nd row) for the patient in Example 1 with 
therapeutic limit NIMV, compared to NRB, across different α and β values, based on probabilities from Table 
6.
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the limit type is unknown). In contrast, the patient in Example 1 was consistently assigned to the discharge 
category under the same conditions. This demonstrates the model’s ability to capture subtle variations in risk 
assessment based on differing patient characteristics. For further insights, please refer to the corresponding 
heatmaps in Appendix C.

Example 3 To evaluate the impact of the presence and type of a therapeutic limit, we compare the estimated 
risks for a patient with the characteristics outlined in Table 9. This comparison hinges on whether the patient has 
a therapeutic limit, its type if applicable, and whether it is known. We have selected α = β = 20 for this analysis. 
The results are summarized in Table 10.

Given the vast number of potential scenarios, we will not explore further examples in this section. However, 
consider cases where multiple features influence outcomes simultaneously, such as age and the Charlson Index. 
In these situations, one feature might be a risk factor (e.g., a high Charlson Index) while another could act 
as a protective factor (e.g., low age). Evaluating the combined effect of a risk factor and a protective factor is 
complex without a suitable quantitative model. Our model provides a valuable tool for assessing how certain 
characteristics (protective factors) can mitigate the impact of risk factors on the likelihood of ICU admission or 
death.

Discussion and Conclusions
This study presents a comprehensive evaluation of the impact of therapeutic limits on predictive models 
for patient mortality and ICU admission risks, particularly within the context of COVID-19. By developing 
predictive models tailored to patient subgroups with and without therapeutic limits, we achieved significant 
improvements in risk prediction accuracy through the introduction of the novel MTh meta-algorithm. This 
innovative algorithm extends thresholding to multiclass settings and offers a cost-sensitive approach to predictive 
modelling, marking a significant progression in the field. The key findings and implications of the study are: 

 1.  Impact of therapeutic limits: The choice and type of therapeutic limits, such as Non-Rebreather Mask 
(NRB) or Non-Invasive Mechanical Ventilation (NIMV), play a critical role in patient outcomes. This choice 
reflects the initial assessment of patient frailty, with NIMV typically indicating a less fragile condition, al-
lowing for more intensive interventions if necessary. This often results in a higher risk of ICU admission but 
also an improved chance of survival. On the other hand, NRB is generally associated with a more fragile 
condition, preventing ICU admission and the use of invasive measures. While this may suffice for less severe 
cases, it can lead to higher mortality rates for patients in more critical conditions.

 This complex interplay of clinical factors underscores the challenges in clinical decision-making, where ther-
apeutic interventions must carefully balance the severity of the patient’s condition, the available resources, 
and the expected outcomes. The ML models developed for each patient subgroup demonstrate how different 
therapeutic limits correlate with distinct probabilities of ICU admission and mortality, thereby supporting 
clinicians in making more informed decisions and optimizing resource allocation.

 2.  Explanatory and predictive insights: The integration of Bayesian Networks as explanatory models provides 
a clearer understanding of the interdependencies among patient variables, thereby supporting more nuanced 
and informed clinical decision-making. Our predictive model effectively quantifies the impact of patient 

Probabilities Example 3 discharge exitus icu

No therapeutic limit 48.79% 1.45% 49.76%

Therapeutic limit

unknown 70.50% 21.62% 7.88%
NIMV 64.07% 10.03% 25.80%
NRB 67.67% 30.75% 1.58%

Table 10. A posteriori probabilities for the patient in Example 3 with α = β = 20.

 

Demographic Age: 50-65

Vital signs O2 saturation: low

Symptoms dyspnoea: yes

Blood test

c-reactive protein: 100-150

d-dimer: 300-500

lactate: 250-350

 Previous treat. statins: yes

Table 9. Patient characteristics for Example 3.
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characteristics on risk predictions. The combination of predictive and explanatory modelling offers a robust 
framework for addressing the complexities of patient care.

 3.  Introduction of MTh meta-algorithm: MTh extends the concept of thresholding from binary to multi-
class settings by adopting a cost-sensitive approach, focusing on the Total Cost (TC) metric as a behavioral 
indicator. This novel approach is particularly effective in handling multiclass classification problems and 
imbalanced datasets. Additionally, the adaptability of the MTh algorithm by updating the cost matrix to 
reflect changing circumstances, makes it a highly responsive and valuable tool in the evolving landscape of 
healthcare.Collectively, these findings highlight the importance of integrating advanced ML techniques into 
healthcare to improve patient outcomes and optimize clinical decision-making. However, several potential 
biases and limitations should be considered: (1) the model’s performance is based on a specific dataset with 
a relatively small number of cases, which may limit its generalizability to broader patient populations; (2) the 
model’s sensitivity to the chosen parameters (α and β), representing misclassification costs, may affect the 
stability of risk predictions, and imprecise specifications of these parameters could undermine the reliability 
of the results; and (3) inaccuracies in identifying therapeutic limits could compromise the integrity of risk 
assessments.

These limitations underscore the need for ongoing research and refinement to enhance the model’s robustness 
and applicability across different healthcare scenarios. Future research should focus on extending the model’s 
applicability by incorporating more diverse patient populations and comorbidities, thereby enhancing its 
generalizability, robustness, and relevance. Additionally, further exploration of the effects of parameters α and β 
on model reliability is essential. To address potential errors in the assignment of appropriate therapeutic limits, 
we plan to implement targeted training for medical personnel. Lastly, integrating the predictive model into 
electronic health records (EHR) systems could facilitate real-time risk assessments, improving clinical workflows 
and decision-making efficiency. This integration would represent a significant step forward in bringing predictive 
modelling into everyday clinical practice.

In summary, this work not only offers a holistic framework that integrates predictive and explanatory 
modelling to deliver actionable insights into patient outcomes, but also marks the introduction of the MTh 
meta-algorithm, a novel and significant advancement in predictive modelling. By advancing the application 
of ML in healthcare –particularly through the development and validation of the MTh meta-algorithm– we 
contribute to the ongoing evolution of personalized medicine. Our approach is cost-sensitive and employs 
rigorous model evaluation techniques. Its successful implementation demonstrates potential to enhance clinical 
decision-making, offering a promising path toward more tailored and effective patient care in the future.

Data availability
 The data supporting these findings are restricted due to ethical and legal constraints. Access to these data may 
be granted upon request to the Ethics Committee of Bellvitge University Hospital (Barcelona, Spain), which will 
evaluate each request individually. To inquire about data access, please contact the Research Support Unit at 
Bellvitge University Hospital through the following email address: clinicalresearchwindow@bellvitgehospital.
cat, or visit the website at www.bellvitgehospital.cat/clinicalresearch

Appendix A: Overview of patient characteristics in the dataset
Variables highlighted in italic are exclusively utilized in constructing the predictive model for the data subset of 
patients with a therapeutic limit, while those highlighted in bold italic are specific to the data subset of patients 
without a therapeutic limit. Variables in black are used for both data subsets. Percentages refer to the entire 
dataset.

Demographic

Initial assessment

Therapeutic limit can be either NRB (non-rebreather mask) or NIMV (non-invasive mechanical ventilation).

Vital signs
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The Charlson Index is a medical score designed to predict 10-year survival in patients with multiple comorbid-
ities. It ranges from 0 to 29.

Symptoms

Rhinorrhea refers to nasal congestion, anosmia signifies a loss of smell, and ageusia loss of taste. Arthromyalgia 
indicates muscle or joint pain. Dyspnoea represents shortness of breath, asthenia denotes fatigue, and cephalea 
corresponds to headache.

Blood test

d-dimer is a byproduct of blood clots, while C-reactive protein is a protein that elevates in response to inflam-
mation.

Comorbidities

Hemiplegia refers to the paralysis of one half of the body in a patient.
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Figure 6. Arcs strength in the DAG of the Augmented Naive model for the “therapeutic limit” data subset.

 

Previous treatments

 

Appendix B: Arc strength and influential features
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Figure 7. Arcs strength in the DAG of the TAN model for the “therapeutic limit” data subset.
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Figure 8. Arcs strength in the DAG of the Augmented Naive model for the “no-therapeutic limit” data subset.
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Figure 9. Arcs strength in the DAG of the TAN model for the “no-therapeutic limit” data subset.
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Therapeutic limit NB AN TAN

Demographic age 1.0262× 10−26 6.8210× 10−19 1.0262× 10−26

Initial assessment limit type 2.1028× 10−14 5.1537× 10−10 1.0367× 10−32

Vital signs

Charlson Index 1.4510× 10−23

consciousness 1.8351× 10−16 4.2450× 10−9

O2 saturation 4.7308× 10−21 8.0103× 10−9

Symptoms

abdominal pain 9.3183× 10−10

arthromyalgia 1.1429× 10−2 ∗

asthenia 1.3104× 10−11 5.4121× 10−30 4.95774× 10−4

confusional syndrome 1.3891× 10−7 1.8365× 10−5

dyspnoea 9.2462× 10−9 2.4929× 10−7

nauseas 6.2838× 10−11

rhinorrhea 1.9114× 10−3 ∗∗ 3.4834× 10−2 ∗

thoracic pain 9.6998× 10−11 2.2364× 10−3 ∗∗

Blood test

c-reactive protein 9.1693× 10−12 6.0460× 10−4

d-dimer 1.2327× 10−6 2.3893× 10−3 ∗∗

lactate 2.3629× 10−18 5.3051× 10−17

Comorbidities

dementia 8.5090× 10−9

hemiplegia 9.2061× 10−4

mild kidney failure 3.9761× 10−2 ∗ 4.7419× 10−2 ∗

Previous treat.

acetylsalicylic acid 5.3530× 10−12

biological therapies 8.0247× 10−14 8.3223× 10−4 3.1345× 10−7

hydroxychloroquine 2.6519× 10−3 ∗∗ 7.4428× 10−3 ∗∗

immunosuppressants 3.0180× 10−14

statins 7.7630× 10−3 ∗∗

Table 11. Therapeutic limit. Most influential features for risk prediction, with p-values indicating strength of 
influence (lower p-values indicate stronger influence). Unless otherwise indicated by a superscript ∗ (5%) or ∗∗ 
(1%), the statistical significance of p-values is 10/00.
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No-therapeutic limit NB AN TAN

Demographic
age 2.8061× 10−51 4.1440× 10−41

sex 1.1142× 10−5

Vital signs
consciousness 1.8257× 10−11 9.5856× 10−13

O2 saturation 3.1983× 10−46 2.9497× 10−24

Symptoms

anosmia & ageusia 1.3770× 10−11 5.3000× 10−8

cephalea 2.2856× 10−6

confusional syndrome 2.4702× 10−7 1.8388× 10−7

dyspnoea 4.9554× 10−13 3.7987× 10−10

rhinorrhea 1.1796× 10−2 ∗ 4.1275× 10−3 ∗∗

Blood test

c-reactive protein 2.8987× 10−31 8.6838× 10−12

d-dimer 2.0911× 10−16 1.8923× 10−6 1.0311× 10−7

lactate 1.4145× 10−23 1.5090× 10−22 1.5801× 10−11

lymphocytes 6.3165× 10−21 6.5585× 10−16 8.4156× 10−16

Comorbidities
dementia 3.1484× 10−15

diabetes 1.7290× 10−4 1.3544× 10−3 ∗∗

Previous treat.

acetylsalicylic acid 1.7857× 10−3 ∗∗ 7.4592× 10−3 ∗∗

antibiotic 2.65134× 10−2 ∗ 3.0119× 10−2 ∗

anticoagulants 7.3877× 10−6 4.2265× 10−4

statins 7.0450× 10−5 2.2817× 10−3 ∗∗ 6.7093× 10−6

Table 12. No-therapeutic limit. Most influential features for risk prediction, with p-values indicating strength 
of influence (lower p-values indicate stronger influence). Unless otherwise indicated by a superscript ∗ (5%) or 
∗∗ (1%), the statistical significance of p-values is 10/00.
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Appendix C: Heatmaps for risk predictions

Figure 10. Heatmaps showing the a posteriori probabilities for the patient in Example 1: probability of exitus 
(left) and icu (right) as functions of α = 2, . . . , 20 and β = 2, . . . , α, differentiated by therapeutic limit type. 
White represents the median value, with low probabilities in blue and high probabilities in red.
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Appendix D: The Multi-Thresholding meta-algorithm, MTh
In this appendix, we present and establish some properties of Algorithm 1.

Remark 1
Bayes Minimum Risk (BMR) is a concept used in classification problems, particularly in the context of Bayesian 
Decision Theory and decision-making under uncertainty. BMR is especially valuable in situations where classi-
fication errors have different costs or consequences. This approach involves making predictions by selecting the 
class that minimizes the risk (or expected cost) associated with incorrectly predicting that class. Formally and 
with our notations:

 
c∗BMR = ch with h = arg min

i=1,...,r
ωi .

In contrast, the MTh meta-algorithm is based on selecting the class that maximizes the adjusted probabilities 
obtained by dividing the original probabilities by the corresponding risks. When the original probabilities are 
equal (p1 = · · · = pr), both criteria coincide, meaning that c∗ = c∗BMR.

Figure 11. Heatmaps showing the a posteriori probabilities for the patient in Example 2: probability of exitus 
(left) and icu (right) as functions of α = 2, . . . , 20 and β = 2, . . . , α, differentiated by therapeutic limit type. 
White represents the median value, with low probabilities in blue and high probabilities in red.
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The following result demonstrates that, in the binary case, MTh essentially acts as a “thresholding” method, 
modifying the conventional threshold of 0.5 in cost-insensitive approaches. This modified threshold deter-
mines which class label is assigned.

Proposition 1
In the binary case where r = 2, MTh assigns class label c1 when p1 > τ , and it assigns class label c2 when 
p2 > 1− τ  (otherwise, there is no clear evidence for either class, and a tie-breaking mechanism should be im-
plemented). The value of this “threshold”, denoted as τ , is defined as follows with µ = m21/m12:

 

τ =





1/2 if m21 = m12

0 if m21 > m12 = 0

1 if m12 > m21 = 0
−1 +

√
µ

µ− 1
otherwise.

Proof
MTh assigns class label c1 if p̃1 > p̃2. Since ω1 = m12 p2 and ω2 = m21 p1, we can express this condition as fol-
lows:

 
p̃1 > p̃2 ⇔

p1
m12 p2

>
p2

m21 p1
⇔ (m21 −m12) p

2
1 + 2m12 p1 −m12 > 0 .  (D1)

Here, we have used the fact that p2 = 1− p1.

Notably, when m12 = m21, the condition (D1) simplifies to ⇔ p1 > 1/2, aligning with the cost-insensitive 
scenario as expected.
Let’s assume, for now, that m21 > m12. If m12 = 0, equation (D1) is equivalent to p1 > 0. In this case, when 
there is no cost associated with misclassifying and instance of class c2 as c1 (but there is a cost for the reverse 
misclassification), MTh always assigns class label c1, which is a logical outcome. Otherwise, if we introduce the 
ratio µ = m21/m12, which is greater than 1, equation (D1) becomes equivalent to

 (µ− 1) p21 + 2 p1 − 1 > 0 .  (D2)

The roots of this quadratic equation are:

 
−1−√

µ

µ− 1
< 0 < τ =

−1 +
√
µ

µ− 1
<

1

2
.

Therefore, equation (D2) holds if and only if p1 > τ .

The case m21 < m12 is analogous to the previous case. In particular, if m21 = 0, equation (D1) is equivalent to 
(p1 − 1)2 < 0, which is not true for any value of p1, leading to τ = 1. The interpretation here is that if there is 
no cost associated with misclassifying an instance of class c1 as c2 (but there is a cost for the reverse misclassi-
fication), MTh logically never assigns class label c1. Now, in the case where 0 < m21 < m12, which implies that 
µ = m21/m12 < 1, the two roots of equation (D2) are:

 
1

2
< τ =

−1 +
√
µ

µ− 1
< 1 <

1 +
√
µ

1 + µ
.

Consequently, equation (D2) (or equivalently, (D1)) holds if and only if p1 > τ  due to the fact that µ < 1. □

Corollary 1
In the binary case where r = 2, MTh assigns class label c1 if p1 > τ , where the “threshold” τ  satisfies the condi-
tion:

 

{
0 < τ < 1/2 if m21 > m12 > 0

1/2 < τ < 1 if 0 < m21 < m12 .

That is, if the cost associated with misclassifying an instance of class ci is greater than the cost of the opposite 
error, MTh assigns class label ci with a higher probability than the other class label.

Corollary 2
In the binary case where r = 2, the “threshold” τ  obtained with the MTh algorithm is a continuous and decreas-
ing function of µ within the interval [0, +∞). As µ approaches infinity, τ  tends towards zero.
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Proof
The “threshold” τ  obtained with the MTh algorithm where r = 2 is given by the following function of µ in 
[0, +∞):

 
τ = f (µ) =




−1 +
√
µ

µ− 1
if µ ̸= 1

1/2 if µ = 1 .

This function is continuous and decreasing. Additionally, f (0) = 1 and limµ→+∞ f (µ) = 0. □

The interpretation of this result is that, as µ increases (where m21 increases relative to m12), the threshold τ  
decreases, effectively biasing the decision in favor of c1. In simpler terms, the cost influences the threshold to 
favor the less expensive option.

Remark 2
When comparing the threshold τ  obtained through the MTh meta-algorithm with the conventional threshold 
in the binary case, p∗ = 1

1+µ(as described in27), we find that the MTh threshold is not so optimal. Specifically:

 

{
0 < p∗ < τ < 1/2 if m21 > m12 > 0

1/2 < τ < p∗ < 1 if 0 < m21 < m12 .

In both cases, when the of misclassifying an instance as ci is lower, the probability of assigning ci increases with 
both methods. However, this increase is more pronounced with the classic thresholding method. The expression 
for p∗ is derived by considering that the classic method assigns class c1 if the expected misclassification cost 
is lower than assigning c2, that is, if m12 p2 < m21 p1, resulting in p1 > 1/(1 + µ), taking into account that 
p2 = 1− p1.

It is important to note that MTh offers the advantage of being readily applicable to multiclass scenarios and, in 
this context, satisfies the pseudo-optimality property outlined in Proposition 2. In simpler terms, MTh ensures 
that predicted class labels are not changed for instances if doing so would worsen the expected misclassifica-
tion cost, as we demonstrate in the following result.

Proposition 2
In cases where predictions are made without ties, the MTh algorithm maintains the predicted class label, thereby 
avoiding a switch from ck to cℓ, if the expected cost of misclassification as cℓ is not lower than that of misclassi-
fication as ck. This pseudo-optimality feature ensures that decisions made by the algorithm do not lead to worse 
expected misclassification costs when choosing between class labels.

Proof
Let (p1, . . . , pr) denote the original a posteriori probabilities assigned to the class labels by any cost-insensitive 
classifier. The classifier’s predicted class label is determined as:

 
c∗ = ck with k = arg max

i=1,...,r
pi .

After applying the MTh meta-algorithm, the chosen class label becomes c∗th = cℓ if

 
ℓ = arg max

i=1,...,r
p̃i = arg max

i=1,...,r

pi
ωi

.

Hence, the change in the predicted class label, i.e. ℓ ̸= k, occurs when:

 
pk > pℓ , but

pℓ
ωℓ

>
pk
ωk

.

This implies that ωℓ < ωk. In other words, the MTh meta-algorithm does not alter the predicted class label from 
the original c∗ = ck to c∗th = cℓ if the expected cost of misclassifying an instance as cℓ is not less than that of 
misclassifying it as ck. □
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